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Abstract 
This paper revisits the Artificial Immmune 
Recognition System (AIRS) that has been 
developed as an immune-inspired supervised 
learning algorithm. Certain unnecessary 
complications of the original algorithm are 
discussed and means of overcomming these 
complexities are proposed.  Experimental 
evidence is presented to support these revisions 
which do not sacrifice the accuracy of the 
original algorihtm but, rather, maintain accuracy 
whilst increasing the simplicity and data 
reduction capabilities of AIRS. 

1 INTRODUCTION 
Recently, there has been a great deal of interest in the use 
of the immune system as inspiration for computer science 
and engineering. These Artificial Immune Systems (AIS) 
seem to have great potential, which is as yet unrealized. 
An intuitive application of AIS is in the area of computer 
security, network intrusion detection (Forrest, Perelson et 
al. 1994), (Hofmeyr and Forrest 2000) and (Kim and 
Bentley 2001), change detection, and so on. However, 
AIS are not limited to this field alone. Work has identified 
that the immune system contains certain properties that 
may be useful to create learning algorithms for computer 
science through the exploitation of the natural learning 
mechanisms contained within the immune system (Bersini 
and Varela 1990). However, the focus of current AIS 
research seems to have been on the development of 
unsupervised learning algorithms (De Castro and Von 
Zuben 2000b) and (Timmis and Neal 2001) rather than 
the supervised or reinforcement kind. An exception to this 
is work in (Carter 2000). Recent work in (Watkins 2001) 
explored the possibility of utilizing the immune system as 
inspiration for the creation of a supervised learning 
technique. By extracting useful metaphors from the 
immune system and building on previous immune 

inspired unsupervised learning algorithms, a classifier 
was constructed that seems to perform reasonably well on 
various classification and machine learning problems 
(Watkins and Boggess 2002a). 
This paper presents a further investigation into the work 
of (Watkins 2001) and suggests improvements to the 
algorithm that are capable of maintaining classification 
accuracy, whilst improving performance in terms of 
computational costs and an increase in the data reduction 
capabilities of the algorithm. This paper outlines the 
previous work undertaken in (Watkins 2001), suggests 
improvements to the algorithms and discusses the 
implications of these new results. Attention is then given 
to future possibilities with this approach. 

2 BACKGROUND RESEARCH ON AIRS 
AIRS (Artificial Immune Recognition System) is a novel 
immune inspired supervised learning algorithm (Watkins 
2001). Motivation for this work came from the author’s 
identification of the fact that there was a significant lack 
of research that explored the use of the immune system 
metaphor for supervised learning; indeed, the only work 
identified was that of (Carter 2000). However, it was 
noted that within the AIS community there had been a 
number of investigations on exploiting immune 
mechanisms for unsupervised learning (that is, where the 
class of data is unknown a-priori) (Timmis, Neal et al. 
2000), (Timmis and Neal 2001) and (De Castro and Von 
Zuben 2000b). Work in (De Castro and Von Zuben 
2000a) examined the role of the clonal selection process 
within the immune system (Burnet 1959) and went on to 
develop an unsupervised learning known as CLONALG. 
This work was extended by employing the metaphor of 
the immune network theory (Jerne 1974) and then applied 
to data clustering. This led to the development of the 
aiNet algorithm (De Castro and Von Zuben 2000b). 
Experimentation with the aiNet algorithm revealed that 
evolved artificial immune networks, when combined with 
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traditional statistical analysis tools, were very effective at 
extracting interesting and useful clusters from data sets. 
aiNet was further extended to multimodal optimization 
tasks (De Castro and Timmis 2002b). Other work in 
(Timmis, Neal et al. 2000) also utilized the immune 
network theory metaphor for unsupervised learning, and 
then augmented the work with the development of a 
resource limited artificial immune network (Timmis and 
Neal 2001), which reported good benchmark results for 
cluster extraction and exploration with artificial immune 
networks. Indeed, this work has been further extended by 
(Nasaroui, Gonzalez et al. 2002) with the introduction of 
fuzzy logic and refinement of various calculations. The 
work in (Timmis and Neal 2001) was of particular 
relevance to (Watkins 2001) and the further work 
described in this paper.   
Building on this previous work, in particular the ideas of 
artificial recognition balls and resource limitation from 
(Timmis and Neal 2001) and long-lived memory cells 
from (De Castro and Von Zuben 2000b). AIRS 
demonstrated itself to be an effective classifier. The rest 
of this section describes the immune metaphors that have 
been employed within AIRS, outlines the algorithm and 
discusses results obtained, before progressing to the 
following section, which describes augmentations and 
improvements to AIRS. 

2.1 IMMUNE PRINCIPLES EMPLOYED 
A little time should be taken to draw attention to the most 
relevant aspects of immunology that have been utilized as 
inspiration for this work. A more detailed overview of the 
immune system and its relationship with computer 
science and engineering can be found in (De Castro and 
Timmis 2002a). 
Throughout a person’s lifetime, the body is exposed to a 
huge variety of pathogenic (potentially harmful) material. 
The immune system contains lymphocyte cells known as 
B- and T-cells, each of which has a unique type of 
molecular receptor (location in a shape space). Receptors 
in this shape space allow for the binding of the pathogenic 
material (antigens), with the higher affinity 
(complementarity) between the receptor and antigen 
indicating a stronger bind. Work in (De Castro and 
Timmis 2002a) adopted the term shape-space to describe 
the shape of the data being used, and defined a number of 
affinity measures, such as Euclidean distance, which can 
be used to determine the interaction between elements in 
the AIS. Within AIRS (and most AIS techniques) the idea 
of antigen/antibody binding is employed and is known as 
antigenic presentation. When dealing with learning 
algorithms, this is used to implement the idea of matching 
between training data (antigens) and potential solutions 
(B-Cells).  Work in (Timmis and Neal 2001) employed 
the idea of an artificial recognition ball (ARB), which was 
inspired by work in (Farmer, Packard et al. 1986) 
describing antigenic interaction within an immune 
network. Simply put, an ARB can be thought to represent 
a number of identical B-Cells and is a mechanism 

employed to reduce duplication and dictate survival 
within the population. 
Once the affinity between a B-Cell and an antigen has 
been determined, the B-Cell involved transforms into a 
plasma cell and experiences clonal expansion. During the 
process of clonal expansion, the B-Cell undergoes rapid 
proliferation (cloning) in proportion to how well it 
matches the antigen. This response is antigen specific.  
These clones then go through affinity maturation, where 
some undertake somatic hypermutation (mutation here is 
inversely proportional to antigenic affinity) and 
eventually will go through a selection process through 
which a given cell may become a memory cell. These 
memory cells are retained to allow for a faster response to 
the same, or similar, antigen should the host become re-
infected This faster response rate is known as the 
secondary immune response. Within AIRS, the idea of 
clonal expansion and affinity maturation are employed to 
encourage the generation of potential memory cells. 
These memory cells are later used for classification. 
Drawing on work from (Timmis and Neal 2001), AIRS 
utilized the idea of a stimulation level for an ARB, which, 
again, was derived from the equations for an immune 
network described in (Farmer, Packard et al. 1986). 
Although AIRS was inspired by this work on immune 
networks, it was found that maintaining a network 
representation—with connections, stimulation, and 
repression among the ARBs in the system—was not 
necessary for evolving a useful classifier.  In AIRS, ARBs 
experience a form of clonal expansion after being 
presented with training data (analogous to antigens); 
details on this process are provided in section 2.2. 
However, AIRS did not take into account the affinity 
proportional mutation. When new ARBs were created, 
they were subjected to a process of random mutation with 
a certain probability and were then incorporated into the 
memory set of cells should their affinity have met certain 
criteria. Within the AIRS system, ARBs competed for 
survival based on the idea of a resource limited system 
(Timmis and Neal 2001). A predefined number of 
resources existed, for which ARBs competed based on 
their stimulation level: the higher the stimulation value of 
an ARB the more resources it could claim.  ARBs that 
could not successfully compete for resources were 
removed from the system. The term metadynamics of the 
immune system refers to the constant changing of the B-
Cell population through cell proliferation and death. This 
was present in AIRS with the continual production and 
removal of ARBs from the population. Table 1 
summarizes the mapping between the immune system and 
AIRS. 
 
 
 
 
 



 
 
 
 
 
 

Table 1: Mapping between the Immune System and AIRS 

 
IMMUNE SYSTEM  AIRS 
______________________________________________ 
Antibody Feature vector 
Recognition Ball Combination of feature 

vector and vector class 
Shape-Space The possible values of the 

data vector 
Clonal Expansion Reproduction of ARBs that 

are well matched with 
antigens 

Antigens Training data 
Affinity Maturation Random mutation of ARB 

and removal of lowest 
stimulated ARBs 

Immune Memory Memory set of mutated 
ARBs 

Metadynamics Continual removal and 
creation of ARBs and 
Memory Cells 

 

2.2 THE AIRS ALGORITHM 
The previous section outlined the metaphors that were 
employed in the development of AIRS. This section now 
presents the actual algorithm and discusses the results 
obtained from experimentation. A more detailed 
description of the algorithm and results can be found in 
(Watkins 2001). 
Within AIRS, each element (ARB) corresponds to a 
vector of n dimensions and a class to which the data 
belongs. Additionally, each ARB has an associated 
stimulation level as defined in equation 1, where x is 
feature vector of the ARB, sx is the stimulation of an ARB 
x, y is the training antigen, and affinity, in the current 
implementation, is a function that calculates the Euclidean 
distance: 
 

(1) 
  

 
Notionally, AIRS has four stages to learning: 
initialization, memory cell identification, resource 
competition and finally refinement of established memory 
cells. AIRS is a one-shot learning algorithm; therefore, 
the process described below is run for each antigenic 
pattern, one at a time. Each of these processes will be 
outlined with the algorithm summarized below. 
Initialization of the system includes data pre-processing 
(normalization) and seeding of the system with randomly 
chosen data vectors. Assuming a normalized input 
training data set (antigens), data from that set are 
randomly selected to form the initial ARB population P 
and memory cells M. Prior to this selection, an affinity 
threshold is calculated; this threshold for the current 
implementation is the average Euclidean distance between 
each item in the training data set. This is then used to 
control the quality of the memory cells maintained as 
classifier cells in the system. 
AIRS maintains a population of memory cells M for each 
class of antigen, which, upon termination of the 
algorithm, should have identified suitable memory cells to 
provide a generalized representation for each class of 
antigenic pattern. The first stage of the algorithm is to 
determine the affinity of memory cells to each antigen of 
that class. Then the highest affinity cells are selected for 
cloning to produce a set of ARBs (which will ultimately 
be used to create an established memory set). The number 
of clones that are produced is in proportion to the 
antigenic affinity, i.e., how well they match; the ARBs 
also undergo a random mutation to introduce 
diversification. 
The next stage is to identify the strongest, based on 
affinity to the training instance, ARBs; these will be used 
to create the established memory set used for 
classification. This is achieved via a resource allocation 
mechanism, taken from (Timmis and Neal 2001), where 
ARBs are allocated a number of resources based on their 
normalized stimulation levels. At this point, it is worth 
noting that the stimulation level of an ARB is calculated 
not only from the antigenic match, but also the class of 
the ARB. This, in effect, provides reinforcement for 
ARBs that are of the same class as the antigenic pattern 
being learnt and that match the antigenic pattern well, in 
addition to providing reinforcement for those that do not 
fall into that class and do not match the pattern well. 
Once the stimulation of an ARB has been calculated, the 
ARB is allowed to produce clones (which undergo 
mutation). The termination condition is then tested to 
discover if the ARBs are stimulated enough for training to 
cease on this antigenic pattern. This is defined by taking 
the average stimulation for the ARBs of each class, and if 
each of these averages falls above a pre-defined threshold, 
training ceases for that pattern. This ARB production is 
repeated until the stopping criteria are met. Once the 
criteria have been met, then the candidate memory cell 
can be selected. ( )
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A candidate memory cell is selected from the set of ARBs 
based on its stimulation level and class, with the most 
stimulated ARB of the same class as the antigen being 
selected as the candidate. If this candidate cell has a 
higher stimulation than any memory cell for that class in 
the established memory set M, then it is added to M. 
Additionally, if the affinity of this candidate memory cell 
with the previous best memory cell is below the affinity 
threshold, then this established memory cell is removed 
from the population and replaced by the newly evolved 
memory cell, thus achieving population control. 
This process is then repeated for all antigenic patterns.  
Once learning has completed, the set of established 
memory cells M can be used for classification. The 
algorithm is presented below, in terms of immune 
processes employed. 

1. Initialization: Create a random base called the 
memory pool (M) and the ARB pool (P). 

2. Antigenic Presentation: for each antigenic 
pattern do:  
a) Clonal Expansion: 
For each element of M determine their affinity to 
the antigenic pattern, which resides in the same 
class. Select highest affinity memory cell (mc) 
and clone mc in proportion to its antigenic 
affinity to add to the set of ARBs (P)  
b) Affinity Maturation: 
Mutate each ARB descendant of this highest 
affinity mc.  Place each mutated ARB into P. 
c) Metadynamics of ARBs:  
Process each ARB through the resource 
allocation mechanism. This will result in some 
ARB death, and ultimately controls the 
population. Calculate the average stimulation for 
each ARB, and check for termination condition. 
d) Clonal Expansion and Affinity Maturation:  
Clone and mutate a randomly selected subset of 
the ARBs left in P based in proportion to their 
stimulation level.    
e) Cycle: 
While the average stimulation value of each 
ARB class group is less than a given stimulation 
threshold repeat from step 2.c. 
f) Metadynamics of Memory Cells:  
Select the highest affinity ARB of the same class 
as the antigen from the last antigenic interaction. 
If the affinity of this ARB with the antigenic 
pattern is better than that of the previously 
identified best memory cell mc then add the 
candidate (mc-candidate) to memory set M.  
Additionally, if the affinity of mc and mc-
candidate is below the affinity threshold, then 
remove mc from M. 

3. Cycle.  Repeat step 2 until all antigenic patterns 
have been presented. 

2.3 RESULTS AND DISCUSSION 
AIRS was tested on a number of benchmark data sets in 
order to assess the classification performance. This 
section will briefly highlight those results and discuss 
potential improvements for the algorithm, more details 
can be found in (Watkins and Boggess 2002a).  
Once a set of memory cells has been developed, the 
resultant cells can be used for classification. This is done 
through a k-nearest neighbor approach. Experiments were 
undertaken using a simple linearly separable data set, 
where classification accuracy of 98% was achieved using 
a k-value of 3. This seemed to bode well, and further 
experiments were undertaken using the Fisher Iris data 
set, Pima diabetes data, Ionosphere data and the Sonar 
data set, all obtained from the repository at the University 
of California at Irvine (Blake and Merz 1998). Table 2 
shows the performance of AIRS on these data sets, a full 
comparison table of AIRS and other techniques can be 
found in (Watkins and Boggess 2002a). 

Table 2: AIRS Classification Results on Benchmark Data 

IRIS IONOSPHERE DIABETES SONAR 

 
96.7 

 
94.9 

 
74.1 

 
84.0 

 
These results were obtained from averaging multiple runs 
of AIRS, typically consisting of three, or more, runs and 
five-way, or greater, cross validation. More specifically, 
for the Iris data set a five-fold cross validation scheme 
was employed with each result representing an average of 
three runs across these five divisions. To remain 
comparable to other experiments reported in the literature, 
the division between training and test sets of the 
Ionosphere data set as detailed in (Blake and Merz 1998) 
was maintained.  However, the results reported here still 
represent an average of three runs. For the Diabetes data 
set a ten-fold cross validation scheme was used, again 
with each of the 10 testing sets being disjoint from the 
others and results were averaged over three runs across 
these data sets.  Finally, the Sonar data set utilized the 
thirteen-way cross validation suggested in the literature 
(Blake and Merz 1998) and was averaged over ten runs to 
allow for more direct comparisons with other experiments 
reported in the literature.  During the experimentation, it 
was noted by the authors that varying system parameters 
such as number of seed cells varied performance on 
certain data sets, however, varying system resources (i.e., 
the numbers of resources an ARB could compete for) 
seemed to have little affect. A comparison was made 
between the performance of AIRS and other benchmark 
techniques, where AIRS seemed not to outperform 
specialist techniques, but on more general purpose 
algorithms, such as C4.5, it did outperform. 



Even though initial results from AIRS did look promising, 
it can be said there are a number of potential areas for 
simplification and improvement. There is clearly a need 
to understand exactly why and how AIRS behaves the 
way it does. This can be achieved through a rigorous 
analysis of the algorithm, examining the behavior of the 
ARB pool and memory set over time. To date, the focus 
has been primarily on the classification performance of 
AIRS. Indeed, the final chapter of (Watkins 2001) 
suggests that an investigation into the resource allocation 
mechanism would be a useful area of investigation. The 
majority of AIS techniques use the metaphor of somatic 
hypermutation or affinity proportional mutation. To date, 
AIRS does not employ this metaphor but instead uses a 
naïve random generation of mutations. 
 The remaining sections of this paper undertake these 
investigations and present a modified version of AIRS, 
which is more efficient in terms of ARB production, 
employs affinity proportional mutation and assess what, if 
any, difference this has made to the overall algorithm. 

3 A MORE EFFICIENT AIRS 
Motivated by the observations in (Watkins 2001), current 
work has focused on refining AIRS. This section details 
the observations that have been made through a thorough 
investigation into AIRS and how issues raised through 
these observations have been overcome. 

3.1 OBSERVATIONS 

3.1.1 The ARB Pool 
A very crude visualization1 was used to gain a better 
understanding of the development of the ARB pool. In 
AIRS there are 2 independent pools of cells, the memory 
cell pool and the ARB pool.  The initial formulation of 
AIRS uses the ARB pool to evolve a candidate memory 
cell of the same class as the training antigen, which can 
potentially enter the memory cell pool.  During this 
evolution, ARBs of a different class than the training 
antigen were also maintained in the ARB pool.  The 
stimulation of an ARB was based both on affinity to the 
antigen and class, where highly stimulated ARBs were 
those of the same class as the antigen and that were 
“close” to the antigen, or of a different class and "far" 
from the antigen.  However, the visualization revealed 
that during the process of evolving a candidate memory 
cell, there seems no need to maintain or evolve ARBs that 
are a different class than the training antigen.  The point 
of the interaction of the ARB pool with the antigenic 
material is really only in evolving a good potential 
memory cell, and this potential memory cell must be of 
the same class as the training antigen. When observing the 
visualization for a while, it is possible to notice that there 
is a process of convergence by ARBs of the same class to 
the training antigen.  Naturally, based on the reward 
                                                           
1 See http://www.cs.ukc.ac.uk/people/rpg/abw5/ARB_hundred.html 

scheme, ARBs of a different class are moving further 
away from the training antigen.  However, this process 
essentially must start over for the introduction of each 
new antigen, and, therefore, previously existing ARBs are 
fairly irrelevant.  Since there are 2 separate cell pools, 
with the true memory of the system only being 
maintained in the Memory Cell pool, maintaining any 
type of memory in the ARB pool is unnecessary. This 
change to the algorithm rather than being about resource 
allocation schemes as initially suggested in (Watkins 
2001) is really a simplification to the algorithm, which is 
seen as a positive step.  This simplification affects both 
memory usage and computational simplification, although 
this will not be discussed in this paper. 

3.1.2 Mutation of Cells 
Motivated by observing the success of other AIS work, as 
well as by some of the tendencies discussed in (Watkins 
2001) and (Watkins and Boggess 2002b), attention was 
paid to the way in which mutation occured within AIRS.  
In these two works, the authors notice that some of the 
evolved memory cells do not seem as high-quality of 
classifier cells as some of the others. Additionally, it was 
observed that there seemed to be some redundancy in the 
memory cells that were produced. In (De Castro and Von 
Zuben 2000a) and other AIS work, mutation within an 
antibody or B-Cell is based on its affinity, with higher 
affinity cells being mutated less than lower affinity cells. 
These other AIS works have used this method of somatic 
hypermutation to a good degree of success. It was thought 
that embedding some of this approach in AIRS might 
result in higher quality, less redundant, memory cells. 
This approach was therefore adopted within AIRS.  

3.2 AIRS: WHAT IS NEW? 
For the remainder of this section changes that have been 
made to the AIRS algorithm are described. There then 
follows empirical results from the new formulation and 
discuss the implications of these results. 

3.2.1 Memory Cell Evolution 
In the newly formulated version of AIRS, candidate 
memory cell evolution is based only on ARBs of the same 
class as the training antigen.  This means that ARBs in the 
ARB pool are no longer permitted to mutate class.  
Therefore, the ARB pool will only consist of ARBs that 
are of the same class as the training antigen.  At the end of 
each antigenic presentation cycle, the pool can be either 
be cleared out, or the ARBs can stay in the pool. If the 
pool is not cleared out then it will contain ARBs of all 
potential classes. The algorithm is only reinforcing the 
class of the antigenic pattern, and therefore, all ARBs that 
are in the pool at the end of the antigenic cycle that are 
not of the same class as the antigenic pattern will be 
removed through the metadynamic process, as they are no 
longer rewarded with any resources.   This is in contrast 
to the original formulation of AIRS in which the 



allocation of resources, and thus cellular reinforcement, 
was based on a stimulation value that was calculated as in 
Equation 1 (section 2.2).  In that original version both 
ARBs “near” the antigen and of the same class as the 
antigen were rewarded and ARBS “far” from the antigen 
and of a different class than the antigen were rewarded.  
Also, ARBs were allowed to mutate their class values 
(mutate in this case means switching classes).  In the 
newly proposed version of AIRS, only ARBs of the same 
class are rewarded and mutation of the class value is no 
longer permitted. 
Based on this new formulation, the only user parameter 
changes that might need to be made is that the stimulation 
threshold could potentially need to be raised.  Recall, that 
the stimulation threshold was used as a stopping criterion 
for training the ARB pool on an antigen.  In order to stop 
training on an antigen the average normalized stimulation 
level had to exceed the stimulation threshold for each 
class group of ARBs. That is, in a 2-class problem, for 
example, the average normalized stimulation level of all 
class 0 ARBs had to be above the stimulation threshold, 
and the average normalized stimulation level of all class 1 
ARBs has to be above the stimulation threshold.  It was 
possible, and frequently the case in fact, that the average 
normalized stimulation level for the ARBs of the same 
class as the training antigen reached the stimulation 
threshold before the average normalized stimulation level 
of ARBs in different classes from the antigen.  What this 
did, in effect, was allow for the evolution of even higher 
stimulated ARBs of the same class while they were 
waiting for the other classes to reach the stimulation 
threshold.  By taking out these extra cycles of evolution 
through no longer worrying with ARBs of different 
classes, it is possible that the ARBs will not have 
converged "as much" as in the previous formulation.  This 
can be overcome by raising the stimulation threshold and 
thus requiring a greater level of convergence. 

3.2.2 Somatic Hypermutation 
To explore the role of mutation on the quality of the 
memory cells evolved, the mutation routine was modified 
so that the amount of mutation allowed by a given gene in 
a given cell is dictated by its stimulation value.  
Specifically, the higher the normalized stimulation value, 
the smaller the range of mutation allowed.  Essentially, 
the range of mutation for a given gene = 1.0 - the 
normalized stimulation value of the cell. Mutation is then 
controlled over this range with the original gene value 
being placed at the center of the range.  This, in a sense, 
allows for tight exploration of the space around high 
quality cells, but allows lower quality cells more freedom 
to explore widely.  In this way, both local refinement and 
diversification through exploration are achieved. 

3.3 THE AIRS V2 ALGORITHM 
The changes made to the AIRS algorithm are small, but 
end up having an interesting impact on both the simplicity 
of implementation and on the quality of results.  Section 4 

will offer more discussion by way of comparison.  For 
now, the changes to the original AIRS presented in 
section 2.2 will be discussed. These can be identified as 
follows: 

1. Only the Memory Cell pool is seeded during 
initialization rather than both the MC pool (M) 
and the ARB pool (P).  Since we are no longer 
concerned about maintaining memory or class 
diversity within P it is no longer necessary to 
initialize P from the training data or from 
examples of multiple classes.   

2. During the clonal expansion from the matching 
memory cell used to populate P, the newly 
created ARBs are no longer allowed to mutate 
class.  Again, maintaining class diversity in P is 
not necessary.   

3. Resources are only allocated to ARBs of the 
same class as the antigen and are allocated in 
proportion to the inverse of an ARB’s affinity to 
the antigen.   

4. During affinity maturation (mutation), a cell’s 
stimulation level is taken into account.  Each 
individual gene is only allowed to change over a 
finite range.  This range is centered with the 
gene’s pre-mutation value and has a width the 
size of the difference of 1.0 and the cell’s 
stimulation value.  In this way the mutated 
offspring of highly stimulated cells (those whose 
stimulation value is closer to 1.0) are only 
allowed to explore a very tight neighborhood 
around the original cell, while less stimulated 
cells are allowed a wider range of exploration. 
(It should be noted that during initialization all 
gene values are normalized so that the Euclidean 
distance between any two cells is always within 
one.  During this normalization, the values to 
transform a given gene to within the range of 0 
and 1 are discovered, as well.  This allows for 
this new mutation routine to take place in a 
normalized space where each gene is in the 
range of 0 and 1.) 

5. The training stopping criterion no longer takes 
into account the stimulation value of ARBs in 
all classes, but now only accounts for the 
stimulation value of the ARBs of the same class 
as the antigen.  In the new formulation of AIRS 
it is still possible to have ARBs in P of different 
classes if the implementation does not clear the 
ARB pool after each antigenic pattern.  
However, this will not affect the stopping 
criterion since the changes to the algorithm now 
only require that the average stimulation value 
of the ARBs of the same class as the antigen be 
above the user-supplied stimulation threshold. 



3.4 RESULTS AND DISCUSSION 
To allow for comparison between the two versions of the 
algorithm, the same experiments were performed on the 
new formulation of AIRS (AIRS2).  Section 4 will 
provide a more thorough comparative discussion, but for 
now, results of AIRS2 on the four, previously discussed, 
benchmark sets are presented in Table 3.   

Table 3: AIRS2 Classification Results on Benchmark 
Data 

IRIS IONOSPHERE DIABETES SONAR 

 
96.0 

 
95.6 

 
74.2 

 
84.9 

 
These results were obtained by following the same 
methodology as the original results reported in section 2.3 
which is elaborated upon in (Watkins 2001) and (Watkins 
and Boggess 2002a).  Again, we note that these results are 
competitive with other classification techniques discussed 
in the literature, such as C4.5, CART, and Multi-Layer 
Perceptrons. 

4 COMPARATIVE ANALYSIS 
This section briefly touches on some comparisons 
between the original version of AIRS presented in 
discussed in section 2 (AIRS1) and the revisions to this 
algorithm presented in section 3 (AIRS2).  The focus of 
this discussion will be on two of the more important 
features of the AIRS algorithms: classification accuracy 
and data reduction. 

4.1 CLASSIFICATION ACCURACY 
The success of AIRS1 as a classifier (cf, (Watkins and 
Boggess 2002a)) makes it important to assess any 
potential changes to the algorithm in light of test set 
classification accuracy.  To aid in this task, Table 4 
presents the best average test set accuracies, along with 
the standard deviations, achieved by both versions of 
AIRS on the four benchmark data sets. 

Table 4: Comparative Average Test Set Accuracies 

 AIRS1: 
Accuracy  

AIRS2: 
Accuracy 

Iris 96.7 (3.1) 96.0 (1.9) 

Ionosphere 94.9 (0.8) 95.6 (1.7) 

Diabetes 74.1 (4.4) 74.2 (4.4) 

Sonar 84.0  (9.6) 84.9 (9.1) 

 
It can be noted that the revisions to AIRS presented in 
section 3 do not require a sacrifice in classification 
performance of the system.  In fact, for 3 of the 4 data sets 

we see a slight improvement in the accuracy; however, 
these differences are not statistically significant.  What is 
important to note is that the changes introduce no 
fundamental differences in classification accuracy of the 
system. 

4.2 DATA REDUCTION 
From the previous subsection it can be seen that the 
changes introduced to AIRS offer no real difference in 
classification accuracy, so the question arises: why 
bother?  Why introduce these changes to a perfectly 
reasonably performing classification algorithm?  The 
answer lies in the data reduction capabilities of AIRS. 
In (Watkins 2001) and (Watkins and Boggess 2002b), the 
authors discuss that aside from competitive accuracies 
another intriguing feature of the AIRS classification 
system is its ability to reduce the number of data points 
needed to characterize a given class of data from the 
original training data to the evolved set of memory cells.  
Given the volumes of data involved with many real-world 
data sets of interest, any technique that can reduce this 
volume while retaining the salient features of the data set 
is useful.  Additionally, it is this collection of memory 
cells that are the primary classifying agents in the evolved 
system.  Since classification is, currently, performed in a 
k-nearest neighbor approach, whose classification time is 
dependent upon the number of data points used for 
classifying a previously unseen data item, any reduction 
in the overall number of evolved memory cells is also 
useful for the algorithm. 
Table 5 presents the average size of the evolved set of 
memory cells and the amount of data reduction this 
represents in terms of population size and percentage 
reduction, along with standard deviations, for each 
version of the algorithm on the four benchmark data sets.  
The original training set size is also presented for 
comparison.  There are two points of interest: 

1. Both versions of the algorithm exhibit data 
reduction, and 

2. AIRS2 tends to exhibit greater data reduction 
than AIRS1. 

Table 5:  Comparison of the Average Size of the Evolved 
Memory Cell Pool 

 Training 
Set Size 

AIRS1: 
Memory 
Cells 

AIRS2: 
Memory 
Cells 

Iris 120 42.1/65% 
(3.0) 

30.9/74% 
(4.1) 

Ionosphere 200 140.7/30% 
(8.1) 

96.3/52% 
(5.5) 

Diabetes 691 470.4/32% 
(9.1) 

273.4/60% 
(20.0) 

Sonar 192 144.6/25% 
(3 7)

177.7/7% 
(4 5)



(3.7) (4.5) 

 
This second point is the more important for our current 
discussion.  As mentioned in sections 3.1.2 and 3.2.2, one 
of the goals of the revision of the AIRS algorithm was to 
see if employing somatic hypermutation through a 
method more in keeping with other research in the AIS 
field would increase the efficiency of the algorithm.  The 
current measure of efficiency under concern is the amount 
of data needed to represent the original training set to 
achieve accurate classifications.  We can see from Table 5 
that, in general, AIRS2 was able to achieve the 
comparable accuracy presented in section 4.1 with greater 
efficiency.  In fact for some of the data sets, most notably 
Ionosphere and Diabetes, the degree of data reduction is 
greatly increased (from 30% to 52% for Ionosphere data 
and from 32% to 60% for the diabetes data set).  
Interestingly, for the most difficult classification task, the 
Sonar data set, the degree of data reduction is not 
increased.  While this was not the general trend on this 
data set (data not presented), it does possibly point to 
some limitations in the current version of AIRS.  Overall, 
however, it seems reasonable to claim that the revisions to 
AIRS provide greater data reduction, and hence greater 
efficiency, without sacrificing accuracy. 

4.3 A WORD ABOUT SIMPLICITY 
While the focus has not been on algorithmic complexity 
analysis of the two versions of AIRS for this current 
paper, it would be remiss not to make a brief mention 
concerning the simplifying effects of the revision to 
AIRS.  As mentioned in section 3.1, the reformulation of 
AIRS was chiefly motivated by some basic observations 
about the workings of the system.  One observation was 
that the original version of AIRS maintained 
representation of too many cells for its required task.  
This led to the elimination of maintaining multiple classes 
of cells in the ARB pool or of retaining cells in the ARB 
pool at all.  This has the simplifying effect of reducing the 
memory necessary to run the system successfully.  A 
second observation concerning the quality of the evolved 
memory cells led to the investigation of the mutation 
mechanisms employed in the original algorithm.  By 
adopting an approach to mutation proven to be successful 
in other AIS, it has been possible to increase the quality of 
the evolved memory cells that is evidenced by the 
increased data reduction without a decrease in 
classification accuracy. Both of these overarching 
changes (ARB pool representation and the mutation 
mechanisms used) have exhibited a simplifying effect on 
the classification system as a whole. 

5 CONCLUSIONS AND FUTURE WORK 
This paper has focused on a supervised learning system 
based on immunological principles.  The Artificial 
Immune Recognition System (AIRS) introduced in 
(Watkins 2001) exhibited initial success as a classification 

algorithm.  However, as with any initial system, there 
were some revisions and refinements that could be made 
to AIRS that would decrease the complexity of the 
system.  This paper has presented investigations for two 
of these revisions. 
It was shown that the internal data representation of the 
original version of AIRS was overcomplicated.  By 
simplifying the evolutionary process, it was possible to 
decrease this complexity whilst still maintaining 
accuracy.  It was also shown that the use of affinity aware 
mechanisms of somatic hypermutation, as adopted 
throughout the AIS community, led to higher quality 
memory cells in AIRS and thus greater data reduction and 
faster classification of test data items.   
Both of these revisions were the result of careful 
observation of the behavior of the original algorithm.  In 
this respect, it can be said that this paper is also about the 
importance of taking the steps to investigate the behavior 
of a system even if it is performing in a successful 
manner.  This paper has demonstrated that such an 
investigation is fruitful in simplifying the workings 
without sacrificing the performance of the system. 
There are many avenues that can be explored with this 
work. One is the analogy of this work with reinforcement 
learning strategies, it could possibly be argued that AIRS 
is a reinforcement learning algorithm, when one considers 
certain mechanism within the immune system (Bersini 
and Varela 1994); this warrants further investigation. 
Additionally, the role of parallel and distributed 
processing could be examined, in order to allow for 
dealing with larger scale problems. Work has already 
begun on applying AIRS to immunological data, 
attempting to predict the binding of receptors and in effect 
trying to solve an immunological problem with an 
artificial immune system. 
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