
Report 1

Pawe l Matykiewicz

University of Adam Mickiewicz in Poznan, Faculty of Social Sciences, Department
of Philosophy

Abstract

In this report we try to achieve similar results as in [2]. We compare chaotical prop-
erties of the network with discrete and continuous output function using Delphi
5.0.

Key words: associative memory, neural networks, chaotic dynamics, Nagumo-Sato
Neuron Model

1 Introduction

We focus on the difference between two network models. One is constructed
with ”Chaotic Neuron Model” and the other ”Devil’s Staircase Neuron Model”
[1]. The only difference between them is in the output function. Nonetheless
it gives enormous difference in behavior of these two neural networks. In this
report we focus only on the look of the dynamics depended from initial con-
ditions. In [2] we see that chaotic dynamic comes from chaotic neuron model
and that it has good searching properties. First thought should be that devil’s
staircase neuron model will not give such a searching properties as chaotic
one. We take short look at that phenomenon.

2 Model

We use discrete-time neuron model which was developed by Nagumo and
Sato in 1972. They found fractal properties of their Heaviside output function

Email address: pm@felix.fizyka.amu.edu.pl (Pawe l Matykiewicz).

Preprint submitted to Elsevier Preprint 24 December 2002

neuron model. In 1990 chaotical properties were described of the continuous
output function neuron model [1]. We use both of these output functions:

fC(u) =
1

1 + exp(−u
0,015

)
(1)

fD(u) =

 1 if u > 0

0 if u ≤ 0
(2)

We want to see the same numerical experiments which were conducted in [2]
but with fD function.

2.1 Network Model

We build a simple auto-associative neural network composed of 100 devil‘s
staircase neurons or chaotic neurons. Here are equations defining our network:

xi(t + 1) = fC(ηi(t + 1) + ζi(t + 1)) (3)

xi(t + 1) = fD(ηi(t + 1) + ζi(t + 1)) (4)

ηi(t + 1) = kfηi(t) +
100∑
j=1

wijxj(t) (5)

ζi(t + 1) = krζi(t)− αxi(t) + a (6)

All parameters and equations are the same as in [2]. Namely kf , kr are re-
fractory decay parameters for feedback and refractoriness, α, a are refractory
scaling parameter and threshold respectively. We put kf = 0, 2, kr = 0, 9,
α = 8 and a = 2. The feedback interconnections wij are determined by:

wij =
1

4

4∑
p=1

(2xp
i − 1)(2xp

j − 1) (7)

where xp
i is the ith component of the pth stored pattern. All wii = 0. Stored

patterns are shown in figure 1. For initial conditions we use the same patterns
or perturbed versions (same as in [2]). Initial conditions ηi(0) and ζi(0) are
determined (in continuous as well as in discrete version of f) by equations
[private e-mail with prof.Adachi]:

g(u) = −0, 015 ln(
1

u
− 1) (8)

2

ηi(0) = g(0, 9xρ
i + 0, 5) (9)

ζi(0) = a (10)

Of course g = (fC)−1 and g(1) = g(0) = ∞ so we use 0,95 and 0,05 as initial
conditions. fD is not a surjection nor injection so we have to use g to load
ηi(0) in the devil‘s staircase neural network.

Fig. 1. The 4 stored patterns are displayed in the form of a 10 × 10 matrix. Each
square is 1 or 0 output neuron. The QE values are -393, - 390.5, -384.5, -381, -285.5
respectively.

2.2 Methods of analysis on the Network Model

In order to analyze Neural Network we use listed below equations:

QE(t) = −1

2

∑
i6=j

∑
j

wijxi(t)xj(t)−
∑

i

axi(t); (11)

Dist(t) =

√√√√100∑
i=1

{[ηi(t)− ηi(tend)]2 + [ζi(t)− ζi(tend)]2} (12)

Hp(t) =
100∑
j=1

|xj(t)− xp
j | (13)

QE function gives us an idea of long-term behavior of the network [2]. We use
Dist to analyze periodicity [2]. We can use Hp(t)×Hq(t) plot to reconstruct
attractor in two dimensional phase space. In our simulation p = 1 and q = 3.

3 Implementation

We have implemented both neural networks in two different application but
with the same graphical interface. We use Delphi 5.0 object capabilities (Tn2

3

is a class). There is only difference in Tn2.x procedure. Hart of the application
is Tn2.etazeta procedure which loads η and ζ vectors.

procedure Tn2.etazeta (axvector:vector;var aetavector:vector;var

azetavector:vector);//internal state

var i,j:integer;

sum:real;

fetavector:vector;

fzetavector:vector;

begin

fetavector:=aetavector;

fzetavector:=azetavector;

for i:=0 to n-1 do

begin

fzetavector[i]:=kr*azetavector[i]-alfa*axvector[i]+a;

end;

for i:=0 to n-1 do

begin

sum:=0;

for j:=0 to n-1 do

sum:=sum+wmatrix[i,j]*axvector[j];

fetavector[i]:=kf*aetavector[i]+sum;

end;

aetavector:=fetavector;

azetavector:=fzetavector;

end;

procedure Tn2.initIS (axvector:vector;var aetavector:vector;var

azetavector:vector); //initial conditions

var i:integer;

begin for i:=0 to n-1 do

begin

azetavector[i]:=a;

aetavector[i]:=g(axvector[i]*0.9+0.05)-a;

end;

end;

4

function Tn2.g(u:real):real;

begin

result:=-smalleps*Ln((1/u)-1);

end;

In the neuro431c.exe we have:

function Tn2.f(u:real):real; //continuous output function

begin

result:=1/(1+exp(-u/smalleps));

end;

procedure Tn2.x (var axvector:vector);//output pattern

var i:integer;

begin

for i:=0 to n-1 do

axvector[i]:=f(etavector[i]+zetavector[i]);

end;

And in the neuro431d.exe we have:

procedure Tn2.x (var axvector:vector);//output pattern-discrete

version

var i:integer;

begin

for i:=0 to n-1 do

if (etavector[i]+zetavector[i])>0 then axvector[i]:=1

else axvector[i]:=0;

end;

It should be noticed that neuro431d.exe and neuro431c.exe make timeseries.ts
file which is used to evaluate Dist. Files ptX-Y.ptn are patterns for initial con-
ditions where X is pattern number and Y is Hamming distance in perturbed

5

version of patterns in figure 1. They are the same as in [2]. To run whole
simulation one need to press F1 - Ignition, F2 - Load patterns, F3 - Writes
parameters, F4 - Starts calculations, Ctrl+T - time interval.

4 Simulation results

All images are taken from neuro431d.exe or neuro431c.exe. From figure 2
and 4 we can see that there is not much difference in the transient phase. Also
attractors in figure 3 seems to look similar.

Fig. 2. Long-time behavior of QE function with initial pattern pt3.ptn in fC case.

Fig. 3. From the left we see pt2-8.ptn in fC and pt3.ptn in fD case. The brighter
a pixels is the oftener system is in that state.

6

Fig. 4. Long-time behavior of QE function with initial pattern pt1-8.ptn in fD case.

Fig. 5. Plot of Dist function with initial pattern pt4-4.ptn in fD case.

7

5 Summary

pattern number H-distance 0 H-distance 4 H-distance 8

1 Tr ∼ 17500 Pr ∼ 5000 Tr ∼ 19000

2 Tr ∼ 14000 Tr ∼ 11000 Tr ∼ 2500

3 Tr ∼ 10500 Tr ∼ 17600 Tr ∼ 17500

4 Tr ∼ 14000 Pr ∼ 4000 Tr ∼ 16000

pattern number H-distance 0 H-distance 4 H-distance 8

1 Pr ∼ 9500 Nonperiodic Tr ∼ 1000

2 Pr ∼ 9500 Tr ∼ 9000 Tr ∼ 10000

3 Tr ∼ 21000 Pr ∼ 9500 Tr ∼ 6000

4 Nonperiodic Pr ∼ 9500 Tr ∼ 4000

After transient chaos we have period 20.

6 Conclusion

We see that the fD function has the same searching abilities as fC . fD has
fractal-like average firing rate [1] but there is no positive Lyapunov exponent
although there are longer transient times in average and less periodic without
transient chaos cases. In Report 2 we will use fD to solve TSP.

References

[1] Aihara K., Takabe T., Toyoda M., Chaotic neural networks, Phys. Lett. A, 144,
333-340, (1990)

[2] Adachi M., Aihara K., Associative dynamics in chaotic neural network, Neural
Networks, 10, 83-98, (1997)

8

