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Abstract

Neurons receive a continual stream of excitatory and inhibitory synaptic inputs. A

conductance-based neuron model is used to investigate how the balanced component of

this input modulates the amplitude of neuronal responses. The output spiking-rate is

well-described by a formula involving three parameters: the mean µ and variance σ of

the membrane potential and the effective membrane time constant τQ. This expression

shows that, for sufficiently small τQ, the level of balanced excitatory-inhibitory input

has a non-linear modulatory effect on the neuronal gain.

1 Introduction

Gain modulation is a change in the amplitude of the response that a neuron generates in
response to an additional stream of input (the modulatory one), but which does not affect
the receptive field characteristics (or selectivity) of the neuron. It provides a non-linear
mechanism by which information is combined between different pathways of neural process-
ing, which may be of sensory, motor or cognitive origin. Gain modulation has been shown
experimentally to play a role in sensory-motor integration, such as eye and reaching move-
ments, and in spatial perception, as well as auditory masking, attentional processing, object
recognition and navigation (Salinas & Thier, 2000). Experimental studies have established
gain modulation as one of the important unifying computational principles in the brain,
pervading multiple functions and brain areas (Salinas & Sejnowski, 2001).

Although experimental studies have shown gain modulation to play an important role
in neural processing, our understanding of the underlying biophysical mechanisms by which
neural systems implement gain modulation is lacking. The central question is: How do
neurons achieve the non-linear, multiplicative behavior characteristic of gain modulation,
when their input-output relationship is basically integrative? A number of possible different
mechanisms have been proposed (Salinas & Thier, 2000): non-linear interactions in the
dendritic processing of neurons (Mel, 1993), non-linear interactions arising from recurrent
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connections between neurons (Salinas & Abbott, 1996; Hahnloser et al., 1999), correlations
in the synaptic input (Salinas & Sejnowski, 2000), and non-linear responses modulated by
the balanced component of the synaptic input (Chance et al., 2002).

This paper examines the mechanisms by which balanced synaptic input modulates neu-
ronal gain. Balanced excitatory and inhibitory synaptic inputs have received particular
attention recently (Shadlen & Newsome, 1994; Tsodyks & Sejnowski, 1995; van Vreeswijk
& Sompolinsky, 1996; Troyer & Miller, 1997; Hohn & Burkitt, 2001), since the variability
in the spike times of such models agrees well with that observed in cortical neurons (Softky
& Koch, 1993; Shadlen & Newsome, 1994; Shadlen & Newsome, 1998). The possible role
of balanced input in neuronal gain modulation was highlighted by a recent in vitro study in
which a variable current (with zero mean) was injected into a rat cortical pyramidal neuron
and the gain associated with the injection of an additional constant current was measured
(Chance et al., 2002). The results indicated that the variability of the injected current af-
fected the neuronal gain multiplicatively. In this paper an analytic expression is derived for
the output spiking-rate of a conductance-based integrate-and-fire neuron. This enables us
to identify the conditions under which the output spiking-rate is modulated by the balanced
input.

2 The conductance-based leaky integrate-and-fire neu-

ron model

A one-compartment conductance-based leaky integrate-and-fire neuron is used in which the
membrane potential V (t) is the integrated activity of its excitatory and inhibitory synaptic
inputs, and it decays in time with a characteristic time constant (Tuckwell, 1979; Tuckwell,
1989; Troyer & Miller, 1997; Salinas & Sejnowski, 2000; Tiesinga et al., 2000; Destexhe et al.,
2001)

dV = −(V − v0)

τ
dt+ gI(VI − V ) dPI + gE(VE − V ) (dPE + dPD). (1)

The first term models the passive leak of the membrane, with resting potential v0 and
membrane time constant τ . The second and third terms represent the synaptic contribution
due to cortical background activity from excitatory (dPE) and inhibitory (dPI) neurons,
respectively. In the balanced neuron considered here, the net contribution of the background
activity is approximately zero because the average values of these excitatory and inhibitory
terms are chosen to approximately cancel. In addition to the background activity, there is a
synaptic driving current modelled as an excitatory fourth term (dPD). The inputs dPE, dPI ,
dPD are independent temporally homogeneous Poisson processes with constant intensities
γE = NEλE, γI = NIλI and γD = NDλD respectively, i.e., each of the NE excitatory input
fibers (resp. NI inhibitory, ND driving input fibers) has a spiking-rate λE (resp. λI , λD). VE

and VI are the (constant) reversal potentials (VI ≤ v0 ≤ V (t) ≤ Vth < VE). The parameters
gE and gI represent the integrated conductances over the time course of the synaptic event
divided by the neural capacitance (and are thus dimensionless): they are nonnegative and
are taken here to be identical for all excitatory and inhibitory inputs, respectively. When the
membrane potential reaches a threshold Vth, an output spike is generated and the membrane
potential is reset to its resting value v0.

In the absence of spike generation, the membrane potential approaches an equilibrium
value, µ, about which it fluctuates with variance σ2. The membrane potential approaches µ
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with a time constant that is different from the passive membrane time constant due to the
effect of the synaptic conductances, which is called the effective membrane time constant τQ.
The values of µ, σ, τQ are (Hanson & Tuckwell, 1983; Burkitt, 2001)

µ =
v0/τ + r11

1/τQ

σ2 =
µ2r20 − 2µr21 + r22

2/τQ − r20

(2)

1

τQ

=
1

τ
+ r10

rmn = (γE + γD)g
m
E V n

E + γIg
m
I V n

I .

The analysis is carried out in the Gaussian approximation (Burkitt & Clark, 2000), in which
the probability density of the membrane potential p(v, t | v ′, 0) is parameterized as

p(v, t | v′, 0) = 1
√

2π Γ(t; v′)
exp

{

−(v −Υ(t; v′))2

2 Γ(t; v′)

}

, (3)

where Υ(t; v) and Γ(t; v) are the (time-dependent) mean and variance of the membrane
potential. The Gaussian approximation is accurate in the limit of a large number (N)
of small amplitude synaptic inputs, which allows the probability density of the membrane
potential to be evaluated using a self-consistent analysis (Burkitt, 2001). The output spike
distribution fθ(t) obeys the renewal equation (Plesser & Tanaka, 1997; Burkitt & Clark,
1999)

p(Vth, t | v0, 0) =
∫ t

0
dt′ fθ(t

′) p(Vth, t |Vth, t
′), (4)

where p(v, t | v′, t′) is the conditional probability density of the membrane potential having
the value v at time t, given that it had the value v′ at an earlier time t′ (this equation is
exact when the synaptic current is modelled as a series of delta functions, otherwise it is
approximate).

The output spiking-rate is determined from the average inter-spike interval

λout =
[

τa +
∫ ∞

0
t fθ(t) dt

]−1

, (5)

where τa is the absolute refractory period (taken to be zero here). The above integral is
evaluated using Laplace transforms, where the Laplace transform for fθ(t) is obtained from
Eq.(4) using the time-translation invariance p(v, t | v ′, t′) = p(v, t − t′ | v′, 0). The time-
dependent mean and variance are given by (see Section 2.3 of (Burkitt, 2001))

Υ(t; v0) = µ
(

1− e−t/τQ
)

(6)

Γ(t; v0) = σ2
(

1− e−2t/τQ
)

,

where r20 is neglected in comparison with r10 in the exponent of Γ(t; v0). Careful considera-
tion of the finite and divergent parts of the resultant integrals gives the output spiking-rate,
as shown in the Appendix,

λ−1
out =

τQ

σ

√

π

2

∫ Vth

v0

du exp

(

(u− µ)2

2σ2

)[

1 + erf

(

u− µ

σ
√
2

)]

. (7)
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This is the so-called Siegert formula (Siegert, 1951; Ricciardi, 1977; Tuckwell, 1988; Amit
& Tsodyks, 1991), but with the membrane time constant τ replaced by the effective time
constant τQ. Note that once the parameters Vth and v0 have been chosen, this formula
gives the mean spiking-rate as a function of the three variables µ, σ and τQ, which are
experimentally accessible (Inoue et al., 1995; Destexhe & Paré, 1999).

3 Results

Background spiking activity in the cortex is reported to occur in the range of 5-20 Hz (Abeles,
1991). To investigate the effect of the level of background activity on the modulation of
neuronal gain, ‘1.5X’ and ‘2X’ conditions were defined, corresponding to an increase by
factors of 1.5 and 2, respectively, in the background activity (termed the ‘1X’ condition).
The 1X condition was defined by choosing parameters µ, σ and τQ in Eq.(7) so that a spiking-
rate of 5 Hz results from balanced background activity without a driving input. The effect
upon neuronal gain was investigated by introducing driving input with spiking-rate γD.

An essential part of the analysis was defining the “normal operating regime” of a neuron,
to ensure that the chosen parameter values correspond to biologically relevant neural be-
havior. The values of potentials were chosen to be VE = 0mV, VI = −80mV, v0 = −70mV,
Vth = −55mV, and the passive membrane time constant was τ = 20ms. These values
accord with well-established measurements for cortical pyramidal neurons, and our results
are not sensitive to variation of these potentials within the biologically plausible range.
The experimentally accessible quantities µ, σ and τQ (Destexhe & Paré, 1999) to be inves-
tigated were defined by first establishing appropriate ranges in the 1X condition without
driving input. These were: (µ − v0)/θ ∈ [0.0, 1.0], σ/θ ∈ [0.01, 1.0] and τQ/τ ∈ [0.001, 1.0],
where θ = Vth − v0. A set of triplets (µ, σ, τQ) were chosen that covered this region, with
the constraint that their resultant output firing-rate was λout = 5 Hz. For each triplet
{(µ, σ, τQ) |λout = 5 Hz} the set of values of gE, gI , γE and γI that could give rise to the
triplet were inferred from Eq.(2). An upper bound on gE was set by the requirement that
at least 20 synaptic inputs were required for the neuron to reach threshold from the reset
potential v0 (and gE, gI > 0). Cortical neurons receive at least 1000 synaptic inputs and the
spontaneous (input) spiking-rates λE, λI have a lower bound of 1 Hz (Abeles, 1991). This
procedure provided a finite space of parameters gE, gI , γE and γI capable of accounting for
the range of plausible values µ, σ and τQ in the 1X condition with no driving input. The
1.5X and 2X conditions were obtained by increasing the values of γE and γI appropriately.

To investigate how the level of balanced background activity affects neuronal gain, the
output spiking-rate was plotted as a function of driving current in the 1X, 1.5X, and 2X con-
ditions for the full range of biologically plausible parameters identified. The results revealed
two qualitatively different behaviors (Fig. 1). The first type (Fig. 1a) was characterized by
a linear response to driving input for all three conditions over most of the range of bio-
logically relevant output spiking-rates (taken here to be 5-120 Hz). The figure shows some
deviation from linearity in the 1X condition for low output spiking-rates (5-30 Hz). The
effect of increased balanced background activity was simply to increase the spiking-rate by
a fixed amount, independent of the driving spiking-rate γD. There was little effect on the
gain, which remained approximately constant for all three conditions and most values of the
driving spiking-rate (Fig. 1b). This type of behavior was expected when the equilibrium
potential was above threshold. Remarkably, however, this behavior could occur even if the
equilibrium potential was below threshold (see inset to Fig. 1a, showing µ and σ relative to
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θ). The second type of behavior (Fig. 1e) also exhibited an additive effect on the output
spiking-rate, but was further characterized by a non-linear response to driving input and
a modulation in gain due to varying levels of background activity. Fig. 1e shows that in
the absence of driving input, increases in the level of balanced background activity caused
increased spiking-rates, as in the first type of behavior. However, there was a modulation
of gain such that it decreased as the background activity increased (Fig. 1f). There was
also intermediate behavior between these two types (Fig. 1c) in which the response to driv-
ing input was initially non-linear, but became linear as γD increased. In this case there
was a difference in the gain between the 1X and 2X conditions provided that the driving
spiking-rate was not so high as to put the 2X condition into the linear regime. To a first
approximation, the types of behavior may be well characterized according to the value of τQ.
Given a biologically relevant range of output spiking-rates from 5 Hz (spontaneous activity)
to 120 Hz (maximally driven output), linear behavior occurred across this entire range for
τQ ∼ 20 ms (the upper bound of τQ, since τQ < τ = 20 ms for the parameters chosen here),
while non-linear behavior with gain modulation occurred across the range if τQ ≤ 1ms. For
1ms ≤ τQ ≤ 20ms, intermediate behavior occurred: the cross-over point from linear to non-
linear behavior (e.g., in Fig. 1a the linear regime was for λout > 30 Hz) occurred at a value of
λout that was inversely related to τQ. The gain modulation for values of τQ less than ∼ 1 ms,
as illustrated in Fig. 1e,f, became more multiplicative-like when the spontaneous output
spiking-rate (with γD = 0) was much lower than 5 Hz, as reported in (Chance et al., 2002),
but such low levels of spontaneous activity are outside the normal operating regime of corti-
cal neurons. The change between linear and non-linear behavior also had some dependence
upon the value of σ, which is discussed below.

Fig. 1 also shows the results of numerical simulations of the output spiking-rate (shown by
triangles on the plots for the 1X condition). The numerical simulations were implemented by
generating arrival times of the excitatory and inhibitory synaptic inputs according to Poisson
distributions. The delta-function synaptic currents allow an exact update rule in which the
membrane potential need only be evaluated at the synaptic input times. The results of
numerical simulations show excellent agreement with those of the analytical expression for
the parameters chosen here. The analytic expression for the output spiking-rate, Eq.(7),
was derived by considering only terms up to second order in gE and gI . Consequently this
expression is most accurate for small values of these parameters (i.e., a large number of small
amplitude synaptic inputs, where the amplitude is measured in relation to the difference
between the reset and threshold potentials), which is the case for most of the biologically
relevant parameter range.

All the results given above are essentially the same if the synaptic driving input, which
is stochastic, is replaced by a steady injected current with the same value as the mean
synaptic driving current: ID = CmγDgE(VE − µ), where Cm is the capacitance per unit area
of the membrane (taken to be 1µF/cm2). This is illustrated in Fig. 2, which shows data
corresponding to Fig. 1e & 1f in the case of injected current. The results are nearly identical
to those with synaptic driving input, indicating that the stochastic nature of the driving
input γD (but not the background input, γE, γI) was unimportant in the behavior described
here. This is unsurprising since γD ¿ γE,γI and consequently the driving input contributes
comparatively little to the fluctuations in the membrane potential.

To further understand the conditions that characterize the linear and non-linear behavior,
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Eq.(5) was reparameterized as

λout =
1

τQ

F

(

µ− Vth√
2σ

;
σ

θ

)

=
1

τQ





∫ − (µ−Vth)
√

2σ

− (µ−Vth)
√

2σ
− θ√

2σ

du
√
π eu

2

(1 + erfu)





−1

. (8)

Fig. 3 shows that the function F is approximately linear in the first argument provided that
the argument is greater than −c, and is non-linear otherwise. The value of c is in the range
[0.5, 1.5] depending on the strictness of the criteria for linearity and the ratio σ/θ (the smaller
this ratio is, the larger the value of c). This result has two important implications. First,
a linear input-output curve does not require that the mean membrane potential µ exceeds
threshold, but rather that µ +

√
2cσ > Vth. This provides a first criterion to determine

whether gain modulation is present, since it specifies when the non-linear behavior occurs.
Second, the transition from linear to non-linear behavior occurs when the output spiking-rate
becomes larger than λ∗

out = F (−c, σ/θ)/τQ, where 0.07 ≤ F (−c, σ/θ) ≤ 0.3, as illustrated
in Fig. 3b. This provides a second criterion for the presence of gain modulation behavior
that relates directly to the output spiking-rate. For example, a value of c in the middle of
this range (F (−c, σ/θ) ≈ 0.12) produces linear behavior over the range λout =5-120 Hz for
τQ ≥ 20ms and non-linear behavior for τQ ≤ 1ms, consistent with the above observation.
These limiting values of τQ, for which purely linear or purely non-linear behavior occurs,
increase as σ/θ increases, because this gives a smaller value of c that in turn produces a
larger value of F (−c, σ/θ) (see Fig. 3a).

4 Discussion and Conclusions

The effect upon gain modulation of increasing the balanced background activity can be
understood in terms of two competing processes embodied in Eq.(8), both influenced by
the effective membrane time constant, τQ. First, the contribution of a driving input to
the mean membrane potential, µD, is approximately linear in γD, namely µD = γDgEτQVE

from Eq.(2). As the level of background activity increases, the effective time constant, τQ,
decreases, resulting in a lower value of µ for a given driving spiking-rate, γD. This decrease
in τQ is due to the neuron becoming more leaky as more synaptic channels open (Tiesinga
et al., 2000). The value of σ remains approximately constant for all conditions and driving
spiking-rates, also as a result of the increased leakiness. Although lower values of µ are
expected to decrease the output spiking-rate, this is offset by a second effect: the neuron
operates on a faster time scale as τQ decreases, and so the time course and fluctuations in the
membrane potential are more rapid. From Eq.(8), when the neuron is in the linear regime
these two competing effects approximately cancel and there is no gain modulation. When
the neuron is in the non-linear regime the effect of the extra leakiness dominates over the
effect of the faster time scale, resulting in diminished gain as the level of background activity
increases.

The relative strength of these two opposing effects in different parameter regions explains
many of the the differing results on gain modulation reported by a number of authors (Nelson,
1994; Carandini & Heeger, 1994; Holt & Koch, 1997; Tiesinga et al., 2000; Capaday, 2002;
Longtin et al., 2002; Chance et al., 2002). The lack of gain modulation in the linear regime
was first noted by (Holt & Koch, 1997), and a recent study of motoneurons (Capaday, 2002)
showed no gain modulation, since they operate in the linear regime. The explanation of the
linear behavior in these papers is based upon approximating the spiking-rate by the inverse
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of the mean time taken for the membrane potential to reach threshold when only the mean
input is considered (i.e., the stochastic nature of the changes to the membrane potential is
ignored). When the membrane fluctuations are incorporated, this approximation remains
valid only if the equilibrium membrane potential, µ (Eq. 2), is close to or above the spiking
threshold. As the discussion following Eq.(8) indicates, such models correspond to the linear
regime of the function F where no gain modulation is observed. The analysis presented here
provides a quantitative prediction of the parameter regime in which the balanced component
of the synaptic input gives rise to non-linear gain modulation of the spiking-rate and indicates
that such conditions are within the biologically plausible region of cortical neurons.

The distinction between the signal input and the background (modulatory) input is based
not upon any anatomical difference, but rather upon the particular function that the synap-
tic input plays. For neurons in the non-linear regime, the results here indicate that higher
levels of balanced excitation and inhibition will produce a lower response gain in the output
spiking-rate of the neuron. Important questions that remain include whether a balance of
excitatory and inhibitory synaptic input exists in vivo, whether the level of balanced input
can be modulated in a behaviorally functional way, and whether such balanced synaptic in-
put arises from feedforward, recurrent or feedback networks. Indirect evidence for balanced
synaptic input in vivo is provided by the irregular spiking of cortical neurons (Shadlen &
Newsome, 1994). The large observed values of the coefficient of variation of the interspike
interval distribution is inconsistent with the integration of a large number of small amplitude
postsynaptic potentials (Softky & Koch, 1993) unless the neurons receive roughly balanced
amounts of excitatory and inhibitory synaptic input (Shadlen & Newsome, 1998). The ques-
tion of whether such balanced input can be modulated in a functionally significant way in
cortical neurons is much less clear. Indirect experimental support for a feedback source of
balanced synaptic input is provided by studies on the primary visual cortex of monkeys in
response to drifting grating stimuli, in which the contrast, orientation and spatiotemporal
frequencies were varied (Carandini & Heeger, 1994). The analysis presented here provides
a neural mechanism for the non-linear response observed in these studies, without the need
for the proposed “normalization” synaptic conductances that were postulated in their nor-
malization model of gain modulation (in which a non-linear neural response is generated by
the interaction of a neuron with the pooled activity of a large number of nearby neurons)
(Carandini & Heeger, 1994). More recent models of gain modulation have also used recurrent
and feedback interactions (Salinas & Abbott, 1996; Hahnloser et al., 1999).

In conclusion, the results presented here give a quantitative picture of the extent to
which neuronal gain can be modulated by the balanced component of the synaptic input for
neurons with biologically realistic parameters. This analysis highlights the role played by
the effective time constant, τQ, which results from the increased leakiness of the membrane
as the balanced synaptic input increases (Tiesinga et al., 2000). Consequently, increases in
the variance of the synaptic input do not necessarily cause corresponding increases in the
variance of the membrane potential. The effect of gain modulation becomes most pronounced
for τQ less than approximately 1 ms, where increased levels of background activity produce
a lower neural gain over most of the output spiking-rate range. Therefore, it is in this region
that the gain modulation produced by the balanced synaptic input will potentially have the
greatest functional significance, although the boundary of the region will depend upon the
ratio σ/θ.
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Appendix

A Derivation of the Siegert Formula

In this appendix the Siegert formula is derived for the leaky integrate-and-fire neuron with
reversal potentials in the Gaussian approximation. The renewal equation (4) may be solved
for the first-passage time density, fθ(t), using Laplace transforms,

fL(s) =
pL(s)

qL(s)
, (9)

where the subscript L denotes the Laplace transform and pL(s) and qL(s) are the Laplace
transforms of the probability density of the membrane potential, p(v, t|v ′, 0):

pL(s) =
∫ ∞

0
dt e−st p(Vth, t|v0, 0), (10)

qL(s) =
∫ ∞

0
dt e−st p(Vth, t|Vth, 0). (11)

Using (5) the mean firing rate can be calculated from the mean ISI, tf , given by

tf =
∫ ∞

0
t fθ(t) dt =

pL(0) q
′
L(0)− p′L(0) qL(0)

qL(0) pL(0)
. (12)

The integrals in (10) & (11) and their derivatives can be re-written using the Gaussian
approximation for p(v, t|v′, 0) (Eqns.(3) & (7)) with the change of variable x = exp(−t/τQ)

dn

dsn
pL(s) =

∫ 1

0
dx(τQ lnx)n

τQx
τQs−1

√

2πσ2(1− x2)
exp

{

−(yth − yrx)
2

1− x2

}

, (13)

dn

dsn
qL(s) =

∫ 1

0
dx(τQ lnx)n

τQx
τQs−1

√

2πσ2(1− x2)
exp

{

−y2
th(1− x)2

1− x2

}

, (14)

where yth = Vth−µ√
2σ

, yr = v0−µ√
2σ

. In the limit as s → 0 these integrals are divergent (the

integrand is singular at x = 0) and can be written in terms of finite and singular parts

dn

dsn
pL(s) =

τQ√
2πσ2

[

pF(s;n) +
(−1)nn! exp(−y2

th)

τQsn+1

]

, (15)

dn

dsn
qL(s) =

τQ√
2πσ2

[

qF(s;n) +
(−1)nn! exp(−y2

th)

τQsn+1

]

, (16)

where pF(s;n) and qF(s;n) are the finite parts of pL(s) and qL(s) respectively,

pF(s;n) =
∫ 1

0
dx(τQ ln x)n

xτQs−1

√

(1− x2)

[

exp

{

−(yth − yrx)
2

1− x2

}

− exp(−y2
th)
√

(1− x2)

]

, (17)

qF(s;n) =
∫ 1

0
dx(τQ lnx)n

xτQs−1

√

(1− x2)

[

exp

{

−y2
th(1− x)2

1− x2

}

− exp(−y2
th)
√

(1− x2)

]

. (18)
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In (12) for the mean ISI, the singular parts cancel so that in the limit as s→ 0

tf = exp(y2
th)





∫ 1

0
dx

τQx
−1

√

(1− x2)
exp

{

−y2
th(1− x)2

1− x2

}

−
∫ 1

0
dx

τQx
−1

√

(1− x2)
exp

{

−(yth − yrx)
2

1− x2

}



 .

(19)
Consider these two integrals separately and notice that the following related identities hold:

d

du



exp(u2)
∫ 1

0
dx

x−1

√

(1− x2)

{

exp

(

−u2(1− x)2

1− x2

)

− exp
(

−u2
)

}



 =

4 exp(u2)
∫ u

0
dz exp(−z2), (20)

d

du



exp(u2)
∫ 1

0
dx

x−1

√

(1− x2)

{

exp

(

−(u− yrx)
2

1− x2

)

− exp
(

−u2
)

}



 =

−2 exp(u2)
∫ ∞

u
dz exp(−z2). (21)

Consequently,

tf = τQ

∫ yth

yr

du exp(u2)
(

4
∫ u

0
dz exp(−z2) + 2

∫ ∞

u
dz exp(−z2)

)

= τQ

∫ yth

yr

du exp(u2)
(

2
[∫ ∞

0
dz exp(−z2) +

∫ u

0
dz exp(−z2)

])

=
√
πτQ

∫

Vth−µ√
2σ

v0−µ√
2σ

du exp(u2) [1 + erf(u)] (22)

=
τQ

σ

√

π

2

∫ Vth

v0

du exp

(

(u− µ)2

2σ2

)[

1 + erf

(

u− µ√
2σ

)]

.
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Figure Captions

Figure 1: Plots of the neuronal gain: Plots on left show output spiking-rate, λout Eq.(5), vs
spiking-rate of driving inputs γD for three typical sets of neural parameters, and plots on
right show the corresponding gain vs γD. Results are shown for the 1X (solid line), 1.5X
(dashed line) and 2X (dot-dashed line) conditions. The results of numerical simulations
in the 1X condition with 10,000 output spikes are plotted as triangles. The insets in the
left column show the corresponding values of µ (upper solid line) and σ (lower solid line),
as well as the spiking threshold (dotted line), vs γD for the 1X condition (same range as
corresponding larger plot in each case). Parameter values for the 1X condition are (a),(b)
gE = 0.0027, gI = 0.0092, γE = 21.6 kHz, γI = 15.4 kHz, (i.e. τQ = 4 ms), (c),(d)
gE = 0.0026, gI = 0.0080, γE = 62.9 kHz, γI = 56.4 kHz, (i.e. τQ = 1.5 ms),and (e),(f)
gE = 0.0026, gI = 0.0079, γE = 143 kHz, γI = 137 kHz (i.e. τQ = 0.67 ms). Remaining
neural parameter values are given in the text.

Figure 2: Plots of neuronal gain for steady injected current ID = CmγDgE(VE − µ1X) with
parameters as for Fig. 1e & 1f. Cm = 1µF/cm2 is the capacitance of the neural membrane
and µ1X=-60.175mV is the mean membrane potential in the 1X condition without any
driving input. (a) The output spiking-rate, λout Eq.(5), vs ID for three typical sets of neural
parameters, and (b) the corresponding gain vs ID. Results are shown for the 1X (solid line),
1.5X (dashed line) and 2X (dot-dashed line) conditions.

Figure 3: (a) The function F , Eq.(8), and (b) its derivative with respect to its first argument
x = µ−Vth√

2σ
for several values of its second argument σ/θ = 0.05 (solid), 0.1 (dashed) and 0.2

(dot-dashed). The vertical dotted lines in (b) illustrate the region −1.5 ≤ x ≤ −0.5 in which
a transition from non-linearity to linearity occurs, depending on the values of σ/θ and the
strictness of the criteria for linearity. The dotted lines in (a) give the corresponding region
and values of the function F .
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