Report 1

Pawel Matykiewicz

University of Adam Mickiewicz in Poznan, Faculty of Social Sciences, Department
of Philosophy

Abstract

In this report we try to achieve similar results as in [2]. We compare chaotical prop-
erties of the network with discrete and continuous output function using Delphi
5.0.

Key words: associative memory, neural networks, chaotic dynamics, Nagumo-Sato
Neuron Model

1 Introduction

We focus on the difference between two network models. One is constructed
with ” Chaotic Neuron Model” and the other ”Devil’s Staircase Neuron Model”
[1]. The only difference between them is in the output function. Nonetheless
it gives enormous difference in behavior of these two neural networks. In this
report we focus only on the look of the dynamics depended from initial con-
ditions. In [2] we see that chaotic dynamic comes from chaotic neuron model
and that it has good searching properties. First thought should be that devil’s
staircase neuron model will not give such a searching properties as chaotic
one. We take short look at that phenomenon.

2 Model

We use discrete-time neuron model which was developed by Nagumo and
Sato in 1972. They found fractal properties of their Heaviside output function

Email address: pm@felix.fizyka.amu.edu.pl (Pawel Matykiewicz).

Preprint submitted to Elsevier Preprint 24 December 2002

neuron model. In 1990 chaotical properties were described of the continuous
output function neuron model [1]. We use both of these output functions:

1
Cly)= —~
PO = o (1)
1 if wu>0
Pwy=4 0")
0 if u<0

We want to see the same numerical experiments which were conducted in [2]
but with fP function.

2.1 Network Model

We build a simple auto-associative neural network composed of 100 devil‘s
staircase neurons or chaotic neurons. Here are equations defining our network:

zi(t +1) = fOm(t+1) + Gt + 1)) (3)
zi(t+1) = Pt + 1) + Gt + 1)) (4)
ni(t + 1) =]Cfm(t) + Z:wijxj(t) (5)
Gt +1) = k.Gi(t) — azi(t) +a (6)

All parameters and equations are the same as in [2]. Namely ky, k, are re-
fractory decay parameters for feedback and refractoriness, «, a are refractory
scaling parameter and threshold respectively. We put ky = 0,2, k, = 0,9,
a = 8 and a = 2. The feedback interconnections w;; are determined by:

4

wy = 7 (207~ 1)(2a8 — 1) ™)

4~

where 2% is the ith component of the pth stored pattern. All w; = 0. Stored
patterns are shown in figure 1. For initial conditions we use the same patterns
or perturbed versions (same as in [2]). Initial conditions 7;(0) and (;(0) are
determined (in continuous as well as in discrete version of f) by equations
[private e-mail with prof.Adachil:

g(u) = —0,015In(> — 1) (8)

u

1:(0) = g(0,927 +0,5) (9)
G0)=a (10)
Of course g = (f¢)~! and g(1) = g(0) = 0o so we use 0,95 and 0,05 as initial

conditions. fP is not a surjection nor injection so we have to use g to load
7;(0) in the devil‘s staircase neural network.

Pattern 1 Pattern 2 Pattern 3 Pattern 4
Fig. 1. The 4 stored patterns are displayed in the form of a 10 x 10 matrix. Each

square is 1 or 0 output neuron. The QE values are -393, - 390.5, -384.5, -381, -285.5
respectively.

2.2 Methods of analysis on the Network Model

In order to analyze Neural Network we use listed below equations:

QE() = —5 XS wigrilt)a,(r) — Y ari(t);)

i#jJ

100

Dist(t) = JZ{W@) = Ni(tena)]? + [Gi(t) — Ci(tena)]*} (12)

100

Hy(t) = ; | (t) — 7] (13)

QFE function gives us an idea of long-term behavior of the network [2]. We use
Dist to analyze periodicity [2]. We can use H,(t) x H,(t) plot to reconstruct
attractor in two dimensional phase space. In our simulation p =1 and ¢ = 3.

3 Implementation

We have implemented both neural networks in two different application but
with the same graphical interface. We use Delphi 5.0 object capabilities (Tn2

is a class). There is only difference in Tn2.x procedure. Hart of the application
is Tn2.etazeta procedure which loads n and (vectors.

procedure Tn2.etazeta (axvector:vector;var aetavector:vector;var
azetavector:vector);//internal state

var 1i,j:integer;
sum:real;
fetavector:vector;
fzetavector:vector;

begin
fetavector:=aetavector;
fzetavector:=azetavector;

for 1:=0 to n-1 do
begin
fzetavector[i] :=kr*azetavector[i]-alfaxaxvector[i]+a;
end;
for i:=0 to n-1 do
begin
sum:=0;
for j:=0 to n-1 do
sum:=sum+wmatrix[i, j]*axvector[j];
fetavector[i] :=kf*aetavector[i]+sum;
end;
aetavector:=fetavector;
azetavector:=fzetavector;
end;

procedure Tn2.initIS (axvector:vector;var aetavector:vector;var
azetavector:vector); //initial conditions

var i:integer;

begin for i:=0 to n-1 do
begin
azetavector[i] :=a;
aetavector[i] :=g(axvector[i]*0.9+0.05)-a;
end;
end;

function Tn2.g(u:real) :real;

begin

result:=-smalleps*Ln((1/u)-1);

end;

In the neuro431ic.exe we have

function Tn2.f(u:real):real; //continuous output function
begin

result:=1/(1+exp(-u/smalleps));

end;

procedure Tn2.x (var axvector:vector);//output pattern
var i:integer;

begin

for i:=0 to n-1 do

axvector[i] :=f (etavector[i]+zetavector[i]);
end;

And in the neuro431d.exe we have:
procedure Tn2.x (var axvector:vector);//output pattern-discrete
version
var i:integer;
begin
for i:=0 to n-1 do
if (etavector[i]+zetavector[i])>0 then axvector[i]:=1

else axvector[i]:=0;
end;

It should be noticed that neuro431d.exe and neuro431c.exe make timeseries.ts
file which is used to evaluate Dist. Files ptX-Y.ptn are patterns for initial con-
ditions where X is pattern number and Y is Hamming distance in perturbed

version of patterns in figure 1. They are the same as in [2]. To run whole
simulation one need to press F1 - Ignition, F2 - Load patterns, F3 - Writes
parameters, F4 - Starts calculations, CTRL+T - time interval.

4 Simulation results

All images are taken from neuro431d.exe or neuro43ic.exe. From figure 2
and 4 we can see that there is not much difference in the transient phase. Also
attractors in figure 3 seems to look similar.

.. BuasiEnergy Function

200 B4

e, S S "- A e S N T
4':"] et e, e) R T el 1Y

-4E0
0 10000 20000 a000o

Fig. 2. Long-time behavior of QE function with initial pattern pt3.ptn in f¢ case.

Fig. 3. From the left we see pt2-8.ptn in f¢ and pt3.ptn in fP case. The brighter
a pixels is the oftener system is in that state.

e e T o e e e e

nan o R e B S
-

200 e

;. . ..E I.E'\'" 'EE! E E
.1. = . . :' . . B .
el =y i
T :
KL L e e
AL

R ™ T e B R YT Y ST B L S

-4E0
I 10000 20000 a0000

Fig. 4. Long-time behavior of QE function with initial pattern pt1-8.ptn in £ case.

350

0 time 21000

Fig. 5. Plot of Dist function with initial pattern pt4-4.ptn in fP case.

5 Summary

pattern number

H-distance 0

H-distance 4

H-distance 8

1
2
3
4

Tr ~ 17500
Tr ~ 14000
Tr ~ 10500
Tr ~ 14000

Pr ~ 5000
Tr ~ 11000
Tr ~ 17600
Pr ~ 4000

Tr ~ 19000
Tr ~ 2500

Tr ~ 17500
Tr ~ 16000

pattern number

H-distance 0

H-distance 4

H-distance 8

1

2
3
4

Pr ~ 9500
Pr ~ 9500
Tr ~ 21000

Nonperiodic

Nonperiodic
Tr ~ 9000
Pr ~ 9500
Pr ~ 9500

Tr ~ 1000
Tr ~ 10000
Tr ~ 6000
Tr ~ 4000

After transient chaos we have period 20.

6 Conclusion

We see that the fP function has the same searching abilities as f¢. f” has
fractal-like average firing rate [1] but there is no positive Lyapunov exponent
although there are longer transient times in average and less periodic without

transient chaos cases. In Report 2 we will use f” to solve TSP.

References

[1] Aihara K., Takabe T., Toyoda M., Chaotic neural networks, Phys. Lett. A, 144,
333-340, (1990)

[2] Adachi M., Aihara K., Associative dynamics in chaotic neural network, Neural

Networks, 10, 83-98, (1997)

