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� Introduction

Let XN � f�� �� � � � � N � �g for some integer N and consider an arbitrary
function F � XN � f�� �g� The goal is to �nd some i � XN such that F �i	 � �

provided such an i exists� If F is given as a black box�the only knowledge you
can gain about F is in asking for its value on arbitrary points of its domain�
and if there is a unique solution
 no classical algorithm �deterministic or proba�
bilistic	 can expect to achieve a probability of success better than 
�� without
asking for the value of F on roughly N�� points� Throughout this paper we
assume for simplicity that each evaluation of F takes unit time� Grover ��� has
discovered an algorithm for the quantum computer that can solve this problem
in expected time in O�

p
N 	
 provided there is a unique solution� He also

remarked that a result in ��� implies that his algorithm is optimal
 up to an
unspeci�ed multiplicative constant
 among all possible quantum algorithms�

In this paper we provide a tight analysis of Grover�s algorithm� In particular we
give a simple closed�form formula for the probability of success after any given
number of iterations� This allows us to determine the number of iterations
necessary to achieve almost certainty of �nding the answer
 as well as an
upper bound on the probability of failure� More signi�cantly
 we analyze the
behaviour of the algorithm when there is an arbitrary number of solutions�
An algorithm follows immediately to solve the problem in a time in O�

p
N�t 	

when it is known that there are exactly t solutions� Moreover we provide an
algorithm capable of solving the problem in a time in O�

p
N�t 	 even if the

number t of solutions is not known in advance� We also generalize Grover�s
algorithm to the case N is not a power of �� Finally
 we re�ne the argument
of ��� to show that Grover�s algorithm is within ����� of being optimal�

To motivate this work
 here are three simple applications for Grover�s algo�
rithm� Assume you have a large table T �� � � N � �� in which you would like to
�nd some element y� More precisely
 you wish to �nd an integer i such that
� � i � N and T �i� � y
 provided such an i exists� This database searching
problem can obviously be solved in a time in O�logN	 if the table is sorted

but no classical algorithm can succeed in the general case with probability bet�
ter than 
��
 say
 without probing more than half the entries of T � Grover�s
algorithm solves this problem in a time in O�

p
N 	 on the quantum computer

by using F �i	 � � if and only if T �i� � y� An exciting cryptographic application
is that Grover�s algorithm can be used to crack the widely used Data Encryp�
tion Standard �des	 ��� under a known plaintext attack� Given a matching
pair �m� c	 of plaintext and ciphertext
 consider function F � f�� �g�� � f�� �g
de�ned by F �k	 � � if and only if desk�m	 � c� Provided there is a unique
solution
 the required key k can be found after roughly ��
 million expected
calls to a quantum des device ���� Thus quantum computing makes single�key
des totally insecure� For yet another application
 consider a Boolean formula

�



on n variables� You would like to determine if the formula is satis�able� There
may exist an e�cient classical algorithm for this problem but none are known�
�This is equivalent to the famous P

�
� NP open question in theoretical com�

puter science �
�	� In this case Grover�s algorithm solves the problem in a time
in O��n��	
 which is better than the time in O��n	 required by the obvious
classical algorithm
 but not good enough to imply that NP � BQP ����

� Overview of Grover�s Algorithm

Grover�s algorithm consists of an initialization followed by a number of
identical iterations
 a �nal measurement
 and a classical test� For every
F � XN � f�� �g
 let SF be the conditional phase shift transform de�ned by

SF jii �

���
��
�jii if F �i	 � �

jii otherwise�

Let S� denote SF�
 where F��i	 � � if and only if i � ��

Assume for the moment that N � �n is a power of � and consider any integer
j � XN as a bit string of length n� De�ne i �j as the number of � in the bitwise
and of i and j� Let W be the Walsh�Hadamard transform de�ned by

W jji �
�p
N

N��X
i	�

���	i�jjii�

This is e�ciently implemented ��� by applying the simple unitary transfor�
mation �p

�

�
� �
� ��

�
independently to each qubit of jji� Now we can de�ne one

Grover iteration as the unitary transformation

GF � �WS�WSF � ��	

Grover�s algorithm �rst creates a state j�i � W j�i� Then GF is applied to j�i
some number m of times� �One primary purpose of this paper is to determine
the optimal choice for m�	 Finally
 the state j�i is measured
 which yields
some classical value i� The algorithm succeeds if and only if F �i	 � ��

Let us now assume we are given a quantum black box QF for comput�
ing F � This will usually come as a unitary transformation that sends state
ji� bi to ji� b� F �i	i
 where jbi is a single qubit and � denotes the exclu�
sive�or� The obvious approach to implementing SF as a unitary transforma�
tion requires two applications of QF � if P is the conditional phase�shift de�
�ned by P ji� bi � ���	bji� bi then �SF jii	j�i can be computed as QFPQF ji� �i�

�



However
 it follows from Lemma 
�
 in ��� that SF can be implemented using
a single application of QF � For this
 it su�ces to note that

�SF jii	j�i � QF �jiij�i	

where j�i � �j�i � j�i	�p��

The Walsh�Hadamard transform W is well�de�ned only if N is a power of ��
However
 this assumption on N can be removed by observing that GF is just
one of many transforms that can be used as iteration in Grover�s algorithm�
Let W � be any unitary transform satisfying

W �j�i �
�p
N

N��X
i	�

jii� ��	

Then one may easily verify that the transform G�
F � W �S�W �ySF works just

as well� �The minus sign in eq� ��	 was clearly unnecessary although it makes
the analysis easier�	 Any transform W � satisfying eq� ��	 can thus be used in
Grover�s algorithm� When N is a power of �
 the Walsh�Hadamard transform
is indeed the simplest possible choice for W �� When N is not a power of �
 the
approximate Fourier transform given by Kitaev ��� can be used�

� Finding a Unique Solution

Assume for now that there is a unique i� such that F �i�	 � �� For any real
numbers k and � such that k� � �N � �	�� � �
 de�ne the state of a quantum
register

j��k� �	i � kji�i�
X
i�	i�

�jii

where the sum is over all i 	� i� such that � � i � N �

The heart of Grover�s algorithm is the iteration described in the previous
section� A simple calculation�see Grover�s original article ��� for details�
shows that each iteration e�ciently transforms j��k� �	i into

���� �N��
N

k � �
N���
N

�� N��
N

�� �
N
k
�E
�

It follows that the j�th iteration produces state j�ji � j��kj� �j	i where

kj�� �
N��
N

kj �
�
N���

N
�j and �j�� �

N��
N

�j � �
N
kj ��	

with initial conditions k� � l� � ��
p
N �

�



In his paper
 Grover proves that there exists a number m less than
p
�N

such that k�m
 the probability of success after m iterations
 is at least 
���
This is correct
 but one must be careful in using his algorithm because the
probability of success does not increase monotonically with the number of
iterations� By the time you have performed

p
�N iterations
 the probability of

success has dropped down to less than ��
� and it becomes vanishingly small
after about ��� more iterations before it picks up again� This shows that it
is not su�cient to know the existence of m in order to apply the algorithm�
its explicit value is needed�

The key to a tighter analysis of Grover�s algorithm is an explicit closed�form
formula for kj and �j� This can be obtained by standard techniques�and a
little sweat�from recurrence ��	� Let angle � be de�ned so that sin� � � ��N
and � � � � ���� It is straightforward to verify by mathematical induction
that

kj � sin���j � �	�	 and �j �
�p
N�� cos���j � �	�	� ��	

It follows from eq� ��	 that km � � when ��m� �	� � ���
 which happens
when m � �� � ��	���� Of course
 we must perform an integer number of
iterations but it will be shown in the next section that the probability of
failure is no more than ��N if we iterate b����c times� This is essentially
�



p
N iterations when N is large because � 
 sin � � ��

p
N when � is small�

It is su�cient to perform half this number of iterations
 approximately �
�

p
N 


if we are satis�ed with a 
�� probability of success
 as Grover considered
in his original paper ���� We shall prove in Section � that this is optimal
within a few percent because any quantum algorithm that solves the search
problem with a 
�� probability of success must evaluate F at least �sin �

�
	
p
N

times and �
�

 ����� sin �

�
� One must know when to stop
 however� if we work

twice as hard as we would need to succeed with almost certainty
 that is we
apply approximately �

�

p
N iterations of Grover�s algorithm
 we fail with near

certainty�

� The Case of Multiple Solutions

Let us now consider the case when there are t di�erent values of i such that
F �i	 � �� We are interested in �nding an arbitrary solution� Grover brie y
considers this problem ���
 but he provides no details concerning the e�ciency
of his method�

We assume in this section that the number t of solutions is known and that it is
not zero� Let A � fi jF �i	 � �g and B � fi jF �i	 � �g� For any real numbers






k and � such that tk� � �N � t	�� � �
 rede�ne

j��k� �	i �
X
i�A

kjii�X
i�B

�jii�

A straightforward analysis of Grover�s algorithm shows that one iteration
transforms j��k� �	i into

���� �N��t
N

k � �
N�t�
N

�� N��t
N

�� �t
N
k
�E
�

This gives rise to a recurrence similar to ��	
 whose solution is that the state
j��kj� �j	i after j iterations is given by

kj �
�p
t
sin���j � �	�	 and �j �

�p
N�t cos���j � �	�	 �
	

where the angle � is so that sin� � � t�N and � � � � ����

The probability of obtaining a solution is maximized when �m is as close
to � as possible� We would have � �m � � when !m � �� � ��	��� if that
were an integer� Let m � b����c� Note that jm� !mj � �

�
� It follows that

j��m� �	� � �� !m� �	�j � �� But �� !m � �	� � ��� by de�nition of !m� There�
fore jcos���m� �	�	j � jsin �j� We conclude that the probability of failure after
exactly m iterations is

�N � t	��m � cos����m� �	�	 � sin� � � t�N�

This is negligible when t� N �

Note that this algorithm runs in a time in O�
p
N�t 	 since � � sin � �

p
t�N

and therefore

m � �

��
� �

�

s
N

t
�

A slight improvement is possible in terms of the expected time if we stop
short of m iterations
 observe the register
 and start all over again in case of
failure� The expected number of iterations before success with this strategy
is E�j	 � j�tk�j if we stop after j iterations since our probability of success
at that point is tk�j � Setting the derivative of E�j	 to �
 we �nd that the
optimal number of iterations is given by the j so that ��j � tan���j � �	�	�
The solution to this equation is very close to j � z��� when t� N 
 where
z 
 ������� is such that z � tan�z��	� It follows that the optimal number of
iterations is close to ��
����

p
N�t when t� N and the probability of suc�

cess is close to sin��z��	 
 �����
�� Therefore
 the expected number of iter�
ations before success if we restart the process in case of failure is roughly
�z��� sin��z��			

p
N�t 
 �������

p
N�t
 which is about ��� of �




p
N�t
 the

�



number of iterations after which success is almost certain� For a numerical
example
 consider N � ��� and t � �� In this case
 we achieve almost cer�
tainty of success after ��� iterations� If
 instead
 we stop at 
�� iterations
 the
probability of success is only ������� but the expected number of iterations
before success if we restart the process in case of failure is 
��������� 
 ���

which is indeed better than ����

� The Case t � N��

An interesting special case occurs when t � N��� Of course
 even a classical
probabilistic computer can solve this problem e�ciently
 with high probability

but not quite as e�ciently as a quantum computer� Here sin� � � t�N � ���
and therefore � � ���� It follows that �� �

�p
N�t cos���	 � �� In other words


a solution is found with certainty after a single iteration� In terms of the
number of times F has to be evaluated
 this is essentially four times more
e�cient than the expected performance of the best possible classical proba�
bilistic algorithm when N is large� Furthermore
 the quantum algorithm
becomes exponentially better than any possible classical algorithm if we com�
pare worst�case performances
 taking the worst possible coin  ips in the case of
a probabilistic algorithm� This is somewhat reminiscent of the Deutsch�Jozsa
algorithm ����

	 Unknown Number of Solutions

Amore challenging situation occurs when the number of solutions is not known
ahead of time� If we decide to iterate �




p
N times
 which would give almost

certainty of �nding a solution if there were only one
 the probability of success
would be vanishingly small should the number of solutions be in fact � times
a small perfect square� For example we saw that we are almost certain to �nd
a unique solution among ��� possibilities if we iterate ��� times� The same
number of iterations would yield a solution with probability less than one in
a million should there be � solutions� To �nd a solution e�ciently when their
number is unknown
 we need the following lemmas
 the �rst of which is easily
proved by mathematical induction using straightforward algebra�

Lemma � For any positive integer m and real number 	 such that sin	 	� ��

m��X
j	�

cos���j � �			 �
sin��m		

� sin	
�

�



Lemma � Let t be the �unknown� number of solutions and assume that
� � t � N � Let angle � be so that sin� � � t�N and � � � � ���� Let m be
an arbitrary positive integer� Let j be an integer chosen at random accord�
ing to the uniform distribution between � and m� �� If we observe the register
after applying j iterations of Grover�s algorithm starting from the initial state�
the probability Pm of obtaining a solution is given by

Pm �
�

�
� sin��m�	

�m sin���	
�

In particular Pm � ��� when m � �� sin���	�

PROOF
 The probability of success if we perform j iterations of Grover�s
algorithm is tk�j � sin����j � �	�	� It follows that the average success proba�
bility when � � j � m is chosen randomly is

Pm �
m��X
j	�

�

m
sin����j � �	�	

�
�

�m

m��X
j	�

�� cos���j � �	��	 �
�

�
� sin��m�	

�m sin���	
�

If m � �� sin���	 then

sin��m�	

�m sin���	
� �

�m sin���	
� �

�
�

The conclusion follows� �

We are now ready to describe the algorithm for �nding a solution when the
number t of solutions is unknown� For simplicity we assume at �rst that
� � t � �N���

�i	 Initialize m � � and set 
 � ����
�Any value of 
 strictly between � and ��� would do�	

�ii	 Choose an integer j uniformly at random such that � � j � m�
�iii	 Apply j iterations of Grover�s algorithm starting from initial state

j��i � W j�i �
�p
N

X
i

jii�

�iv	 Observe the register and let i be the outcome�
�v	 If F �i	 � �
 the problem is solved� exit�
�vi	 Otherwise
 set m to min�
m�

p
N 	 and go back to step �ii	�

�



Theorem � This algorithm 	nds a solution in expected time in O�
p
N�t 	�

PROOF
 Let angle � be so that sin� � � t�N and � � � � ���


m� � �� sin���	 �
N

�
q
�N � t	t

and s� � d log�m�e� Note that m� �
p
N�t because t � �N���

We shall estimate the expected number of times that a Grover iteration is
performed before a solution is found� the total time needed is clearly in the
order of that number since we assumed that F can be evaluated in unit time�
On the s�th time round the main loop
 the value of m is min�

p
N� 
s��	 and

the expected number of Grover iterations is less than half that value since
j is chosen randomly between � and m� �� Note that m � m� for the �rst
s� times round the main loop
 whereas m � m� afterwards� We say that the
algorithm reaches the critical stage when m � m� for the �rst time
 which
may never happen of course if success comes earlier�

The expected total number of Grover iterations needed to reach the critical
stage
 if it is reached
 is at most

�
�

s�X
s	�


s�� �
�

�





� �
m� � �m��

Thus
 if the algorithm succeeds before reaching the critical stage
 it does so in
a time in O�m�	
 which is in O�

p
N�t 	 as required�

If the critical stage is reached then every time round the main loop from this
point on will succeed with probability at least ��� by virtue of Lemma �
since m � �� sin���	� Therefore
 �

�

s� expected iterations will be performed

at round s � s� � �� This will succeed with probability at least ���� With
complementary probability at most ���
 at least one more trip round the loop
will be necessary
 requiring �

�

s��� additional expected iterations� Again
 this

will succeed with probability at least ���� With probability at most ����	�
 at
least one more trip will be required
 costing another �

�

s��� expected iterations


and so on� Summing up
 the expected number of Grover iterations needed to
succeed once the critical stage has been reached is less than

�
�

�X
u	�

�
�



�u

s��u �

�


�� �

m� � �m��

The total expected number of Grover iterations
 whether or not the critical
stage is reached
 is therefore less than �m� and thus the total expected time is

�



in O�
p
N�t 	 provided � � t � �N��� Note that �m� 
 �

p
N�t when t� N 


which is less than six times the expected number of iterations that we would
have needed had we known the value of t ahead of time� The case t � �N��
can be disposed of in constant expected time by classical sampling� The case
t � � is handled by an appropriate time�out in the above algorithm
 which
allows us to claim in a time in O�

p
N 	 that there are no solutions when this

is the case
 with an arbitrarily small probability of failure when in fact there
is a solution� �

� An Improved Lower Bound

Drawing on general results from ���
 Grover points out in ��� that any algorithm
for quantum database searching must take a time at least proportional to

p
N

to succeed with nonnegligible probability when there is a unique solution�
In this section we prove that if the function F having t solutions is used as a
black box in any quantum algorithmQ that makes less than �sin �

�
	
pbN�tc � �

calls to F then
 averaging over all such possible F 
 the probability that Q suc�
ceeds cannot be better than 
��� Obviously
 it follows that
 for any t � N and
any quantum algorithm that makes less than �sin �

�
	
pbN�tc � � calls to F 


there exists an F that has t solutions
 yet the algorithm�s probability of success
does not exceed 
��� This proves that Grover�s algorithm comes within �����
of being optimal when the number of solutions is known in advance since it
follows from Section � that it needs to call F only about �

�

p
N�t times to

succeed with probability better than 
���

After reading an early version of this paper
 Grover noticed that our lower
bound would not apply if we were interested in the expected �rather than
worst�case	 number of calls to F necessary to succeed with probability at
least 
��� A better algorithm in terms of the expected number of calls to F
consists in �rst tossing a biased coin� With probability ���
 do nothing�and
fail for sure� With probability ���
 apply ��
����

p
N�t iterations of Grover�s

algorithm before looking at the quantum state� this will succeed with prob�
ability roughly ����
��
 as we saw in Section �� The total expected number
of iterations�and thus of calls to F�is ���
 ��
����

p
N�t � ���


p
N�t


which is less than �sin �
�
	
p
N�t
 yet the expected success probability is

���
 ����
��
 which is better than 
��� Nevertheless this approach never
yields success unless F is evaluated more than �sin �

�
	
p
N�t times
 which is

why our lower bound is not contradicted by this example�

To capture the notion that F is a black box
 we consider that it is given as an
oracle� All matrices and vectors in this section are �nite and complex�valued�
The norm of vector a is denoted kak� The norm of a complex number c is
denoted jcj�

��



We restate a basic fact on complex�valued vectors�

Proposition � For all normalized vectors a and b� and all complex scalars
	 and ��

k	a� �bk� � j	j� � j�j� � �j	jj�j�

The following proposition is a consequence of Chebyshev�s summation inequal�
ity�

Proposition � For all set of complex numbers� fxigr��i	� �

�
r��X
i	�

jxij
	�

� r
r��X
i	�

jxij��

Lemma 	 Let S be any set of N strings� and C be any con	guration space�
Let j
�i be any superposition� and

j
ri � Ur � � � U�U�j
�i

any sequence of r unitary transforms� Let ffigri	� be any set of partial functions
from C into S� For any y � S� let

j
�ri � U �
r � � � U

�
�U

�
�j
�i

be any sequence of r unitary transforms where for all i � �� � � � � r�

U �
i jci � Uijci if fi���jci	 	� y�

Set j
��i � j
�i� and for all i � �� � � � � r� set j
ii � Uij
i��i and j
�ii � U �
i j
�i��i�

For all i � �� �� � � � � r� set j
ii � 	i�yj
i�yi�	i�yj
i�yi� where j
i�yi �resp� j
i�yi�
is a normalized superposition of con	gurations where fi equals �resp� does not
equal� y� Denote j
�ii similarly�

Then the following holds


��	 kj
�ri � j
rik � �
Pr��

i	� j	i�yj for all y � S�

��	 ��� j	r�yj � j	�r�yj	 � kj
�ri � j
rik� for all y � S�

��	 N �p
N �Py�S j	�r�yj � �r� �

PROOF
 We divide the proof into three parts�

Proof of ��	� For all y � S and all i � �� � � � � r we have

��



U �
i j
i��i � U �

i �	i���yj
i���yi� 	i���yj
i���yi	
� U �

i �	i���yj
i���yi	 � Ui �	i���yj
i���yi	
� U �

i �	i���yj
i���yi	� Ui �	i���yj
i���yi	 � Uij
i��i
� j
ii� �U �

i � Ui	 �	i���yj
i���yi	 �

Hence
 by mathematical induction on i


j
�ii � U �
i � � � U

�
�j
�i � j
ii�

iX
j	�

�U �
i � � � U

�
j��	�U

�
j � Uj	 �	j���yj
j���yi	 �

so


kj
�ii � j
iik � k
iX

j	�

�U �
i � � � U

�
j��	�U

�
j � Uj	 �	j���yj
j���yi	 k

� �
iX

j	�

j	j���yj�

and ��	 follows�

Proof of ��	� The inequality follows from�

kj
�ri � j
rik� � k�	�r�yj
�r�yi� 	�r�yj
�r�yi	� �	r�yj
r�yi� 	r�yj
r�yi	k�
� k�	�r�yj
�r�yi � 	r�yj
r�yi	 � �	�r�yj
�r�yi � 	r�yj
r�yi	k�
� k	�r�yj
�r�yi � 	r�yj
r�yik� � k	�r�yj
�r�yi � 	r�yj
r�yik�
� � j	�r�yj� � j	r�yj� � �j	�r�yjj	r�yj 	

� � j	�r�yj� � j	r�yj� � �j	�r�yjj	r�yj 	
� ���� j	�r�yjj	r�yj � j	�r�yjj	r�yj	
� ���� j	r�yj � j	�r�yj	�

where the two inequalities follow from proposition � and the fact that the
norm of any scalar is at most ��

Proof of ��	� By ��	
 ��	
 and proposition 
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�
kj
�ri � j
rik� � �

�
r��X
i	�

j	i�yj
	�

� �r
r��X
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j	i�yj��

Thus
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Since

X
y�S

�
�� j	r�yj � j	�r�yj

�
� N �X

y�S
j	r�yj �

X
y�S

j	�r�yj

� N �
p
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�X
y�S

j	r�yj�
�
A
���

�X
y�S

j	�r�yj

� N �
p
N �X

y�S
j	�r�yj�

we have

N �
p
N �X

y�S
j	�r�yj �

X
y�S

��� j	r�yj � j	�r�yj	 � �r��

and ��	 follows� �

Theorem � Let S be any set of N strings� and M be any oracle quantum
machine with bounded error probability� Let y � S be a randomly and uniformly
chosen element from S� Let F be the oracle such that F �x	 � � if and only
if x � y� Then the average number of times M must query F in order to
determine y with probability at least ��� is at least

j
�sin �

�
	
p
N
k
� where the

average is taken over all possible y�

PROOF
 Let S be any set of N strings and C be any con�guration space�
Let j��i be any superposition of con�gurations
 and M any bounded�error
oracle quantum machine� Given any oracle F �
 assume that we run MF �

for s
steps
 and assume thatM queries r times its oracle F � during the computation�
Since we will only run M using oracle F � with F ��x	 � � if x �� S
 without
loss of generality
 assume that M never queries F � on strings not in S�

First
 consider the case that we run M using the trivial oracle� let F be the
oracle such that F �x	 � � for all x � S
 and let

j�si � As � � � A�j��i ��	

be the unitary transformation corresponding to the computation of M using
oracle F �

��



For all i � �� � � � � r
 let qi be the time stamp for M �s i�th query
 and set
qr�� � s� �� Then eq� ��	 can also be written as

j
ri � Ur � � � U�j
�i ��	

where j
�i � Aq��� � � � A�j��i
 and for all i � �� � � � � r� Ui � Aqi���� � � � Aqi

and j
ii � Uij
i��i� At the i�th query some con�gurations will query F 
 some
will not� For all i � �� � � � � r � �� set fi�jci	 � x if jci queries F on x at the
�i� �	�st query�

Now
 consider what happens if we  ip one of the oracle bits� Given any y � S

let F � be the oracle such that F ��x	 � � if and only if x � y� Then the
computation of MF �

corresponds to the unitary transformation

j
�ri � U �
r � � � U

�
�j
�i

where U �
i jci � Uijci if fi���jci	 	� y�

At the end of the computation of MF �


 we measure the superposition j
�ri
in order to determine the unknown y� For each con�guration jci � C
 set
fr�jci	 � x if
 by measuring jci
 M answers that x is the unknown y�

Set j
�ri � 	�r�yj
�r�yi � 	�r�yj
�r�yi where j
�r�yi �resp� j
�r�yi	 is the normalized
superposition of con�gurations where fr equals �resp� does not equal	 y� Then
j	�r�yj� is the probability that MF �

correctly determines y� Since
 by assump�
tion
 this probability is at least 
��


j	�r�yj �
�p
�

for all y � S� ��	

Furthermore
 by Lemma �


N �
p
N �X

y�S
j	�r�yj � �r��

Hence
 by eq� ��	

�r� � N �
p
N � �p

�
N �

�
�� �p

�

	
N �

p
N�

It follows by straightforward algebra that

r �
q
��p

�

�

p
N � � � �sin �

�
	
p
N � � ��	

provided N � �
� But eq� � holds nevertheless for all N because the oracle
must be queried at least once to succeed with probability at least 
��
when N � �
 and therefore r � � � �sin �

�
	
p
N � � holds as required for

��



� � N � �
� In addition
 the equation holds vacuously when N � � since
r � � � �sin �

�
	
p
N � � in that case� The theorem follows directly from the

generality of eq� �� �

Theorem � gives a lower bound for �nding a unique solution using a bounded�
error quantum machine� However
 in most applications we would expect that
there will be more than one solution� Furthermore
 we might even not know if
there is a solution at all� Let t be the number of solutions� For the case t � �

we have the following theorem�

Theorem � Let S be any set of N strings� andM be any bounded�error oracle
quantum machine� Let A � S be a randomly and uniformly chosen subset of S
of size t� t � �� Let F be the oracle such that F �x	 � � if and only if x � A�
Then the average number of times M must query F in order to determine
some member y � A with probability at least ��� is at least

j
�sin �

�
	
pbN�tc

k
�

where the average is taken over all possible A of size t�

The proof of this theorem is almost identical to the proof of Lemma � and
Theorem �� In Lemma �
 eqs� ��	 and ��	 now hold for all subsets of t strings�
Hence
 by choosing a largest number of such disjoint subsets from S
 say R of
cardinality Nt � bN�tc
 in the proof of ��	
 we obtain

Nt �
q
Nt �

X
Xi�R

j	�
r�Xi

j � �r��

The remaining part of the proof is the same as the proof of Theorem �
 only
with obvious and minor changes�

� Conclusions and Future Directions

We have provided a tight analysis of Grover�s quantum search algorithm and
proved that it comes to within a few percent of being optimal in terms of
the number of times the function must be evaluated when it is provided as a
black box �or an oracle	� Moreover
 we showed how to apply the algorithm even
when the number of solutions is unknown ahead of time� It would be interesting
to determine if in fact Grover�s algorithm is exactly optimal or whether it is
possible to improve it slightly� Also
 a lower bound on the expected number of
function evaluations required to �nd the solution by any quantum algorithm
would be useful� How would it compare with our upper bound �������

p
N"

Grover�s algorithm and the ideas presented in this paper can be extended in
several directions
 which we are currently investigating and will be the topic of
a subsequent paper� In particular
 Grover�s algorithm can be thought of in a

�




more general setting than quantum searching� Each iteration of the algorithm
can be used to amplify the amplitude of a desired state� From this perspective

Grover�s algorithm is really an amplitude ampli	cation process�

It would be silly to use Grover�s algorithm directly to solve most NP�com�
plete problems because there are classical heuristics that would go faster on
almost all instances� We are currently investigating the extent by which these
heuristics can be sped up on a quantum computer by way of amplitude am�
pli�cation� In many cases
 we can combine the classical heuristics with ampli�
tude ampli�cation to allow quadratic speed up compared to the best classical
heuristics available
 but we do not yet know how general this phenomenon is�
Similarly
 more e�cient quantum algorithms might exist for speci�c NP�com�
plete problems if the structure of the problem is exploited� Furthermore
 we
are investigating how to use ideas from Grover�s algorithm to solve problems
higher than NP in the polynomial�time hierarchy�

Assume F � XN � f�� �g is as in our paper but our goal is to determine the
number t of i � XN such that F �i	 � � rather than �nding a speci�c one�
In light of the theory of 
P�completeness
 this is thought to be a harder
problem for classical computers� Combining Grover�s algorithm with some
ideas from Shor�s quantum factoring algorithm ���
 we have preliminary results
that indicate the possibility of solving this quantum counting problem with
high probability in a time in O�t

p
N 	 without need for a large supply of

auxiliary quantum memory� If we are satis�ed with an approximate answer
 a
time in O�

p
N 	 provides an answer whose absolute error is bounded by

p
t

with high probability
 and a time in O�
p
N�t 	 su�ces to count with small

expected relative error�

We presented in the Section � an application of Grover�s algorithm to the
cryptanalysis of secret�key cryptosystems such as the des� Can quantum com�
puting be used in more subtle ways for cryptanalytical purposes
 for instance
when double or triple�key encipherment is used" What is the best way to use
quantum searching for �nding collisions in a cryptographic hash function"
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