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Abstract — Chen and Aihara have showed
recently that their chaotic ssmulated annealing
(CSA) has better search ability for solving
combinatorial optimization problems compared
to both the Hopfield-Tank approach and
stochastic simulated annealing (SSA). However,
CSA is not guaranteed to find a globally optimal
solution no matter how slowly annealing is
carried out. In contrast, SSA is guaranteed to
settle down to a globa minimum with
probability 1 if the temperature is reduced
sufficiently slowly. In this paper, we attempt to
combine the best of both heuristics by proposing
a new approach to smulated annealing using a
noisy chaotic neural network, i.e., stochastic
chaotic simulated annealing (SCSA). We
demonstrate this approach with the traveling
salesman problem.

1. Introduction

Recently there have been extensive research
interests and efforts in theory and applications of
chaotic neural networks (e.g., [1]-[16]). In
particular, Freeman and co-workers [1] have
demonstrated strong evidence, through both
biologicak  experiments and  theoretical
investigations, that chaos play an important role
in information processing in rea and artificial
neural systems.

Aihara, Takabe, and Toyoda [3] proposed a
chaotic neural network based on a modified
Nagumo—Sato neuron model, in order to explain
complex dynamics observed in a biological
neural system. Nozawa [4] showed that the
Euler approximation of the continuous-time
Hopfield neural network [17] (EP-HNN) with a

negative neurona self-coupling has chaotic
dynamics and that this model is equivalent to a
specia case of Aihara-Takabe-Toyoda chaotic
neura network [3] after a variable
transformation. Nozawa further showed [4][6]
that the EP-HNN has much higher searching
ability for solving the traveling salesman
problem (TSP), in comparison with the Hopfield
neural network [17][18][19], the Boltzmann
meachine, and the Gaussian machine.

Chen and Aihara [7][8] proposed chaotic
simulated annealing (CSA) by starting with a
sufficiently large negative self-coupling in the
Aihara-Takabe-Toyoda network and gradually
decreasing the self-coupling so that the network
eventually stabilizes, thereby obtaining a
transiently chaotic neural network. Their
computer simulations showed that CSA obtains
good solutions for TSP much more easily
compared to the Hopfield-Tank approach [17]-
[19] and stochastic simulated annealing (SSA)
[20]. Chen and Aihara [15] provided the
following theoretical explanation for the global
searching ability of the chaotic neural network:
its attracting set contains all global and local
minima of the optimization problem under
certain conditions, and since the chaotic
attracting set has a fractal structure and covers
only a very smal fraction of the entire state
space, CSA is more efficient in finding good
solutions for optimization problems compared to
other global search algorithms such as SSA.

SSA is known to relax to a global minimum if
the annealing takes place sufficiently slowly,
i.e., no faster than logarithmatically. In practical
terms, this means that SSA is capable of



producing good (optimal or near-optimal)
solutions for many applications, if the annealing
parameter (temperature) is reduced
exponentially but with a reasonably small
exponent. However, unlike SSA, CSA has
completely deterministic dynamics and is not
guaranteed to settle down at a global minimum
no matter how slowly the annealing parameter
(the self-coupling) is reduced [22]. Practically
speaking, this implies that CSA sometimes may
not be able to provide a good solution at the
conclusion of annealing, even when annealing is
carried out very slowly.

In this paper, we combine the best features of
both SSA and CSA, i.e, stochastic wandering
and efficient chaotic searching, by adding a
decreasing noise in the transiently chaotic neural
network of Chen and Aihara [7][8][15]. We
therefore obtain a novel method for solving
optimization problems: stochastic chaotic
simulated annealing (SCSA). We then use the
proposed SCSA to solve the TSP. Our results
show marked improvement over CSA.

2. Stochastic Chaotic Simulated Annealing

We propose stochastic chaotic simulated
annealing (SCSA) asfollows:
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where
X;: output of neuron ij ;

y; © internal state of neuron ij ;

l;; © input bias of neuron ij ;

k: damping factor of nerve membrane
(0<k<1);

a : positive scaling parameter for inputs,

z(t): self-feedback connection weight or
refractory strength (z(t) = 0);

[B: damping factor of the time dependent
(0 B<l);

| ,: positive parameter;
£ . steepness parameter of the output function
( €>0);

n(t): random noise injected into the neurons,
i.e., in[-A, Al withauniform distribution,
where Al n] isthe noise amplitude;

W, © connection weight from neuron ki to
neuron ij .

The weights satisfy the following:
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In the absence of noise, i.e., n(t) = 0, for al t,
SCSA reducesto CSA [7][8][15].

3. Solving the Traveling Salesman Problem
Using Stochastic Chaotic Simulated
Annealing

A classical combinatorial optimization problem
is the travelling salesman problem (TSP). Itisto
seek the shortest route through n cities, visiting
each city once and only once, and returning to
the starting point. Since Hopfield and Tank [18]
applied their neural networks to the TSP, the
TSP is often used as a test problem in
neurocomputing.



Table 1. Results of CSA and SCSA on Hopfield-Tank’ s 10-city TSP for 5000 runs with

different random initial conditions of the network.

Algorithm CSA SCSA
Number of runs reaching global 4969 (99.4%) 4972 (99.4%)
minima (%)
Number of runs reaching others 31 (0.6%) 28 (0.6%)
solutions (%)
Average number of iterations 119 124

Following Hopfield and Tank [18], we map the
solution of an n-city TSP to a network with

nxn neurons. X; =1 represents the fact that
city i is visited in visiting order j, whereas
X; =0 represents that city i is not visited in
visiting order j. The energy function to be
minimized consists of two parts:
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where X, =X, and X, =X;. d;
distance between city i and city j. The first

two terms in eq.6 (inside {}) represent the
constraints, i.e., one and only one X is 1 for

(6)

is the

in+1

each j, one and only one X; is1for eachi (each
city isvisited once and only once). The last term
in eg.6 shows the total length of the tour.
Coefficients W, and W, reflect the relative
strength of the constraint and the tour length

terms. Hence aglobal minimum of E represents
ashortest valid tour.

Here we solve Hopfield-Tank's 10-city TSP
with our model. To compare the performance

with the CSA, weuse aset of k,a, B,&,W,,W,
that are the same as Chen and Aihara s [15][16]:

k =0.90;¢ =0.004; 1, = 0.65;
z(0) =0.08;a =0.015;
B =00LW, =W, =1 (7)

In SCSA, A[n(0)] = 0.002. The results are
summarized in Table 1with 5000 different initial

conditions of y; generated randomly in the
region [-1,1].

As shown in Table 1, the performance of CSA
and SCSA is about the same for the 10-city TSP.

We aso use a 21-city TSP [21] to compare the
performance of our SCSA with CSA. The
optimal (shortest) tour length is known to be
2707 [21].

The distance matrix dij is given in following

page (Only d; with i>] are shown. We

assume d; =d, i.e., symmetric TSP).

The network parameters are set as follows:
k=0.90;¢ =0.004;1, =0.5;

z(0) =0.10;a =0.015;
B=10"W, =W, =1 (8)

Compared to the 10-city TSP, we use asmaller
[ to alow for longer searching. For SCSA, the
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Figure 1. (a) The distances between the cities. (b) The optimal tour in the 21-city
TSP with tour length 2707. (¢) The near-optimal tour in the 21-city TSP with tour
length 2709. The numbers underlined represent the cities, whereas the numbers
not underlined represent the distances between the cities. The only difference
between the optimal tour and the near-optimal tour is that cities 1 and 12 are
swapped.



Table 2. Results of CSA and SCSA on the 21-city TSP for 400 runs with randomly generated

initial network conditions.

Model CSA SCSA
Number of runs reaching the 0 (0%) 186 (46.5%)
global optimum (%)

Number of runs reaching the 400 (100%) 214 (53.5%)
near-optimum (%)
Average number of iterations 14500 14500

initial noise amplitudeisthe sasme asin the
previouscase, i.e.,, An(0)] =0.002.

The results are summarized in Table 2 with 400
different initial conditions of Y, generated

randomly in the region [-1,1]. Table 2 shows
that SCSA can find the optimal route (tour
length=2707, shown in Fig.1(b)) in 46.5% of the
runs, and the rest 53.5% runs converge to a near-
optimal solution (tour length=2709, shown in
Fig.1(c)). On the other hand, CSA can not find
the optimal route, but always converges to the
near-optimal solution.

We note that Hopfield and Tank’s prescription
of mapping the TSP onto a neural network as
described at the beginning of this section (eq.6)
is not the most effective way for solving the TSP
using neural networks. Because of the need for
n’ neurons, the size of the TSP that can be
handled by this prescription is limited. Other
prescriptions specialy tailored for the TSP can
increase the size of the TSP significantly (e.g.,
[22]). In this paper, we shall not attempt to adopt
other mapping prescriptions in order to solve
larger TSPs. Rather, the purpose of the present
work is to demonstrate the improved searching
ability of SCSA over the same objective
functions. In other words, neither the 10-city
TSP nor the 21-city TSP studied above may be
considered difficult; however, finding the global
optima for the abjective functions given by eq.6
with parameters specified above is indeed non-
trivial and can therefore be used as
benchmarking  optimization problems to
compare various optimization algorithms.

5. Conclusions

In this paper, we proposed stochastic chaotic
simulated annealing (SCSA) by adding noise to
Chen-Aiharas transiently chaotic  neural
network. Application of this noisy chaotic neural
network to the TSP showed marked
improvement over chaotic simulated annealing
(CSA). In contrast to the conventional stochastic
simulated annealing (SSA), SCSA restricts the
random search to a sub-space of chaotic
attracting set which is much smaller than the
entire state space searched by SSA. In contrast
of CSA, SCSA continues to search after the
disappearance of chaos. Future work will
include applications of SCSA to other practical
optimization problems.
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