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A multi-objective genetic algorithm approach to the design of cellular

manufacturing systems

MAGHSUD SOLIMANPURy, PREM VRATz and
RAVI SHANKAR}*

In this paper, a multi-objective integer programming model is constructed for the
design of cellular manufacturing systems with independent cells. A genetic algo-
rithm with multiple fitness functions is proposed to solve the formulated problem.
The proposed algorithm finds multiple solutions along the Pareto optimal fron-
tier. There are some features that make the proposed algorithm different from
other algorithms used in the design of cellular manufacturing systems. These
include: (1) a systematic uniform design-based technique, used to determine the
search directions, and (2) searching the solution space in multiple directions
instead of single direction. Four problems are selected from the literature to
evaluate the performance of the proposed approach. The results validate the
effectiveness of the proposed method in designing the manufacturing cells.

1. Introduction

Cellular manufacturing (CM) has been recognized as a methodology for organiz-
ing the design and operation of a wide range of manufacturing systems so that the
advantages of mass production and flexibility of job shop manufacturing can be
derived from the production system. A typical CM environment processes a wide
variety of parts that have common features. Experience has shown CM to be
successful in many diverse environments (Wemmerlöv and Hyer 1989).

Cellular manufacturing has considerable influence on the performance of produc-
tion systems (Singh and Rajamani 1996). Some of the benefits of CM reported in the
literature are: low production cost, low material handling cost, low production time,
reduction in work-in-process (WIP) inventories, simple production control, reduc-
tion in scrap and waste, decentralization of responsibility, saving manufacturing
space, etc. (Wemmerlöv and Hyer 1989, Kusiak 1990, Heragu 1994, Shankar and
Vrat 1999).

One of the key issues in the design of manufacturing cells is how to group similar
parts in part families (PFs) and their associated machines in machine cells (MCs).
This issue is known as the cell formation problem (CFP) in the literature. Different
methodologies such as classification and coding systems, similarity coefficient-based
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methods, array analysis methods, mathematical programming, graph theory, expert
systems, neural networks, genetic algorithms, fuzzy set theory, simulation, etc. and
also numerous heuristics have been proposed in the literature to solve the cell for-
mation problem. A review of different methods developed for the CFP can be found
in Singh (1993) and Selim et al. (1998).

Because of the complexity and computational hardness of CFP, a majority of the
methods in the literature attempt to optimize only one objective in cell formation
(Shankar and Vrat 1998). However, this problem is a multi-objective optimization
problem and its solution affects different operational aspects of manufacturing
systems such as material handling cost, production cost, throughput time, WIP,
machine utilization, etc. (Soleymanpour et al. 2002). Ballakur and Steudel (1987)
outline nine objectives in CFP. These are: minimization of intercellular material
handling costs, minimization of setup times, maximization/minimization of a simi-
larity/dissimilarity measure, minimization of total production cost, minimizing the
number of exceptional elements, maximizing the utilization of machines and mini-
mizing machine idle times. Mansouri et al. (2000) reviewed the literature with respect
to the multi-objective methodologies proposed for cellular manufacturing systems
design. Study and analysis of the existing multi-objective methods proposed for CFP
reveals that mostly the weighted sum of objectives is used to convert multiple objec-
tives into a single objective. In these approaches, no systematic way is generally
reported to set the weights for each objective. The weights are either user-defined
or randomly generated. Moreover, the available multi-objective methods provide a
single cell configuration, which might be impossible to implement in reality. These
facts limit the applicability of existing multi-objective methods proposed for CFP.
In this paper, a mathematical model is proposed for CFP and a multi-objective
genetic algorithm is developed to solve the problem. In the proposed algorithm,
the solution space is searched in multiple directions and the uniform design
technique is used to determine the weights of objective functions.

This paper is organized as follows. In section 2, the related research in multi-
objective genetic algorithms and the applications of genetic algorithms to the CFP
are reviewed. Section 3 provides a brief background about the search vectors and
uniform design technique. In section 4, the CFP is formulated as a multi-objective
non-linear integer programming model. The elements of the proposed multi-
objective genetic algorithm are developed in section 5. In section 6, all the elements
proposed in section 5 are synthesized to evolve a unified algorithm. In section 7, the
performance of the proposed algorithm is evaluated through solving four problems
selected from the literature. Section 8 includes discussions and conclusions.

2. Literature review

Recent developments in multi-objective evolutionary algorithms are quite exten-
sive and rapidly growing. There are many multi-objective evolutionary algorithms
such as those due to Schaffer (1985), Hajela and Lin (1992), Horn and Nafpliotis
(1993), Srinivas and Deb (1994), etc. in the literature. A review and classification of
different multi-objective evolutionary algorithms can be found in Fonseca and
Fleming (1995) and Coello (1999). The salient point indicating the differences
between these approaches is due to the strategy by which the fitness of each chromo-
some is assigned. Zitzler et al. (2000) classified different multi-objective evolutionary
algorithms into three categories including criterion selection, aggregation selection
and Pareto selection. The algorithms employing a criterion selection strategy, e.g. the
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vector evaluated genetic algorithm (VEGA) proposed by Schaffer (1985), switch
between the objectives during the selection phase. In VEGA a certain fraction of
the population appearing in the mating pool is selected with regard to each objective.
The methods performing aggregation selection use conventional multi-objective
optimization techniques where multiple objectives are combined into a scalar objec-
tive function. Pareto selection-based algorithms use the systematic definition of
Pareto solutions to rank the solutions in the current population. There are different
rules for ranking Pareto solutions in the literature (e.g. Goldberg 1989, Srinivas and
Deb 1994). Our approach in this paper falls into the first category in which the
selection phase is based on fitness functions. The VEGA approach is criticized
because it clusters final solutions around the best solution with respect to each
objective (Fonseca and Fleming 1995). This is mainly due to the fact that in
VEGA each fraction of the next mating pool is selected based on one objective at
a time and other objectives are ignored (Srinivas and Deb 1994). In the approach
proposed in this paper, selection is based on fitness functions, which are combina-
tions of all objectives. Therefore, it is expected that our approach would overcome
the limitation mentioned above. The difference between the proposed and the VEGA
approaches is further discussed in section 5.6. The reasons for choosing the fitness
functions-based selection approach are as follows:

(1) The proposed selection approach provides the possibility for the designer to
define the preferences by giving desired search directions. However, in
Pareto selection approaches, all the non-dominated solutions are given
equal ranks to appear in the next mating pool.

(2) The number of objective functions in CMS design is large and Pareto
ranking-based methods are not expected to work well for optimizing
problems with many competing objectives (Horn and Nafpliotis 1993,
Fonseca and Fleming 1995).

(3) The Pareto frontier in CFP is discrete and Zitzler et al. (2000) have shown
that for these kinds of problems VEGA performs better than some other
Pareto ranking-based approaches such as niched Pareto genetic algorithm
(NPGA) proposed by Horn and Nafpliotis (1993).

It is well known that multi-objective genetic algorithms are among the most
useful approaches for multi-objective non-linear discrete optimization problems.
This fact makes multi-objective genetic algorithms suitable for solving the CFP as
the objective functions are non-linear and the decision variables are integer in
the CFP. Recent research on the applications of evolutionary algorithms to solve
the CFP have been reviewed in Dimopoulos and Zalzala (2000). Genetic algorithms-
based attempts at the cell formation problem will now be reviewed.

Venugopal and Narendran (1992) used a genetic algorithm to solve a bi-objective
integer programming cell formation problem. The uniform mutation and simple
crossover operators are used to minimize the total number of intercellular moves
and the total intra-cell workload variation. Gupta et al. (1995) developed a genetic
algorithm to minimize the weighted sum of inter-cell and intra-cell moves. An accep-
table level of machine utilization is considered to assign parts into manufacturing
cells. Gupta et al. (1996) considered different cell layouts and used a genetic algorithm
to minimize the total number of intra-cell and inter-cell moves and cell load variation.
Al-Sultan and Fedjki (1997) applied a genetic algorithm to solve a quadratic assign-
ment model and minimize dissimilarity between the parts. They only considered
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machine requirement data in their study. Su and Hsu (1998) used simulated annealing

and a genetic algorithm to solve a multi-objective cell formation problem. They

considered the following objectives: machine investment cost, inter-cell and intra-

cell material handling costs and inter-cell and intra-cell machine imbalances. User-

defined weights are used to convert multiple objectives into a single objective. Gravel

et al. (1998) considered alternate process plans for products and proposed a double-

loop genetic algorithm to generate an efficiency frontier of a cell formation problem

with two objectives, viz. minimizing inter-cell transfers and intra-cell load balance

among machines. Moon and Kim (1999) used a genetic algorithm to maximize the

total number of parts flowing between the machines within the same cell. They con-

sidered different data such as production volume, cell size, the capacity of the material

handling device, etc. Lee-Post (2000) used a genetic algorithm for handling a parts

coding and classification scheme, namely DCLASS. The sum of the similarities

between the parts is used to evaluate the fitness of strings. Each solution is represented

by five digits in which a digit ‘1’ means that the corresponding attribute is to be

considered in part family identification. The genetic algorithm is then applied to

find the optimum differentiating attributes. The average linkage clustering is used

to form part families. Zhao and Wu (2000) used a genetic algorithm to solve a multi-

objective cell formation problem. User-defined weights are used to convert multiple

objectives into a single objective. The objectives in their research are: total number of

exceptional elements, the total within-cell workload variation and the total intra-cell/

inter-cell movements. Plaquin and Pierreval (2000) proposed an evolutionary algo-

rithm for the CFP in the case of some specific constraints. The main attempt in their

study is to formulate conditions under which particular machines should be or should

not be located in the same cell. Uddin and Shanker (2002) used a genetic algorithm to

minimize the total number of inter-cellular moves in the presence of multiple process

plans for each part. In this approach, two inter-related problems, one pertaining to

the assignment of machines to cells and the second relating to the assignment

of process routes, are iteratively solved until convergence is achieved.

There are three aspects that make the proposed approach different from other

approaches.

(1) In the majority of the existing approaches, user-defined or randomly gener-
ated weights are used to convert multiple objectives into a single objective
(Mansouri et al. 2000). In this paper, we consider a systematic uniform
design-based approach to set the weights of objectives.

(2) In many of the existing genetic algorithms for the CFP, the solution space is
searched in only one direction. That is, only one weight is considered for
each objective and finally only one solution is obtained. In the algorithm
proposed in this paper, the solution space is searched in multiple directions,
i.e., multiple weights are considered for each objective function and there-
fore several final solutions are obtained. This feature provides an opportu-
nity for the designer to choose the most appropriate and practical solution.

(3) The mathematical model developed in this paper is relatively comprehensive
and the formed cells are independent. The importance of independent cells
in the CMS environment is also identified by Gen and Cheng (2000). They
have stated the following advantages with the adoption of independent cells:
(a) in some cases, especially in labour-intensive environments, machines are
inexpensive and usually small so that duplication will not be costly or space
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occupation will not be a major concern; (b) independent manufacturing cells
provide a simple manufacturing infrastructure that facilitates shop floor
automation, production planning and scheduling, maintenance, etc.; and
(c) independent cells might be the only cell type allowed in environments
such as pharmaceutical, medical and military industries in which products
are not allowed to leave the cell and share machines in other cells due to
traceability requirements. Moreover, identification of responsibilities is a
crucial problem in labour-intensive environments and can be satisfactorily
overcome by adoption of independent manufacturing cells. Justification for
selecting independent cells also lies in a focused survey of US companies
working in the CMS environment in which Wemmerlöv and Hyer (1989)
had reported that 80% of the companies with manned cells and 86%
of those with unmanned cells had independent cells. This indicates that
the approach proposed in this paper is of potential use in a wide range
of industries.

3. Theoretical background

3.1. Non-dominated solution and search vectors
Definition: Let us represent the objective space of a multi-objective minimization
problem as follows:

Z ¼ z 2 Rq
��z1 ¼ f1ðxÞ, z2 ¼ f2ðxÞ, . . . , zq ¼ fqðxÞ; x 2 �

� �
where x is a decision variable and � stands for the feasible solution space and q is the
number of objectives. A point z02Z is called a non-dominated solution if and only if
there does not exist a point z2Z such that:

zk < z0k for some k 2 1, 2, . . . , q
� �

zl � z0l for all l 6¼ k

In other words, a point z0 is called a non-dominated solution if and only if there is no
other solution in the feasible solution space, which is better than z

0 with respect to all
the objectives. To search the objective space, a weighting vector is mainly used.
When there is only one weighting vector the objective space is searched in one
direction. Figure 1(a) shows a mono-directional search scheme. In a genetic algo-
rithm, mono-directional search may lead to a few points in a Pareto optimal frontier.
These points are shown within the circle in figure 1(a). However, multi-directional
search is used to find more points distributed along the Pareto optimal frontier.
Figure 1(b) shows a multi-directional search scheme. The next issue in multi-
directional search is related to finding search vectors. In the literature, mostly
user-defined or randomly generated vectors are used to search the solution space.
In this paper, however, a uniform design method is used to construct uniformly
directed vectors.

3.2. Uniform design
The main attempt in uniform design is to sample a small set of points from a

given large set of points. Consider a space with L variables and K possible values for
each variable. Then there are KL points (combinations) in this space. The uniform
design selects K points out of KL points such that the selected points are scattered
uniformly over the space of KL points. The selected K points are denoted by a
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uniform matrix, U ¼ [uij]K�L, where uij is the value of variable j at point i. It can
be shown (Leung and Wang 2000) that when K is prime and K>L, uij is given by

uij ¼ i�j�1 mod K
� �

þ 1, ð1Þ

where � is a parameter given in table 1. Here L is considered as the number of
objective functions and K as the number of search directions (fitness functions).

4. Mathematical formulation of the CFP

The following notation is used throughout this paper to describe the proposed
multi-objective integer programming model as well as the multi-objective genetic
algorithm.

4.1. Notation
i, j ¼ indices for process plans of parts p and q, respectively, i ¼ 1, 2, . . . , Ip;

j ¼ 1, 2, . . . , Iq
k ¼ index for fitness functions, k ¼ 1, 2, . . . ,K
l ¼ index for objective functions, l ¼ 1, 2, 3, 4

m ¼ index for machines, m ¼ 1, 2, . . . ,M
n ¼ index for chromosomes in current population, n ¼ 1, 2, . . . , size_pop

p, q ¼ indices for two different parts, p, q ¼ 1, 2, . . . ,P
c ¼ index for cells, c ¼ 1, 2, . . . ,C
P ¼ total number of parts
M ¼ total number of machines
C ¼ total number of cells
Dp ¼ demand of part p
Ip ¼ number of process plans of part p.

xipc ¼
1 if part p uses process plan i in cell c
0 otherwise

�

aipm ¼
1 if part p needs processing on machine m in process plan i
0 otherwise

�
sijpq ¼ similarity coefficient between parts p and q when part p uses process plan i

and part q uses process plan j ; 8p, 8q, i ¼ 1, 2, . . . , Ip, j ¼ 1, 2, . . . , Iq, p 6¼ q

)(1 xxxxf

)(2 xxxxf

)(1 xxxxf

)(2 xxxxf

(a) (b) 

Figure 1. (a) Mono-directional search; (b) multi-directional search with uniformly
distributed search directions.
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No. of search
directions 5 7 11 13 17 19 23 29

No. of objective
functions 2–4 2–6 2–10 2 3 4–12 2–16 2–3 4–18

2,13–14,
20–22 8–12

3–7,
15–19 2 3 4–7

8–12,
16–24 13–15 25–28

� 2 3 7 5 4 6 10 8 14 7 15 17 12 9 16 8 14 18

Table 1. Values of � for different number of search directions and objective functions (Leung and Wang 2000).
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cipm ¼ processing cost of part p on machine m with respect to process plan i
tipm ¼ processing time of part p on machine m with respect to process plan i
Tm ¼ available time of machine m
Am ¼ acquisition cost of machine m
Uc ¼ maximum number of parts that can be assigned to cell c
Lc ¼ minimum number of parts to be allocated to cell c.

Let us highlight the difference between the indices k and l. The index l refers to
the objective functions and therefore the maximum value of l is identified by the
number of objective functions in the mathematical model. Since the proposed
model has four objective functions, the index l ranges from 1 to 4. However, the
index k refers to the number of fitness functions. Each fitness function is a combina-
tion of all objective functions and therefore the maximum value of index k, i.e. K,
indicates the number of directions by which the objective space is searched. Thus, K is
a control parameter.

4.2. Mathematical model
In this section a mathematical model is presented to solve the multi-objective cell

formation problem with multiple process plans and independent manufacturing
cells. The objectives considered in this model are to: (1) maximize the total similarity
between the parts, (2) minimize the total processing cost, (3) minimize the total
processing time, and (4) minimize the total investment needed for the acquisition
of machines. In order to unify the objectives being optimized, total dissimilarity is
minimized instead of maximizing total similarity. To do so, the total similarity
function is multiplied by –1. The problem is formulated as:

Minimize f1ðxÞ ¼ �
XP�1

p¼1

XP
q¼pþ1

XIp
i¼1

XIq
j¼1

XC
c¼1

sijpqx
i
pcx

j
qc ð2Þ

Minimize f2ðxÞ ¼
XP
p¼1

XC
c¼1

XIp
i¼1

XM
m¼1

Dpc
i
pmx

i
pc ð3Þ

Minimize f3ðxÞ ¼
XP
p¼1

XC
c¼1

XIp
i¼1

XM
m¼1

Dpt
i
pmx

i
pc ð4Þ

Minimize f4ðxÞ ¼
XC
c¼1

XM
m¼1

XP

p¼1

XIp

i¼1
Dpa

i
pmt

i
pmx

i
pc

Tm

2
4

3
5� Am ð5Þ

Subject to:

XC
c¼1

XIp
i¼1

xipc ¼ 1 p ¼ 1, 2, . . . ,P ð6Þ

Lc �
XP
p¼1

XIp
i¼1

xipc � Uc c ¼ 1, 2, . . . ,C ð7Þ

xipc 2 0, 1f g p ¼ 1, 2, . . . ,P; c ¼ 1, 2, . . . ,C; i ¼ 1, 2, . . . , Ip: ð8Þ
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Objective functions (2), (3), (4) and (5) represent the total dissimilarity, total proces-
sing cost, total processing time and total investment in the acquisition of machines,
respectively. The symbol xd e indicates the smallest integer value bigger than x. Con-
straint (6) ensures that each part uses only one process plan and is assigned to only
one manufacturing cell. Constraint (7) ensures that the size of cells is not violated.

Choobineh (1988) proposed a similarity coefficient that considers the sequence of
operations. This coefficient is used in the proposed model to calculate the similarity
between the parts. This similarity is defined as follows:

sijpq ¼
1

L0
sijpqð1Þ þ

XL0

l0¼2

Cij
pqðl

0
Þ

N � l0 þ 1

" #
; L0 < N ð9Þ

where sijpq is the similarity coefficient between the parts p and q when part p uses
process plan i and part q uses process plan j, Cij

pqðl
0
Þ is the number of common

sequences with length l0 between the parts p and q in the related process plans, L0

is the length of the longest common sequence between the parts p and q in the related
process plans, and N is the number of operations in the shorter process plan, i.e.
N ¼ Min:ðNi

p,N
j
qÞ. Here, Ni

p is the number of operations in process plan i of part p
and similarly, Nj

q is the number of operations in process plan j of part q. Then sijpqð1Þ
is computed using the Jaccard similarity coefficient proposed by McAuley (1972).

5. Application of the genetic algorithm

5.1. Representation of solutions
For the cell formation problem formulated in section 4.2, each solution is repre-

sented by one chromosome with 2�P genes, i.e. two genes are considered for each
part. The first gene contains the cell number to which the corresponding part is
assigned. The second gene contains the selected process plan for the corresponding
part. It is seen that by this representation only one process plan and one manufac-
turing cell is selected for each part and therefore constraints (6) and (8) are satisfied
automatically. Figure 2 illustrates the proposed representation scheme.

5.2. Fitness functions
Since the objective space is explored in multiple directions, say K directions, then

K fitness functions are to be defined. For direction k, the fitness function is formed as
follows:

fitkðSÞ ¼ wk1f1ðSÞ þ wk2f2ðSÞ þ wk3f3ðSÞ þ wk4f4ðSÞ þ �1

XC
c¼1

gcðSÞ þ �2

XC
c¼1

g0cðSÞ

ð10Þ

         part 1                     part 2     part P 

cell number process plan

2 1 3 2 1 2 

Figure 2. Representation of solutions in the proposed method. In this figure, for example,
part 1 is assigned to cell 2 and is processed under process plan 1.
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In equation (10), fitk(S) represents the fitness of chromosome S with respect to the
kth search direction, and fl(S) indicates the value of the lth objective function for
chromosome S. The parameters �1 and �2 are large positive penalty coefficients for
infeasible solutions. The functions gc(S) and g0cðSÞ are defined as follows:

gcðSÞ ¼

0 if
XP
p¼1

XIp
i¼1

xipc � Uc

XP
p¼1

XIp
i¼1

xipc �Uc otherwise

8>>>>><
>>>>>:

8c ¼ 1, 2, . . . ,C ð11Þ

g0cðSÞ ¼

0 if
XP
p¼1

XIp
i¼1

xipc � Lc

Lc �
XP
p¼1

XIp
i¼1

xipc otherwise

8>>>>><
>>>>>:

8c ¼ 1, 2, . . . ,C ð12Þ

As seen in equations (11) and (12), the functions gc(S) and g0cðSÞ are equal to zero for
feasible solutions. This implies that the values of coefficients �1 and �2 do not affect
the fitness value of feasible solutions and only penalize infeasible solutions. In equa-
tion (10), since the values of objective functions vary in different ranges, the objective
functions with large values may dominate the contribution of other objectives. To
alleviate this problem, the fitness function (10) is replaced by equation (13):

fitkðSÞ ¼ wk1h1ðSÞ þ wk2h2ðSÞ þ wk3h3ðSÞ þ wk4h4ðSÞ þ �1

XC
c¼1

gcðSÞ þ �2

XC
c¼1

g0cðSÞ,

ð13Þ

where

hlðSÞ ¼
flðSÞ

max flðS
0Þ
��8S0 2 �

� � l ¼ 1, 2, . . . , 4: ð14Þ

The function hl(S) denotes the normalized value of the objective function l for
chromosome S and � stands for the set of all chromosomes under evaluation.

It is preferred to search objective space in uniform directions because uniform
directions promise to find uniformly distributed solutions along the Pareto optimal
frontier. Thus, the uniform design technique discussed in section 3.2 is applied to
form search directions. To do so, objective functions are treated as factors and the
number of directions as levels. Hence, search directions are calculated as follows:

W ¼ wkl½ �K�4; wkl ¼
uklX4

l¼1
ukl

; 8k, l ð15Þ

where U(K, 4) ¼ [ukl]K� 4 is the uniform design matrix defined in equation (1). Each
row of the matrixW is a search vector and wkl is the weight of the objective function l
in fitness function k.

5.3. Crossover
The proposed genetic algorithm uses a simple crossover operator in which a

random crossover point is determined and the second parts of the chromosomes
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are exchanged. The probability of selecting a chromosome for crossover is calculated
by

pkðSrÞ ¼
max fitkðSnÞ n ¼ 1, 2, . . . , �k kj

� �
� fitkðSrÞX �k k

w¼1
max fitkðSnÞ n ¼ 1, 2, . . . , �k kj

� �
� fitkðSwÞ

� � r ¼ 1, 2, . . . , �k k, ð16Þ

where pk(Sr) is the probability of selecting chromosome Sr for crossover with respect
to fitness function k. The crossover operation is done as follows:

Step 1. With respect to fitness function k, k ¼ 1, 2, . . . ,K, select size_pop/K
chromosomes. Take all the selected chromosomes to set �.

Step 2. Randomly mate chromosomes in �.
Step 3. For every parent randomly mated in step 2, use the simple crossover

operator and replace the created children with relevant parents in �.

5.4. Mutation
Mutation brings unexpected features to the children that do not exist in parents.

Every chromosome in � is chosen for mutation with a probability of pm. In every
chromosome selected for mutation, a gene is selected randomly. If the selected gene
is odd, the current value of that gene is replaced with a random number selected from
[1,C]. If the selected gene is even, a process plan of the corresponding part is
randomly selected and replaced with the current value of that gene.

5.5. Evaluation
In order to select chromosomes for the next generation, all the newly created

chromosomes are to be evaluated. Evaluation is done as follows:

Step 1. Set n ¼ 1, k ¼ 1 and large positive values for �1 and �2.
Step 2. Using equations (11)–(15) compute the kth fitness value of the nth

chromosome.
Step 3. If k<K, set k ¼ k þ 1 and go to step 2. Otherwise, go to step 4.
Step 4. If n<k�k, set n¼ n þ 1, k ¼ 1 and go to step 2. Otherwise, stop.

5.6. Selection
In the proposed algorithm, the selection process is done as follows.

Step 1. Add newly created chromosomes to current population, i.e. � ¼ � [�.
Then set � ¼ � and k ¼ 1.

Step 2. With respect to fitness function k, calculate the following selection probabil-
ities for each chromosome:

pkðSnÞ ¼
max fitkðSnÞ n ¼ 1, 2, . . . , �k kj

� �
� fitkðSnÞX �k k

n¼1
max fitkðSnÞ n ¼ 1, 2, . . . , �k kj

� �
� fitkðSnÞ

� � n ¼ 1, 2, . . . , �k k

ð17Þ

where pk(Sn) is interpreted as the probability of selecting chromosome Sn

with respect to fitness function k.
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Step 3. Compute cumulative probabilities from step 2. Let CDFk(Sn) represent the
cumulative probability of chromosome Sn with respect to fitness function k.
Set � ¼ 1.

Step 4. Generate a random number r from a uniform continuous distribution in
[0, 1]. Use the following relation to select the nth chromosome for the next
generation:

CDFkðSn�1Þ < r � CDFkðSnÞ n ¼ 1, 2, . . . , �k k: ð18Þ

Take chromosome Sn to set �.
Step 5. If �<dsize_pop/K e, set � ¼ � þ 1 and go to step 4. Otherwise, go to step 6.
Step 6. If k<K, set k ¼ k þ 1 and go to step 2. Otherwise, stop.

The proposed selection approach selects size_pop/K chromosomes with respect to
each fitness function at a time (steps 2–5). Our approach is different from the VEGA
approach developed by Schaffer (1985). In VEGA, selection is first done on the basis
of one objective followed by selection based on the next objective, and so on. In the
proposed approach, however, selection is based on fitness functions rather than
objective functions and every time size_pop/K chromosomes are selected where K
is the number of fitness functions. In fact, the VEGA approach is a special case of
our general selection approach as identity vectors are used in VEGA to explore the
objective function space. Our selection approach would function like VEGA if we set
identity vectors as search directions. One of the major limitations of the VEGA
approach is its tendency to cluster solutions around the best solution with respect
to each objective (Goldberg 1989). This is due to the fact that the VEGA approach
explores the Pareto frontier in identity directions meaning that objectives are con-
sidered independently (Srinivas and Deb 1994). In other words, in every search
direction only one objective is considered and all other objectives are ignored. Our
proposed approach does not use identity vectors and therefore provides the possi-
bility to cluster solutions throughout the Pareto optimal frontier. Application of the
uniform design technique increases the possibility of obtaining well-distributed solu-
tions along the Pareto optimal frontier. Therefore, the major limitation of VEGA
can be alleviated by the proposed approach. However, comparison of the perfor-
mance of our selection approach with VEGA as well as other approaches requires
independent research as it is beyond the scope of this paper, which proposes a
comprehensive multi-objective integer programming model to the design of cellular
manufacturing systems.

6. Genetic algorithm for the multi-objective cell formation problem

In this section, all the elements discussed in section 5 are synthesized to evolve a
multi-objective genetic algorithm with multiple fitness functions.

Step 1. Set values of parameters K, � , size_pop, max_gen, and pm. Set gen ¼ 1.
Step 2. Generate an initial population of size size_pop and call it �. Use equations

(11)–(15) to calculate the fitness values of all the chromosomes in �.
Step 3. Use the crossover algorithm explained in section 5.3 to do the crossover

operation.
Step 4. Use the mutation algorithm explained in section 5.4 to do the mutation

operation.
Step 5. Use the evaluation algorithm presented in section 5.5 to evaluate the chro-

mosomes created by crossover and mutation operations.
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Step 6. Use the selection algorithm explained in section 5.6 to select size_pop
chromosomes for the next generation. Keep the fitness values of selected
chromosomes for the next generation. The new population is represented
by �.

Step 7. Add the newly created population to the set of Pareto optimal solutions, i.e.
� ¼ � [�. Remove all the dominated solutions from �.

Step 8. If gen<max_gen, set gen ¼ genþ 1 and go to step 3. Otherwise, stop.

Some guidelines are given to set the values of parameters in step 1. According to
equation (1), the number of fitness functions, K, is a prime number greater than the
number of objective functions. A large number of fitness functions would result in
relatively exhaustive exploration of the decision space and more non-dominated
solutions, though this would increase the computation time. The size of the popula-
tion represented by the parameter size_pop can be set with respect to the number of
decision variables in the problem. As the number of decision variables increases, a
large value for parameter size_pop is required to better explore the solution space.
Moreover, the parameter size_pop should be a multiple of K. The parameter
max_gen is a simple stopping condition indicating the maximum number of genera-
tions to be run. The mutation probability, pm, is a relatively small value and based on
our experience a probability of 0.1 performs well. The value of parameter � is
determined with respect to the number of objective functions and fitness functions
as given in table 1. As seen in this table, for four objectives and five fitness functions
the parameter � is set to 2.

It is notable that at the end of each iteration all non-dominated solutions are
recorded in set �. This guarantees that a good solution obtained in the earlier
generations will never be lost during the execution of this algorithm.

7. Illustrative examples

To evaluate the performance of the proposed algorithm four examples are
adopted from the literature. Since a majority of cellular manufacturing systems
operate with few cells and machines, the selected problems can provide a general
perspective of the applicability of the proposed algorithm. A survey of 32 cell users in
the USA revealed that these firms had six cells each with six machines, on average
(Wemmerlöv and Hyer 1989).

Based on our computational experience the following values are considered for
the parameters: K ¼ 5, pm ¼ 0.1, size_pop ¼ 50, max_gen ¼ 700 and � ¼ 2.

Example 1
The first example is adopted from Aktürk and Balkose (1996) and includes

20 parts and 10 machines. The proposed algorithm is tested in two different schemes.
In the first scheme, only the original data given in Aktürk and Balkose (1996) are
used to show the effectiveness of the proposed method. In addition, relevant proces-
sing costs have been added to the original data. In this scheme, there is only one
process plan for each part. In the second scheme, however, without manipulation of
the original data, additional process plans along with related production costs and
processing times are superimposed on the original data. Table 2 contains all the
original as well as superimposed data. The original data are given by the first process
plan of each part. The acquisition costs of machines are 106, 136, 65, 140, 103, 61,
126, 93, 94 and 70 for machines A, B, F, G, H, K, L, M, R and T, respectively.
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As mentioned in the original data, the capacity of machines and the maximum
number of parts in each cell are assumed to be 3000 and 11, respectively.

Table 3 shows the solutions obtained by the proposed genetic algorithm and the
solution reported in Aktürk and Balkose (1996). As shown in table 3, our first and
third solutions dominate the solution obtained by Aktürk and Balkose. The solu-
tions obtained by the proposed method provide higher similarity between the parts
and less investment in the acquisition of machines.

Table 4 shows the solutions obtained by the proposed genetic algorithm for the
second scheme. In table 4, the selected process plan for each part and the required
number of each machine are indicated within parentheses. Due to multiple process
plans in the second scheme, the proposed genetic algorithm has obtained more

Part
no. PP

Sequence of
operations

Processing costs in terms
of sequence number

Processing times in terms
of sequence number

Demand1 2 3 4 5 1 2 3 4 5

1 1 B F G 2 5 6 2 3 2 150
2 F G R 5 3 3 1 3 2

2 1 A B F L 1 3 2 4 2 3 4 3 226
3 1 F K M R 6 1 4 4 2 3 4 2 335
4 1 F G H R 3 3 2 4 3 2 4 2 446

2 F G R T 3 3 3 3 3 3 2 2
5 1 A M T 1 3 4 2 3 4 274

2 B M T 1 3 4 3 3 4
6 1 A B L M T 5 1 3 3 2 2 3 2 1 5 171

2 A B M T 5 1 4 2 2 3 2 5
7 1 F G R L T 2 2 4 1 2 3 2 3 1 2 218

2 F G H R T 2 2 1 4 2 3 2 2 3 2
3 F H R L T 2 1 4 1 2 3 2 2 1 2

8 1 K A R T 4 2 1 1 2 3 1 2 273
2 A K R T 2 4 1 1 3 2 1 2

9 1 A K M R T 3 2 2 2 5 3 1 4 2 3 307
2 A K R T 3 2 3 5 3 2 3 3

10 1 A K R T 3 1 2 4 3 2 2 1 414
2 K M R T 4 1 2 4 3 2 2 2

11 1 A B R T 3 3 3 2 2 3 4 1 223
2 A B M T 3 3 3 2 2 3 5 1

12 1 B F R L 2 2 1 1 3 2 1 1 378
2 B F G L 2 2 1 1 3 2 1 1

13 1 M R T 3 1 3 3 2 4 328
2 K R T 3 1 3 2 3 4

14 1 A R T 1 5 2 1 3 2 280
2 B R T 2 5 2 2 3 2

15 1 F H R L 2 2 1 1 1 2 1 1 270
2 F H R T 2 2 1 2 1 2 1 2

16 1 A B M T 2 2 4 1 2 3 2 3 182
17 1 A B F T 3 2 1 2 3 2 3 4 244
18 1 A B F G 3 1 1 2 5 4 2 2 152
19 1 F G R T 4 1 3 2 4 1 1 1 366

2 F G R L 4 1 3 1 3 1 1 1
20 1 G R T 3 2 2 1 1 2 226

2 F G R 1 3 2 1 1 1

PP: process plan.

Table 2. Data for example 1.
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Solution Cell Parts Machinesa
Total

similarity
Total
cost ($)

Total
time (sec)

Investment
($)

1 I 2, 5, 6, 8, 10, 11, 13, 16, 17 A(2), B(1), F(1),K(1), L(1),M(1), R(1), T(2) 32.09 55439 49975 2080
II 1, 3, 4, 7, 9, 12, 14, 15, 18, 19, 20 A(1), B(1), F(2),G(1),H(1),K(1), L(1),M(1),

R(2), T(1)

2 I 1, 2, 4, 7, 12, 15, 17, 18, 19, 20 A(1), B(2), F(3),G(1),H(1), L(1), R(1), T(1) 37.01 55439 49975 2290
II 3, 5, 6, 8, 9, 10, 11, 13, 14, 16 A(2), B(1), F(1),K(1), L(1),M(2), R(2), T(3)

3 I 1, 4, 7, 12, 15, 17, 18, 19, 20 A(1), B(1), F(2),G(1),H(1), L(1), R(1), T(1) 35.98 55439 49975 2089
II 2, 3, 5, 6, 8, 9, 10, 11, 13, 14, 16 A(2), B(1), F(1),K(1), L(1),M(2), R(2), T(3)

Solution of
Aktürk and
Balkose (1996)

I 1, 4, 7, 9, 10, 12, 13, 15, 18, 19, 20 A(1), B(1), F(2),G(1),H(1),K(1), L(1),M(1),
R(2), T(2)

31.57 55439 49975 2150

II 2, 3, 5, 6, 8, 11, 14, 16, 17 A(2), B(1), F(1),K(1), L(1),M(1), R(1), T(2)

aThe values within parentheses in this column indicate the number of associated machine types needed in the corresponding cell

Table 3. Solutions obtained by Aktürk and Balkose (1996) and the proposed algorithm for scheme 1 of example 1.
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Solution Cell Partsa Machinesb
Total

similarity
Total
cost ($)

Total
time (sec)

Investment
($)

1 I 4(2), 5(2), 6(2), 8(2), 9(2), 10(1), 11(1), 13(2), 14(1), 16(1), 17(1) A(2), B(2), F(1),G(1),K(1),M(1),R(2), T(3) 39.108 51477 48328 2300
II 1(2), 2(1), 3(1), 7(3), 12(2), 15(2), 18(1), 19(2), 20(2) A(1), B(1), F(2),G(1),H(1),K(1), L(1),

M(1), R(1), T(1)

2 I 5(2), 6(2), 8(2), 9(1), 10(1), 11(1), 13(2), 14(1), 16(1) A(2), B(1),K(1),M(1),R(2)T(3) 39.812 51784 48942 2258
II 1(2), 2(1), 3(1), 4(2), 7(3), 12(2), 15(2), 17(1), 18(1),

19(2), 20(2)
A(1), B(1), F(3),G(2),H(1),K(1), L(1),M(1),
R(2), T(1)

3 I 3(1), 4(2), 5(2), 6(2), 8(2), 9(2), 10(1), 11(1), 13(2), 14(1), 16(1) A(2), B(1), F(1),G(1),K(2),M(1),R(3), T(3) 38.329 51477 48328 2165
II 1(2), 2(1), 7(3), 12(2), 15(2)17(1), 18(1), 19(2), 20(2) A(1), B(1), F(2),G(1),H(1), L(1), R(1), T(1)

4 I 1(2), 2(1), 4(2), 7(3), 11(1), 12(1), 14(1), 15(1), 19(2), 20(2) A(1), B(1), F(2),G(1),H(1), L(1), R(2), T(1) 35 51207 48058 2197
II 3(1), 5(2), 6(2), 8(1), 9(2), 10(1), 13(1), 16(1), 17(1), 18(1) A(2), B(1), F(1),G(1),K(1),M(2),R(2), T(3)

5 I 1(2), 2(1), 3(1), 4(2), 7(3), 11(1), 12(1), 14(1), 15(1),
19(2), 20(2)

A(1), B(1), F(3),G(1),H(1),K(1), L(1),
M(1), R(2), T(1)

35.686 51207 48058 2229

II 5(2), 6(2), 8(1), 9(2), 10(1), 13(1), 16(1), 17(1), 18(1) A(2), B(1), F(1),G(1),K(1),M(1),R(1), T(3)

aThe numbers within parentheses in this column indicate the process plan selected for the associated part
bThe values within parentheses in this column indicate the number of associated machine types needed in the corresponding cell.

Table 4. Solutions obtained by the proposed algorithm for the second scheme of example 1.
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favourable solutions. In the solutions of the second scheme, the first three objectives

including the total similarity, total processing cost, and total processing time have

considerably improved, though the total investment is slightly poor.

Example 2

The second example is adopted from Gen and Cheng (2000) and contains seven

parts, 13 process plans, and 10 machines. The objective function of this problem is to

minimize the sum of the total processing cost and total investment. Since the

sequence of operations and processing times are not available in the original prob-

lem, these data are superimposed on the original data. Table 5 shows all the data

needed for this problem. In this table, each row stands for one process plan and each

column represents one machine. The entry a(c, t) in this table indicates that the

corresponding part visits the related machine in the ath order and the processing

cost and processing time are c and t, respectively. The last column shows the pro-

duction volume of each part and the last row shows the unit price of each machine.

Our proposed method provided 13 non-dominated solutions along the Pareto

optimal frontier. Out of 13 solutions, one solution is the one reported in Gen and

Cheng (2000). This solution is the optimum solution considering the sum of total

processing cost and total investment in the acquisition of machines as a single

objective. The referred solution is given in table 6.

Machines

Parts PP* 1 2 3 4 5 6 7 8 9 10 Dp

1 1 2(2, 3) 1(3, 4) 3(2, 2) 80
2 1 2(2, 5) 1(3, 2) 3(1, 2)

2 3(4, 2) 2(5, 1) 4(4, 3) 1(7, 3) 80
3 2(6, 2) 3(5, 2) 1(7, 2) 4(5, 1)

3 1 2(6, 2) 3(5, 1) 1(6, 3) 80
2 2(3, 4) 1(3, 3)

4 1 2(4, 2) 3(5, 3) 1(7, 2)
2 1(4, 3) 2(7, 2) 3(6, 3) 80
3 1(3, 4) 2(4, 3) 3(3, 2)

5 1 1(4, 3) 2(2, 2) 3(5, 1) 4(2, 2) 80
6 1 1(5, 1) 2(6, 3) 4(4, 3) 3(8, 2) 80

2 1(2, 3) 3(4, 2) 2(2, 2) 4(4, 3)
7 1 1(5, 4) 2(7, 3) 3(3, 2) 80

Am ($) 2500 2300 2000 2200 2000 2500 2500 2000 2000 2000

*PP: process plan.

Table 5. Data for example 2.

Cell Part no. (process plan) Machine no. (required no.)

Cell 1 6(2) 1(1), 2(1), 6(1), 9(1)
Cell 2 1(1), 5(1), 7(1) 1(1), 3(1), 4(1), 9(1), 10(1)
Cell 3 2(1), 3(2), 4(3) 5(1), 7(1), 9(1), 10(1)

Table 6. One of the solutions obtained by the proposed method which is the optimum
solution considering the sum of total processing and total investment costs as a single
objective.
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Example 3
The third problem used to evaluate the performance of the proposed method is

problem 4 in Gupta et al. (1996) with 30 parts and 15 machines. In this problem,
each part is processed through one process plan. Since Gupta et al. have not con-
sidered the sequence of operations, it is assumed here that parts visit machines in
increasing order of machine indices. For example, part 2 in this problem needs
processing on machines 1, 3, 6, 8, 11 and 14. Hence, we assume the sequence of
operations of part 2 as 1-3-6-8-11-14. Processing costs are randomly generated from
a uniform distribution in [0, 10]. The production volume of each part and the unit
price of each machine have been generated from a discrete uniform distribution in
[0, 100]. The processing times of operations have been calculated using the generated
production volumes and the workload data given in Gupta et al. (1996). As con-
sidered by Gupta et al., the capacity of machines, the number of cells, and the
minimum number of parts in each cell are assumed to be eight units of time, four
cells, and two parts, respectively. The solutions obtained through the proposed
algorithm, and also the solution reported in Gupta et al. (1996) are shown in table 7.
The difference between the solutions obtained by the proposed algorithm is due to
the allocation of part 15 as it belongs to cell 2 in the first solution and to cell 1 in the
second solution. As seen in table 7, both the solutions obtained by the proposed
method dominate the solution obtained by Gupta et al. (1996). The solutions obtai-
ned by the proposed method provide better similarity between the parts with less
investment in the acquisition of machines. Total processing cost and total processing
time are the same for both methods as each part has only one process plan.

Example 4
The fourth problem adopted from Aktürk and Turkcan (2000) has 20 parts,

34 process plans and six machines. Aktürk and Turkcan have proposed a heuristic
with three stages to form manufacturing cells and determine the layout of machines
within the cells. We consider the solution obtained by Aktürk and Turkcan at the end
of the second stage in which manufacturing cells are independent and there is no inter-
cell movement of parts. Similar to the assumption in Aktürk and Turkcan (2000), the
number of manufacturing cells is three and the minimum number of parts in each cell
is three. We obtained 27 non-dominated solutions along the Pareto optimal frontier
of which one solution is reported here to compare with the solution obtained by
Aktürk and Turkcan (2000). Table 8 shows the solution obtained by the proposed
method as well as the solution reported in Aktürk and Turkcan (2000). As seen in
table 8, the proposed algorithm results in better solution in terms of maximum simi-
larity, minimum processing cost and minimum investment. The total processing time
is slightly in favour of the solution obtained by Aktürk and Turkcan (2000).

8. Discussion and conclusion

Since all the complexity in real life cannot be formulated through mathematical
models, it is preferred to provide reasonable solutions for the decision-maker to
select the most suited one. In this paper, a multi-objective mathematical model is
developed to the design of cellular manufacturing systems. However, the formulated
mathematical model is still open for adding more objectives like intra-cell load
variation, inter-cell load variation, etc. To solve the mathematical model, a multi-
objective genetic algorithm with multiple uniform search directions is proposed. The
proposed method provides a new approach for multi-objective optimization using
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Solution Cell Parts
Total

similarity
Total
cost ($)

Total
time (sec)

Investment
($)

Our solution 1 I 1, 4 to 14, 16, 19 to 22, 26, 28, 29, 30 37.0362 28533 967.2 8545
II 2, 15, 24
III 3, 23, 25, 27
IV 17, 18

Our solution 2 I 1, 4 to 16, 19 to 22, 26, 28, 29, 30 38.0053 28533 967.2 8627
II 2, 24
III 3, 23, 25, 27
IV 17, 18

Gupta et al. 1996 I 9, 10, 12 36.77 28533 967.2 9063
II 8, 14, 27
III 1 to 7, 11, 13, 15 to 21, 23, 25, 26, 28, 29, 30
IV 22, 24

Table 7. Solutions obtained by Gupta et al. (1996) and the proposed algorithm for example 3.
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Solution Cell Parts
Total

similarity
Total
cost ($)

Total
time (sec)

Investment
($)

Our solution I 2(1), 8(1), 13(2), 15(1), 16(1), 17(1), 20(1) 24.1167 21778 17592 21316
II 3(1), 9(1), 10(1)
III 1(2), 4(1), 5(1), 6(1), 7(1), 11(2), 12(1), 14(1), 18(2), 19(2)

Solution of
Aktürk and
Turkcan-2000

I 1(2), 3(1), 4(1), 10(1), 14(1), 16(1), 17(1), 20(1) 21.8 22045 17434 22802
II 5(1), 7(2), 9(1), 12(1), 15(1)
III 2(1), 6(1), 8(1), 11(2), 13(2), 18(2), 19(2)

Table 8. Solutions obtained by Aktürk and Turkcan (2000) and the proposed algorithm for example 4.
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genetic algorithms, which is used in the design of cellular manufacturing systems in
this paper. The novelty of the proposed method is claimed as follows: (1) using a
systematic method based on a uniform design technique to set the weights of objec-
tive functions, (2) using multiple fitness functions instead of a single fitness function,
and (3) proposing a comprehensive model to the design of independent manufactur-
ing cells. The first feature brings a facility to define search vectors in equal distances
with each other. In previous attempts, search directions are established either by the
perception of decision-makers or generated randomly. The second feature generates
several solutions along the Pareto optimal frontier thus making the proposed algo-
rithm suitable for the development of a decision support system for the cell forma-
tion problem. The third feature relates to the comprehensiveness and independence
of cells in the proposed approach. The proposed mathematical model is relatively
comprehensive as it considers machine requirements, processing costs, processing
times, sequence of operations, investment in the acquisition of machines, multiple
process plans, production volumes, capacity of machines, etc. On the other hand, the
independence of manufacturing cells facilitates production planning, scheduling and
material handling within the manufacturing system, which are the main goals in
adopting cellular manufacturing. In addition, this independence significantly simpli-
fies implementation of modern manufacturing technologies such as CAD/CAM,
CIM, JIT, etc. Since a large number of companies operating in the CMS environ-
ment operate with independent cells (Wemmerlöv and Hyer 1989), the proposed
algorithm can provide effective design of the manufacturing system for these
industries.

The proposed method is tested on different problems selected from the
literature. The solutions obtained by the proposed method provide improvements
compared to the approaches proposed by others in the adopted problems. The
comprehensiveness of the mathematical model and the effectiveness of the proposed
multi-objective genetic algorithm suit the attempted research for the design of
cellular manufacturing systems.
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