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Abstract: Chaotic neural network is a model of neural networks with chaotic neurons,

which are modeled with relative refractory and graded response. While the McCulloch -

Pitts model and the Nagumo-Sato model have no chaotic response because these models

obey \All-or-None Law", the chaotic neuron model has chaotic response in which it is

supposed that a neuron responds to strength of a stimulus continuously in the generating

process of an action potential. Since the chaotic neuron model includes some other neuron

models as a special case, it is easy to introduce chaotic dynamics into the neural network

model applicable to the associative memory or the optimization problem.
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1 モデルの概要

カオスニューラルネットワークは、相対不応性および連続的な応答特性を有するカオスニューロンモデ

ルを結合したニューラルネットワークモデルである。「全か無かの法則」に従ってモデル化されていたMc-

Culloch - Pittsモデルや南雲 -佐藤モデルではカオス的応答は見られなかったが、活動電位の生成過程にお

いて連続的に応答が変化するとしたことにより、カオスニューロンモデルではカオス的応答が実現されてい

る。カオスニューロンは、その特殊な場合として従来から用いられてきた複数のニューロンモデルを含むた

め、連想記憶モデルや最適化問題に応用されているネットワークモデルにおいて素子をカオスニューロンに

置き換えることにより、カオスダイナミクスをそれらのネットワークモデルに導入することは容易である。
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2 変量とパラメータの表

変量 記号

i番目のニューロンの外部入力に関する内部状態 �i

i番目のニューロンのフィードバック入力に関する内部状態 �i

i番目のニューロンの相対不応性に関する内部状態 �i

i番目のニューロンの内部状態の和 yi

i番目のニューロンの出力強度 xi

j 番目の入力強度 Aj

時刻 t

関数 記号

出力関数 f

出力と不応性の関係を表す関数 g

出力の伝達特性を表す関数 h

パラメータ 記号 値

ニューロン数 N

外部入力数 M

j 番目から i番目のニューロンへの結合強度 Wij

j 番目の外部入力から i番目のニューロンへの結合強度 Vij

外部入力に関する内部状態の減衰定数 ke 0 � ke < 1

フィードバック入力に関する内部状態の減衰定数 kf 0 � kf < 1

相対不応性に関する内部状態の減衰定数 kr 0 � kr < 1

i番目のニューロンの閾値 �i

i番目のニューロンのバイアス ai

相対不応性に関するスケーリングパラメータ � � � 0

3 式

カオスニューラルネットワークモデルは、次の式によって表される [1][2]。

xi(t+ 1) = f

0
@ MX
j=1

Vij

tX
s=0

kseAj(t� s) +
NX
j=1

Wij

tX
s=0

ksfh(xj(t� s))� �
tX

s=0

ksrg(xi(t� s))� �i

1
A (1)

ここで、関数 f の引数の各項を次の内部状態変数によって表す。

�i(t+ 1) =
MX
j=1

Vij

tX
s=0

kseAj(t� s) (2)
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�i(t+ 1) =
NX
j=1

Wij

tX
s=0

ksfh(xj(t� s)) (3)

�i(t+ 1) = ��
tX

s=0

ksrg(xi(t� s))� �i (4)

これにより、式 (1)は、次のように単純化される (式変形については付録参照)。

�i(t+ 1) = ke�i(t) +
MX
j=1

VijAj(t) (5)

�i(t+ 1) = kf�i(t) +
NX
j=1

Wijh(xj(t)) (6)

�i(t+ 1) = kr�i(t)� �g(xi(t))� (1� kr)�i (7)

xi(t+ 1) = f(�i(t) + �i(t) + �i(t)) (8)

すなわち、式 (1)では、時刻 0から tまでの、それぞれの状態の減衰和によって次の状態が決定されていた

のに対して、式 (5-8)では、現在の内部状態のみによって次の状態が決定される。

また、 yi(t) = �i(t) + �i(t) + �i(t)とし、入力は時間によらず一定 (Aj(t) = Aj)、それぞれの内部状態

に対する減衰定数は一様 (ke = kf = kr = k)、
PM

j=1 VijAj � �i(1 � k) = ai とおくと、式 (5-8)は、以下

のように表される。

yi(t+ 1) = kyi(t)� �g(xi(t)) +
NX
j=1

Wijxj(t) + ai (9)

xi(t+ 1) = f(yi(t+ 1)) (10)

さらに、ニューロン間の結合はなし (Wij = 0)とし、ニューロン番号に関するインデックスを消去する

と式 (9-10)は以下となる。

y(t+ 1) = ky(t)� �g(f(y(t))) + a (11)

x(t+ 1) = f(y(t+ 1)) (12)

式 (11-12)は単一ニューロンのモデルであり、カオスニューロンモデルと呼ばれる。

シミュレーションでは、関数 gおよび hは恒等関数、

g(x) = x (13)

h(x) = x (14)

関数 f はロジスティック関数、

f(y) =
1

1 + exp(�y=�)
(15)

がしばしば用いられる。
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4 検証結果

4.1 カオスニューロンモデルの分岐図

単一ニューロンモデルである式 (11-12)について、分岐パラメータをバイアス aとした場合の分岐図を

図 1に示す。ここで、関数 gは恒等関数とし、出力関数 f はロジスティック関数とした。 �は、入力数に対

するニューロンの発火率を表す興奮数であり、

� = lim
n!1

n�1X
t=0

h(x(t))

n
(16)

と表される。出力 xが 0.5以上の場合に発火状態にあるとして、関数 hは、

h(x) =

(
1 x � 0:5

0 x < 0:5
(17)

とした。

また、 �は、軌道における微少摂動に対する拡大率に対応するリアプノフ指数であり、

� = lim
n!1

1

n

n�1X
t=0

log2

����dy(t+ 1)

dy(t)

���� (18)

と表される。 � > 0の場合、初期値に対する鋭敏な依存性を有するという意味で、ニューロンの応答はカオ

ス的である。

Parameter a0 1
-1

1

0

1

-1

1

y

ρ

λ 0

図 1 Bifurcation diagram for the bias parameter a. (k = 0:7, � = 1, � = 0:02)
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4.2 ネットワークのダイナミクス

図 2に、式 (9-10)を用いて、 2つのニューロンを結合したネットワークでの内部状態のアトラクタを示

す。関数 gおよび hは恒等関数、関数 f はロジスティック関数とした。ネットワークにおいても、カオス

的挙動を示すことがわかる。

-0.5 1

-0.5

1

y
1

y
2

図 2 Attractor in the internal state by mutually connected two neurons(k = 0:8, � = 1, � = 0:03,

W11 = W22 = 0, W12 = 0:5, W21 = 0:31, a1 = a2 = 0:48)
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付録|内部状態の式変形について

内部状態の式 (2-4)から式 (5-8)への式変形について述べる。各内部状態 �i, �i, �i は次の形式で書くこ

とができる。

v(t+ 1) =
tX

s=0

ksI(t� s) + b (19)

ここで、各内部状態 �i, �i, �i に対してそれぞれ、

v(t+ 1) = �i(t+ 1); I(t) =
MX
j=1

VijAj(t); k = ke; b = 0 (20)

v(t+ 1) = �i(t+ 1); I(t) =
NX
j=1

Wijh(xj(t)); k = kf ; b = 0 (21)

v(t+ 1) = �i(t+ 1); I(t) = ��g(xi(t)); k = kr; b = ��i (22)

である。現在の状態 v(t)は、

v(t) =
t�1X
s=0

ksI(t� s� 1) + b (23)

であるので、これより、

v(t+ 1) = I(t) +
tX

s=1

ksI(t� s) + b (24)

= I(t) +
t�1X
q=0

kq+1I(t� q � 1) + b (q = s� 1) (25)

= I(t) + k(v(t)� b) + b (26)

= kv(t) + I(t) + b(1� k) (27)

となる。式 (27)に式 (20-22)を代入することにより、内部状態の式 (5-8)を得る。
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