Report 2

Pawel Matykiewicz

University of Adam Mickiewicz in Poznan, Faculty of Social Sciences, Department

of Philosophy

Abstract

In this report we try to achieve similar results as in [2]. We use discrete output
function and compare it with results in [2]. TSP with transient chaotic dynamic is
implemented in Delphi 5.0.

Key words: , neural networks, chaotic dynamics, transient chaos, TSP

1 Introduction

In [3] was constructed chaotic associative memory using Nagumo-Sato neuron
model with continuous output function. They found that the algorithm has
very good searching properties. On the base of this model one can build con-
trolled transient chaotic neural network [2] and use it for a searching process
in the Travelling Salesperson Problem. In Report I 1 have found that the same
neural network but with the discrete output function has also good search-
ing properties. In this report I try to compare searching with all-or-nothing
(heaviside) function to one in [2].

2 Model

A classical combinatorial optimization problem which is NP-hard is the trav-
elling salesperson problem (T'SP). We denote d;; to be distance from city i to
city 7. We assume that d;; = d;;, d;; = 0 which is called symmetric TSP. We
have (n —1)!/2 possible tours. We will see how two algorithms cope with that
problem. We take d;; similar to Hopfield-Tank original data:

Email address: pm@felix.fizyka.amu.edu.pl (Pawel Matykiewicz).

Preprint submitted to Elsevier Preprint 16 January 2003

d[0,1]:=2.0/6;
d[1,2]:=0.7/6;
d[2,3]:=3.2/6;
d[3,0]:=2.2/6;
d[3,1]:=3.7/6;
d[0,2]:=1.9/6;
d[1,0]:=2.0/6;
d[2,1]:=0.7/6:
d[3,2]1:=3.2/6;
d[0,3]:=2.2/6;
d[1,3]:=3.7/6;
d[2,0]:=1.9/6;

We take n = 4 (number of cities) in every simulation. We also use function £
which measures energy (cost) needed for travel route z;;, where 7 is city and
J is visiting order.

n

W n n n
BIX) = {320 = 17+ X3~ 17}
=1 j=1 7=1 =1
{ZZZ%% Thj1 + Trjo1) } (1)
i=1 j=1k=1

Minimize function F means that we visit only once every city, not more than
one city every day and the tour length (cost) should be small as possible.

We use two kinds of output functions continuous 2 and discrete 3. So we have
two kinds of algorithms to solve TSP one we call Chaotic Simulated Annealing
(CSA) and the other Devil‘s Staircase Simulated Annealing (DSSA). Both of
them can be classified as Transient-Chaotic Neural Networks (TCNN).

FE(u) = H—eip(‘“) (2)
b 1 if u>0

[P () = ' (3)
0 if vu<0

We have respectively B((F€ (y5(1))) = E and B((f2(yys(1))) = EP fanctions
where (f*)(y;;)) is (i x j) matrix of outputs.

2.1 Network Model

We use Nagumo-Sato neuron model in fully connected recurrent neural net-
work. Instead of 327, wirr;(t) + 055 we put —ag_f(t). We assume that 6;; =
Wi. Now we can rewrite N-S neuron model as:

Yii(t +1) = ky(t) — 2(¢)(zi5(t) — o) +

+ a{ — Wl(ifl}d(t) + i‘xkj(t)) —

I#5 k#i
- WQ(; digrkj + 1(t) + ; diprkj — 1(t)> + Wl} (4)

k is dumping factor of membrane, « is a positive scaling parameter for inputs,
z(t) is refractory parameter and is responsible for transient-chaotic dynamic:

2(t+1) = (1= 5)z(t) ()

Varying 1 — 3 and « means varying influence of chaos (searching properties)
and finding right solution. Balance between (3 and « is when searching process
will be long enough and influence of feedback connections will be strong enough
to drive system into minimal energy (even global minimum).

Neurons are updated cyclically. When all neurons are updated we count one
iteration and and so on.

To improve solution we can change values from the open set (0,1) to 0, 1
values:

1 if 26 >S" S 1= 1"xy/n?

Zj .
0 otherwise

If we put E(X“P(t)) then we will call this function EP where X“P(t) =

(z5P(t)) is a matrix. In CSA algorithm for TSP it is enough to code X (tepqg
at the end of calculation.

We can calculate number of iterations needed to put system in desired value

z(t):

4 (tend)
<0

) (7)

p(tend) = 1Og1—ﬁ(

If we round the p value we will have an integer number of needed iterations.
We assume that p = 1800 or z(tenq) = 0.02 which is enough and after that we
do not observe chaos.

3 Implementation

Here is listing for ctsp.exe main procedures and functions in Delphi 5.0:

function fc(u,aepsilon:real):real;

begin
result:=1/(1+exp(-u/aepsilon));
end;

procedure stepc
(ak,aalpha,ai0,awl,aw2,aepsilon,abeta:real;an:integer;ad:matrix;
var az:real; var ay:matrix;var ax:matrix);

var 1i,j:integer;

begin
for
i:=0 to an-1 do
for j:=0 to an-1 do
begin
ay[i,j]:=ak*ayl[i,jl-azx(ax[i,jl-ai0)
+aalpha*(dedx(awl,aw2,an,i,j,ax,ad));
ax[i,jl:=fc(ayli,j],aepsilon);
end;
az:=(1-abeta)*az;
end;

function fd(u:real):real;

begin
if u>0 then result:=1 else result:=0
end;

procedure stepd
(ak,aalpha,ai0,awl,aw2,aepsilon,abeta:real;an:integer;ad:matrix;
var az:real;var ay:matrix;var ax:matrix);

var 1i,j:integer;

begin
for i:=0 to an-1 do
for j:=0 to an-1 do
begin
ayli,j]:=ak*ayl[i,jl-az*(ax[i,jl-ai0)
+aalphax(dedx(awl,aw2,an,i,j,ax,ad));
ax[i,jl:=fd(ayli,jl);

end;
az:=(1-abeta)*az;
end;
Here are — 8‘?’_3 and E functions:
5 (t)

function dedx(awl,aw2:real;an,ai,aj:integer;ax,ad:matrix) :real;

var k,l:integer;
suml,sum?,sum3,sumé4:real;
fx:matrix;

begin
Setlength(fx,an);
for k:=0 to an-1 do
Setlength(fx[k],an+2);
for k:=0 to an-1 do
begin
fx[k,0] :=ax[k,an-1];
fx[k,an+1] :=ax[k,0];
end;
for k:=0 to an-1 do
for 1:=0 to an-1 do
fx[k,1+1] :=ax[k,1];
suml:=0;
for 1:=0 to an-1 do
if 1=aj then suml:=suml else
suml:=suml+ax[ai,l];
sum2:=0;
for k:=0 to an-1 do
if k=ai then sum2:=sum2 else
sum?2:=sum2+ax[k,aj];
sum3:=0;
for k:=0 to an-1 do
if k=ai then sum3:=sum3 else

sum3:=sum3+ad[ai,k]*fx[k,aj+2];
sum4:=0;
for k:=0 to an-1 do

if k=ai then sumé4:=sum4 else

sum4 : =sumé+ad [ai,k]*fx[k,aj];
result:=—awl*(suml+sum?2)-aw2* (sum3+sum4)+W_1;
end;

function energy(awl,aw2:real;an:integer;ax,ad:matrix):real;

var i,j,k:integer;
suml,sum2,sum3,sumé:real;
fx:matrix;

begin
Setlength(fx,an);
for 1i:=0 to an-1 do
Setlength(fx[i],an+2);
for i:=0 to an-1 do
begin
fx[1i,0] :=ax[i,an-1];
fx[i,an+1] :=ax[i,0];
end;
for i:=0 to an-1 do
for j:=0 to an-1 do
fx[i,j+1]:=ax[i, j];
suml:=0;
for i:=0 to an-1 do
begin
sum2:=0;
for j:=0 to an-1 do
sum?2:=sum2+ax[i,j];
suml :=suml+sqr (sum2-1) ;
end;
sum3:=0;
for j:=0 to an-1 do
begin
sum2:=0;
for i:=0 to an-1 do
sum?2:=sum2+ax[i,j];
sum3:=sum3+sqr (sum2-1) ;
end;
sum4:=0;
for i:=0 to an-1 do

for j:=0 to an-1 do
for k:=0 to an-1 do
suméd :=sumd+(fx [k, j+2]+fx [k, j]1)*ad[i,k]*ax[i,j];
result:=(awl/2)*(suml+sum3)+(aw2/2) *sumé;
end;

4 Simulation results

In all simulations we have:

k=09, e=0004 I,=0.65 z(0)=0.08.

Fig. 1. Time evolutions of E¢, E¢P, EP functions in simulation of TCNN for TSP
with 4 cities: = 0.001, o = 0.015, W7 =1, Wp =1

If Wy is to close to W; then in DSSA we can get two (or more) cyclical
solutions. We can try to take Wy = 0.5 or use DSSA+CSA algorithm.

Fig. 2. Time evolutions of E¢, E¢P, EP functions in simulation of TCNN for TSP
with 4 cities: = 0.015, o = 0.015, W1 =1, Wr =1

Here we put W, =1, Wy = 0.5 and z.,q = 0.02.

Fig. 3. Time evolutions of E¢, ECP EP functions in simulation of TCNN for TSP
with 4 cities: § = 0.001, « = 0.015, W; =1, W = 0.5

740 732 72 a2 534 B35 B3 863 334 323 1000 1000 1000 1000 1000 SucCess
0ms 04 0m3 ooz 0o 0o 0003 0008 0007 0006 0005 0004 0003 0002 0001 beta
0.0g 0.0g 0.08 0.08 0.og 0.0s 0.0g 0.0 0.0g 0.0og 0.08 0.08 0.og 0.0s 0.0g 0
33 33 107 116 126 133 154 174 138 231 278 347 462 B33 1387 lierat.

Fig. 4. Result of 1000 different initial conditions for each value of 3 on the 4 city
TSP with f¢ and f¢P functions: teng := 0.02(CSA)

We also tried to see what give mixed algorithm DSSA+CSA. Varying ap iter-
ations for DSSA and (1 — a)p iterations for CSA (ae[0, 1]) we can get better
and even worse results then in 100% DSSA algorithm.

I 740 V72 793 786 828 849 243 860 902 a0z 353 977 579 1000 Success
0015 0014 003 om2 o0 0m 0003 0008 0007 0006 0005 0004 0003 0002 0001 beta
0.0g 0.0g 0.0 0.0 0.0 0.0g 004 0.oa 0038 0.0g 003 0.oa 0.0 0.0g 003 w0

93 a9 o7 116 126 139 154 174 138 23 278 47 462 B33 1387 lierat.

Fig. 5. Result of 1000 different initial conditions for each value of # on the 4 city
TSP with fP function: t.,q := 0.02(DSSA)

G616 B47 534 636 64 E46 635 650 672 B77 704 633 £33 743 928 success
0ms oom4 003 o0m2 o0l 0m 0003 0008 0007 0006 0005 0004 0003 0002 0001 beta
nog 00s nog 00s nog 00oe nog 008 oo 008 oo 008 oo 00s 0.0 #0)

33 29 107 116 126 133 154 174 133 el 2 47 462 633 1387 lterat.

Fig. 6. Result of 1000 different initial conditions for each value of 3 on the 4 city
TSP with 75% of iterations with fP function and 25% of iterations with f¢ and
fEP functions: tepq := 0.02(DSSA+CSA)

5 Conclusion and discussion

We see that DSSA not much worse then CSA. The computational time (CPU
clock units) for f? is smaller then for f¢ and there is much less rounding
faults.

In my opinion DSSA should give better results in large scales TSP. Article [4]
should be investigated for even shorter computational time to solve large scale

TSP.

References

[1] Aihara K., Takabe T., Toyoda M., Chaotic neural networks, Phys. Lett. A, 144,
333-340, (1990)

[2] Chen L., Aihara K., Chaotic simulated Annealing by a Neural Network Model
with Transient Chaos, Neural Networks, 8, 915-930, (1995)

[3] Adachi M., Aihara K., Associative dynamics in chaotic neural network, Neural
Networks, 10, 83-98, (1997)

[4] Hasegawa M., Tkeguchi T., Aihara K., Solving large scale traveling salesman
problems by chaotic neurodynamics, Neural Networks 15, 271-283, (2002)

10

