MODERN INTRUSION DETECTION, DATA
MINING, AND DEGREES OF ATTACK GUILT

Steven Noel
Center for Secure Information Systems
George Mason University, Fairfax VA 22030-4444, USA

snoel@gmu.edu

Duminda Wijesekera
Center for Secure Information Systems
George Mason University, Fairfax VA 22030-4444, USA

dwijesek@gmu.edu

Charles Youman
Center for Secure Information Systems
George Mason University, Fairfax VA 22030-4444, USA

charles.youman@att.net

Abstract

This chapter examines the state of modern intrusion detection, with
a particular emphasis on the emerging approach of data mining. The
discussion parallels two important aspects of intrusion detection: gen-
eral detection strategy (misuse detection versus anomaly detection) and
data source (individual hosts versus network traffic). Misuse detection
attempts to match known patterns of intrusion, while anomaly detec-
tion searches for deviations from normal behavior. Between the two
approaches, only anomaly detection has the ability to detect unknown
attacks. A particularly promising approach to anomaly detection com-
bines association mining with other forms of machine learning such as
classification. Moreover, the data source that an intrusion detection
system employs significantly impacts the types of attacks it can detect.
There is a tradeoff in the level of detailed information available ver-
sus data volume. We introduce a novel way of characterizing intrusion
detection activities: degree of attack guilt. It is useful for qualifying
the degree of confidence associated with detection events, providing a
framework in which we analyze detection quality versus cost.

Keywords: Information security, Intrusion detection, data mining

1. Introduction

The goal of intrusion detection is to discover intrusions into a com-
puter or network, by observing various network activities or attributes.
Here intrusion refers to any set of actions that threatens the integrity,
availability, or confidentiality of a network resource.

Given the explosive growth of the Internet and the increased availabil-
ity of tools for attacking networks, intrusion detection becomes a critical
component of network administration. While such detection usually in-
cludes some form of manual analysis, we focus on software systems for
automating the analysis.

One useful method of classification for intrusion detection systems is
according to general strategy for detection. There are two categories
under this classification: misuse detection and anomaly detection.

Misuse detection finds intrusions by looking for activity corresponding
to known techniques for intrusion. This generally involves the monitor-
ing of network traffic in search of direct matches to known patterns of
attack (called signatures). This is essentially a rule-based approach. A
disadvantage of this approach is that it can only detect intrusions that
follow pre-defined patterns.

In anomaly detection, the system defines the expected behavior of
the network (or profile) in advance. Any significant deviations from this
expected behavior are then reported as possible attacks. Such deviations
are not necessarily actual attacks. They may simply be new network
behavior that needs to be added to the profile. The primary advantage
of anomaly-based detection is the ability to detect novel attacks for which
signatures have not been defined.

Another useful method of classification for intrusion detection systems
is according to data source. The two general categories are host-based
detection and network-based detection.

For host-based intrusion detection, the data source is collected from an
individual host on the network. Host-based detection systems directly
monitor the host data files and operating system processes that will
potentially be targets of attack. They can, therefore, determine exactly
which host resources are the targets of a particular attack.

For network-based intrusion detection, the data source is traffic across
the network. This involves placing a set of traffic sensors within the
network. The sensors typically perform local analysis and detection
and report suspicious events to a central location. Since such monitors

Intrusion Detection 3

perform only the intrusion detection function, they are usually much
easier to harden against attack and to hide from the attackers.

We propose another way of characterizing intrusion detection activ-
ities, through degree of attack guilt. That is, it is interesting to un-
derstand how well a system can correctly separate genuine attacks from
normal activity in terms of attack guilt. This is not a classification of
detection systems, but rather of network activities. Intrusion degree of
guilt is useful for qualifying the degree of confidence associated with
detection events, providing a framework for analyzing detection quality
versus cost.

This chapter examines the state of modern intrusion detection. Sec-
tion 2 discusses the state of the art with respect to generally strategy
for detection. Section 3 then considers intrusion detection systems in
terms of their data sources. In Section 4, we introduce degree of attack
guilt as a way of characterizing intrusion detection activities, providing
a framework in which we analyze detection quality versus cost. Section 5
has our concluding comments.

2. Detection Strategies

The current generation of commercial intrusion detection systems is
largely network-based, and employs misuse detection. As such, cur-
rent tools completely lack the ability to detect attacks that do not fit a
pre-defined signature. Several other researchers have reached this con-
clusion (Corporation, 2000; Jackson, 1999; LaPadula, 1999; LaPadula,
2000; Allen et al., 2000; Axelsson, 1999; Axelsson, 2000b; Kvarnstrom,
1999).

Given the shortcomings of misuse detection in commercial systems,
an important research focus is anomaly detection, rather than mere ex-
tensions of misuse detection. Research is also needed in systems that
combine the two approaches. A critical issue for anomaly detection
is the need to reduce false alarms, since any activity outside a known
profile raises an alarm. Indeed, false alarm rate is the limiting factor
in the performance of current intrusion detection systems (Axelsson,
2000a; Lundin and Jonsson, 1999).

Increased network speeds, switched networks, and the application of
encryption have prompted a trend toward host-based detection. An-
other interesting new approach is distributed intrusion detection, in
which host-based systems monitor a number of hosts on the network
and transfer the monitored information to a central site.

Overall, intrusion detection technology is immature and rapidly evolv-
ing. In the commercial realm, new vendors appear frequently but are

4

often absorbed by others. On the research front, a variety of approaches
are being investigated. However, an overall theoretical framework is still
lacking.

2.1. Misuse Detection

Misuse detection searches for known patterns of attack. This is the
strategy employed by the current generation of commercial intrusion
detection systems. A disadvantage of this strategy is that it can only
detect intrusions that follow pre-defined patterns.

The major approaches that have been proposed for misuse detection
are expert systems, signature analysis, state-transition analysis, and
data mining. Approaches have also been proposed involving colored
Petri nets and case-based reasoning.

Misuse detection searches for known patterns of attack. This is the
strategy employed by the current generation of commercial intrusion
detection systems. A disadvantage of this strategy is that it can only
detect intrusions that follow pre-defined patterns.

The major approaches that have been proposed for misuse detection
are expert systems, signature analysis, state-transition analysis, and
data mining. Approaches have also been proposed involving colored
Petri nets and case-based reasoning.

2.1.1 Expert Systems. The expert system approach to misuse
detection uses a set of rules to describe attacks. Audit events are trans-
lated into facts carrying their semantic significance in the expert system.
An inference engine then draws conclusions using these rules and facts.

Examples of misuse detection systems using expert systems are IDES
(Intrusion Detection Expert System) (Denning, 1987; Lunt, 1989; Lunt
et al., 1992; Javitz and Valdes, 1991), ComputerWatch (Dowell and
Ramstedt, 1990), NIDX (Network Intrusion Detection Expert System)
(Bauer and Koblentz, 1988), P-BEST (Production- Based Expert Sys-
tem Toolset) (Lindqvist and Porras, 1999), and ISOA (Information Se-
curity Officer’s Assistant) (Winkler and Landry, 1992; Winkler, 1990).

IDES (developed at SRI) uses an expert system that encodes known
intrusion scenarios, known system vulnerabilities, and site-specific se-
curity policies. It addresses external attacks from unauthorized users,
authorized users who masquerade as other users, and authorized users
who abuse their privileges by evading access controls.

ComputerWatch (developed at AT&T) takes an expert system ap-
proach to summarize security sensitive events and apply rules to detect
anomalous behavior. It checks users’ actions according to a set of rules

Intrusion Detection 5

that describe proper usage policy, and flags any action that does not fit
the acceptable patterns.

NIDX (developed at Bell Communication Research) is a knowledge-
based prototype intrusion detection expert system for Unix System V. It
combines knowledge of the target system, history profiles of users’ past
activities, and intrusion detection heuristics. The result is a knowledge-
based system capable of detecting specific violations that occur on the
target system. A unique feature of NIDX is that it includes facts de-
scribing the target system and heuristics embodied in rules that detect
particular violations from the target system audit trail. NIDX is thus
operating system dependent.

P-BEST (developed at SRI) is a rule-based, forward-chaining expert
system that has been applied to signature-based intrusion detection for
many years. The main idea is to specify the characteristics of a malicious
behavior and then monitor the stream of events generated by system
activity, hoping to recognize an intrusion signature.

P-BEST is a general-purpose programmable expert system shell, sport-
ing a rule definition language that is simple enough to be used by non-
experts. The system was first deployed in the MIDAS ID system at
the National Computer Security Center. Later, P-BEST was chosen as
the rule-based inference engine of NIDES, a successor to the IDES pro-
totype. The P-BEST expert system shell is also used in EMERALD’s
expert, a generic signature-analysis engine (Porras and Neumann, 1997).

ISOA (developed at Planning Research Corporation) is a real time se-
curity monitor that supports automated as well as interactive audit trail
analysis. It contains a statistical analysis module and an expert system.
For the events not constituting direct violations of security policy, their
expected behavior is compared against profiles that specify thresholds
and the reliability factor for the events. Deviations are identified by
statistical checks of expected versus actual behavior. For events that
cannot be monitored by examining the thresholds, the expert system
component can specify the possible relationships and implied meaning
of the events.

2.1.2 Signature Analysis. Signature analysis transforms the
semantic description of attacks into information that can be found in
the audit trail in a straightforward way. Examples of such information
include the sequences of audit events that attacks generate, or patterns
of data that can be sought in the audit trail.

Systems that use signature analysis include Haystack (Smaha, 1988),
NetRanger (NetRanger, 1999), RealSecure (Real-Secure, 1999), and
MuSig (Misuse Signatures) (Lin et al., 1998).

Haystack is a misuse detection system that helps Air Force security
officers detect misuse of Unisys mainframes. Working on the reduced
audit trails data, it performs misuse detection based on behavioral con-
straints imposed by official security policies and on models of typical
user behavior.

NetRanger (developed at Cisco) is composed of two modules: sen-
sors and directors. Sensors are network security monitors that analyze
the network traffic on a network segment and the logging information
produced by Cisco routers to detect network-based attacks. Directors
are responsible for the management of a group of sensors and can be
structured hierarchically to manage large networks.

RealSecure (developed at Internet Security Systems) is composed of
three modules: network engines, system agents, and managers. The net-
work engines are network monitors equipped with attack signatures that
are matched against the traffic on a network link. The system agents
are host-based intrusion detection systems that monitor security sensi-
tive log files on a host. These modules report their finds to the central
manager, which displays the information to the user and provides func-
tionalities for remote administration system agents and network engines.

MuSig (developed at George Mason University’s Center for Secure
Information Systems) applies a high-level language for abstract signa-
tures. It attempts to overcome certain limitations of traditional misuse
detection systems, including the limited expressiveness of signatures ex-
pressed in low-level language, and fixed monitoring algorithms for misuse
that have difficulty adapting to a changing operating environment or se-
curity objectives. Through its high-level language, MuSig can represent
misuses in a simple form with high expressiveness.

2.1.3 State-Transition Analysis. State-transition analysis de-
scribes attacks with a set of goals and transitions based on state-transition
diagrams. Any event that triggers an attack state will be considered an
intrusion. Examples of systems applying state transition analysis are
USTAT (Unix State Transition Analysis Tool) (Porras and Kemmerer,
1992; Ilgun, 1992) and NetSTAT (Network-based State Transition Anal-
ysis Tool) (Vigna and Kemmerer, 1998).

USTAT (developed at UC Santa Barbara) is a real-time intrusion de-
tection system for Unix. The original design was STAT (State Transition
Analysis Tool) (Porras, 1992). STAT employs rule-based analysis of the
audit trails of multi-user computer systems. In STAT, an intrusion is
identified as a sequence of state changes that lead the computer system
from some initial state to a target compromised state. USTAT makes
use of the audit trails that are collected by the C2 Basic Security Module

Intrusion Detection 7

of SunOS. It keeps track of only those critical actions that must occur
for the successful completion of the penetration. This approach differs
from other rule-based penetration identification tools that pattern match
sequences of audit records.

NetStat (developed at UCSB) performs real-time network-based in-
trusion detection by extending the state transition analysis technique
(first introduced in STAT') to the networked environment. The system
works on complex networks composed of several sub-networks. Using
state transition diagrams to represent network attacks entails a number
of advantages, including the ability to automatically determine the data
to be collected to support intrusion analysis. This enables a lightweight
and scalable implementation of the network probes.

2.1.4 Data Mining. Data mining refers to a process of non-
trivial extraction of implicit, previously unknown, and potentially useful
information from databases. Example misuse detection systems that use
data mining include JAM (Java Agents for Metalearning) (W. Lee and
Mok, 1998; Lee and Stolfo, 1998; Lee et al., 1999; Lee et al., 2000; Lee,
1999) MADAM ID (Mining Audit Data for Automated Models for Intru-
sion Detection) (Lee et al., 2000), and Automated Discovery of Concise
Predictive Rules for Intrusion Detection (Lee, 1999).

JAM (developed at Columbia University) uses data mining techniques
to discover patterns of intrusions. It then applies a meta-learning clas-
sifier to learn the signature of attacks. The association rules algorithm
determines relationships between fields in the audit trail records, and the
frequent episodes algorithm models sequential patterns of audit events.
Features are then extracted from both algorithms and used to compute
models of intrusion behavior. The classifiers build the signature of at-
tacks. So essentially, data mining in JAM builds a misuse detection
model.

JAM generates classifiers using a rule learning program on training
data of system usage. After training, resulting classification rules is used
to recognize anomalies and detect known intrusions. The system has
been tested with data from Sendmail-based attacks, and with network
attacks using TCP dump data. MADAM ID uses data mining to de-
velop rules for misuse detection. The motivation is that current systems
require extensive manual effort to develop rules for misuse detection.

MADAM ID applies data mining to audit data to compute models
that accurately capture behavioral patterns of intrusions and normal
activities. While MADAM ID performed well in the 1998 DARPA eval-
uation of intrusion detection systems (Lippmann et al., 2000), it is inef-
fective in detecting attacks that have not already been specified.

Researchers at Iowa State University report on Automated Discov-
ery of Concise Predictive Rules for Intrusion Detection (Helmer et al.,
1999). This system performs data mining to provide global, temporal
views of intrusions on a distributed system. The rules detect intrusions
against privileged programs (such as Sendmail) using feature vectors to
describe the system calls executed by each process. A genetic algorithm
selects feature subsets to reduce the number of observed features while
maintaining or improving learning accuracy. This is another example of
data mining being used to develop rules for misuse detection.

2.1.5 Other Approaches. The colored Petri nets approach is a
graphical language for design, specification, simulation and verification
of systems. It is particularly well-suited for systems in which commu-
nication, synchronization and resource sharing are important (Jensen,
1997).

The only known example of an intrusion detection system that uses
colored Petri nets is IDIOT (Intrusion Detection in Our Time) (Crosbie
et al., 1996), developed at Purdue University. In particular, IDIOT
applies colored Petri nets to represent attack signatures. Advantages of
colored Petri nets include their generality, their conceptual simplicity,
and their ability to be represented as graphs. However, matching a
complex signature against the audit trail can become computationally
expensive.

Another approach to misuse detection involves case-based reasoning.
Case-based reasoning is a problem solving methodology in which pre-
vious problem solving situations are used in solving new problems. It
is most suitable when it is difficult or impossible to break down the
knowledge into a set of rules, and only records of prior cases exist.

The only known application of case-based reasoning to intrusion de-
tection is AUTOGUARD (Esmaili et al., 1996; Esmaili et al., 1997),
although it is not clear if the system has been fully implemented.

2.2. Anomaly Detection

A significant disadvantage of misuse detection is the inability to detect
attacks for which signatures have not been defined. A detection strategy
that addresses this shortcoming is anomaly detection.

In anomaly detection, the system defines the expected network behav-
ior (known as the profile) in advance. Any significant deviations from
the profile are then reported as possible attacks. Such deviations are not
necessarily actual attacks. They may simply be new network behavior
that needs to be added to the profile. Anomaly detection systems have
emerged that have very promising performance against novel attacks.

Intrusion Detection 9

The major approaches to anomaly detection include statistical meth-
ods, expert systems, and data mining. Approaches have also been pro-
posed involving neural networks and computer immunology.

2.2.1 Statistical Methods. Statistical methods measure the
user and system behavior by a number of variables sampled over time,
and build profiles based on the variables of normal behavior. The ac-
tual variables are then compared against the profiles, and deviations are
considered abnormal.

Example systems employing statistical methods for anomaly detection
are IDES (Intrusion Detection Expert System) (Denning, 1987; Lunt,
1989; Javitz and Valdes, 1991; Lunt et al., 1992) NIDES (Next- Genera-
tion Intrusion Detection Expert System) (Anderson et al., 1995a; Ander-
son et al., 1995b), and Event Monitoring Enabling Responses to Anoma-
lous Live Disturbances (EMERALD) (Porras and Neumann, 1997; Neu-
mann and Porras, 1999).

Section 2.1.1 describes the IDES system in the context of misuse de-
tection. IDES also employs statistical anomaly detection. In particular,
it uses audit data to characterize user activity and detect deviations from
normal user behavior. Information extracted from audit data includes
user login, logout, program execution, directory modification, file access,
system calls, session location change, and network activity. The NIDES
system extends IDES by integrating its response logic with the results
produced by the anomaly detection subsystem.

EMERALD (developed at SRI) aims to detect intrusions in large net-
works, and focuses on the scalability of the system. It is a hybrid of
misuse detection and anomaly detection that contains an expert sys-
tem PBEST and a statistical anomaly detector. It allows hierarchical
composition of decentralized service monitors that apply the statistical
analysis to network data.

In other work, Cabrera et al.(Cabrera et al., 2000) examine the appli-
cation of statistical traffic modeling for detecting novel attacks against
networks. They show that network activity models efficiently detect
denial of service and probe attacks by monitoring the network traffic
volume. For application models, they use the KolmogorovSmirnov test
to demonstrate that attacks using telnet connections in the DARPA
dataset (Lippmann et al., 2000) are statistically different from normal
telnet connections.

2.2.2 Expert Systems. For anomaly detection, expert systems
describe users’ normal behavior by a set of rules. Examples of expert
systems applied to anomaly detection include ComputerWatch (Dowell

10

and Ramstedt, 1990) and Wisdom & Sense (Liepins and Vaccaro, 1992;
Vaccaro and Liepins, 1989; Liepins and Vaccaro, 1989).

ComputerWatch (developed at AT&T) uses an expert system ap-
proach to summarize security sensitive events and apply rules to detect
anomalous behavior. It checks users’ actions according to a set of rules
that describe proper usage policy, and flags any action that does not fit
the acceptable patterns.

Wisdom & Sense (developed at the Los Alamos National Lab) detects
statistical anomalies in users’ behavior. It first builds a set of rules that
statistically describe behavior based on recordings of user activities over
a given period of time. Subsequent activity is then compared against
these rules to detect inconsistent behavior. The rule base is rebuilt
regularly to accommodate new usage patterns.

Terran Lane of Purdue University studied machine learning techniques
for anomaly detection (Lane, 2000). The project profiles Unix user com-
mand line data. It shows that anomaly detection is effective at user
differentiation under some conditions, but that alone it is insufficient for
high-confidence defense. This approach assumes the false alarms gener-
ated by an intrusion detection sensor will be filtered out by a higher-level
decision maker. The results are also tentative because they do not in-
clude any data known to be hostile.

2.2.3 Data Mining. Data mining attempts to extract implicit,
previously unknown, and potentially useful information from data. Ap-
plications of data mining to anomaly detection include ADAM (Audit
Data Analysis and Mining) (Wu, 2001a; Barbara et al., 2001; Barbara
et al., 1999), IDDM (Intrusion Detection using Data Mining) (Abraham,
2001), and eBayes (Valdes and Skinner, 2000).

ADAM (developed at George Mason University Center for Secure In-
formation Systems) uses a combination of association rules mining and
classification to discover attacks in TCP dump data. Section 2.1.4 dis-
cusses the JAM system, which also combines association mining and
classification. But there are two significant differences between ADAM
and JAM. First, ADAM builds a repository of normal frequent itemsets
that hold during attack-free periods. It does so by mining data that
is known to be free of attacks. Then, ADAM runs a sliding-window
algorithm that finds frequent itemsets in the most recent set of TCP
connections, and compares them with those stored in the normal item-
set repository, discarding those that are deemed normal. With the rest,
ADAM uses a classifier that has been previously trained to classify the
suspicious connections as a known type of attack, an unknown type, or

Intrusion Detection 11

a false alarm. The system performs especially well with denial of service
and probe attacks.

The ADAM system is able to detect network intrusions in real time
with a very low false alarm rate. One of the most significant advantages
of ADAM is the ability to detect novel attacks, without depending on
attack training data, through this through a novel application of the
pseudo-Bayes estimator (Barbara et al., 2001). In the 1999 DARPA
Intrusion Detection Evaluation (Lippmann et al., 2000), ADAM ranked
3rd overall. Among the top 3, ADAM is the only system employing
anomaly detection (Wu, 2001a). Not also that the DARPA evaluation
has no criterion that singles out performance on new attacks. In short,
there is no known system that is more effective at detecting unknown
attacks than ADAM.

Abraham of the Defense Science and Technology Organization in Aus-
tralia recently reported on IDDM. The system characterizes change be-
tween network data descriptions at different times, and produces alarms
when detecting large deviations between descriptions. However, IDDM
has problems achieving real-time operation. In particular, results are
produced only after sufficient amounts of data are collected and ana-
lyzed.

The eBayes system is a newly developed component for the statisti-
cal anomaly detector of EMERALD. Defining a session as temporally
contiguous bursts of TCP/IP traffic from a given IP, it applies Bayesian
inference on observed and derived variables of the session, to obtain a
belief for the session over the states of hypotheses. Hypotheses can be
either normal events or attacks. Given a nave Bayes model, training
data, and a set of hypotheses, a conditional probability table is built for
the hypotheses and variables, and is adjusted for the current observa-
tions. By adding a dummy state of hypothesis and a new conditional
probability table row initialized by a uniform distribution, eBayes can
dynamically generate the new hypothesis that helps it detect new at-
tacks. But eBayes may be computationally expensive as the number of
hypothesis states increases.

Kohavi et al.(Kohavi et al., 1997) study different approaches for han-
dling unknowns and zero counts when estimating probabilities for naive
Bayes classifiers, and propose a new variant of the Laplace estimator
that shows better performance. The method works well if some cells of
a row contain zeros. However, if a row is composed of all zeros, each cell
of the row will have same conditional probability.

Data mining techniques have also been explored to detect new mali-
cious executables (Schultz et al., 2001).

12

2.2.4 Other Approaches. Neural networks are used to learn
users’ normal behavior and predict the expected behavior of users. Ghosh
and Schwartzbard (Ghosh and Schwartzbard, 1999) propose applying a
neural network to learn a profile of normality.

Somayaji, Hofmeyr, and Forrest of the University of New Mexico have
proposed a method of detecting intrusions that is based on the human
immune system (Forrest et al., 1996; Somayaji et al., 1997). The tech-
nique first collects a set of reference audits representing the appropriate
behavior of the service, and extracts a reference table containing all the
known good sequences of system calls. These patterns are then used for
live monitoring to check whether the sequences generated are listed in
the table or not. If they do not, an alarm is generated. Although the
immune system approach is interesting and intuitively appealing, so far
it has proven to be difficult to apply (Engelhardt, 1997).

Wespi et al. (Wespi et al., 2000) propose a technique to build a table
of variable length patterns based on Teiresias algorithm. They claim
that, compared to a fixed length approach, the variable length pattern
model uses fewer patterns to describe the normal process behavior and
achieves better detection. Some research has exploited new techniques
to model system and users’ normal behavior. Lee et al. (Lee and Xi-
ang, 2001) propose several information theoretic measures to describe
the characteristics of an audit data set, and suggest the appropriate
anomaly detection models. Each proposed measure could describe dif-
ferent regularities in the dataset.

Wagner et al. (Wagner and Dean, 2001) propose static analysis to
automatically derive a model of application behavior. Assuming the
system call traces of a program’s execution are consistent with the pro-
gram’s source code, the approach first computes a model of expected
application behavior, built statically from program source code. At run
time, it then monitors the program and checks its system call trace for
compliance to the model. Since the proposed models need to include ev-
ery possible path of system call trace of a program’s normal execution,
the approach may be not feasible. The run time overhead is high.

3. Data Sources

A useful classification for intrusion detection systems is according to
their data source. To a large extent, the data source determines the
types of intrusions that can be detected. The two general categories are
host-based detection and network-based detection.

For host-based systems, the data source is collected from an indi-
vidual host on the network. In particular, these systems employ their

Intrusion Detection 13

host’s operating system audit trail as the main source of input. Because
host-based systems directly monitor the host data files and operating
system processes, they can determine exactly which host resources are
the targets of a particular attack.

Given the rapid development of computer networks, some traditional
single-host intrusion detection systems have been modified to monitor
a number of hosts on a network. They transfer the monitored infor-
mation from multiple monitored hosts to a central site for processing.
These are termed distributed intrusion detection systems. Example dis-
tributed systems are IDES (Denning, 1987; Lunt, 1989; Lunt et al.,
1992), NSTAT (Kemmerer, 1997), and AAFID (Spafford and Zamboni,
2000).

Network-based intrusion detection employs network traffic as the main
source of input. This involves placing a set of traffic sensors within the
network. The sensors typically perform local analysis and detection and
report suspicious events to a central location. These sensors are generally
easier to harden against attack and to hide from attackers, since they
perform only the intrusion detection function.

Recent developments in network oriented intrusion detection have
moved the focus from network traffic to the computational infrastructure
(the hosts and their operating systems) and the communication infras-
tructure (the network and its protocols). They use the network as just
a source of security-relevant information.

Examples of this trend are NSM (Network Security Monitor) (Heber-
lein et al., 1992), DIDS (Distributed Intrusion Detection System) (Snapp
et al., 1991), the JiNao system (Wu et al., 1999), and NADIR (Network
Anomaly Detection and Intrusion Reporter) (Hochberg et al., 1993).

Network-based intrusion detection systems have been widened to ad-
dress large, complex network environments. Examples include GrIDS
(Graphbased Intrusion Detection System) (Staniford-Chen et al., 1996),
EMERALD (Porras and Neumann, 1997), NetStat (Vigna and Kem-
merer, 1998), CARDS (Coordinated Attack Response and Detection
System) (Yang et al., 2000), NetRanger (NetRanger, 1999), and Re-
alSecure (Real-Secure, 1999).

As an internal research and development effort, the MITRE Corpo-
ration has studied the use of data mining on intrusion detection alarms
to reduce the false alarm rate (Staniford-Chen et al., 1996; Clifton and
Gengo, 2000). These reports include some interesting statistics on the
level of alarms generated by sensors at MITRE (over 1,000,000 alarms
per week).

IBM’s emergency response service provides real-time intrusion detec-
tion (RTID) services through the Internet for a variety of clients. The

14

Ahsolute
Innocence

Probhable Possihle Possible Prohable Provahle
Innocence [nnocence Guilt Guilt Guilt

Figure 1. General Degrees of Attack Guilt

emergency response service needs to analyze and respond to thousands of
alerts per day. Data mining techniques were used to analyze a database
of RTID alerts. They developed profiles of normal alerts and of their
clients. Several different types of clients were discovered, each with dif-
ferent alert behaviors and thus different monitoring needs (Manganaris
et al., 2000).

4. Degrees of Attack Guilt

In this section, we introduce an interesting way of characterizing in-
trusion detection activities: degree of attack guilt. This characteristic
focuses on how well an intrusion detection system can correctly sepa-
rate genuine attacks from normal activity. Unlike detection strategy
and data source, this characteristic does not apply to the classification
of detection systems themselves. Rather, it applies to the classification
of network activities, though still with respect to intrusion detection.

In essence, degree of attack guilt is a generalization of detection accu-
racy. That is, detection accuracy considers whether positive or negative
detections are true or false. Degrees of attack guilt consider a continu-
ous spectrum, rather than simply positive or negative detections. This
captures something about the degree of confidence of detections, and
provides a framework for discussing the costs of improving confidence.

Degree of attack guilt spans the spectrum from absolute innocence to
provable guilt, as shown in Figure 1. Provable guilt means that there
is no question that the behavior is malicious or unauthorized. Absolute
innocence refers to normal, authorized behavior that shows no sign of
attack guilt. Actually, absolute innocence is impossible to prove. For
example, a user may be involved in activity that is, strictly speaking,
authorized and non-malicious. But that same behavior may be part of
some subsequent malicious activity.

There is really a continuous spectrum of guilt between the two ex-
tremes of absolute innocence and provable guilt. But for general discus-
sion, it is convenient to define a discreet set of degrees of known guilt.

Intrusion Detection 15

The complete lack of knowledge of guilt falls in the center of the scale,
though we do not include it in Figure 1. Moving further from the center
of the scale corresponds to increased knowledge of the nature of the be-
havior, towards either guilt or innocence. We introduce the categories
possible and probable corresponding to increasing levels of known guilt
or innocence.

Because degree of attack guilt concerns the confidence associated with
detection events, it provides a framework for analyzing cost versus con-
fidence. For example, there is additional cost associated with moving
an activity from possible to provable guilt. In intrusion detection, it is
often important to understand these types of quality-to-cost tradeoffs.

Moreover, different levels of monitoring may be warranted for partic-
ular desired degrees of guilt. That is, different operating environments
may have varying needs of detection. For example, highly secure systems
may want to investigate all activity that cannot be considered absolutely
innocent. Other environments may allow activities to proceed as long
as they are probably innocent.

The remainder of this section applies the idea of degree of attack guilt
to the various forms of intrusion detection. Just as for Section 2, the
discussion is organized by the general detection strategy, either misuse
detection or anomaly detection.

4.1. Misuse Detection

This section discusses degrees of attack guilt for misuse detection.
Section 2.1 reviews specific systems that perform misuse detection, and
is organized by the predominant approach that a system takes. Here
the discussion is more general, though the organization is still based
on the detection approach. In particular, the various approaches in
Section 2.1 are coalesced to two general types: knowledge-based methods
and machine-learning methods.

4.1.1 Knowledge-Based Methods. In knowledge-based meth-
ods for misuse detection, network or host events are checked against pre-
defined rules or patterns of attack. The goal is to employ representations
of known attacks that are general enough to handle actual occurrences of
the attacks. Examples of knowledge-based methods are expert systems,
signature analysis, and state-transition analysis.

Figure 2 shows degrees of attack guilt for knowledge-based misuse
detection. These approaches search for instances of known attacks, by
attempting to match with pre-determined attack representations. The
search begins as all intrusion detection approaches begin, with a com-

16

Attack
Mot Found

Probahle Possible Possibhle Prohable
Innocence Innocence G uilt Guilt

Ahsolute
Innocence

Provable
Guilt

Attack
Found

Figure 2. Degrees of Attack Guilt for Knowledge-based Misuse Detection

plete lack of knowledge of any attacker guilt This corresponds to the
center of the attack-guilt scale.

But when a particular activity is matched with a known attack, the
system gains the knowledge of the attack. For knowledge-based misuse
detection, the activity matches a rule or pattern of known guilt. This
gained knowledge corresponds to moving to the right of the known-guilt
scale. To the extent that the system has a correct attack representa-
tion and matching scheme, this method would be expected to provide
provable guilt.

Such provable guilt is expensive, because it is very time consuming to
design general representations for detecting possible variations of specific
attacks. Also, a different representation must be created for each type
of attack, and there are many possible types of attacks.

For activities that are not matched to a known attack, no real guilt
information is provided. All that has been proven is that such activities
do not match known attacks. In particular, new attacks or even suffi-
ciently different variations of known attacks are missed. This complete
lack of attack knowledge corresponds to remaining in the center of the
attack-guilt scale, with no additional cost incurred.

4.1.2 Machine-Learning Methods. In machine-learning meth-
ods for misuse detection, patterns and classes of attacks are discovered
rather than being pre-defined. Such methods exploit any regularities or
strong associations inherent in data such as network traffic. The goal is
still to create general representations of attacks, just as for knowledge-
based methods. The difference is that the representations are automati-
cally induced, avoiding the costly design of representations in knowledge-
based approaches.

Intrusion Detection 17

Attack
Mot Found

Probahle Possible Possibhle Prohable Provable
Innocence [nnocence Guilt Guilt Guilt

AttackU
Found

Figure 3. Degrees of Attack Guilt for Machine-learning Misuse Detection

Ahsolute
Innocence

Examples of machine-learning methods are data mining and classifi-
cation. In facts, these two methods are usually combined in intrusion
detection systems. Data mining discovers strong associations among
data elements, which often correspond to attack patterns. Classifiers
then induce classes of attacks, based on data mining results and other
attributes from training data with known attacks.

Figure 3 shows degrees of attack guilt for machine-learning misuse
detection. These approaches attempt to classify according to known
attacks, by comparing them with previously learned attack representa-
tions. Before classification, there is a complete lack of knowledge of any
attacker guilt, corresponding to the center of the attack-guilt scale.

During classification, a particular activity may be classified as a known
attack. Just as for knowledge-based misuse detection, this corresponds
to moving to the right of the known-guilt scale. But because the classifi-
cation process is inherently a statistical summary that is prone to error,
machine-learning methods can move us only as far as probable guilt.

Here we see the tradeoff in quality (degree of known guilt) versus
cost. It is less expensive to automatically induce attack representations,
but the resulting classifications are less reliable (not as provably guilt)
compared to handcrafted representations.

In machine-learning approaches to misuse detection, classifiers are
only trained for known attacks, not for normal events. That is, the
intrusion detection system has attack signatures that have been learned,
but no model for normal activity. As such, activity not classified as a
known attack really corresponds to remaining in the center of the attack
guilt scale (lack of guilt knowledge). In particular, misuse detection
based on machine-learning methods has no ability to detect unknown
attacks, and will misclassify them as normal behavior.

18

In Profile

Ahsolute
Innocence

Probahle Possible Possible Prohable Provable
Innocence Innocence Guilt Guilt Guilt

Not In
Profile

Figure 4. Degrees of Attack Guilt for Knowledge-based Anomaly Detection

4.2. Anomaly Detection

This section discusses degrees of attack guilt for anomaly detection.
Section 2.2 reviews specific systems that perform anomaly detection, and
is organized by a system’s predominant approach. In this section, the
discussion is more general, though it still organizes the material based
on the approach to detection. In particular, the various approaches
in Section 2.2 are coalesced to three general types: knowledge-based
methods, statistical methods, and machine- learning methods.

4.2.1 Knowledge-Based Methods. In knowledge-based meth-
ods for anomaly detection, network or host activity is checked against
pre-defined rules or patterns of normal behavior. The goal is to employ
a representation of normal behavior (a profile), from which anomalous
behavior is identified as possible attacks. An example knowledge- based
method is the expert systems approach.

Figure 4 shows degrees of attack guilt for knowledge-based anomaly
detection. These approaches search for instances anomalous behavior,
by comparing activities to a pre-determined profile. The search begins
with a complete lack of knowledge of any attacker guilt, corresponding
to the center of the attack-guilt scale.

When a particular activity is found in the profile, the system gains the
knowledge that the activity is not an attack, corresponding to moving to
the left of the known-guilt scale. Assuming that that the system has a
correct representation in the profile and a correct matching scheme, this
method would be expected to prove absolute innocence, at least with
respect to current activities.

Obtaining such knowledge of absolute innocence is expensive, because
it is involves the time consuming crafting of rules to represent normal be-

Intrusion Detection 19

mn Profile

Probahle Possible Possible Prohable Provable
Innocence Innocence Guilt Guilt Guilt

Not In
Profile

Figure 5. Degrees of Attack Guilt for Statistical Anomaly Detection

Ahsolute
Innocence

havior. This is particularly true when a comprehensive profile of normal
behavior is needed that contains many rules.

For activities that are not found in the profile, no real guilt informa-
tion is provided. All that has been proven is that such activities match
known normal behavior. In particular, activities not in the profile may
simply represent normal behavior that needs to be added to the profile.
This lack of knowledge corresponds to remaining in the center of the
attack-guilt scale, with no additional cost incurred.

4.2.2 Statistical Methods. In statistical methods for anomaly
detection, profiles of normal behavior are generated by statistical cri-
teria rather than being handcrafted. The goal is still to create repre-
sentations of normal behavior, just as for knowledge-based methods of
anomaly detection. The difference is that the representations are gener-
ated automatically as parameters of pre-determined statistical models.
This automatic generation avoids the more costly handcrafting of profiles
found in knowledge- based approaches.

Figure 5 shows degrees of attack guilt for statistical anomaly detec-
tion. This class of approaches attempts to statistically model normal
behavior, and compare new behavior to the statistical profile. Before
the comparison, there is a complete lack of knowledge of any attacker
guilt, corresponding to the center of the attack-guilt scale.

When new behavior is compared to the statistical profile, a particular
activity may be associated with normal behavior. Just as for knowledge-
based anomaly detection, this corresponds to moving to the right of the
known-guilt scale. But because the profile model is statistical, it is prone
to error. Thus statistical methods of anomaly detection can move us only
as far as probable innocence.

20

Again we see the tradeoff in quality versus cost. It is less expensive to
automatically generate statistical profiles, but the resulting models are
less reliable compared to profiles with handcrafted rules.

In statistical approaches to anomaly detection, statistical models are
only built for normal behavior, not actual attacks. Thus activity not
found in the profile really corresponds to remaining in the center of
the attack guilt scale, i.e. lack of guilt knowledge. That is, statistical
anomaly detection can identify normal behavior not in the profile as a
possible attack, leading to higher false-alarm rates.

4.2.3 Machine-Learning Methods. A more recent direction
in intrusion detection is the application of machine-learning methods to
anomaly detection. This approach is particularly promising for the de-
tection of novel attacks. Example machine-learning methods for anomaly
detection include data mining and classification. We consider this ap-
proach in more depth with respect to degree of attack guilt.

In machine-learning methods for anomaly detection, profiles of nor-
mal behavior are automatically discovered. This automatic discovery
avoids the costly handcrafting of profiles (via rules) found in knowledge-
based approaches. It also avoids the labor-intensive process of carefully
designing the applicable models needed for statistical approaches.

An example machine-learning approach to anomaly detection is the
application of association mining to network audit data. This discovers
rules that capture the predominant associations among traffic senders
and receivers. Assuming that the mining is done initially during known
attack-free times, the discovered rules then form the profile against which
subsequently mined rules are compared.

A current limitation of this approach is that it has difficulty detecting
very stealthy attacks. In other words, it detects attacks that involve a
relatively large number of events within a period of time. This is because
it sends an alarm only when the number of occurrences of an unexpected
rule exceeds a threshold. This limitation is not unique to this approach;
most of the anomaly detection models have the same problem (Ning,
2001).

A primary focus of research in anomaly detection is in detecting novel
attacks while maintaining sufficiently low numbers of false alarms. This
is particularly challenging because anomaly detection in general is prone
to higher false-alarm rates. It is hard to define abnormal deviations as
attacks if they cannot predictably be distinguished from variations of
normal behavior.

An approach to this problem is to employ classifiers that are trained to
learn the difference between normal and abnormal deviations from user

Intrusion Detection 21

Frofile
Connection Data Suspicious
Records Mining Fules
Metwirl _.@c - Rule Filtering and
Traffic P £ Classification | Classified | Prioritization
Fales l
Connection Feature
Reconds Selection Features Intrusion
Alarms

Figure 6. Combining data mining and classification for anomaly detection

profiles. These classifiers sift true intrusions from normal deviations,
greatly reducing false alarms.

Figure 6 shows an architecture combining data mining and classifica-
tion for anomaly detection. An initial training phase builds the profile
of normal user behavior, by mining rules from network traffic known to
be attack free. Also during training, rule classifiers learn attack classes
through network traffic that has been labeled with known attacks. In
the case of TCP/IP traffic, a preprocessing module extracts information
from packet headers and builds records of TCP connections, which are
subsequently mined and classified.

In the detection phase, a dynamic on-line mining algorithm produces
suspicious rules. Suspicious rules are those that exceed a particular
support level and are missing from the profile of normal behavior. To
achieve real-time performance, an incremental mining method can find
suspicious rules within a sliding time window, so that datasets need only
be scanned once (Wu, 2001b).

In principle, anomaly detection has the ability to detect novel attacks.
But in practice this is far from easy, since detecting attacks for which no
knowledge is available may seem an ill-posed problem. But attacks can
be seen as violations of normal activity whose behavior can be estimated
from the existing information.

A pseudo-Bayesian approach can enhance the ability of classifiers to
detect new attacks while keeping the false-alarm rate low (Barbara et al.,
2001). Pseudo-Bayes estimators estimate the prior and posterior proba-
bilities of new attacks. A naive Bayes classifier can then classify instances
as normal, known attacks, or new attacks. One advantage of pseudo-

22

Attack-free Labeled attack
connections connections
Connection Connection Mining
Mining and Classifier Training
Profile of Trained Attack
normal Classifier
Ahsolute Provahle
Innocence Guilt

Figure 7. Degrees of Guilt for the Training Phase

Bayes estimators is that no knowledge about new attacks is needed,
since the estimated probabilities of new attacks are derived from the
information of normal instances and known attacks.

In the training phase, the degrees of guilt are perfectly known, as
illustrated in Figure 7 Network connections known to be guilt free are
mined, and the discovered connection rules form the profile of normal
behavior. Network connections with known attack labels are then mined
for connection rules, which are used to train the attack classifiers.

At the beginning of the detection phase, the degrees of guilt for mon-
itored network connections are completely unknown. This corresponds
to the center of the known-guilt scale. The connection association min-
ing process then discards mined connection rules that are already in the
profile, and retains those not in the profile for further classification. This
corresponds to moving from completely unknown guilt to innocence be-
yond suspicion for rules already in the profile, or to possible guilt for
rules not in the profile. This process is illustrated in Figure 8.

Next, mined connection rules not found in the profile are submitted to
the rule classification engine. This corresponds to moving from possible
guilt to either probable or possible innocence (for rules in the profile), or
to probable or possible guilt (for rules not in the profile). This is shown
in Figure 9.

The potential ambiguity in degrees of guilt in Figure 9 arises because
of the nature of the attack classifiers. The classifiers undergo supervised
training, in which class decision surfaces are induced that minimize some

Intrusion Detection 23

In Proﬂle(\\

Absolute Probahle Possible Possible Probable Provahle
Innocence Innocence Innocence Guilt Guilt Guilt

\ jNot in Profile

Figure 8. Degrees of Guilt for Connection Mining during Detection

Normal

Ahsolute
Innocence

Probhable Possihle Possible Probhable Provable
Innocence Innocence Guilt Guilt Guilt

Attack

Figure 9. Degrees of Guilt for Attack Classification during Detection

statistical measure of misclassification based on training data. Because
of the statistical nature of the classifiers and their dependence on the
quality of training data, a question of classification confidence arises.

Figure 10 illustrates possible confidence scenarios for the attack clas-
sifiers. For connection rules relatively far from the decision surface, the
probability of misclassification is small. For these rules, we could thus
say that either innocence or guilt (respectively) is very probable. But
connection rules relatively close to the decision surface have a higher
chance of being misclassified. Innocence or guilt is then less probable.

One possible classifier is the naive Bayes classifier with pseudo-Bayes
estimators. This classifier includes a class for unknown attacks, which
is missing from the supervised classifiers. This class handles connection
rules that cannot be classified either normal or known attacks. The
Bayes classifier avoids the misclassification of unknown attacks (as either
normal or known attacks) that plague supervised classifiers.

24

Rules Rules
Classified Classified
as Nomal as Attack
® e o
® ®
o % o ¢
More e © Q More
Probable L o o Probable
Innocence ® ..) ®] Guilt
Less Less ¢ @
Probabl Probable
robadle Guilt
Innocence

Decision Surface
Induced During Training

Figure 10. Degrees of Guilt with respect to Attack Classification Confidence

Attack

Free
Absolute Probahle Possible Possible Probable Provable
Innocence Innocence Innocence Guilt Guilt Guilt

Unknown Mttack

Figure 11. Degrees of Guilt for Overall Machine-learning Approach

Connection rules classified as unknown remain in the center of the
degree-of-guilt scale. That is, such a rule is known to belong to neither
the normal class nor a known attack class. At this point we have no
knowledge of whether it is an unknown attack or anomalous attack-free
behavior. But at least is has not been misclassified as normal or known
attack, and can be further investigated to determine its true nature.

Figure 11 shows the overall degrees of guilt for this machine-learning
approach to anomaly detection. Initially, there is no knowledge of the
state of network intrusion. This complete lack of knowledge corresponds
to the center of the guilt scale. Connection rules either found in the

Intrusion Detection 25

profile or classified as normal generate no alarms. This corresponds to
moving from the center of the scale to probable innocence. Connection
rules classified as known attacks correspond to moving from the center
of the scale to probable guilt. Rules classified as unknown remain in the
center of the scale, pending further investigation.

5. Conclusion

In this chapter, we examine the state of modern intrusion detection.
The discussion follows two well-known criteria for categorizing intru-
sion detection systems: detection strategy and data source. The general
detection strategies are misuse detection and anomaly detection, and
data source categories are host-based and network-based. We introduce
degree of attack guilt as an interesting way of characterizing intrusion
detection activities. It provides a framework in which we analyze detec-
tion quality versus cost.

Intrusion detection systems have been an area of active research for
over 15 years. Current commercial intrusion detection systems employ
misuse detection. As such, they completely lack the ability to detect new
attacks. The absence of this capability is a recognized gap in current
systems.

Given the shortcomings of current commercial systems, an important
research focus is anomaly detection through machine learning, partic-
ularly through data mining. A critical issue for anomaly detection is
the need to reduce false alarms, since any activity outside a known pro-
file raises an alarm. Research prototypes combining data mining and
classification have shown great promise in this area.

Acknowledgments

This work was partially supported by the National Science Foundation
under the grant CCR-0113515. We thank Sushil Jajodia and Ningning
Wau for sharing their thoughts during various stages of this chapter.

References

Abraham, T. (2001). Iddm: Intrusion detection using data mining techniques. Tech-
nical Report DSTO-GD-0286, DSTO Electronics and Surveillance Research Lab-
oratory.

Allen, J., Christie, A., Fithen, W., McHugh, J., Pickel, J., and Stoner, E. (2000). State
of the practice of intrusion detection technologies. Technical Report CMU /SEI-99-
TR-028, Software Engineering Institute, CMU, Pittsburgh, PA.

Anderson, D., Lunt, T. F., Javitz, H., Tamaru, A., and Valdes, A. (1995a). Detecting
unusual program behavior using the statistical component of the next-generation

26

intrusion detection expert system (nides). Technical Report SRI-CSL-95-06, SRI
International, Menlo Park, CA.

Anderson, D., Lunt, T. F., Javitz, H., Tamaru, A., and Valdes, A. (1995b). Detecting
unusual program behavior using the statistical component of the next-generation
intrusion detection expert system (nides). Technical Report SRI-CSL-95-06, Com-
puter Science Laboratory, SRI International, Menlo Park, CA.

Axelsson, S. (1999). Research in intrusion-detection systems: A survey. Technical Re-
port TR: 98-17, Department of Computer Engineering, Chalmers University of
Technology, Goteborg, Sweden.

Axelsson, S. (2000a). The base-rate fallacy and the difficulty of intrusion detection.
ACM Transactions on Information and System Security, 3(1):186-205.

Axelsson, S. (2000b). Intrusion detection systems: A survey and taxonomy. Technical
report, Department of Computer Engineering, Chalmers University of Technology,
Goteborg, Sweden.

Barbara, D., Jajodia, S., Wu, N., and Speegle, B. (1999). Mining unexpected rules in
network audit trails. Technical report, George Mason University.

Barbara, D., Wu, N., and Jajodia, S. (2001). Detecting novel network intrusions using
bayes estimators. In First SIAM Conference on Data Mining, Chicago, IL. Society
for Industrial and Applied Mathematics.

Bauer, D. S. and Koblentz, M. E. (1988). Nidx-an expert system for real-time. In
Computer Networking Symposium.

Cabrera, J. B. D., Ravichandran, B., and Mehra, R. K. (2000). Statistical traffic mod-
eling for network intrusion detection. In 8th International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems, San Fran-
cisco, CA.

Clifton, C. and Gengo, G. (2000). Developing custom intrusion detection filters using
data mining. In 21st Century Military Communications Conference, volume 1,
pages 440-443. IEEE Computer Society.

Corporation, C. T. (2000). Best of breed appendices. 0017-UU-TE-000712.

Crosbie, M., Dole, B., Ellis, T., Krsul, I., and Spafford, E. (1996). IDIOT Users Guide.
Purdue University, West Lafayette, IN. TR-96-050.

Denning, D. E. (1987). An intrusion-detection model. IEEE Transactions on Software
Engineering, 13:222-232.

Dowell, C. and Ramstedt, P. (1990). The computerwatch data reduction tool. In 15th
National Computer Security Conference, Washington, DC.

Engelhardt, D. (1997). Directions for intrusion detection and response: A survey.
Technical Report DSTO-GD-0155, DSTO Electronics and Surveillance Research
Laboratory.

Esmaili, M., Balachandran, B., Safavi-Naini, R., and Pieprzyk, J. (1996). Case-based
reasoning for intrusion detection. In 12th Annual Computer Security Applications
Conference, San Diego, CA.

Esmaili, M., Safavi-Naini, R., and Balachandran, B. M. (1997). Autoguard: A contin-
uous case-based intrusion detection system. In Twentieth Australasian Computer
Science Conference.

Forrest, S., Hofmeyr, S., Somayaji, A., and Longstaff, T. (1996). A sense of self for unix
processes. In IEEE Symposium on Security and Privacy, pages 120-128, Oakland,
CA. IEEE Computer Society.

Intrusion Detection 27

Ghosh, A. K. and Schwartzbard, A. (1999). A study in using neural networks for
anomaly and misuse detection. In Usenix Security Symposium, Washington, DC.

Heberlein, L. T., Mukherjee, B., and Levitt, K. N. (1992). Internet security monitor:
An intrusion detection system for large-scale networks. In 15th National Computer
Security Conference, Baltimore, MD.

Helmer, G., Wong, J., Honavar, V., and Miller, L. (1999). Automated discovery of
concise predictive rules for intrusion detection. Technical Report TR 99-01, De-
partment of Computer Science, Iowa State University, Ames, TA.

Hochberg, J., Jackson, K., Stallings, C., McClary, J., DuBois, D., and Ford, J. (1993).
Nadir: An automated system for detecting network intrusions and misuse. Com-
puters and Security, 12(3):248-253.

Tlgun, K. (1992). USTAT A Real-time Intrusion Detection System for UNIX. Master
of science, University of California Santa Barbara.

Jackson, K. A. (1999). Intrusion detection system (ids) product survey. Technical
Report LA-UR-99-3883, Los Alamos National Laboratory, Los Alamos, NM.

Javitz, H. S. and Valdes, A. (1991). The sri ides statistical anomaly detector. In IEEFE
Symposium on Research in Security and Privacy, Oakland, CA.

Jensen, K. (1997). A brief introduction to coloured petri nets. Technical report, pre-
sented at Tools and Algorithms for the Construction and Analysis of Systems
(TACAS) Workshop, Enschede, The Netherlands.

Kemmerer, R. A. (1997). Nstat: A model-based real-time network intrusion detec-
tion system. Technical Report TR 1997-18, University of California Santa Barbara
Department of Computer Science.

Kohavi, R., Beckeer, B., and Sommerfield, D. (1997). Improving simple bayes. In
European Conference on Machine Learning, Prague, Czech Republic.

Kvarnstrom, H. (1999). A survey of commercial tools for intrusion detection. Technical
Report TR 99-8, Department of Computer Engineering, Chalmers University of
Technology, Goteborg, Sweden.

Lane, T. D. (2000). Machine Learning Techniques for the Computer Security Domain
of Anomaly Detection. Doctor of philosophy, Purdue University.

LaPadula, L. J. (1999). State of the art in anomaly detection and reaction. Technical
Report MP 99B0000020, The MITRE Corporation, Bedford, MA.

LaPadula, L. J. (2000). Compendium of anomaly detection and reaction tools and
projects. Technical Report MP 99B0000018R 1, The MITRE Corporation, Bedford,
MA.

Lee, W. (1999). A data mining framework for constructing features and models for in-
trusion detection systems. Technical report, Graduate School of Arts and Sciences,
Columbia University.

Lee, W., Stolfo, S., and Mok, K. (2000). Adaptive intrusion detection: a data mining
approach. Artificial Intelligence Review, 14:533-567.

Lee, W. and Stolfo, S. J. (1998). Data mining approaches for intrusion detection. In
Proceedings of the 7th USENIX Security Symposium, San Antonio, TX.

Lee, W, Stolfo, S. J., and Mok, K. W. (1999). A data mining framework for building
intrusion detection models. In IEEE Symposium on Security and Privacy.

Lee, W. and Xiang, D. (2001). Information-theoretic measures for anomaly detection.
In IEEE Symposium on Security and Privacy, pages 130-143, Oakland, CA. IEEE
Computer Society.

28

Liepins, G. and Vaccaro, H. (1989). Anomaly detection purpose and framework.
In 12th National Computer Security Conference, pages 495-504, Baltimore, MD.
NIST and NSA.

Liepins, G. E. and Vaccaro, H. S. (1992). Intrusion detection: It’s role and validation.
Computers and Security, pages 347-355.

Lin, J.-L., Wang, X. S., and Jajodia, S. (1998). Abstraction-based misuse detection:
High-level specifications and adaptable strategies. In 11th IEEE Computer Security
Foundations Workshop.

Lindqvist, U. and Porras, P. A. (1999). Detecting computer and network misuse
through the production-based expert system toolset (p-best). In IEEE Symposium
on Security and Privacy.

Lippmann, R. P., Fried, D. J., Graf, ., J. W. Haines, K. R. K., D., McClung, D. Weber,
S. E. W., Wyschogrod, D., Cunningham, R. K., , M., and Zissman, A. (2000).
Evaluating intrusion detection systems: the 1998 darpa off-line intrusion detection
evaluation. In DARPA Information Survivability Conference and Ezxposition.

Lundin, E. and Jonsson, E. (1999). Some practical and fundamental problems with
anomaly detection. In Proceedings of the Nordic Workshop on Secure Computer
Systems.

Lunt, T., Tamaru, A., Gilham, F., Jagannathan, R., Jalali, C., Neumann, P. G.,
Javitz, H. S., Valdes, A., and Garvey, T. D. (1992). A real time intrusion detection
expert system (ides). Technical report, SRI.

Lunt, T. F. (1989). Real-time intrusion detection. In presented at COMPCON: Thirty-
Fourth IEEE Computer Society International Conference: Intellectual Leverage.
Manganaris, S., Christensen, M., Zerkle, D., and Hermiz, K. (2000). A data mining

analysis of rtid alarms. Computer Networks, 34(No. 4):571-577.

NetRanger (1999). NetRanger. at www.cisco.com/univercd/cc/td/doc/product/iaabu/netrangr.

Neumann, P. G. and Porras, P. A. (1999). Experience with emerald to date. In First
Useniz Workshop on Intrusion Detection and Network Monitoring, Santa Clara,
CA.

Ning, P. (2001). Abstraction-based Intrusion Detection in Distributed Environments.
Doctor of philosophy, George Mason University.

Porras, P. (1992). STAT: A State Transition Analysis for Intrusion Detection. Master
of science, University of California Santa Barbara.

Porras, P. A. and Kemmerer, R. A. (1992). Penetration state transition analysis:
A rule-based intrusion detection approach. In Fighth Annual Computer Security
Applications Conference.

Porras, P. A. and Neumann, P. G. (1997). Emerald: Event monitoring enabling re-
sponses to anomalous live disturbances. In Proceedings of the 20th National Infor-
mation Systems Security Conference, Baltimore, MD.

Real-Secure (1999). RealSecure. http://www.iss.net/customer_care/resource_center/product_lit/,
Internet Security Systems.

Schultz, M. G., Eskin, E., Zadok, E., and Stolfo, S. J. (2001). Data mining methods
for detection of new malicious executables. In IEEE Symposium on Security and
Privacy, Oakland, CA. IEEE Computer Society.

Smaha, S. E. (1988). Haystack: An intrusion detection system. In Fourth Aerospace
Computer Security Applications Conference.

Snapp, S., Brentano, J., Dias, G., Goan, T., Grance, T., Heberlein, L., Ho, C.-L.,
Levitt, K. N., Mukherjee, B., Mansur, D. L., Pon, K. L., and Smaha, S. E. (1991).

Intrusion Detection 29

A system for distributed intrusion detection. In Compcon Spring, pages 170-176.
IEEE Computer Society.

Somayaji, A., Hofmeyr, S., and Forrest, S. (1997). Principles of a computer immune
system. In New Security Paradigms Workshop, Langdale, Cumbria UK.

Spafford, E. H. and Zamboni, D. (2000). Intrusion detection using autonomous agents.
Computer Networks, 34(4):547-570.

Staniford-Chen, S., Cheung, S., Crawford, R., Dilger, M., Frank, J., Hoagland, J.,
Levitt, K., Wee, C., Yip, R., and Zerkle, D. (1996). Grids-a graph based intrusion
detection system for large networks. In 19th National Information Systems Security
Conference, pages 361-370, Baltimore, MD. NIST and NSA.

Vaccaro, H. and Liepins, G. (1989). Detection of anomalous computer session activity.
In IEEE Symposium on Security and Privacy. IEEE Computer Society.

Valdes, A. and Skinner, K. (2000). Adaptive, model-based monitoring for cyber at-
tack detection. In Recent Advances in Intrusion Detection, pages 80-93, Toulouse,
France. Springer-Verlag.

Vigna, G. and Kemmerer, R. A. (1998). Netstat: A network-based intrusion detection
approach. In Proceedings of the International Conference on Knowledge and Data
Mining, New York, NY.

W. Lee, S. J. S. and Mok, K. W. (1998). Mining audit data to build intrusion detection
models. In Proceedings of the International Conference on Knowledge and Data
Mining, New York, NY.

Wagner, D. and Dean, R. (2001). Intrusion detection via static analysis. In IEEE
Symposium on Security and Privacy. IEEE Computer Society.

Wespi, A., Dacier, M., and Debara, H. (2000). Intrusion detection using variable-
length audit trail patterns. In Recent Advances in Intrusion Detection, pages 110—
129, Toulouse, FR. Springer-Verlag.

Winkler, J. R. (1990). A unix prototype for intrusion and anomaly detection in secure
networks. In 13th National Computer Security Conference, Washington, DC.

Winkler, J. R. and Landry, L. C. (1992). Intrusion and anomaly detection, isoa update.
In 15th National Computer Security Conference, Baltimore, MD.

Wu, N. (2001a). Audit Data Analysis and Mining. PhD thesis, George Mason Univer-
sity, Department of Information and Software Engineering. Fairfax, VA.

Wu, N. (2001b). Research statement.

Wu, S. F., Chang, H., Jou, F., Wang, F., Gong, F., Sargor, C., Qu, D., and Cleave-
land, R. (1999). Jinao: Design and implementation of a scalable intrusion detection
system for the ospf routing protocol.

Yang, J., Ning, P., Wang, X. S., and Jajodia, S. (2000). Cards: A distributed system
for detecting coordinated attacks. In IFIP TC11 16th Annual Working Conference
on Information Security, pages 171-180. Kluwer.

