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Abstract – Chen and Aihara have showed 
recently that their chaotic simulated annealing 
(CSA) has better search ability for solving 
combinatorial optimization problems compared 
to both the Hopfield-Tank approach and 
stochastic simulated annealing (SSA). However, 
CSA is not guaranteed to find a globally optimal 
solution no matter how slowly annealing is 
carried out. In contrast, SSA is guaranteed to 
settle down to a global minimum with 
probability 1 if the temperature is reduced 
sufficiently slowly. In this paper, we attempt to 
combine the best of both heuristics by proposing 
a new approach to simulated annealing using a 
noisy chaotic neural network, i.e., stochastic 
chaotic simulated annealing (SCSA). We 
demonstrate this approach with the traveling 
salesman problem. 
 
1.   Introduction 
Recently there have been extensive research 
interests and efforts in theory and applications of 
chaotic neural networks (e.g., [1]-[16]). In 
particular, Freeman and co-workers [1] have 
demonstrated strong evidence, through both 
biological experiments and theoretical 
investigations, that chaos play an important role 
in information processing in real and artificial 
neural systems.  

Aihara, Takabe, and Toyoda [3] proposed a 
chaotic neural network based on a modified 
Nagumo–Sato neuron model, in order to explain 
complex dynamics observed in a biological 
neural system. Nozawa [4] showed that the 
Euler approximation of the continuous-time 
Hopfield neural network [17] (EP-HNN) with a 

negative neuronal self-coupling has chaotic 
dynamics and that this model is equivalent to a 
special case of Aihara-Takabe-Toyoda chaotic 
neural network [3] after a variable 
transformation. Nozawa further showed [4][6] 
that the EP-HNN has much higher searching 
ability for solving the traveling salesman 
problem (TSP), in comparison with the Hopfield 
neural network [17][18][19], the Boltzmann 
machine, and the Gaussian machine.  

Chen and Aihara [7][8] proposed chaotic 
simulated annealing (CSA) by starting with a 
sufficiently large negative self-coupling in the 
Aihara-Takabe-Toyoda network and gradually 
decreasing the self-coupling so that the network 
eventually stabilizes, thereby obtaining a 
transiently chaotic neural network. Their 
computer simulations showed that CSA obtains 
good solutions for TSP much more easily 
compared to the Hopfield-Tank approach [17]-
[19] and stochastic simulated annealing (SSA) 
[20]. Chen and Aihara [15] provided the 
following theoretical explanation for the global 
searching ability of the chaotic neural network: 
its attracting set contains all global and local 
minima of the optimization problem under 
certain conditions, and since the chaotic 
attracting set has a fractal structure and covers 
only a very small fraction of the entire state 
space, CSA is more efficient in finding good 
solutions for optimization problems compared to 
other global search algorithms such as SSA.  

SSA is known to relax to a global minimum if 
the annealing takes place sufficiently slowly, 
i.e., no faster than logarithmatically. In practical 
terms, this means that SSA is capable of 
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producing good (optimal or near-optimal) 
solutions for many applications, if the annealing 
parameter (temperature) is reduced 
exponentially but with a reasonably small 
exponent. However, unlike SSA, CSA has 
completely deterministic dynamics and is not 
guaranteed to settle down at a global minimum 
no matter how slowly the annealing parameter 
(the self-coupling) is reduced [22]. Practically 
speaking, this implies that CSA sometimes may 
not be able to provide a good solution at the 
conclusion of annealing, even when annealing is 
carried out very slowly. 

In this paper, we combine the best features of 
both SSA and CSA, i.e., stochastic wandering 
and efficient chaotic searching, by adding a 
decreasing noise in the transiently chaotic neural 
network of Chen and Aihara [7][8][15]. We 
therefore obtain a novel method for solving 
optimization problems: stochastic chaotic 
simulated annealing (SCSA). We then use the 
proposed SCSA to solve the TSP. Our results 
show marked improvement over CSA. 

2.  Stochastic Chaotic Simulated Annealing 

We propose stochastic chaotic simulated 
annealing (SCSA) as follows:  
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A [ n(t+1) ] = (1- β ) A [ n(t) ]                        (4) 

where 

ijx :  output of neuron ij ; 

ijy :  internal state of neuron ij ; 

ijI :  input bias of neuron ij ; 

k : damping factor of nerve membrane        
( 10 ≤≤ k ); 

α :  positive scaling parameter for inputs;  

)(tz : self-feedback connection weight or         
refractory strength  )0)(( ≥tz ; 

β : damping factor of the time dependent 
( 10 ≤≤ β ); 

0I :  positive parameter; 

ε :  steepness parameter of the output function 

 ( ε >0); 

n(t):  random noise injected into the neurons,    
i.e.,  in [-A, A] with a uniform distribution, 
where A[n] is the noise amplitude; 

ijklw :  connection weight from neuron kl  to 
neuron ij . 

The weights satisfy the following: 
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In the absence of noise, i.e., n(t) = 0, for all t, 
SCSA reduces to CSA [7][8][15]. 

3. Solving the Traveling Salesman Problem 
Using Stochastic Chaotic Simulated 
Annealing 

A classical combinatorial optimization problem 
is the travelling salesman problem (TSP). It is to 
seek the shortest route through n cities, visiting 
each city once and only once, and returning to 
the starting point. Since Hopfield and Tank [18] 
applied their neural networks to the TSP, the 
TSP is often used as a test problem in 
neurocomputing.  
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Table 1. Results of CSA and SCSA on Hopfield-Tank’s 10-city TSP for 5000 runs with    

              different random initial conditions of the network. 
 

Algorithm CSA SCSA 
Number of runs reaching global 

minima (%) 
4969 (99.4%) 4972 (99.4%) 

Number of runs reaching others 
solutions (%) 

31 (0.6%) 28 (0.6%) 

Average number of iterations 119 124 

 

Following Hopfield and Tank [18], we map the 
solution of an n-city TSP to a network with 

nn ×  neurons. 1=ijx  represents the fact that 
city i  is visited in visiting order j , whereas 

0=ijx  represents that city i  is not visited in 
visiting order j . The energy function to be 
minimized consists of two parts: 
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where ini xx =0  and 11 iin xx =+ . ijd  is the 
distance between city i  and city j . The first 
two terms in eq.6 (inside {}) represent the 
constraints, i.e., one and only one ijx  is 1 for 

each j, one and only one ijx  is 1 for each i (each 
city is visited once and only once). The last term 
in eq.6 shows the total length of the tour. 
Coefficients 1W  and 2W  reflect the relative 
strength of the constraint and the tour length 
terms. Hence a global minimum of E  represents 
a shortest valid tour. 

Here we solve Hopfield-Tank’s 10-city TSP 
with our model. To compare the performance 
with the CSA, we use a set of 21 ,,,,, WWk εβα  
that are the same as Chen and Aihara’s [15][16]: 
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In SCSA, A[n(0)] = 0.002. The results are 
summarized in Table 1with 5000 different initial 
conditions of ijy  generated randomly in the 
region [-1,1]. 

As shown in Table 1, the performance of CSA 
and SCSA is about the same for the 10-city TSP.  

We also use a 21-city TSP [21] to compare the 
performance of our SCSA with CSA. The 
optimal (shortest) tour length is known to be 
2707 [21].  

The distance matrix ijd  is given in following 

page (Only ijd  with ji ≥  are shown. We 

assume jiij dd = , i.e., symmetric TSP). 

The network parameters are set as follows: 
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Compared to the 10-city TSP, we use a smaller 
β  to allow for longer searching. For SCSA, the 

 



 

 4  

    0  
510       0    
635   355       0      
  91   415   605       0             
385   585   390   350       0    
155   475   495   120   240       0    
110   480   570     78   320     96       0    
130   500   540     97   285     36     29       0    
490   605   295   460   120   350   425   390       0    
370   320   700   280   590   365   350   370   625       0    
155   380   640     63   430    200   160   175   535   240       0      
  68   440   575     27   320      91     48     67   430   300     90       0   
610   360   705   520   835   605   590   610   865    250   480   545       0    
655   235   585   555   750   615   625   645   775    285   515   585   190       0    
480     81   435   380   575   440   455   465   600    245    345   415   295   170       0             
265   480   420   235   125   125   200   165   230    475    310   205   715   650   475       0    
255   440   755   235   650   370   320   350   680    150   175   265   400    435   385   485       0    
450   270   625   345   660   430   420   440   690     77   310   380   180    215   190   545   225      0    
170   445   750   160   495   265   220   240   600    235   125   170   485    525   405   375     87   315     0             
240   290   590   140   480   255   205   220   515    150   100   170   390    425   255   395   205   220   155    0      
380   140   495   280   480   340   350   370   505   185   240   310   345   280   105   380   280   165    305  150    0 
 

(a) 
 

     
                                                                           (b) 

    
                                                                            (c) 

Figure 1. (a) The distances between the cities. (b) The optimal tour in the 21-city 
TSP with tour length 2707. (c) The near-optimal tour in the 21-city TSP with tour 
length 2709. The numbers underlined represent the cities, whereas the numbers 
not underlined represent the distances between the cities. The only difference 
between the optimal tour and the near-optimal tour is that cities 1 and 12 are 
swapped.  
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Table 2. Results of CSA and SCSA on the 21-city TSP for 400 runs with randomly generated 
initial network conditions. 

Model CSA SCSA 
Number of runs reaching the 
global optimum (%) 

0 (0%) 186 (46.5%) 

Number of runs reaching the 
near-optimum (%) 

400 (100%) 214 (53.5%) 

Average number of iterations 14500 14500 

 

initial noise amplitude is the same as in the 
previous case, i.e.,  002.0)]0([ =nA . 

The results are summarized in Table 2 with 400 
different initial conditions of ijy  generated 
randomly in the region [-1,1]. Table 2 shows 
that SCSA can find the optimal route (tour 
length=2707, shown in Fig.1(b)) in 46.5% of the 
runs, and the rest 53.5% runs converge to a near-
optimal solution (tour length=2709, shown in 
Fig.1(c)). On the other hand, CSA can not find 
the optimal route, but always converges to the 
near-optimal solution. 

We note that Hopfield and Tank’s prescription 
of mapping the TSP onto a neural network as 
described at the beginning of this section (eq.6) 
is not the most effective way for solving the TSP 
using neural networks. Because of the need for 
n2 neurons, the size of the TSP that can be 
handled by this prescription is limited. Other 
prescriptions specially tailored for the TSP can 
increase the size of the TSP significantly (e.g., 
[22]). In this paper, we shall not attempt to adopt 
other mapping prescriptions in order to solve 
larger TSPs. Rather, the purpose of the present 
work is to demonstrate the improved searching 
ability of SCSA over the same objective 
functions. In other words, neither the 10-city 
TSP nor the 21-city TSP studied above may be 
considered difficult; however, finding the global 
optima for the objective functions given by eq.6 
with parameters specified above is indeed non-
trivial and can therefore be used as 
benchmarking optimization problems to 
compare various optimization algorithms.  

 

5. Conclusions 
In this paper, we proposed stochastic chaotic 
simulated annealing (SCSA) by adding noise to 
Chen-Aihara's transiently chaotic neural 
network. Application of this noisy chaotic neural 
network to the TSP showed marked 
improvement over chaotic simulated annealing 
(CSA). In contrast to the conventional stochastic 
simulated annealing (SSA), SCSA restricts the 
random search to a sub-space of chaotic 
attracting set which is much smaller than the 
entire state space searched by SSA. In contrast 
of CSA, SCSA continues to search after the 
disappearance of chaos. Future work will 
include applications of SCSA to other practical 
optimization problems. 
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