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ABSTRACT 
Outlier detection has recently become an important problem in 
many industrial and financial applications. In this paper, a novel 
feature bagging approach for detecting outliers in very large, high 
dimensional and noisy databases is proposed. It combines results 
from multiple outlier detection algorithms that are applied using 
different set of features. Every outlier detection algorithm uses a 
small subset of features that are randomly selected from the origi-
nal feature set. As a result, each outlier detector identifies differ-
ent outliers, and thus assigns to all data records outlier scores that 
correspond to their probability of being outliers. The outlier 
scores computed by the individual outlier detection algorithms are 
then combined in order to find the better quality outliers. Experi-
ments performed on several synthetic and real life data sets show 
that the proposed methods for combining outputs from multiple 
outlier detection algorithms provide non-trivial improvements 
over the base algorithm. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications (data 
mining, scientific databases, spatial databases) 

General Terms 
Algorithms, Performance, Design, Experimentation. 

Keywords 
Outlier detection, bagging, feature subsets, integration, detection 
rate, false alarm. 

1. INTRODUCTION 
The explosion of very large databases and the World Wide Web 
has created extraordinary opportunities for monitoring, analyzing 
and predicting global economical, geographical, demographic, 
medical, political and other processes in the world. However, 
despite the enormous amount of data being available, particular 
events of interests are still quite rare.  These rare events, very 

often called outliers or anomalies, are defined as events that occur 
very infrequently (their frequency ranges from 5% to less than 
0.01% depending on the application). Detection of outliers (rare 
events) has recently gained a lot of attention in many domains, 
ranging from detecting fraudulent transactions and intrusion de-
tection to direct marketing, and medical diagnostics. For example, 
in the network intrusion detection domain, the number of cyber 
attacks on the network is typically a very small fraction of the 
total network traffic. In medical databases, when classifying the 
pixels in mammogram images as cancerous or not, abnormal 
(cancerous) pixels represent only a very small fraction of the en-
tire image. Among all users that visit an e-commerce web site, 
those that actually purchase are quite rare - for example less than 
2% of all people who visit Amazon.com’s website make a pur-
chase, and this is much higher than the industry average. Al-
though outliers (rare events) are by definition infrequent, in each 
of these examples, their importance is quite high compared to 
other events, making their detection extremely important. 
The problem of detecting outliers (rare events) has been variously 
called in different research communities: novelty detection [23], 
chance discovery [24], outlier/anomaly detection [3, 5, 10, 19, 27, 
36], exception mining [29], mining rare classes [11, 16-18], etc. 
Data mining techniques that have been developed for this problem 
are based on both supervised and unsupervised learning. Super-
vised learning methods typically build a prediction model for rare 
events based on labeled data (the training set), and use it to clas-
sify each event [11, 16, 18]. The major drawbacks of supervised 
data mining techniques include (1) necessity to have labeled data, 
which can be extremely time consuming for real life applications, 
and (2) inability to detect new types of rare events. On the other 
hand, unsupervised learning methods typically do not require 
labeled data and detect outliers (rare events) as data points that 
are very different from the normal (majority) data based on some 
measure [5]. These methods are typically called outlier/anomaly 
detection techniques, and their success depends on the choice of 
similarity measures, feature selection and weighting, etc. Outlier 
detection algorithms can detect new types of rare events as devia-
tions from normal behavior, but on the other hand suffer from a 
possible high rate of false positives, primarily because previously 
unseen (yet normal) data are also recognized as out-
liers/anomalies, and hence flagged as interesting. In this paper, we 
focus on unsupervised methods for outlier detection. 
Many outlier detection algorithms [3, 10, 19, 27, 31] attempt to 
detect outliers by computing the distances in full dimensional 
space. However, in very high dimensional spaces, the data is very 
sparse and the concept of similarity may not be meaningful any-

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee. 
KDD’05, August 21–24, 2005, Chicago, Illinois, USA 
Copyright 2005 ACM 1-59593-135-X/05/0008...$5.00. 

157

Research Track Paper



more [3, 6]. In fact, due to the sparse nature of distance distribu-
tions in high dimensional spaces, the distances between any pair 
of data records may become quite similar [6]. Thus, by using the 
notion of similarity in high dimensional spaces, each data record 
may be considered as potential outlier. It has been shown recently 
that by examining the behavior of the data in subspaces, it is pos-
sible to develop more effective algorithms for cluster discovery 
[28] and similarity search in high dimensional spaces [1, 2, 4]. It 
has been shown that this is also true for the problem of outlier 
detection [3], since in many applications only the subset of attrib-
utes is useful for detecting anomalous behavior. In the example 
shown in Fig. 1, data records A and B can be seen as outliers only 
when certain two dimensions are selected (in Fig. 1b data record 
A is seen as outlier, in Figure 1c data record B is observed as 
outlier, in Figure 1d both data records A and B may be detected as 
outliers), while in other two-dimensional projections they show 
average behavior (Fig. 1a) [3]. In addition, when significant num-
ber of features in a database is considered noisy, finding outliers 
in all dimensions typically do not result in effective detection of 
outliers, while at the same time it is difficult to identify a few 
relevant dimensions where the outliers may be observed. 
Furthermore, it is well known in machine learning that ensembles 
of classifiers can be effective in improving overall prediction 
performance. These combining techniques typically manipulate 
the training data patterns single classifiers use (e.g. bagging [9], 
boosting [14]) or the class labels (e.g. ECOC [20]). In general, an 
ensemble of classifiers must be both diverse and accurate in order 
to improve prediction of the whole. In addition to classifiers’ 
accuracy, diversity is also required to ensure that all the classifiers 
do not make the same errors. However, it has been shown that 
standard combining methods (e.g. bagging) do not improve the 
prediction performance of simple local classifiers (e.g. k-Nearest 
Neighbor) due to correlated predictions across the outputs from 
multiple combined classifiers [9, 20] and their low sensitivity to 
data perturbation. Nevertheless, local classifiers are extremely 
sensible to the selection of features that are used in the learning 
process, and prediction of their ensembles can be decorrelated by 

selecting different feature representations (e.g different set of 
features) [6, 25]. Since many outlier detection techniques that 
compute full dimensional distances are also local in their nature, 
they are also sensitive to the selection of features used in distance 
computation. In addition, presence of noisy and irrelevant features 
can significantly degrade the performance of outlier detection. 
In this paper, we propose a novel feature bagging framework of 
combining predictions from multiple outlier detection algorithms 
for detecting outliers in high-dimensional and noisy data sets. 
Unlike standard bagging approach where the classifica-
tion/regression models that are combined use randomly sampled 
data distributions, in this approach outlier detection algorithms are 
combined and their diversity is improved by sampling random 
subsets of features from the original feature set. Due to aforemen-
tioned sensitivity of outlier detection algorithms to the selection 
of features used in distance computation, each outlier detector 
identifies different outliers and assigns different outlier scores to 
data records. The outlier scores are then combined in order to find 
the better quality outliers than the outliers identified by single 
outlier detection algorithms. 
It is important to note that the proposed combining framework can 
be applied to the set of any outlier detection algorithms or even to 
the set of different outlier detection algorithms. Our experimental 
results performed on synthetic and real life data sets have shown 
that the combining outlier detection algorithms provide non-trivial 
improvement over the base algorithm. 

2. BACKGROUND AND RELATED WORK 
Outlier detection algorithms are typically evaluated using the 
detection rate, the false alarm rate, and the ROC curves [26]. In 
order to define these metrics, let’s look at a confusion matrix, 
shown in Table 1. In the outlier detection problem, assuming class 
“C” as the outlier or the rare class of the interest, and “NC” as a 
normal (majority) class, there are four possible outcomes when 
detecting outliers (class “C”), namely true positives (TP), false 
negatives (FN), false positives (FP) and true negatives (TN). 
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Figure 1. Different two-dimensional projections of data space reveal different set of outliers or may not reveal outliers at all. 
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Table 1. Confusion matrix defines four possible scenarios 
when classifying class “C” 

 Predicted Outliers 
- Class C 

Predicted Normal 
class NC 

Actual Outliers 
- Class C 

True Positives  
(TP) 

False Negatives 
(FN) 

Actual Normal 
class NC 

False Positives  
(FP) 

True Negatives 
(TN) 

 
From Table 1, detection rate and false alarm rate may be defined 
as follows: 

Detection rate  =  TP / (TP + FN) 
False alarm rate =  FP / (FP + TN) 

Detection rate gives information about the number of correctly 
identified outliers, while the false alarm rate reports the number of 
outliers misclassified as normal data records (class NC). The ROC 
curve represents the trade-off between the detection rate and the 
false alarm rate and is typically shown on a 2-D graph (Fig. 2), 
where false alarm rate and detection rate are plotted on x-axis, 
and y-axis respectively. The ideal ROC curve has 0% false alarm 
rate, while having 100% detection rate (Figure 2). However, the 
ideal ROC curve is hardly achieved in practice, and therefore 
researchers typically compute detection rate for different false 
alarm rates and present results on ROC curves. Very often, the 
area under the curve (AUC) is also used to measure the perform-
ance of outlier detection algorithm. The AUC of specific algo-
rithm is defined as the surface area under its ROC curve. The 
AUC for the ideal ROC curve is typically set to be 1, while AUCs 
of “less than perfect” outlier detection algorithms are less than 1. 
In Figure 2, the shaded area corresponds to the AUC for the low-
est ROC curve. 

Most of outlier detection techniques can be categorized into four 
groups: (1) statistical approaches, (2) distance based approaches, 
(3) profiling methods and (4) model-based approaches. In statisti-
cal techniques [5, 7, 12], the data points are typically modeled 
using a stochastic distribution, and points are determined to be 
outliers depending on their relationship with this model. However, 
most statistical approaches have limitation with higher dimen-
sionality, since it becomes increasingly difficult and inaccurate to 
estimate the multidimensional distributions of the data points [3]. 
Distance based approaches [3, 10, 19, 27, 35, 37] attempt to over-
come limitations of statistical techniques and they detect outliers 
by computing distances among points. Several recently proposed 
distance based outlier detection algorithms are based on (1) com-
puting the full dimensional distances of points from one another 
using all the available features [19, 27] or only feature projections 
[3], and (2) on computing the densities of local neighborhoods 
[10]. In addition, a few clustering-based techniques have also 
been used to detect outliers either as side products of the cluster-
ing algorithms (points that do not belong to clusters) [2, 31] or as 
clusters that are significantly smaller than others [13]. In profiling 
methods, profiles of normal behavior are built using different data 
mining techniques or heuristic-based approaches, and deviations 
from them are considered as intrusions. Finally, model-based 
approaches usually first characterize the normal behavior using 
some predictive models (e.g. replicator neural networks [15] or 
unsupervised support vector machines [13, 21]), and then detect 
outliers as the deviations from the learned model. 
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Figure 2. The ROC Curves for different detection algorithms 

On the other hand, extensive research was devoted to classifier 
ensembles in recent years. There were numerous techniques pro-
posed in literature for combining classification algorithms [9, 11, 
14, 17, 20]. However, it is important to note here that the problem 
of combining outlier detection algorithms is not exactly the same 
to the problem of classifier ensembles due to several reasons. 
First, in classifier ensembles, classification algorithms deal with 
combining discrete outputs (class labels) typically using different 
types of voting techniques. In combining outlier detection algo-
rithms, the outlier scores or rankings of the algorithms are com-
bined instead of class labels, although some classifier ensembles 
also combine rankings (or class probability estimates) from single 
classifiers through averaging. Second, classifiers that are com-
bined typically have complete knowledge of training data records 
and their labels (supervised learning) while outlier detection algo-
rithms typically deal only with data records without any labels 
(unsupervised learning). However, some classifier ensembles that 
do not use class labels effectively (e.g. bagging) are very similar 
to combining outlier detection algorithms. Finally, certain classi-
fier ensembles (e.g. boosting [14]) can control the combining 
process by observing the error rate, which is not possible in com-
bining outlier detection algorithms since the label is not given and 
it is not known in advance what data records are really outliers. 

3. OUTLIER DETECTION TECHNIQUES 
Outlier detection algorithms that we utilize in this study are based 
on computing the full dimensional distances of the points from 
one another as well as on computing the densities of local 
neighborhoods. In our previous work [21]], we have experimented 
with numerous outlier detection algorithms in the problem of 
network intrusion detection, and we have concluded that the den-
sity based outlier detection approach (e.g. LOF) typically 
achieved the best prediction performance. Therefore, in this study, 
we have chosen the LOF approach to illustrate our findings.  

3.1 Density Based Local Outlier Factor (LOF) 
Detection Approach 
The main idea of this method [10] is to assign to each data exam-
ple a degree of being outlier. This degree is called the local outlier 
factor (LOF) of a data example. Data points with high LOF have 

Ideal 
ROC 
curve 

AUC 
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more sparse neighborhoods and typically represent stronger out-
liers, unlike data points belonging to dense clusters that usually 
tend to have lower LOF values. 

To illustrate advantages of the LOF approach over the simple 
nearest neighbor approach, consider a simple two-dimensional 
data set given in Figure 3. It is apparent that the density of the 
cluster C2 is significantly higher than the density of the cluster C1. 
Due to the low density of the cluster C1 it is apparent that for 
every example p3 inside the cluster C1, the distance between the 
example p3 and its nearest neighbor is similar to the distance be-
tween the example p2 and the nearest neighbor from the cluster 
C2, and the example p2 will not be considered as outlier using the 
simple nearest neighbor (NN) scheme. On the other hand, LOF 
approach is able to capture the example p2 as outlier due to the 
fact that it considers the density around the points. Nevertheless, 
the example p1 may be detected as outlier using both NN and 
LOF approaches, since it is too distant from both clusters. 

p2
× p1

×

×p3

 

Figure 3. Advantages of the LOF approach 

4. COMBINING OUTLIER DETECTION 
OUTPUTS 
We propose two novel techniques for combining outlier detection 
algorithms. Their general framework is shown in Fig. 4. The pro-
cedure for combining outlier detection techniques proceeds in a 
series of T rounds, although these rounds may be run in parallel 
for faster execution. In every round t, the outlier detection algo-
rithm is called and presented with a different set of features Ft that 
is used in distance computation. The set of features Ft is randomly 
selected from the original data set, such that the number of fea-
tures in Ft is also randomly chosen between d/2 and (d-1), 
where d is the number of features in original data set. When the 
number of features Nt in Ft is selected, Nt features are randomly 
selected without replacement from the original feature set. 

Every outlier detection algorithm, as a result, outputs different 
outlier score vector ASt that reflects the probability of each data 
record from the data set S being an outlier. For example, if ASt(i) 
> ASt(j), data record xi has higher probability of being outlier than 
data record xj. At the end of the procedure, after T rounds, there 
are T outlier score vectors each corresponding to a single outlier 
detection algorithm. The function COMBINE (Figure 4) is then 

used to coalesce these T outlier score vectors ASt , t = T,1  into a 

unique anomaly score vector ASFINAL, which is lastly used to as-
sign a final probability of being an outlier to every data record 
from the data set. 

 
Figure 4. The general framework for combining outlier detec-
tion techniques 

The problem of combining outlier score vectors is conceptually 
quite similar to the problem of meta search engines [32, 33, 34] 
where different rankings returned by individual search engines are 
combined in order to provide the pages that are most relevant to 
the search string. In both problems, there is no label that helps to 
understand how relevant the search results are and the rank of 
results from individual algorithms is important in the combining 
process, since it gives the notion of result relevance. Motivated by 
several approaches used in meta search engines, in this paper we 
explore two variants of the function COMBINE that integrates the 
outputs of multiple outlier detection algorithms. The first variant, 
denoted as Breadth First approach, is presented in Figure 5.  

 
Figure 5. The Breadth-First scheme for combining outlier 
detection scores 

• Given: Set S {(x1, y1), … , (xm, ym)} xi ∈Xd, with labels yi 
∈Y = {C, NC}, where C corresponds to outliers, NC cor-
responds to a normal class, and d corresponds to the di-
mensionality (number of features) of vector X. 

• Normalize data set S 
• For t = 1, 2, 3, 4, … T 

1. Randomly chose the size of the feature subset Nt from 
a uniform distribution between  2/d  and (d-1) 

2. Randomly pick, without replacement, Nt features to 
create a feature subset Ft  

3. Apply outlier detection algorithm Ot by employing the 
feature subset Ft 

4. The output of the outlier detection algorithm Ot is 
anomaly score vector ASt  

• Combine the anomaly score vectors ASt and output a 
final anomaly score vector  ASFINAL as: 

     ASFINAL = COMBINE(ASt), t = 1, …, T 

• Given: ASt, t = 1, …, T, and m is the size of data set S and 
each vector ASt 

• Sort all outlier score vectors ASt into the vectors SASt and 
return indices Indt of the sorted vectors, such that SASt(1) 
has the highest score and Indt(1) is the index of the data 
record in S with the highest score SASt(1) 

• Let ASFINAL and IndFINAL be empty vectors. 
• For i = 1 to m 
• For t = 1 to T 
• If the index Indt(i) of the data record that is ranked at 

the i-th place by t-th outlier detection algorithm and 
that has the outlier score ASt(i) does not exist in the 
vector IndFINAL  
• Insert Indt(i) at the end of the vector IndFINAL 
• Insert ASt(i) at the end of the vector ASFINAL 

• Return IndFINAL and ASFINAL 
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Figure 6. Illustration of the Breadth-First approach for com-
bining outlier detection scores. 

The Breadth-First combining method first sorts all the outlier 
detection vectors ASt into the sorted vectors SASt and returns indi-
ces Indt that give the correspondence between the sorted elements 
of the score vectors and the original elements of the sorted vec-
tors. For example, Indt(1) = k means that in the t-th outlier detec-
tion score vector ASt, data record xk has the highest anomaly score 
ASt(k). Thus in Figure 6, AS1,1 corresponds to the data record that 
is ranked as the most probable outlier by Algorithm 1, AS1,2 corre-
sponds to the data record that is ranked as the second most prob-
able outlier by Algorithm 1,  and so on. 

After sorting all outlier score vectors ASt, the Breadth-First ap-
proach simply takes the data records with the highest anomaly 
score from all outlier detection algorithms (scores AS1,1, AS2,1, 
AS3,1, …, ASt,1 in Figure 6) and inserts their indices in the vector 
IndFINAL, then takes data records with the second highest anomaly 
score (scores AS1,2, AS2,2, AS3,2, …, ASt,2 in Figure 6) and ap-
pends their indices at the end of the vector IndFINAL, and so on. If 
the index of the current data record is already in the vector IndFI-

NAL, it is not appended again. At the end of the Breadth-First 
method, the index IndFINAL contains indices of the data records 
that are sorted according to their probability of being outlier, and 
the vector ASFINAL contains these probabilities. 

The final results of the Breadth-First method are in general sensi-
tive to the order of outlier detection algorithms. However, the 
differences are minor since variations may happen only within T 
rankings (T is generally much smaller than the total number of 
data records), since at every i-th pass we go through T indices for 
data records ranked at i-th place in the outlier detection vector. 

The second variant of the function COMBINE, denoted as Cumu-
lative Sum approach, is presented in the Figure 7.  

Figure 7. The Cumulative Sum approach for combining  
outlier detection scores 

This combining method first creates the final outlier score vector 
ASFINAL by summing all the outlier score vectors ASt from all T 
iterations, then sorts the vector ASFINAL and finally identifies the 
data records with the highest outlier scores as outliers. For exam-
ple, data record NC1 in Figure 8 may be ranked as the first outlier 
by Algorithm 1, ranked as fourth by Algorithm 2, …, and ranked 
as second by Algorithm t. In the cumulative sum approach we sum 

all the scores that correspond to data record NC1, namely scores 
AS1,1, AS2,4, …, and ASt,2, and then sort all data records NCi, i = 
1, …, m according to newly computed score. 

Figure 8. Illustration of the Breadth-First approach for  
combining outlier detection scores 

It is important to note that this method is analogue to the ranking 
method in the meta search engines where the ranks are summed, 
but it is more flexible since in the ranking method an outlier de-
tected by a single algorithm may not be detected in the final deci-
sion especially if it is ranked low by other detection algorithms. 
On the other hand, in the Cumulative Sum approach, the outlier 
that is detected by a single algorithm may have very large outlier 
score, and after all summations are performed may still have suf-
ficiently large final outlier score to be detected. This fact is ex-
tremely important in the scenarios where outliers are visible only 
in a few dimensions, since in that case it is sufficient to select 
relevant features only in a small number of iterations, compute 
high outlier scores for these feature subsets and thus cause that 
these outliers are ranked high in the final score. 

5. EXPERIMENTS 
Our experiments were performed on several synthetic data and 
real life data sets summarized in Table 2. In all our experiments, 
we have assumed that we have information about the normal be-
havior (class) in the data set. Therefore, in the first training phase, 
we have applied outlier detection algorithms only to the normal 
data set (without any outliers) in order to set specific false alarm 
rates, and in the second (testing) phase, we have applied outlier 
detection algorithms to test data sets (with all outliers). Using this 
procedure we can achieve better detection performance that using 
completely unsupervised approach. 

5.1 Experiments on Synthetic Data Sets 
Our first synthetic data set (synthetic -1 in Table 2) has 5100 data 
records, wherein 5000 data records correspond to normal (major-
ity) behavior, and 100 data records represent outliers. The data set 
has five original (contributing) features that determine which data 
records are outliers (Figure 9). Normal behavior (blue points in 
Figure 9) is modeled as a Gaussian distribution of five original 
contributing features, while the outliers (red crosses in Figure 9) 
are points that are far from the generated Gaussian distribution. 
We added 5 noisy features in order to test robustness of “feature 
bagging” approach to the detection performance. 
Our experiments on the synthetic-1 data set were performed using 
only LOF approaches. The computed ROC curves for this sce-
nario for LOF approach, Breadth-First and Cumulative Sum ap-
proaches employing LOF as single outlier detection algorithm are 
presented in Figure 10. 

• Given: ASt, t = 1, …, T, and m is the size of each vector ASt 
• Sum all anomaly scores ASt from all T iterations as follows: 
• For i = 1 to m 

  ASFINAL(i)= ∑
=

T

t
t iAS

1
)(  

• Return ASFINAL 

ASt,k 
… 

ASt,4 
ASt,3 

ASt,2 

ASt,1 
Algorithm t

 
 
 
 

 

 
… 

AS2,k 
… 

AS2,4 
AS2,3 

AS2,2 

AS2,1 
Algorithm 2 

… 
AS1,4 

AS1,k 

AS1,3 

AS1,2 

AS1,1 
Algorithm 1 

ASt,k 
… 

ASt,4 – NC2

ASt,3 

ASt,2 – NC1

ASt,1 
Algorithm t

 
 
 
 

 

 
… 

AS2,k – NC2 
… 

AS2,4 – NC1 
AS2,3 

AS2,2 

AS2,1 
Algorithm 2 

… 
AS1,4 – NC2 

AS1,k 

AS1,3 

AS1,2 

AS1,1 – NC1 
Algorithm 1 
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Table 2. Summary of data sets used in experiments 

Number of features 
Dataset Modifications made  

in the data set 
Size of 
dataset continuous discrete 

number of outliers 
(rare class records) 

Percentage 
of outliers 

Synthetic -1 - 5100 5+5 0 100 1.96% 
Synthetic -2 - 5050 8 0 50 0.99% 

Satimage smallest class vs. rest 6435 36 0 626 9.73% 
Coil 2000 - 5822 85 0 348 5.98 % 
Rooftop - 17829 9 0 781 4.38 % 

Lymphography merged classes 2&4 vs. rest 148 18 0 6 4.05 % 
Mammography - 11183 6 0 260 2.32 % 
KDDCup 1999 U2R vs. normal 60839 34 7 246 0.40 % 

Ann-thyroid class1 vs. class3 3428 6 15 73 2.13% 
Ann-thyroid Class2 vs. class3 3428 6 15 177 5.16% 

LED each class vs. rest 10000 0 7 ~1000 ~10% 
Letter recognition each class vs. rest 6238 617 0 240 3.85% 

Segment each class vs. rest 2310 19 0 330 14.29% 
Shuttle classes 2, 3, 5, 6 & 7 vs. class 1 14500 9 0 2 - 809 0.014% - 5.58%
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Figure 9. Distribution of two contributing features for the 
synthetic-1 data set (blue points represent normal behavior, 
red crosses represent outliers). 

Analyzing ROC curves from Figure 10, it can be observed that 
LOF approach applied with five original and five noisy features 
has much worse ROC curve than LOF approach that used only 
five original features. This was reasonable to assume since den-
sity computations in LOF approach are significantly influenced 
by noisy and/or irrelevant features, and thus the LOF performance 
also degrades. However, when the proposed methods for combin-
ing outlier detection algorithms are applied on the synthetic-1 
data set with five original and five noisy features, it can be ob-
served that they were able to alleviate the effect of noisy features 
and to outperform single LOF approach. Furthermore, the Cumu-
lative Sum combining method has very similar ROC curve as the 
LOF approach only with 5 original contributing features. 

 
Figure 10. ROC curves for single LOF approach and two 
combining methods employing LOF approach when applied 
to the synthetic-1 data set with 5 original and 5 noisy features. 
The number of combined outlier detection algorithms for all 
data sets was set to 10. The figures are best viewed in color 

On the other hand, the Breadth First approach is slightly worse 
than the Cumulative Sum, but still better than LOF approach with 
both contributing and noisy features. That means that if there are 
irrelevant features in the data sets, combining methods are able to 
decrease the influence of noisy features regarding the detection 
performance. Depending on the number of relevant and irrelevant 
features this decrease can vary. Our earlier experiments also show 
that this decrease is rather small if the number of irrelevant fea-
tures significantly outnumbers the number of relevant features. To 
investigate the influence of the noisy features to the detection 
performance, we have created two additional synthetic data sets 
with 10 and 20 noisy features in addition to five contributing fea-
tures. Instead of ROC curves, for these two data sets we have 
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reported areas under the curve (AUC), since AUC allows us to 
easier compare all three scenarios. From Table 3, it can be ob-
served that with increasing number of noisy features, the gap 
between single LOF and the combining methods is indeed de-
creasing. That means that the combining methods can alleviate 
the influence of the noisy features only till a certain level. The 
AUC of ideal ROC curve corresponds to 1, and it is computed 
using the trapezoidal rule. 

Table 3. AUC (areas under the curve) for single LOF, cumula-
tive sum and the breadth first approaches depending on the 
number of noisy features in the data set. 

Number of 
noisy features Single LOF Cumulative 

Sum approach 
Breadth First 

approach 
5 0.9862 0.9948 0.9899 
10 0.9745 9835 0.9781 
20 0.9489 0.9547 0.9501 

Our second synthetic data set (synthetic-2 data set) has also 5050 
data records, wherein 5000 data records correspond to normal 
(majority) behavior, and 50 data records represent outliers. This 
data set has 8 features and all 8 features are responsible for de-
termining the outliers, i.e. the data set does not have any noisy 
features. Like in the synthetic-1 data set (see Figure 9), the nor-
mal behavior in this data set corresponds to a Gaussian distribu-
tion of eight contributing features, while analogously to the first 
data set the outliers are data points far from the normal behavior. 
The computed ROC curves for this data set for LOF approach, 
Breadth-First and Cumulative Sum approaches are presented in 
Figure 11. Note that ROC curves for the synthetic-2 data set use 
different axis scale than ROC curves for the synthetic-1 data set in 
order to observe true differences. 
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Figure 11. ROC curves for single LOF approach and two 
combining methods employing LOF approach when applied 
to the synthetic-2 data set. The number of combined outlier 
detection algorithms for all data sets was set to 10. 

It can be observed from Figure 11 that in the scenario when all 
features that determine the outliers are important, there is a slight 
decrease in detection performance of combining methods. How-
ever, this decrease is minor (e.g. for false alarm = 4%, detection 
rate was decreased approximately only 1% for the breadth first 
approach and only 2% for the cumulative sum approach. For the 
false alarm of 10% all three methods achieve 100% detection rate, 

so the only differences are for the lower false alarm rates. The 
degradation in performance of the combining methods compared 
to the single LOF approach is understandable since combining 
methods do not use all the features in any of the iterations, but at 
the same time due to the nature of the generated data set all the 
features are important for detecting outliers. However, in real life 
scenarios, it is hardly the case that all the features are relevant for 
detecting outliers. To check this claim, we also performed ex-
periments on numerous real life data sets. 

5.2 Experiments on Real Life Data Sets 
All real life data sets used in our experiments have been used 
earlier by other researchers for the problem of detecting rare 
classes [11, 22, 25, 30]. These data sets are summarized in Table 
2. Since rare class analysis is conceptually the same problem as 
the outlier detection, we employed those data sets for the purpose 
of outlier detection, where we detected rare classes as outliers. In 
addition to the data sets reported in Table 2, we have also used 
several data sets from UCI repository [8] that do not directly cor-
respond to the rare class problems or outlier detection problems 
but can be converted into binary problems by taking one small 
class (with less than ~10% proportion present in the data set) and 
remaining data records or the biggest remaining class as a second 
class. Therefore, we selected the following data sets for the con-
version into binary data sets: ann-thyroid, LED, letter recognition, 
segment, and shuttle. The same procedure was used earlier [18] 
when experimenting with the rare class learning. Using this tech-
nique, we have formed additional 50 data sets. Some of the data 
sets selected to perform the experiments have both continuous and 
discrete features. Since LOF approach is based on computing 
distances between data records, measuring a distance between two 
discrete (categorical) values is not always straightforward. In our 
implementation, for computing distances between data records 
that have discrete attributes we have used the concept of inverse 
document frequency (IDF) already used in outier detection prob-
lems [38], where each value of categorical attribute is represented 
with the inverse frequency of its appearance in the data set. 
When performing experiments on COIL 200 [30], mammography 
[11] and rooftop [22] data sets, we did not change any class dis-
tribution. However, in the original lymphography data set [8], 
there are four classes, but two of them are quite small (2 and 4 
data records), so we merged them and considered them as outliers 
compared to other two large classes (81 and 61 data records). 
When performing experiments on KDDCup’99 data set, we se-
lected to detect the smallest intrusion class (U2R), which had only 
246 instances. Since the outliers are detected as deviations from 
the normal behavior, we have modified original data set (311029 
data records with five classes) such that the new data set con-
tained only the data records from the normal class (60593 data 
records) and from the U2R class. In such modified data set, we 
have tried to detect the U2R class using outlier detection algo-
rithms. Finally, for satimage data set we chose the smallest class 
to represent outliers and collapsed the remaining classes into one 
class as was done in [11]. This procedure gave us a skewed 
2-class dataset, with 5809 majority class examples and 626 minor-
ity class examples (outliers). For 50 created binary data sets, we 
have typically selected one of the smallest classes and then con-
verted either the remaining data records or the biggest remaining 
class into the majority class. Therefore, for ann-thyroid data set 
we have detected classes 1 and classes 2 as outliers vs. the class 3 

LOF approach 
Breadth First Approach 
Cumulative Sum Approach 

163

Research Track Paper



as the normal (majority) class. Similarly, for shuttle data set we 
have created five data sets by selecting classes 2, 3, 5, 6 and 7 to 
be detected as outliers compared to the biggest remaining class 1. 
For other real life data sets (LED, letter recognition, and seg-
ment), we have simply selected each of the classes to be detected 
as outliers and merged all remaining classes to correspond to the 
normal (majority) class. 
For our experiments performed on first six real life data sets from 
Table 2, the computed ROC curves for LOF approach, Breadth-
First and Cumulative Sum approaches are presented in Figure 12. 
Due to the lack of space the experimental results for remaining 50 
created binary data sets were presented using areas under the 
curves (AUC) (Table 4). The computed AUCs, for chess, LED, 
letter, segment and shuttle data sets have been averaged over all 
generated data sets for the original data set. For example, there 
were 26 binary data sets generated from the original letter data 
set (since there are 26 classes), and AUCs were averaged over all 
these 26 data sets when reporting experimental results in Table 4. 

Table 4. AUC (areas under the curve) for single LOF, cumula-
tive sum and breadth first approaches for 50 real life data sets 
obtained by converting original data into binary problems. 

Data set Single LOF 
approach 

Cumulative 
sum approach 

Breadth first 
approach 

ann-thyroid  
class1 vs. class 3 0.869 0.869 0.856 

ann-thyroid  
class2 vs. class3 0.761 0.769 0.753 

LED (average) 0.699 0.695 0.703 
letter (average) 0.816 0.820 0.818 
segment (average) 0.820 0.845 0.825 
shuttle (average) 0.825 0.839 0.834 

Analyzing Figure 12 and Table 4, it can be observed that both, 
Cumulative Sum and Breadth First combining methods outper-
formed single LOF outlier detection approach on all real life data 
sets. The improvements in the detection performance were the 
smallest (approximately 5% in detection rate for chosen false 
alarm rate) on the COIL 2000 data set (Figure 12a) and on the 
satimage data set (Figure 12f). This was probably due to the poor 
performance of individual outlier detection algorithms on these 
two data sets, so combining their outputs could not lead to signifi-
cant improvements. When detecting outliers on the rooftop data 
set (Figure 12b), the improvements were slightly better than for 
the Coil 2000 data set, but again not large due to weak perform-
ance of individual outlier detection algorithms. Nevertheless, the 
improvements in detection rate for the false alarm rates ranging 
from 10% to 50% are not small and they vary from 4% to 14%. 
The greatest enhancements in outlier detection were achieved for 
the mammography (Fig. 12d) and KDD Cup’99 (Figure 12e) data 
sets. For those data sets single outlier detection results had respec-
tively reasonable detection performance, so combining their out-
puts further improved overall results. However, when performing 
experiments on lymphography data set (Figure 12c), the detection 
rate of a single LOF approach was 100% already at 10% false 
alarm rate, so the combining methods could not improve detection 
performance very much. In order to illustrate even such a slight 

improvement of combining methods for this data set, we reported 
their ROC curves only for small false alarm rates (less than 0.15). 
From Table 4, it can be observed that the small improvements 
were also achieved for those binary data sets that were created by 
taking one small class as outlier class and remaining data records 
as a second class. This can be explained by the fact that the re-
maining classes that were merged together to form a single major-
ity class were quite different, so it was not possible to distinct 
separated class from the remaining data. It can be also observed 
that in two data sets when the binary data sets were created by 
taking the small class as outlier class and the biggest one as the 
normal class, the improvements of the combining methods were 
more apparent. 
Finally, it can be observed that for all 66 real life data sets used in 
our experiments and for all values of false alarm rate, both com-
bining methods were consistently better than the single LOF ap-
proach. The only exceptions are the lymphography data set, 
KDDCup’99 data set and certain generated data sets from LED 
and letter data sets, where for low false alarm rates (less than 0.05 
for lymphography data set, less than 0.1 for KDDCup’99 data set 
and less than 0.2 for data sets created from LED and letter data 
sets) detection rates of all three approaches were quite similar. 

6. CONCLUSIONS 
A novel general framework for combining outlier detection algo-
rithms was presented. Experiments on several synthetic and vari-
ous real life data sets indicate that proposed combining methods 
can result in much better detection performance than the single 
outlier detection algorithms. The proposed combining methods 
successfully utilize benefits from combining multiple outputs and 
diversifying individual predictions through focusing on smaller 
feature projections. Data sets used in our experiments contained 
different percentage of outliers, different sizes and different num-
ber of features, thus providing a diverse test bed and showing 
wide capabilities of the proposed framework. The universal nature 
of the proposed framework allows that the combining schemes 
can be applied to any combination of outlier detection algorithms 
thus enhancing their usefulness in real life applications. 
Although performed experiments have provided evidence that the 
proposed methods can be very successful for the outlier detection 
task, future work is needed to fully characterize them especially 
in very large and high dimensional databases, where new algo-
rithms for combining outputs from multiple outlier detection algo-
rithms are worth considering. It would also be interesting to ex-
amine the influence of changing the data distributions when de-
tecting outliers in every round of combining methods, employing 
not only the distance-based but also other types of outlier detec-
tion approaches. 
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Figure. 12. ROC curves for single LOF approach and two combining methods employing LOF approach when applied to all five 
data sets. The number of combined outlier detection algorithms for all data sets was set to 50, except for the mammography data 
set when this number was 10 due to small number of features (6) in the data set. The figures are best viewed in color. 
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