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   A fully optical method to perform any quantum computation with optical waveguide 

modes is proposed by supplying the prescriptions for a universal set of quantum gates. 

The proposal for quantum computation is based on implementing a quantum bit with two 

normal modes of multi-mode waveguides. The proposed universal set of gates has the 

potential of being much more compact and easily realized than other optical 

implementations, since it is based on planar lightwave circuit technology and can be 

constructed by using Mach-Zehnder interferometer configurations having semiconductor 

optical amplifiers with very high refractive nonlinearity in its arms. 

 

PACS numbers: 42.80.Vc, 42.50.Bs, 89.70+c 

 

A great deal of effort has gone into the search for a practical architecture for quantum 

computation. Recently, the work has focused on NMR [1], solid-states [2], and atomic [3, 

4], but so far none of these systems has demonstrated all of the desired features such as 

strong coherent interactions, low decoherence, and straightforward scalability. As was 

recognized early on, single-photon optics provides a nearly perfect arena for many 

quantum-information applications despite the absence of significant nonlinear effects of  

photon-photon interactions at the quantum level [5]. Schemes of optical quantum gates 

have been proposed in the last few years [6, 7]. Such models typically make use of the 

Kerr nonlinearity to produce intensity-dependent phase shifts, so that the presence of a 

photon in one path induces a phase shift to a second photon. In [8], an implementation of 

a simple quantum computer (QC) with beam splitters and non-linear Kerr medium was 

proposed to solve Deutsch’s problem, which requires exponential time on a classical 

computer but only linear time with quantum parallelism. 
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In recent years, planar lightwave circuit (PLC) technology has been rapidly developed 

to meet fiber communication systems required [9]. PLC technology is based on creating 

optical waveguides on substrates using manufacturing processes similar to 

semiconductors. An optical waveguide is a set of optically transparent layers which guide 

light within them. It is constructed by building these layers on top of a substrate material 

which provides physical support and a flat, pure layer to deposit on. The light is confined 

to the ‘guiding’ layer of relatively high refractive index (RI) surrounded above and below 

by lower index cladding materials. This confines the light vertically; horizontal control is 

provided by lithographically limiting the extent of guiding or cladding layers. Solving 

Maxwell’s equations directly subject to the boundary conditions of the planar waveguide 

structure [9, 10], we can derive the possible solutions of Maxwell’s equations consisting 

of a discrete spectrum of a finite number of normal modes plus a continuum of 

waveguide (radiation) modes. All the normal modes, each of which is normalized and 

orthogonal to each of the others, constitute a complete set of solutions for Maxwell’s 

equations in the sense that an arbitrary solution can be expanded in terms of them. An 

unperturbed waveguide can transmit any of its normal modes without converting energy 

to any of the other possible normal modes or to the continuous spectrum. But any slight 

perturbation of the guide, such as a series of waveguide transitions/junctions or two 

separate waveguides brought into proximity with each other, couples the particular 

normal mode to all other normal modes even to the modes of the continuum. When a 

resonance condition is satisfied, a slight perturbation of the waveguide can cause a large 

exchange of power between the modes of the unperturbed waveguide [10]. 

In this paper, we suggest using a set of discrete waveguide modes for implementing a 

QC. The fundamental units of QC are qubits, the quantum generalizations of classical bit. 

Qubits can be realized by two normal modes of multi-mode waveguides, such as the zero 

logical state 0  encoded into one normal mode and the logical one 1  given by other 

orthogonal normal mode. A qubit’s state space consists of all superpositions of the basic 

normal modes 0  and 1 . By using a multimode waveguide Mach-Zehnder 

interferometer (MZI), directional couplers (DCs) and other nonlinear optical devices, we 

propose a fully optical method to perform quantum computation. We now discuss the 
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advantages of quantum computing with waveguide modes over other optical quantum 

computation. Typical optical nonlinearities are so small that the dimensionless efficiency 

of photon-photon coupling rarely exceeds in orders of 1010−  [7]. Due to this weak 

coupling, it is much more difficult to construct a 2 qubit gate which operates at the single-

photon level. For example, in order to implement the optical quantum Fredkin gate, we 

need huge third-order susceptibilities ( )3χ  [8]. The refractive nonlinearity of 

semiconductor optical amplifiers (SOAs) base on PLC technology is about 108 times 

larger than an equivalent length of silica waveguide. All-optical 3R (reamplified, 

reshaped and retimed) regeneration in optical communications systems along with 

wavelength conversion at 80 Gbit/s with error-free operation has been demonstrated 

using cross-phase modulation (XPM) in a nonlinear MZI with SOAs [11]. All-optical 

switches and wavelength-conversion devices based on XPM in SOAs using the MZI or 

Michaelson configuration have been  integrated on  PLC  and  are reviewed in [12, 13]. 

Therefore, QC based on PLC technology can be much more easily realized than other 

optical implementation. Eventually as processes for combining hybrid elements develop 

[14], it may be possible to have active and passive devices on one chip as well and thus 

the possibility of an Erbium-Doped Waveguide Amplifier or true loss-less components 

which include built-in amplification to compensate for insertion loss. So another 

important advantage for quantum computing with optical waveguide modes is that PLC 

technology allows a much tighter density of optical and electronic components given that 

all functions are performed on a single ‘quantum CPU’ chip. 

Considering a simple three-layer waveguide structure and deriving a solution of 

Maxwell’s equation for the guided modes of the structure, we obtain electric-field 

profiles as shown in Fig. 1. These Cartesian components of the transverse electric (TE) 

field are solutions of the scalar wave equation ( ){ }2 2 2 2 2, 0x y k n x y β∇ + ∇ + − Ψ = , where 

( ),n x y  is the refractive-index profile, 2 /k π λ= , λ  is the free-space wavelength. The 

solution ( ),x yΨ  of the scalar wave equation and its first derivatives are everywhere 

continuous and are therefore bounded. This leads to an eigenvalue equation for the 

allowed discrete values of β . The eigenfunctions with discrete eigenvalues are called the 
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normal modes of the waveguide, which constitute a complete set of functions in the sense 

that an arbitrary solution of the scalar wave equation can be expanded in term of them. In 

Fig. 1, the geometry and optical wavelength are assumed such that the structure supports 

two normal modes, namely TE0 mode and TE1 mode. We denote the first mode as 

( )0 ,x yΨ  and the second mode as ( )1 ,x yΨ  with propagation constants 
0β  and 

1β  

respectively. As we know, if the profile ( ),n x y  is independent of z, arbitrary local fields 

( ), ,x y zΨ  propagating in the waveguide at position z can be described by a superposition 

of two normal modes ( )0 ,x yΨ  (the TE0 mode) and ( )1 ,x yΨ (the TE1 mode), that is, 

( ) ( ) ( )0 1
0 0 1 1, , , ,i z i zx y z C x y e C x y eβ βΨ = Ψ + Ψ , where 

0C  and 
1C  are the amplitudes of 

the modes 
0Ψ  and 

1Ψ . When a dual-mode waveguide has nonuniformities which vary 

distance z along its length, propagation ( ), ,x y zΨ  can be described by a set of coupled 

equations based on the set of normal modes {
0Ψ , 

1Ψ }, that is, 

( ) ( ) ( ) ( ) ( )0 1
0 0 1 1, , , ,i z i zx y z C z x y e C z x y eβ βΨ = Ψ + Ψ , where ( )0C z  and ( )1C z  denote 

the couple-mode amplitudes. By using coupled mode theory [10], the coupled-mode 

equations for M coupled dual-mode waveguides are obtained,  
( ) ( ) ( )

( )
( ) ( )

( ) ( )( )
0,14

k k
j l

k k
i zj j kkk

jl lk
k lj

dC z i K C z e
dz

β ββω
β

′−′′

′ =

= − ∑∑    (1) 

where ( ) ( ) ( ) ( )* 2 2, , ,k kkk
jl j lK n x y z n x y dxdy′′  = Ψ − Ψ ∫ , ( ), ,n x y z is the z-dependent  

refractive-index profile，the superscript k denotes the kth waveguide and the subscript j 

denotes the jth order mode. 

Given that we are using 0 (the TE0 mode, ( )0 ,x yΨ ) and 1 (the TE1 mode, 

( )1 ,x yΨ ) to represent logical 0 and 1, respectively. First, let us consider a dual-mode 

waveguide MZI (shown in Fig. 2) with a phase shifter φ  in one of its arms. The analysis 

of the device [10] consists in finding a unitary transformation connecting the input field 

0 10 1i i
i C CΨ = +  and the output field 0 10 1o o

o C CΨ = + . Assuming an ideal power 

dividing branch with 0β∆ ≈ , we obtain the unitary transformation 
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( ) ( )
( ) ( )

cos / 2 - sin / 2
sin / 2 cos / 2

i
U

i
φ φ
φ φ

 
=  
 

    (2) 

where the phase φ  accounts for any phase shift between the two arms of the MZI, and 

0 0 12 2cos sino i iC C i Cφ φ= − , 
1 1 02 2cos sino i iC C i Cφ φ= + . The MZI can be configured in two 

extreme positions by choosing 0φ =  and φ π= . In the former, all inputs are unchanged 

after the gate, while the latter acts as a ‘quantum’ NOT gate. All inputs to 0  appear in 

the 1  output and vice versa, extra an additional phase. If choosing 
2
πφ = , 

( ) ( )1 1
2 2

0 0 + 1 , 1 1 - 0i i→ → , which can be used to generate the desired  

superposition state. In order to confirm the validity of the present coupled-mode analysis, 

we have performed more rigorous numerical analysis using the finite-difference beam 

propagation method (FD-BPM) [15]. The parameters used are, the RI of core and 

cladding of waveguides 1.57coren = , 1.55cladn = , respectively, the width of waveguide 

3.0W mµ= , and the wavelength 1.064 mλ µ= . Fig.3 illustrates the optical simulation of 

‘quantum’ NOT gate using a MZI whose arms have a phase difference caused by a phase 

shifter. When the phase shifter’s length 1L mm=  and RI difference 0.0008n∆ = , the 

input state 0  is transformed to the output state 1  and vice versa. 

Next, we consider a dual-mode waveguide DC with uniform coupler region of length 

L. Power transfer between the modes in two waveguides is described by the coupled-

mode equations (1). After neglecting the weak coupling between different order modes, 

we obtain that the field amplitude in each of the two waveguides varies according to 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 2

2 2 1

cos 0 sin 0

sin 0 cos 0

j j j j j

j j j j j

C z z C i z C

C z i z C z C

κ κ

κ κ

 = +


= − +
   (3) 

where the coupling coefficients ( ) ( ) ( ) ( )0 2 1* 2 2
4 , , ,j j jn x y z n x y dxdyωεκ  = − Ψ − Ψ ∫ , the 

superscript 1, 2 denote the first and second waveguides respectively and the subscript 

0,1j =  denotes the jth order mode. Now we discuss a ‘mode-separated/combined’ device 

constructed from a DC. The schematic illustration of the devices is shown as coupler 

regions in Fig. 4. Assuming the input state 0  into waveguide 1 at 0z = , we obtain 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2
0 1 0 10 1, 0 0, 0 0, 0 0C C C C= = = = . Setting the state 0  remaining in the 

same waveguide at z L= , we obtain ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2
0 1 0 11, 0, 0, 0C L C L C L C L= = = = . 

Also assuming the input state 1  into waveguide 1 at 0z = , we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2
0 1 0 10 0, 0 1, 0 0, 0 0C C C C= = = = . But the output state 1  appearing in the 

other waveguide at z L= , we obtain ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2
0 1 0 10, 0, 0, 1C L C L C L C L= = = = . 

Therefore, we obtain an explicit condition ( ) ( )0 1cos cos 1L Lκ κ= = , which can be 

satisfied by selecting and adjusting the coupling coefficients and length to perform 

‘mode-separate/combine’. 

By using the dual-mode waveguide MZI, DC and Kerr-like mediums, an optical model 

for a ‘quantum’ C-NOT gate is indicated schematically in Fig. 4. Essentially it is a dual-

mode MZI that a substance with an intensity-dependent RI (XPM via Kerr effect or 

SOAs) is placed in both arms. The device works as follows. The qubits propagating in 

waveguides 1 and 2 are pertained to the control qubit and the target qubit, respectively. 

When 1  is present at the control bit, the intensity of the qubit is coupled into one arm of 

the MZI by the first DC. If the input control bit contains a field just sufficient to cause a 

phase shift of π, the states of the target bit will be flipped, namely 0 1→ , 1 0→ . 

Then the control bit is coupled back waveguide 1 by the second DC and left unchanged. 

When 0  is present at the control bit, the intensity of the qubit is never coupled into the 

arm of the MZI. Therefore the control and target qubits are left unchanged. The C-NOT 

gate that is implemented by using the device was numerically calculated by an improved 

FD-BPM [16] to simulate the propagation of waves in a Kerr-like nonlinear waveguide, 

the result is shown in Fig. 5. 

The measurements of the output states, to be performed as the final step of a quantum 

computation, consist of mode separated or cut-off devices and optical receivers. These 

may be easily achieved by means of the ‘mode-separated’ DC or a single mode 

waveguide to cut-off higher order modes, followed by PIN/APD optical receivers. 

Two important imperfections which lead to quantum computation errors are energy 

loss and decoherence. The former occurs due to absorption in waveguide media and 
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radiation loss caused by waveguide bends [10] or sidewall imperfections [17] etc. Any 

energy losses on the control bit will cause phase errors in one arm of the MZI. Based on 

built-in amplification technology, this problem can be remedied. But decoherence is 

present even in cases in which energy loss is negligible. In the QC with waveguide modes, 

the major sources of decoherence include both the photons interacting each other through 

a Kerr-like medium, and any imperfection of the waveguides, such as deviation from 

perfect waveguide straightness or a local change of waveguide’s RI, etc. The latter is a 

unique source of decoherence for the optical QC we are analyzing. On second thoughts, 

we consider that sidewall roughness of waveguides is one of the most important factors to 

cause decoherence and energy loss. According to [17], the imperfections of the 

waveguide wall transfer energy from one guided mode to other guided modes, which 

cause mode disorder, namely decoherence, and the radiation field of the continuum of 

unguided modes, which cause energy loss. Typical roughness rms values for waveguides 

fabricated by conventional photolithography and reactive ion etching techniques are 

about 10 nm [18]. The sidewall roughness is greatly improved from 10nm rms to 2nm 

rms or less through improved etching and smoothing processes [18, 19]. By using the 

method in [17], we roughly estimate a length of 10% power transfer (decoherence) from 

mode TE0 to TE1 in a silica waveguide with 1%∆ =  index difference more than 100cm 

and the length for higher- ∆  waveguides, such as silicon on insulator, InP waveguides, 

more than 1cm. The waveguide sidewall smoothing technology [20] could lead to 

significant improvements in practical waveguide design for optical quantum computing 

devices. 

Whether quantum computation with optical waveguide modes can be implemented in 

practice remains to be proved by experiments. However, the results obtained here have 

shown that, in principle, the present scheme may open new perspectives for practical 

quantum computation. 
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