
Report 2

Pawe l Matykiewicz

University of Adam Mickiewicz in Poznan, Faculty of Social Sciences, Department
of Philosophy

Abstract

In this report we try to achieve similar results as in [2]. We use discrete output
function and compare it with results in [2]. TSP with transient chaotic dynamic is
implemented in Delphi 5.0.

Key words: , neural networks, chaotic dynamics, transient chaos, TSP

1 Introduction

In [3] was constructed chaotic associative memory using Nagumo-Sato neuron
model with continuous output function. They found that the algorithm has
very good searching properties. On the base of this model one can build con-
trolled transient chaotic neural network [2] and use it for a searching process
in the Travelling Salesperson Problem. In Report I I have found that the same
neural network but with the discrete output function has also good search-
ing properties. In this report I try to compare searching with all-or-nothing
(heaviside) function to one in [2].

2 Model

A classical combinatorial optimization problem which is NP -hard is the trav-
elling salesperson problem (TSP). We denote dij to be distance from city i to
city j. We assume that dij = dji, dii = 0 which is called symmetric TSP. We
have (n− 1)!/2 possible tours. We will see how two algorithms cope with that
problem. We take dij similar to Hopfield-Tank original data:

Email address: pm@felix.fizyka.amu.edu.pl (Pawe l Matykiewicz).

Preprint submitted to Elsevier Preprint 16 January 2003

d[0,1]:=2.0/6;

d[1,2]:=0.7/6;

d[2,3]:=3.2/6;

d[3,0]:=2.2/6;

d[3,1]:=3.7/6;

d[0,2]:=1.9/6;

d[1,0]:=2.0/6;

d[2,1]:=0.7/6;

d[3,2]:=3.2/6;

d[0,3]:=2.2/6;

d[1,3]:=3.7/6;

d[2,0]:=1.9/6;

We take n = 4 (number of cities) in every simulation. We also use function E
which measures energy (cost) needed for travel route xij, where i is city and
j is visiting order.

E(X) =
W1

2

{ n∑
i=1

(
n∑

j=1

xij − 1)2 +
n∑

j=1

(
n∑

i=1

xij − 1)2
}

+
W2

2

{ n∑
i=1

n∑
j=1

n∑
k=1

xijdik(xkj+1 + xkj−1)
}

(1)

Minimize function E means that we visit only once every city, not more than
one city every day and the tour length (cost) should be small as possible.

We use two kinds of output functions continuous 2 and discrete 3. So we have
two kinds of algorithms to solve TSP one we call Chaotic Simulated Annealing
(CSA) and the other Devil‘s Staircase Simulated Annealing (DSSA). Both of
them can be classified as Transient-Chaotic Neural Networks (TCNN).

fC(u) =
1

1 + exp(−u
ε

)
(2)

fD(u) =

 1 if u > 0

0 if u ≤ 0
(3)

We have respectively E((fC(yij(t))) ≡ EC and E((fD(yij(t))) ≡ ED functions
where (f (?)(yij)) is (i× j) matrix of outputs.

2

2.1 Network Model

We use Nagumo-Sato neuron model in fully connected recurrent neural net-
work. Instead of

∑n
j=1 wikljxkj(t) + θij we put − ∂E

∂xij(t)
. We assume that θij =

W1. Now we can rewrite N-S neuron model as:

yij(t + 1) = kyij(t)− z(t)(xij(t)− I0) +

+ α

{
−W1

(n∑
l 6=j

xil(t) +
n∑

k 6=i

xkj(t)
)
−

−W2

(n∑
k 6=i

dikxkj + 1(t) +
n∑

k 6=i

dikxkj − 1(t)
)

+ W1

}
(4)

k is dumping factor of membrane, α is a positive scaling parameter for inputs,
z(t) is refractory parameter and is responsible for transient-chaotic dynamic:

z(t + 1) = (1− β)z(t) (5)

Varying 1 − β and α means varying influence of chaos (searching properties)
and finding right solution. Balance between β and α is when searching process
will be long enough and influence of feedback connections will be strong enough
to drive system into minimal energy (even global minimum).

Neurons are updated cyclically. When all neurons are updated we count one
iteration and and so on.

To improve solution we can change values from the open set (0, 1) to 0, 1
values:

xCD
ij =

 1 if xC
ij >

∑n
k=1

∑
l = 1nxkl/n

2

0 otherwise
(6)

If we put E(XCD(t)) then we will call this function ECD where XCD(t) =
(xCD

ij (t)) is a matrix. In CSA algorithm for TSP it is enough to code XCD(tend)
at the end of calculation.

We can calculate number of iterations needed to put system in desired value
z(t):

p(tend) = log1−β(
z(tend)

z0

) (7)

3

If we round the p value we will have an integer number of needed iterations.
We assume that p = 1800 or z(tend) = 0.02 which is enough and after that we
do not observe chaos.

3 Implementation

Here is listing for ctsp.exe main procedures and functions in Delphi 5.0:

function fc(u,aepsilon:real):real;

begin

result:=1/(1+exp(-u/aepsilon));

end;

procedure stepc

(ak,aalpha,ai0,aw1,aw2,aepsilon,abeta:real;an:integer;ad:matrix;

var az:real; var ay:matrix;var ax:matrix);

var i,j:integer;

begin

for

i:=0 to an-1 do

for j:=0 to an-1 do

begin

ay[i,j]:=ak*ay[i,j]-az*(ax[i,j]-ai0)

+aalpha*(dedx(aw1,aw2,an,i,j,ax,ad));

ax[i,j]:=fc(ay[i,j],aepsilon);

end;

az:=(1-abeta)*az;

end;

function fd(u:real):real;

begin

if u>0 then result:=1 else result:=0

end;

procedure stepd

(ak,aalpha,ai0,aw1,aw2,aepsilon,abeta:real;an:integer;ad:matrix;

var az:real;var ay:matrix;var ax:matrix);

4

var i,j:integer;

begin

for i:=0 to an-1 do

for j:=0 to an-1 do

begin

ay[i,j]:=ak*ay[i,j]-az*(ax[i,j]-ai0)

+aalpha*(dedx(aw1,aw2,an,i,j,ax,ad));

ax[i,j]:=fd(ay[i,j]);

end;

az:=(1-abeta)*az;

end;

Here are − ∂E
∂xij(t)

and E functions:

function dedx(aw1,aw2:real;an,ai,aj:integer;ax,ad:matrix):real;

var k,l:integer;

sum1,sum2,sum3,sum4:real;

fx:matrix;

begin

Setlength(fx,an);

for k:=0 to an-1 do

Setlength(fx[k],an+2);

for k:=0 to an-1 do

begin

fx[k,0]:=ax[k,an-1];

fx[k,an+1]:=ax[k,0];

end;

for k:=0 to an-1 do

for l:=0 to an-1 do

fx[k,l+1]:=ax[k,l];

sum1:=0;

for l:=0 to an-1 do

if l=aj then sum1:=sum1 else

sum1:=sum1+ax[ai,l];

sum2:=0;

for k:=0 to an-1 do

if k=ai then sum2:=sum2 else

sum2:=sum2+ax[k,aj];

sum3:=0;

for k:=0 to an-1 do

if k=ai then sum3:=sum3 else

5

sum3:=sum3+ad[ai,k]*fx[k,aj+2];

sum4:=0;

for k:=0 to an-1 do

if k=ai then sum4:=sum4 else

sum4:=sum4+ad[ai,k]*fx[k,aj];

result:=-aw1*(sum1+sum2)-aw2*(sum3+sum4)+W_1;

end;

function energy(aw1,aw2:real;an:integer;ax,ad:matrix):real;

var i,j,k:integer;

sum1,sum2,sum3,sum4:real;

fx:matrix;

begin

Setlength(fx,an);

for i:=0 to an-1 do

Setlength(fx[i],an+2);

for i:=0 to an-1 do

begin

fx[i,0]:=ax[i,an-1];

fx[i,an+1]:=ax[i,0];

end;

for i:=0 to an-1 do

for j:=0 to an-1 do

fx[i,j+1]:=ax[i,j];

sum1:=0;

for i:=0 to an-1 do

begin

sum2:=0;

for j:=0 to an-1 do

sum2:=sum2+ax[i,j];

sum1:=sum1+sqr(sum2-1);

end;

sum3:=0;

for j:=0 to an-1 do

begin

sum2:=0;

for i:=0 to an-1 do

sum2:=sum2+ax[i,j];

sum3:=sum3+sqr(sum2-1);

end;

sum4:=0;

for i:=0 to an-1 do

6

for j:=0 to an-1 do

for k:=0 to an-1 do

sum4:=sum4+(fx[k,j+2]+fx[k,j])*ad[i,k]*ax[i,j];

result:=(aw1/2)*(sum1+sum3)+(aw2/2)*sum4;

end;

4 Simulation results

In all simulations we have:

k = 0.9, ε = 0.004, I0 = 0.65, z(0) = 0.08.

Fig. 1. Time evolutions of EC , ECD, ED functions in simulation of TCNN for TSP
with 4 cities: β = 0.001, α = 0.015, W1 = 1, W2 = 1

7

If W2 is to close to W1 then in DSSA we can get two (or more) cyclical
solutions. We can try to take W2 = 0.5 or use DSSA+CSA algorithm.

Fig. 2. Time evolutions of EC , ECD, ED functions in simulation of TCNN for TSP
with 4 cities: β = 0.015, α = 0.015, W1 = 1, W2 = 1

Here we put W1 = 1, W2 = 0.5 and zend = 0.02.

8

Fig. 3. Time evolutions of EC , ECD, ED functions in simulation of TCNN for TSP
with 4 cities: β = 0.001, α = 0.015, W1 = 1, W2 = 0.5

Fig. 4. Result of 1000 different initial conditions for each value of β on the 4 city
TSP with fC and fCD functions: tend := 0.02(CSA)

We also tried to see what give mixed algorithm DSSA+CSA. Varying ap iter-
ations for DSSA and (1 − a)p iterations for CSA (aε[0, 1]) we can get better
and even worse results then in 100% DSSA algorithm.

9

Fig. 5. Result of 1000 different initial conditions for each value of β on the 4 city
TSP with fD function: tend := 0.02(DSSA)

Fig. 6. Result of 1000 different initial conditions for each value of β on the 4 city
TSP with 75% of iterations with fD function and 25% of iterations with fC and
fCD functions: tend := 0.02(DSSA+CSA)

5 Conclusion and discussion

We see that DSSA not much worse then CSA. The computational time (CPU
clock units) for fD is smaller then for fC and there is much less rounding
faults.

In my opinion DSSA should give better results in large scales TSP. Article [4]
should be investigated for even shorter computational time to solve large scale
TSP.

References

[1] Aihara K., Takabe T., Toyoda M., Chaotic neural networks, Phys. Lett. A, 144,
333-340, (1990)

[2] Chen L., Aihara K., Chaotic simulated Annealing by a Neural Network Model
with Transient Chaos, Neural Networks, 8, 915-930, (1995)

[3] Adachi M., Aihara K., Associative dynamics in chaotic neural network, Neural
Networks, 10, 83-98, (1997)

[4] Hasegawa M., Ikeguchi T., Aihara K., Solving large scale traveling salesman
problems by chaotic neurodynamics, Neural Networks 15, 271-283, (2002)

10

