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Abstract

This paper revisits the Artificial Immmune
Recognition System (AIRS) that has been
developed as an immune-inspired supervised
learning  algorithm.  Certain  unnecessary
complications of the original algorithm are
discussed and means of overcomming these
complexities are proposed. Experimental
evidence is presented to support these revisions
which do not sacrifice the accuracy of the
original algorihtm but, rather, maintain accuracy
whilst increasing the simplicity and data
reduction capabilities of AIRS.

1 INTRODUCTION

Recently, there has been a great deal of interest in the use
of the immune system as inspiration for computer science
and engineering. These Artificial Immune Systems (AIS)
seem to have great potential, which is as yet unrealized.
An intuitive application of AIS is in the area of computer
security, network intrusion detection (Forrest, Perelson et
al. 1994), (Hofmeyr and Forrest 2000) and (Kim and
Bentley 2001), change detection, and so on. However,
AIS are not limited to this field alone. Work has identified
that the immune system contains certain properties that
may be useful to create learning algorithms for computer
science through the exploitation of the natural learning
mechanisms contained within the immune system (Bersini
and Varela 1990). However, the focus of current AIS
research seems to have been on the development of
unsupervised learning algorithms (De Castro and Von
Zuben 2000b) and (Timmis and Neal 2001) rather than
the supervised or reinforcement kind. An exception to this
is work in (Carter 2000). Recent work in (Watkins 2001)
explored the possibility of utilizing the immune system as
inspiration for the creation of a supervised learning
technique. By extracting useful metaphors from the
immune system and building on previous immune
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inspired unsupervised learning algorithms, a classifier
was constructed that seems to perform reasonably well on
various classification and machine learning problems
(Watkins and Boggess 2002a).

This paper presents a further investigation into the work
of (Watkins 2001) and suggests improvements to the
algorithm that are capable of maintaining classification
accuracy, whilst improving performance in terms of
computational costs and an increase in the data reduction
capabilities of the algorithm. This paper outlines the
previous work undertaken in (Watkins 2001), suggests
improvements to the algorithms and discusses the
implications of these new results. Attention is then given
to future possibilities with this approach.

2  BACKGROUND RESEARCH ON AIRS

AIRS (Artificial Immune Recognition System) is a novel
immune inspired supervised learning algorithm (Watkins
2001). Motivation for this work came from the author’s
identification of the fact that there was a significant lack
of research that explored the use of the immune system
metaphor for supervised learning; indeed, the only work
identified was that of (Carter 2000). However, it was
noted that within the AIS community there had been a
number of investigations on exploiting immune
mechanisms for unsupervised learning (that is, where the
class of data is unknown a-priori) (Timmis, Neal et al.
2000), (Timmis and Neal 2001) and (De Castro and Von
Zuben 2000b). Work in (De Castro and Von Zuben
2000a) examined the role of the clonal selection process
within the immune system (Burnet 1959) and went on to
develop an unsupervised learning known as CLONALG.
This work was extended by employing the metaphor of
the immune network theory (Jerne 1974) and then applied
to data clustering. This led to the development of the
aiNet algorithm (De Castro and Von Zuben 2000b).
Experimentation with the aiNet algorithm revealed that
evolved artificial immune networks, when combined with
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traditional statistical analysis tools, were very effective at
extracting interesting and useful clusters from data sets.
aiNet was further extended to multimodal optimization
tasks (De Castro and Timmis 2002b). Other work in
(Timmis, Neal et al. 2000) also utilized the immune
network theory metaphor for unsupervised learning, and
then augmented the work with the development of a
resource limited artificial immune network (Timmis and
Neal 2001), which reported good benchmark results for
cluster extraction and exploration with artificial immune
networks. Indeed, this work has been further extended by
(Nasaroui, Gonzalez et al. 2002) with the introduction of
fuzzy logic and refinement of various calculations. The
work in (Timmis and Neal 2001) was of particular
relevance to (Watkins 2001) and the further work
described in this paper.

Building on this previous work, in particular the ideas of
artificial recognition balls and resource limitation from
(Timmis and Neal 2001) and long-lived memory cells
from (De Castro and Von Zuben 2000b). AIRS
demonstrated itself to be an effective classifier. The rest
of this section describes the immune metaphors that have
been employed within AIRS, outlines the algorithm and
discusses results obtained, before progressing to the
following section, which describes augmentations and
improvements to AIRS.

2.1 IMMUNE PRINCIPLES EMPLOYED

A little time should be taken to draw attention to the most
relevant aspects of immunology that have been utilized as
inspiration for this work. A more detailed overview of the
immune system and its relationship with computer
science and engineering can be found in (De Castro and
Timmis 2002a).

Throughout a person’s lifetime, the body is exposed to a
huge variety of pathogenic (potentially harmful) material.
The immune system contains lymphocyte cells known as
B- and T-cells, each of which has a unique type of
molecular receptor (location in a shape space). Receptors
in this shape space allow for the binding of the pathogenic
material  (antigens), with the higher affinity
(complementarity) between the receptor and antigen
indicating a stronger bind. Work in (De Castro and
Timmis 2002a) adopted the term shape-space to describe
the shape of the data being used, and defined a number of
affinity measures, such as Euclidean distance, which can
be used to determine the interaction between elements in
the AIS. Within AIRS (and most AIS techniques) the idea
of antigen/antibody binding is employed and is known as
antigenic presentation. When dealing with learning
algorithms, this is used to implement the idea of matching
between training data (antigens) and potential solutions
(B-Cells). Work in (Timmis and Neal 2001) employed
the idea of an artificial recognition ball (ARB), which was
inspired by work in (Farmer, Packard et al. 1986)
describing antigenic interaction within an immune
network. Simply put, an ARB can be thought to represent
a number of identical B-Cells and is a mechanism

employed to reduce duplication and dictate survival
within the population.

Once the affinity between a B-Cell and an antigen has
been determined, the B-Cell involved transforms into a
plasma cell and experiences clonal expansion. During the
process of clonal expansion, the B-Cell undergoes rapid
proliferation (cloning) in proportion to how well it
matches the antigen. This response is antigen specific.
These clones then go through affinity maturation, where
some undertake somatic hypermutation (mutation here is
inversely proportional to antigenic affinity) and
eventually will go through a selection process through
which a given cell may become a memory cell. These
memory cells are retained to allow for a faster response to
the same, or similar, antigen should the host become re-
infected This faster response rate is known as the
secondary immune response. Within AIRS, the idea of
clonal expansion and affinity maturation are employed to
encourage the generation of potential memory cells.
These memory cells are later used for classification.

Drawing on work from (Timmis and Neal 2001), AIRS
utilized the idea of a stimulation level for an ARB, which,
again, was derived from the equations for an immune
network described in (Farmer, Packard et al. 1986).
Although AIRS was inspired by this work on immune
networks, it was found that maintaining a network
representation—with  connections, stimulation, and
repression among the ARBs in the system—was not
necessary for evolving a useful classifier. In AIRS, ARBs
experience a form of clonal expansion after being
presented with training data (analogous to antigens);
details on this process are provided in section 2.2.
However, AIRS did not take into account the affinity
proportional mutation. When new ARBs were created,
they were subjected to a process of random mutation with
a certain probability and were then incorporated into the
memory set of cells should their affinity have met certain
criteria. Within the AIRS system, ARBs competed for
survival based on the idea of a resource limited system
(Timmis and Neal 2001). A predefined number of
resources existed, for which ARBs competed based on
their stimulation level: the higher the stimulation value of
an ARB the more resources it could claim. ARBs that
could not successfully compete for resources were
removed from the system. The term metadynamics of the
immune system refers to the constant changing of the B-
Cell population through cell proliferation and death. This
was present in AIRS with the continual production and
removal of ARBs from the population. Table 1
summarizes the mapping between the immune system and
AIRS.



Table 1: Mapping between the Immune System and AIRS

IMMUNE SYSTEM AIRS

Antibody
Recognition Ball

Feature vector

Combination of feature
vector and vector class

The possible values of the
data vector

Reproduction of ARBs that

Shape-Space

Clonal Expansion

are well matched with
antigens

Antigens Training data

Affinity Maturation Random mutation of ARB
and removal of lowest
stimulated ARBs

Immune Memory Memory set of mutated
ARBs

Metadynamics Continual removal and

creation of ARBs and
Memory Cells

2.2 THE AIRS ALGORITHM

The previous section outlined the metaphors that were
employed in the development of AIRS. This section now
presents the actual algorithm and discusses the results
obtained from experimentation. A more detailed
description of the algorithm and results can be found in
(Watkins 2001).

Within AIRS, each element (ARB) corresponds to a
vector of n dimensions and a class to which the data
belongs. Additionally, each ARB has an associated
stimulation level as defined in equation 1, where x is
feature vector of the ARB, s* is the stimulation of an ARB
x, y is the training antigen, and affinity, in the current
implementation, is a function that calculates the Euclidean
distance:

v l—afﬁrity(x,y),if dos of x=das of y (1)

S =
afﬁrily(x,y), otherwise

Notionally, AIRS has four stages to learning:
initialization, memory cell identification, resource
competition and finally refinement of established memory
cells. AIRS is a one-shot learning algorithm; therefore,
the process described below is run for each antigenic
pattern, one at a time. Each of these processes will be
outlined with the algorithm summarized below.

Initialization of the system includes data pre-processing
(normalization) and seeding of the system with randomly
chosen data vectors. Assuming a normalized input
training data set (antigens), data from that set are
randomly selected to form the initial ARB population P
and memory cells M. Prior to this selection, an affinity
threshold is calculated; this threshold for the current
implementation is the average Euclidean distance between
each item in the training data set. This is then used to
control the quality of the memory cells maintained as
classifier cells in the system.

AIRS maintains a population of memory cells M for each
class of antigen, which, upon termination of the
algorithm, should have identified suitable memory cells to
provide a generalized representation for each class of
antigenic pattern. The first stage of the algorithm is to
determine the affinity of memory cells to each antigen of
that class. Then the highest affinity cells are selected for
cloning to produce a set of ARBs (which will ultimately
be used to create an established memory set). The number
of clones that are produced is in proportion to the
antigenic affinity, i.e., how well they match; the ARBs
also undergo a random mutation to introduce
diversification.

The next stage is to identify the strongest, based on
affinity to the training instance, ARBs; these will be used
to create the established memory set used for
classification. This is achieved via a resource allocation
mechanism, taken from (Timmis and Neal 2001), where
ARB:s are allocated a number of resources based on their
normalized stimulation levels. At this point, it is worth
noting that the stimulation level of an ARB is calculated
not only from the antigenic match, but also the class of
the ARB. This, in effect, provides reinforcement for
ARBs that are of the same class as the antigenic pattern
being learnt and that match the antigenic pattern well, in
addition to providing reinforcement for those that do not
fall into that class and do not match the pattern well.

Once the stimulation of an ARB has been calculated, the
ARB is allowed to produce clones (which undergo
mutation). The termination condition is then tested to
discover if the ARBs are stimulated enough for training to
cease on this antigenic pattern. This is defined by taking
the average stimulation for the ARBs of each class, and if
each of these averages falls above a pre-defined threshold,
training ceases for that pattern. This ARB production is
repeated until the stopping criteria are met. Once the
criteria have been met, then the candidate memory cell
can be selected.



A candidate memory cell is selected from the set of ARBs
based on its stimulation level and class, with the most
stimulated ARB of the same class as the antigen being
selected as the candidate. If this candidate cell has a
higher stimulation than any memory cell for that class in
the established memory set M, then it is added to M.
Additionally, if the affinity of this candidate memory cell
with the previous best memory cell is below the affinity
threshold, then this established memory cell is removed
from the population and replaced by the newly evolved
memory cell, thus achieving population control.

This process is then repeated for all antigenic patterns.
Once learning has completed, the set of established
memory cells M can be used for classification. The
algorithm is presented below, in terms of immune
processes employed.

1. Initialization: Create a random base called the
memory pool (M) and the ARB pool (P).

2. Antigenic Presentation: for each antigenic

pattern do:
a) Clonal Expansion:

For each element of M determine their affinity to
the antigenic pattern, which resides in the same
class. Select highest affinity memory cell (mc)
and clone mc in proportion to its antigenic
affinity to add to the set of ARBs (P)

b) Affinity Maturation:

Mutate each ARB descendant of this highest
affinity mc. Place each mutated ARB into P.

¢) Metadynamics of ARBs:

Process each ARB through the resource
allocation mechanism. This will result in some
ARB death, and ultimately controls the
population. Calculate the average stimulation for
each ARB, and check for termination condition.

d) Clonal Expansion and Affinity Maturation:

Clone and mutate a randomly selected subset of
the ARBs left in P based in proportion to their
stimulation level.

e) Cycle:

While the average stimulation value of each
ARB class group is less than a given stimulation
threshold repeat from step 2.c.

f) Metadynamics of Memory Cells:

Select the highest affinity ARB of the same class
as the antigen from the last antigenic interaction.
If the affinity of this ARB with the antigenic
pattern is better than that of the previously
identified best memory cell mc then add the
candidate (mc-candidate) to memory set M.
Additionally, if the affinity of mc and mec-
candidate is below the affinity threshold, then
remove mc from M.

3. Cycle. Repeat step 2 until all antigenic patterns
have been presented.

2.3 RESULTS AND DISCUSSION

AIRS was tested on a number of benchmark data sets in
order to assess the classification performance. This
section will briefly highlight those results and discuss
potential improvements for the algorithm, more details
can be found in (Watkins and Boggess 2002a).

Once a set of memory cells has been developed, the
resultant cells can be used for classification. This is done
through a k-nearest neighbor approach. Experiments were
undertaken using a simple linearly separable data set,
where classification accuracy of 98% was achieved using
a k-value of 3. This seemed to bode well, and further
experiments were undertaken using the Fisher Iris data
set, Pima diabetes data, Ionosphere data and the Sonar
data set, all obtained from the repository at the University
of California at Irvine (Blake and Merz 1998). Table 2
shows the performance of AIRS on these data sets, a full
comparison table of AIRS and other techniques can be
found in (Watkins and Boggess 2002a).

Table 2: AIRS Classification Results on Benchmark Data
IRIS IONOSPHERE DIABETES SONAR

96.7 94.9 74.1 84.0

These results were obtained from averaging multiple runs
of AIRS, typically consisting of three, or more, runs and
five-way, or greater, cross validation. More specifically,
for the Iris data set a five-fold cross validation scheme
was employed with each result representing an average of
three runs across these five divisions. To remain
comparable to other experiments reported in the literature,
the division between training and test sets of the
Ionosphere data set as detailed in (Blake and Merz 1998)
was maintained. However, the results reported here still
represent an average of three runs. For the Diabetes data
set a ten-fold cross validation scheme was used, again
with each of the 10 testing sets being disjoint from the
others and results were averaged over three runs across
these data sets. Finally, the Sonar data set utilized the
thirteen-way cross validation suggested in the literature
(Blake and Merz 1998) and was averaged over ten runs to
allow for more direct comparisons with other experiments
reported in the literature. During the experimentation, it
was noted by the authors that varying system parameters
such as number of seed cells varied performance on
certain data sets, however, varying system resources (i.e.,
the numbers of resources an ARB could compete for)
seemed to have little affect. A comparison was made
between the performance of AIRS and other benchmark
techniques, where AIRS seemed not to outperform
specialist techniques, but on more general purpose
algorithms, such as C4.5, it did outperform.



Even though initial results from AIRS did look promising,
it can be said there are a number of potential areas for
simplification and improvement. There is clearly a need
to understand exactly why and how AIRS behaves the
way it does. This can be achieved through a rigorous
analysis of the algorithm, examining the behavior of the
ARB pool and memory set over time. To date, the focus
has been primarily on the classification performance of
AIRS. Indeed, the final chapter of (Watkins 2001)
suggests that an investigation into the resource allocation
mechanism would be a useful area of investigation. The
majority of AIS techniques use the metaphor of somatic
hypermutation or affinity proportional mutation. To date,
AIRS does not employ this metaphor but instead uses a
naive random generation of mutations.

The remaining sections of this paper undertake these
investigations and present a modified version of AIRS,
which is more efficient in terms of ARB production,
employs affinity proportional mutation and assess what, if
any, difference this has made to the overall algorithm.

3 A MORE EFFICIENT AIRS

Motivated by the observations in (Watkins 2001), current
work has focused on refining AIRS. This section details
the observations that have been made through a thorough
investigation into AIRS and how issues raised through
these observations have been overcome.

3.1 OBSERVATIONS

3.1.1 The ARB Pool

A very crude visualization' was used to gain a better
understanding of the development of the ARB pool. In
AIRS there are 2 independent pools of cells, the memory
cell pool and the ARB pool. The initial formulation of
AIRS uses the ARB pool to evolve a candidate memory
cell of the same class as the training antigen, which can
potentially enter the memory cell pool. During this
evolution, ARBs of a different class than the training
antigen were also maintained in the ARB pool. The
stimulation of an ARB was based both on affinity to the
antigen and class, where highly stimulated ARBs were
those of the same class as the antigen and that were
“close” to the antigen, or of a different class and "far"
from the antigen. However, the visualization revealed
that during the process of evolving a candidate memory
cell, there seems no need to maintain or evolve ARBs that
are a different class than the training antigen. The point
of the interaction of the ARB pool with the antigenic
material is really only in evolving a good potential
memory cell, and this potential memory cell must be of
the same class as the training antigen. When observing the
visualization for a while, it is possible to notice that there
is a process of convergence by ARBs of the same class to
the training antigen. Naturally, based on the reward

! See http://www.cs.ukc.ac.uk/people/rpg/abw5/ARB_hundred.html

scheme, ARBs of a different class are moving further
away from the training antigen. However, this process
essentially must start over for the introduction of each
new antigen, and, therefore, previously existing ARBs are
fairly irrelevant. Since there are 2 separate cell pools,
with the true memory of the system only being
maintained in the Memory Cell pool, maintaining any
type of memory in the ARB pool is unnecessary. This
change to the algorithm rather than being about resource
allocation schemes as initially suggested in (Watkins
2001) is really a simplification to the algorithm, which is
seen as a positive step. This simplification affects both
memory usage and computational simplification, although
this will not be discussed in this paper.

3.1.2

Motivated by observing the success of other AIS work, as
well as by some of the tendencies discussed in (Watkins
2001) and (Watkins and Boggess 2002b), attention was
paid to the way in which mutation occured within AIRS.
In these two works, the authors notice that some of the
evolved memory cells do not seem as high-quality of
classifier cells as some of the others. Additionally, it was
observed that there seemed to be some redundancy in the
memory cells that were produced. In (De Castro and Von
Zuben 2000a) and other AIS work, mutation within an
antibody or B-Cell is based on its affinity, with higher
affinity cells being mutated less than lower affinity cells.
These other AIS works have used this method of somatic
hypermutation to a good degree of success. It was thought
that embedding some of this approach in AIRS might
result in higher quality, less redundant, memory cells.
This approach was therefore adopted within AIRS.

Mutation of Cells

3.2 AIRS: WHAT IS NEW?

For the remainder of this section changes that have been
made to the AIRS algorithm are described. There then
follows empirical results from the new formulation and
discuss the implications of these results.

3.21

In the newly formulated version of AIRS, candidate
memory cell evolution is based only on ARBs of the same
class as the training antigen. This means that ARBs in the
ARB pool are no longer permitted to mutate class.
Therefore, the ARB pool will only consist of ARBs that
are of the same class as the training antigen. At the end of
each antigenic presentation cycle, the pool can be either
be cleared out, or the ARBs can stay in the pool. If the
pool is not cleared out then it will contain ARBs of all
potential classes. The algorithm is only reinforcing the
class of the antigenic pattern, and therefore, all ARBs that
are in the pool at the end of the antigenic cycle that are
not of the same class as the antigenic pattern will be
removed through the metadynamic process, as they are no
longer rewarded with any resources. This is in contrast
to the original formulation of AIRS in which the

Memory Cell Evolution



allocation of resources, and thus cellular reinforcement,
was based on a stimulation value that was calculated as in
Equation 1 (section 2.2). In that original version both
ARBs “near” the antigen and of the same class as the
antigen were rewarded and ARBS “far” from the antigen
and of a different class than the antigen were rewarded.
Also, ARBs were allowed to mutate their class values
(mutate in this case means switching classes). In the
newly proposed version of AIRS, only ARBs of the same
class are rewarded and mutation of the class value is no
longer permitted.

Based on this new formulation, the only user parameter
changes that might need to be made is that the stimulation
threshold could potentially need to be raised. Recall, that
the stimulation threshold was used as a stopping criterion
for training the ARB pool on an antigen. In order to stop
training on an antigen the average normalized stimulation
level had to exceed the stimulation threshold for each
class group of ARBs. That is, in a 2-class problem, for
example, the average normalized stimulation level of all
class 0 ARBs had to be above the stimulation threshold,
and the average normalized stimulation level of all class 1
ARBs has to be above the stimulation threshold. It was
possible, and frequently the case in fact, that the average
normalized stimulation level for the ARBs of the same
class as the training antigen reached the stimulation
threshold before the average normalized stimulation level
of ARBs in different classes from the antigen. What this
did, in effect, was allow for the evolution of even higher
stimulated ARBs of the same class while they were
waiting for the other classes to reach the stimulation
threshold. By taking out these extra cycles of evolution
through no longer worrying with ARBs of different
classes, it is possible that the ARBs will not have
converged "as much" as in the previous formulation. This
can be overcome by raising the stimulation threshold and
thus requiring a greater level of convergence.

3.2.2

To explore the role of mutation on the quality of the
memory cells evolved, the mutation routine was modified
so that the amount of mutation allowed by a given gene in
a given cell is dictated by its stimulation value.
Specifically, the higher the normalized stimulation value,
the smaller the range of mutation allowed. Essentially,
the range of mutation for a given gene = 1.0 - the
normalized stimulation value of the cell. Mutation is then
controlled over this range with the original gene value
being placed at the center of the range. This, in a sense,
allows for tight exploration of the space around high
quality cells, but allows lower quality cells more freedom
to explore widely. In this way, both local refinement and
diversification through exploration are achieved.

Somatic Hypermutation

3.3 THE AIRS V2 ALGORITHM

The changes made to the AIRS algorithm are small, but
end up having an interesting impact on both the simplicity
of implementation and on the quality of results. Section 4

will offer more discussion by way of comparison. For
now, the changes to the original AIRS presented in
section 2.2 will be discussed. These can be identified as
follows:

1. Only the Memory Cell pool is seeded during
initialization rather than both the MC pool (M)
and the ARB pool (P). Since we are no longer
concerned about maintaining memory or class
diversity within P it is no longer necessary to
initialize P from the training data or from
examples of multiple classes.

2. During the clonal expansion from the matching
memory cell used to populate P, the newly
created ARBs are no longer allowed to mutate
class. Again, maintaining class diversity in P is
not necessary.

3. Resources are only allocated to ARBs of the
same class as the antigen and are allocated in
proportion to the inverse of an ARB’s affinity to
the antigen.

4. During affinity maturation (mutation), a cell’s
stimulation level is taken into account. Each
individual gene is only allowed to change over a
finite range. This range is centered with the
gene’s pre-mutation value and has a width the
size of the difference of 1.0 and the cell’s
stimulation value. In this way the mutated
offspring of highly stimulated cells (those whose
stimulation value is closer to 1.0) are only
allowed to explore a very tight neighborhood
around the original cell, while less stimulated
cells are allowed a wider range of exploration.
(It should be noted that during initialization all
gene values are normalized so that the Euclidean
distance between any two cells is always within
one. During this normalization, the values to
transform a given gene to within the range of 0
and 1 are discovered, as well. This allows for
this new mutation routine to take place in a
normalized space where each gene is in the
range of 0 and 1.)

5. The training stopping criterion no longer takes
into account the stimulation value of ARBs in
all classes, but now only accounts for the
stimulation value of the ARBs of the same class
as the antigen. In the new formulation of AIRS
it is still possible to have ARBs in P of different
classes if the implementation does not clear the
ARB pool after each antigenic pattern.
However, this will not affect the stopping
criterion since the changes to the algorithm now
only require that the average stimulation value
of the ARBs of the same class as the antigen be
above the user-supplied stimulation threshold.



34 RESULTS AND DISCUSSION

To allow for comparison between the two versions of the
algorithm, the same experiments were performed on the
new formulation of AIRS (AIRS2). Section 4 will
provide a more thorough comparative discussion, but for
now, results of AIRS2 on the four, previously discussed,
benchmark sets are presented in Table 3.

Table 3: AIRS2 Classification Results on Benchmark
Data

IRIS IONOSPHERE DIABETES SONAR

96.0 95.6 74.2 84.9

These results were obtained by following the same
methodology as the original results reported in section 2.3
which is elaborated upon in (Watkins 2001) and (Watkins
and Boggess 2002a). Again, we note that these results are
competitive with other classification techniques discussed
in the literature, such as C4.5, CART, and Multi-Layer
Perceptrons.

4 COMPARATIVE ANALYSIS

This section briefly touches on some comparisons
between the original version of AIRS presented in
discussed in section 2 (AIRS1) and the revisions to this
algorithm presented in section 3 (AIRS2). The focus of
this discussion will be on two of the more important
features of the AIRS algorithms: classification accuracy
and data reduction.

4.1 CLASSIFICATION ACCURACY

The success of AIRS1 as a classifier (cf, (Watkins and
Boggess 2002a)) makes it important to assess any
potential changes to the algorithm in light of test set
classification accuracy. To aid in this task, Table 4
presents the best average test set accuracies, along with
the standard deviations, achieved by both versions of
AIRS on the four benchmark data sets.

Table 4: Comparative Average Test Set Accuracies

we see a slight improvement in the accuracy; however,
these differences are not statistically significant. What is
important to note is that the changes introduce no
fundamental differences in classification accuracy of the
system.

42 DATA REDUCTION

From the previous subsection it can be seen that the
changes introduced to AIRS offer no real difference in
classification accuracy, so the question arises: why
bother? Why introduce these changes to a perfectly
reasonably performing classification algorithm?  The
answer lies in the data reduction capabilities of AIRS.

In (Watkins 2001) and (Watkins and Boggess 2002b), the
authors discuss that aside from competitive accuracies
another intriguing feature of the AIRS classification
system is its ability to reduce the number of data points
needed to characterize a given class of data from the
original training data to the evolved set of memory cells.
Given the volumes of data involved with many real-world
data sets of interest, any technique that can reduce this
volume while retaining the salient features of the data set
is useful. Additionally, it is this collection of memory
cells that are the primary classifying agents in the evolved
system. Since classification is, currently, performed in a
k-nearest neighbor approach, whose classification time is
dependent upon the number of data points used for
classifying a previously unseen data item, any reduction
in the overall number of evolved memory cells is also
useful for the algorithm.

Table 5 presents the average size of the evolved set of
memory cells and the amount of data reduction this
represents in terms of population size and percentage
reduction, along with standard deviations, for each
version of the algorithm on the four benchmark data sets.
The original training set size is also presented for
comparison. There are two points of interest:

1. Both versions of the algorithm exhibit data
reduction, and

2. AIRS2 tends to exhibit greater data reduction
than AIRSI.

Table 5: Comparison of the Average Size of the Evolved
Memory Cell Pool

AIRSI: AIRS2:

Accuracy Accuracy
Iris 96.7 (3.1) 96.0 (1.9)
Ionosphere | 94.9 (0.8) 95.6 (1.7)
Diabetes 74.1 (4.4) 74.2 (4.4)
Sonar 84.0 (9.6) 84.9 (9.1)

It can be noted that the revisions to AIRS presented in
section 3 do not require a sacrifice in classification
performance of the system. In fact, for 3 of the 4 data sets

Training | AIRSI: AIRS2:
Set Size | Memory Memory
Cells Cells
Iris 120 42.1/65% 30.9/74%
(3.0 4.1)
Ionosphere | 200 140.7/30% 96.3/52%
8.1) (5.5)
Diabetes 691 470.4/32% 273.4/60%
9.1 (20.0)
Sonar 192 144.6/25% 177.7/7%




" | (3.7) 4.5)

This second point is the more important for our current
discussion. As mentioned in sections 3.1.2 and 3.2.2, one
of the goals of the revision of the AIRS algorithm was to
see if employing somatic hypermutation through a
method more in keeping with other research in the AIS
field would increase the efficiency of the algorithm. The
current measure of efficiency under concern is the amount
of data needed to represent the original training set to
achieve accurate classifications. We can see from Table 5
that, in general, AIRS2 was able to achieve the
comparable accuracy presented in section 4.1 with greater
efficiency. In fact for some of the data sets, most notably
Ionosphere and Diabetes, the degree of data reduction is
greatly increased (from 30% to 52% for Ionosphere data
and from 32% to 60% for the diabetes data set).
Interestingly, for the most difficult classification task, the
Sonar data set, the degree of data reduction is not
increased. While this was not the general trend on this
data set (data not presented), it does possibly point to
some limitations in the current version of AIRS. Overall,
however, it seems reasonable to claim that the revisions to
AIRS provide greater data reduction, and hence greater
efficiency, without sacrificing accuracy.

43 A WORD ABOUT SIMPLICITY

While the focus has not been on algorithmic complexity
analysis of the two versions of AIRS for this current
paper, it would be remiss not to make a brief mention
concerning the simplifying effects of the revision to
AIRS. As mentioned in section 3.1, the reformulation of
AIRS was chiefly motivated by some basic observations
about the workings of the system. One observation was
that the original version of AIRS maintained
representation of too many cells for its required task.
This led to the elimination of maintaining multiple classes
of cells in the ARB pool or of retaining cells in the ARB
pool at all. This has the simplifying effect of reducing the
memory necessary to run the system successfully. A
second observation concerning the quality of the evolved
memory cells led to the investigation of the mutation
mechanisms employed in the original algorithm. By
adopting an approach to mutation proven to be successful
in other AIS, it has been possible to increase the quality of
the evolved memory cells that is evidenced by the
increased data reduction without a decrease in
classification accuracy. Both of these overarching
changes (ARB pool representation and the mutation
mechanisms used) have exhibited a simplifying effect on
the classification system as a whole.

S CONCLUSIONS AND FUTURE WORK

This paper has focused on a supervised learning system
based on immunological principles. The Artificial
Immune Recognition System (AIRS) introduced in
(Watkins 2001) exhibited initial success as a classification

algorithm. However, as with any initial system, there
were some revisions and refinements that could be made
to AIRS that would decrease the complexity of the
system. This paper has presented investigations for two
of these revisions.

It was shown that the internal data representation of the
original version of AIRS was overcomplicated. By
simplifying the evolutionary process, it was possible to
decrease this complexity whilst still maintaining
accuracy. It was also shown that the use of affinity aware
mechanisms of somatic hypermutation, as adopted
throughout the AIS community, led to higher quality
memory cells in AIRS and thus greater data reduction and
faster classification of test data items.

Both of these revisions were the result of careful
observation of the behavior of the original algorithm. In
this respect, it can be said that this paper is also about the
importance of taking the steps to investigate the behavior
of a system even if it is performing in a successful
manner. This paper has demonstrated that such an
investigation is fruitful in simplifying the workings
without sacrificing the performance of the system.

There are many avenues that can be explored with this
work. One is the analogy of this work with reinforcement
learning strategies, it could possibly be argued that AIRS
is a reinforcement learning algorithm, when one considers
certain mechanism within the immune system (Bersini
and Varela 1994); this warrants further investigation.
Additionally, the role of parallel and distributed
processing could be examined, in order to allow for
dealing with larger scale problems. Work has already
begun on applying AIRS to immunological data,
attempting to predict the binding of receptors and in effect
trying to solve an immunological problem with an
artificial immune system.
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