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To simplify theoretical analyses of neural networks, individual neurons are often modeled as Poisson
processes. An implicit assumption is that even if the spiking activity of each neuron is non-Poissonian, the
composite activity obtained by summing many spike trains limits to a Poisson process. Here, we show
analytically and through simulations that this assumption is invalid. Moreover, we show with Fokker-
Planck equations that the behavior of feedforward networks is reproduced accurately only if the tendency
of neurons to fire periodically is incorporated by using colored noise whose autocorrelation has a negative
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Neurons have a variety of ion channels that transduce
synaptic input into spiking output. Because the channels
have a wide range of activation time constants (submilli-
seconds to seconds), whether or not an input will generate a
spike depends substantially on the recent history of the
neuron. Injection of steady and/or white noise current will
cause the neurons to fire in a quasiregular fashion
[Fig. 1(a), left], as evidenced by the nonexponential inter-
spike interval (ISI) distribution (middle) and the presence
of multiple peaks and troughs in the autocorrelation (AC)
of the spikes (right). These in vitro observations coupled
with careful analyses of in vivo spiking patterns indicate
that neurons are fundamentally not Poisson processes [1]
(see also Ref. [2]). Nevertheless, to facilitate theoretical
treatment of large-scale networks, the composite activity
obtained by summing the spikes of the individual neurons
in a network is often assumed to be Poissonian or
Gaussian, particularly if the number of neurons is large.
However, we show here by using Fokker-Planck equations
(FPEs) [3] to model feedforward neural networks that this
assumption leads to significant errors. Synchrony, shown
experimentally to develop in such networks, is accurately
reproduced only with a modified FPE that uses noise whose
AC has a negative component, similar to what occurs in
real neurons.

In the following, we consider a network of leaky
integrate-and-fire (LIF) neurons arranged in a feedforward
fashion (Fig. 2, inset). Feedforward networks have been
examined experimentally [4] and so can be used to validate
the results of the simulations and theory. The LIF evolu-
tion, before crossing threshold, is described by

dv
o
m dt

where 7,, = 20 ms is the membrane time constant, v is
membrane potential, Vg is the reversal potential for ex-
citatory synaptic input, and G(¢) is the total conductance
generated by the presynaptic input neurons. A neuron in a
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given layer receives input from 44 out of 1000 neurons
from the previous layer.

During a stimulus, the total input to each neuron is a sum
of the individual spike trains, s;(¢), of the presynaptic cells:
s(t) = s;(¢) + - - - + sy(2). Each spike generates a unitary
conductance change in the postsynaptic neurons, G7,7(z),
where 7(r) = @(t)rlxe*’/“ [O(r) is the Heaviside step
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FIG. 1. Autocorrelation of single and composite spike trains.
(a) left: Spike trains recorded intracellularly from a repetitively
firing neuron using an in vitro slice preparation at rat cortex.
Neurons were made to fire with input that mimicked synaptic
barrages; see Ref. [4]. Scale bars: vertical =20 mV, horizontal =
200 ms. Middle: interspike interval distribution compiled over
repeated stimulation of the neuron. Right: autocorrelation of the
spike trains. (b) Superimposed traces of normalized conductance
autocorrelation calculated analytically with Eq. (3) (solid line)
and with simulations of LIF neurons with a single input
(G,(1)) (dashed line) and with N = 44 inputs [G(¢) divided by
N] (circles). Inset shows the interspike distribution of LIF
neurons [see Fig. 2(a)] fitted with a gamma distribution (6 =
150 and A = 37 Hz). (¢) Normalized autocorrelation of the
conductance for a heterogeneous population of neurons. We
use 44 gamma distributions with A varying randomly between
26 and 48 Hz to generate multiple spike trains.
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FIG. 2. Simulated and predicted behavior of feedforward net-
works. (a) Dot rasters and associated histograms for the first five
layers of a simulated feedforward network. Note that full syn-
chrony develops after the third layer and is maintained for the
duration of the stimulus (200 ms). (b) Probability distributions
calculated using Fokker-Planck equations with Poisson, Eq. (9),
(gray line) and colored (black line) noise, Eq. (13), with a =
0.8.

function], G = 0.20, and the synaptic time constant, 7, =
I ms. Using Eq. (1), these values result in a single excita-
tory postsynaptic potential with an amplitude of 0.6 mV,
comparable to what has been measured experimentally [5].
To stimulate the network, the firing rate of first layer
neurons is stepped to 37 Hz at t = 10 ms from a baseline
rate of 1 Hz. This causes v of second layer neurons to rise.
Upon crossing that threshold, v is reset to —3 mV. This
cycle can repeat several times during the stimulus.

The ISI distribution of LIF neurons resembles that of
real neurons [Fig. 1(a), middle] and is well described with
a gamma distribution: f, (1) = G2 (vn)’"'e™ " If the
ISIs are randomly sampled from this distribution with v =
A6 and with A(7) changing much slower than 7, the AC of
G(1) is given by

(Gt + DG (1) = (GT ) ADK(T, A(D)  (2)

where
1 1 [oo
k(T,A)= e~ ITl/me 4~ dxQ(x, )‘)efleTI/rj -
2 27 ) oo

3)

with Q(t, A) = fg2(t) + fo.00 * fo,02(t) + - - - [6]. Single
angular brackets (A(r)) signify the ensemble average
and double angular brackets the relative correlation:
(A(1))B(12))) = (A(1))B(t,)) — (A(t))XB(1,))-

The normalized AC, (G,(t + T)G,(1)))/(G,(t + T)) X
(G,(1)),calculated from LIF simulations [Fig. 1(b), dashed
lines], matches the plot of «(T, A)/A versus T [Fig. 1(b),
solid line]. Both are marked by troughs that flank a central
peak followed by troughs and progressively decreasing
peaks.

A common misconception is that summing the spikes
from a large population of uncorrelated neurons results in a
composite train [S(r)] that is Poisson. However, the ex-
pression for the AC of the composite spike trains [Eq. (4)]
shows that if the firing of individual neurons are uncorre-

lated, the cross terms vanish and the AC reduces to that of a
single spike train:

s+ T)s@))=(s1(t+T)+ - +sy(t+T))
X (s1(6) + -+ sy@))
= Z_<<s,»(t +T)si (0N + > si(r+T)s (1))

i)
=N{s:(t+1)s,(1))) 4)
The expression for conductance then becomes
(Gt + T)G(1))) = NLG (1 + T)G, (1))
= (GTINANK(T, A). ©)

Note that if s(¢) is Poissonian, ({s(z + T)s(z))) « &(T) and
{G(t + T)G(1))) « exp(—T/7,). However, the right-hand
side of Eq. (5) never limits to the single-exponential func-
tion as N — o0; a double limit of A — 0 and N — oo with
N A kept constant is required. These limits are unlikely to
hold under physiological conditions because a reasonable
value of A is needed for signals to propagate through the
network [4].

Simulations confirm that the AC of the summated con-
ductance G(t) = G,(t) + - -+ + Gy(t), divided by N
[Fig. 1(b) circles], matches {{(G(t + T)G,(r))) (dashed
line). Both ACs are normalized [divided by (G, (z + T)) X
(G,(1))]. The sparse connectivity in the network ensured
that the correlation between neurons were low so that the
cross terms in Eq. (4) vanish; the cross terms would con-
tribute more if neurons shared significant inputs from the
previous layer.

Increasing the heterogeneity of the network does not
eliminate the primary trough of the AC. Figure 1(c) (cir-
cles) shows the composite AC compiled for 44 spike trains
whose firing rates are randomized between 26 and 48 Hz.
The main effect of increasing heterogeneity is to smear out
later troughs and peaks, with minimal effects on the pri-
mary trough.

Note that since the calculation of the AC of the total
conductance reduces to that of the conductance induced by
a single neuron [Eq. (5)], the AC of the total conductance
therefore does not vary with N and becomes a delta func-
tion only if ACs of the individual conductances are them-
selves delta functions. “Whitening” of conductance noise
can occur only under special conditions such as when the
average firing rate of each neuron is very low (which
stretches and flattens the AC), or if neurons exhibit bursting
behaviors.

To determine how the non-Poissonian spiking of indi-
vidual neurons is manifested in the network activity, we
compared the behavior predicted with FPE using white
noise (FPEy) [7,8] with that predicted with FPE using
colored noise whose AC has a trough (FPE.). The FPE pro-
vides us with a quasianalytical tool to analyze firing pat-
tern of population of neurons. Compared to a direct simu-
lation method, a quasianalytical method gives a clearer
insight into the underlying mechanism of the phenomena.
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A salient feature of feedforward networks, as revealed
experimentally [4] and by simulations [Fig. 2(a)] [9] (see
also Ref. [10]), is that the firing of neurons in successive
layers become progressively more synchronous [Fig. 2(a)].

For Poissonian spike trains, the first 2 moments are given
by (s()) = NA(¢) and {(s(z + T)s(1))) = NA(t)6(T). The
associated moments for conductance are given by

(G(0) = Gr,NA®) ©
and
(Gt + G = (GrPNAD 5 e 7 ()

This leads to an approximate representation of the con-
ductance in terms of Gaussian white noise, w(z):

G(t) = Gr(NA(t) + VNA(t)w(2)) (8)

under the condition that 7, < 7, [11]. Combining with
Eq. (1) gives a stochastic differential equation and the FPE
[7,12]:

ap(u,t) 9 b(R")? 9p
—— L aw R+ T 1 (08— Upe).
ot aua(ur )P e Ju() (u Ureset)
)]
where a(u,R) = (Gr,R +1—¢")/7,, and b(R)=
(Gr,/7,)VR'.

To account for the finite time course of synaptic con-
ductance without compromising mathematical tractability,
we replaced the input rate term, N A, in drift and diffusion
terms with R = NA* n and R’ = N * 5, with 0,(¢) =
O(1)2/7,exp(—2t/7,) [8]. For convenience, v is trans-
formed to u = In(Vg/(Vy — v)). The probability flux
term, J,(r) = — ‘;—5 |, —thresold» €nsures that the probability
sum is time invariant. Because the flux term represents the
portion of the population voltage that exceeded threshold
and is subsequently reset to U, its value gives the total

number of neurons that fire at a given time. |

A copy of the FPE is prepared for each layer (except
layer 1) and solved simultaneously. The rates calculated
with the FPE [Fig. 2(b), gray line] do not match the histo-
grams given by the simulations [Fig. 2(a)]. Although there
are peaks that repeat in time, each successive peak broad-
ens and eventually flattens.

The FPE with non-Poissonian noise is constructed as
follows [12]. The expression for conductance [Eq. (4)] can
be modified for colored noise, L(7):

G(t) = GT,(NA(t) + VNA()L (1) (10)

where (L,(f)) = 0 and (L,;(r)L,(0)) = «(z, A).

For small 7,, L,(f) may be expressed in terms of the
standard Gaussian white noise w(¢) by introducing auxil-
iary variable, X:

Li(1) = w(t) — aX(1),
TheedX/dt = —X + w(2). (11)

Formal integration yields an expression

B e |1/ Tocg (12)

neg

(Li(OL1(0) = 8(1) — 5

that resembles (7, A). The time constant of the negative
component, T, is set to be proportional to the average
ISI of presynaptic neurons and 8 = 1 — (1 — a)?. Equa-
tion (12) reproduces only the Ist negative component and
not the subsequent peaks and troughs of the LIF neurons’
AC, similar to the AC of the heterogeneous network
[Fig. 1(c)].

These stochastic equations differ from those used pre-
viously [13] where the noise is colored by making the
synaptic time course longer (7, # 0): w(r) appeared only
in the lower expression of Eq. (11), so that the AC of the
noise had an exponentially decaying peak but not a nega-
tive trough component.

The new FPE derived from standard procedures [3] is
given by

1 9 - d b(R' + Ry + R,)? 92P 1 9(XP
761)(”’ Xn__1 —(Tma(u, R+ Ry — GTS\/E aX + — ) ( 0 ) — —( )
ot Ty OU Tneg 0X 2 du Tneg 0X
1 R +R, 0°P
Lo+ (X 0)8(1 — U (13)

27,2 R 9X?

neg

with 7., = 1/(2A). Detailed derivation of this equation as
well as the algorithm for numerical integration is found in
the supplementary material [14]. To suppress instability in
the numerical integration of the two dimensional Fokker-
Planck equation, we added two noise sources whose input
rates, Ry = R; = N X 3 Hz, are much lower than the input
rate from the previous layer (= N X 37 Hz). This noise
was also included in the simulations and in the calculations
with FPEy,. Although the stationary solution to Eq. (13)
can be used to analytically calculate the steady-state firing
rate [12], calculation of the time-varying distribution re-
quired numerical integration using the alternating differ-
ence implicit algorithm [15].

The firing rates calculated using FPE reproduced the
histograms obtained with the simulations [Fig. 2(b), black
line] more accurately than those calculated using FPEy,
(gray line). Unlike with FPEy,, the FPE( produced distri-
butions that did not flatten rapidly with time. With the
FPEy, the firings times easily diverges to a nonstructured
firing pattern; those obtained with FPE tended to remain
periodic with the FPE.. Those effects are readily under-
standable from the AC, which provides information about
the timing of spikes. FPE provided better matches partly
because the negative component in the AC means that
spikes tend to occur at a fixed delay from the previous
spike [16], unlike a Poisson process where the spike times
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are independent of previous events. As a result, the spikes
are tightly clustered around one interspike interval,
whereas spikes of a Poisson process are considerably
more dispersed. This increased regularity in firing sharp-
ened the histogram peaks.

As shown previously, the FPEy, accurately describes [8]
the propagation of a brief packet of input through a feed-
forward synfire chain [17]. Because each neuron in the
layer contributes only one spike, the negative component
of the AC plays no role. The FPE. should be used for
longer duration stimulus where cells can fire multiple
times. It should be noted, however, that the peaks of the
FPE predicted rates are most accurate mainly for the first
200-300 ms; at longer intervals, the rates flatten out
whereas the histograms with the simulations remain sharp
(data not shown). Simulations suggest that this discrepancy
likely arises from the fact that the AC of the colored noise
had only the central peak and side troughs, unlike those of
the simulated (Fig. 1) and real (e.g., [18]) neurons, which
exhibit multiple peaks and troughs. Relaxing this assump-
tion, however, makes calculation of FPE intractable.

At the most basic level, neurons are not Poisson pro-
cesses. Thus, the occurrence of a spike will depend sub-
stantially on the recent firing history. Indeed, it is difficult
to force neurons to fire in a Poisson manner [4]. Our
analyses suggest that firing statistics of individual neurons
can greatly affect the behavior of the network. An impor-
tant consequence of non-Poissonian firing is that any tem-
poral correlation in the firing of neurons at the onset of a
sensory input is likely to be maintained for the duration of
the stimulus. This, coupled with the fact that neurons
respond differently to synchronous and asynchronous input
[19], is likely to greatly affect signal processing at the
network level. The predictions obtained with Poisson pro-
cesses are likely to differ substantially from formulations
that incorporate the realistic firing statistics of neurons.
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