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We propose an implementation of a quantum computer to
solve Deutsch’s problem, which requires exponential time on
a classical computer but only linear time with quantum par-
allelism. By using a dual-rail qubit representation as a sim-
ple form of error correction, our machine can tolerate some
amount of decoherence and still give the correct result with
high probability. The design which we employ also demon-
strates a signature for quantum parallelism which unambigu-
ously deliniates the desired quantum behavior from the merely
classical. The experimental demonstration of our proposal us-
ing quantum optical components calls for the development of
several key technologies common to single photonics.
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I. INTRODUCTION

The field of quantum computation has received
tremendous new interest since the recent result of Shor
[ﬂ], which shows the possibility of using the non-local
behavior of quantum mechanics to factor integers in ran-
dom polynomial time. This is exponentially better than
is achievable on a comparable classical machine, with any
algorithm known today.

However, there is a catch. Quantum computing (like
quantum cryptography) relies fundamentally on the pro-
cessing of bits of information which can be superpositions
of logical one and zero. As long as the mutual coher-
ence among a set of quantum bits (qubits) [E] is pre-
served, they can simultaneously take on more than one
value, giving rise to a useful effect known as quantum
parallelism. With sufficient cleverness, algorithms can
be devised which take advantage of this effect to solve
some problems faster than is possible with a classical
computer.

The catch is that these qubits are “Schrédinger cat”
states, which are normally highly susceptible to collapse.
Whenever a qubit is observed by an external agent (such
as the environment [ﬂ])7 coherence with other qubits in
the system is partially lost due to the collapse of its wave-
function. This loss of coherence is accompanied by a loss
of information [E] which is likely to cause a malfunction of
the quantum computer. Thus, simply put, the practical-
ity of using quantum parallelism is crucially dependent
on our ability to build a machine which is sufficiently per-
fect and isolated from its environment so as to preserve
quantum coherence throughout a calculation [E}

The key question upon which the feasibility of quan-
tum computing hinges is how difficult it is to maintain
quantum coherence in a real implementation. This is
very much a system issue, because to succeed, not only
must the logic devices be perfect, but also, the scheme for
their interconnection, and the method for preparing and
extracting the inputs and outputs of the computer. Al-
though implementations of several quantum-mechanical
logic gates [, and general architectures [§,f] have been
proposed, no designs for a specific machine have yet ap-
peared in the literature, and therefore, it is unclear what
the minimum requirement is for realizing a complete sys-
tem. As a result, it is also difficult to pin down what
noise issues limit the feasibility of maintaining quantum
coherence in a complete quantum computer.

The purpose of this article is to remedy this problem
by proposing a specific realization of a quantum com-
puter which solves Deutsch’s problem [[[(J]. Although the
machine which we envision has little practical use, it is
a simple system which (1) demonstrates the concept of
quantum parallelism, and (2) delineates the desired quan-
tum behavior from the merely classical by using simple
error correction. The approach which we outline also de-
scribes several techniques which we believe will be useful
in constructing a more general purpose machine.

We note in relation to the literature that many is-
sues which arise in the course of our discussion remain
open questions. In particular, we do not attempt to ad-
dress the problem of synthesizing a wuniversal quantum
computer from some minimal set of logic gates [@,E,@].
Neither are we particularly interested in solving the full
problem of quantum error-correction [B,@] Instead,
our concern is the reality of quantum computing. By
focusing on the complete design of a specific machine,
we learn about realizability, operation, and robustness
— system issues which are of principle concern in under-
standing the impact of decoherence. Our design of a sim-
ple quantum computer using error correction provides a
concrete and new framework for analyzing the role of de-
coherence in quantum computing.

We begin by summarizing Deutsch’s problem. We then
compare the classical and quantum solutions to a simpli-
fied version of the problem, and discuss how the required
components may be realized. This leads us to a design
for a machine which we present in Section 4, which is
followed by an analysis of its error correcting ability in
Section 5. We conclude with a discussion of the experi-
mental possibilities.
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II. DEUTSCH’S PROBLEM

Deutsch’s problem may be described as the following
game. Alice, in Amsterdam, selects a number x from 0
to 2L — 1, and mails it in a letter to Bob, in Boston.
Bob calculates some function f(z) and replies with the
result, which is either 0 or 1. Now, Bob has agreed to
use one of only two kinds of functions, either type (1),
which are constant for all values of z, or type (2), which
are equal to one for exactly half of all the possible z.
Alice’s mission is to determine with certainty which type
of function Bob has chosen by corresponding with him
the fewest number of times. How fast can she succeed?

In the classical case, Alice may only send Bob one value
of z in each letter. At worst, Alice will need to query Bob
at least L + 1 times, since she may receive, e.g., L zeros
before finally getting a one, telling her that Bob’s func-
tion is type 2. The best deterministic classical algorithm
she can use therefore requires L + 1 queries. Note that in
each letter, Alice sends Bob N bits of information, where
N =log,(2L).

Now add a new twist to the problem. Suppose that
Bob and Alice can exchange quantum bits (instead of
just classical bits), and furthermore, Bob calculates f(x)
using a unitary transformation Uy. Alice can now get
back more than one value of f(z) from Bob in a sin-
gle query, while still exchanging only about N bits. For
example, Alice may send Bob an atom trap containing
N + 1 two-level atoms. The first N atoms, representing
x, are prepared in an equal superposition of their excited
and ground states, while the last atom, a scratch-pad for
the result y = f(z), is put in its ground state. In Boston,
Bob uses a sequence of electromagnetic pulses to unitar-
ily put atom y in the state f(z). Note that x is in a
superposition of all values [0,2" — 1], and therefore, y is
left a superposition of all possible values of f(z). How-
ever, when Alice receives the reply, she can’t achieve her
mission simply by measuring atom y, since that would
collapse the superposition state and give her only one
result!

Instead, Alice must be more clever. She gives y a m
phase shift relative to x, then sends the qubits once more
to Bob. This time, Bob agrees to calculate U} instead
of Uy, i.e., he inverts what he did before, leaving y in its
ground state. Since y and z are entangled, this procedure
also leaves the N qubits of x with a special relative phase,
such that those values of « for which f(x) is even are be
180° out of phase with the others. When Alice receives
the result back from Bob, she can perform an interference
experiment to determine the type of Bob’s function, with
certainty. This is accomplished using only two queries.

The quantum algorithm followed by Alice in the lat-
ter case was devised by Deutsch and Jozsa, and a more
mathematical description can be found in their article
[@] A schematic of the algorithm is shown in Figure El

This drawing, and our description above highlight the
two principle differences between classical and quantum
computing: (1) information is represented as quantum
bits, and (2) information interactions are performed us-
ing unitary transformations. These two changes allow
Deutsch’s problem to be solved in O(N), rather than in
O(exp N) time. In our example, physical distance was
used to artificially elevate the cost of calculating f(z);
this is not needed in general, where f(r) may be in-
herently difficult to calculate. We shall study next how
qubits can be generated, manipulated, interacted, and
measured.

III. COMPONENTS OF A QUANTUM
COMPUTER

The nature of the physical realization of the algorithm
of Figure EI depends most on the representation chosen
for the quantum bit. As we mentioned, two-level atoms
are one possibility. Single electrons, solitons, magnetic
flux quanta, nuclear spins, and quantum dots are other
possibilities which have been considered. We have chosen
to represent qubits as single photons, primarily because
almost all the required components (for a single photon
quantum computer) exist today, but also because quan-
tum optics is a well-developed field in which noise is a
thoroughly understood subject. However, we believe that
there are some general limitations governing all qubit rep-
resentations, and our goal is to try to elucidate those, so
despite our use of quantum optics terminology, it should
be kept in mind that many of our conclusions are appli-
cable to other systems as well.

Given that we are using |0) (the vacuum state) and |1)
(the single photon state) to represent logical zero and
one, respectively, we must answer the following three
questions to construct our quantum computer to solve
Deutsch’s problem:

(1) How is a superposition state prepared?
(2) What unitary transform is used to calculate f(x)?

(3) What interference experiment is performed to de-
termine the final result?

That is, we need devices to perform the unitary opera-
tions M, Uy, and S, and an architecture which provides
a definite phase reference so as to allow the final interfer-
ence experiment to be performed. We now show how the
traditional tools of optics can be used to fulfill our needs.
We shall use beamsplitters, mirrors, phase shifters, and
Kerr media.

The first task is to create a superposition state. It is
possible in principle to create the state

1

|¢) 7

[10)+11)] (3.1)



but we have a simpler alternative. The ordinary 50/50
optical beamsplitter [B,E] acting on modes a and b is
described by the quantum operator B, shown in Figure E
Let us label states as |ab). A beamsplitter with input [01)
gives the output

1
V2

Now comes our first trick. Let us represent a single qubit
by a pair of modes, such that [01) and |10) are logical zero
and one, respectively. This dual-rail representation of a
logical state embeds an elementary form of error correc-
tion which will be useful later. With this representation,
we see that a simple beamsplitter can be used to generate
the desired superposition state of logical zero and one.

Next, we must calculate f(z) using a unitary trans-
form. Since f(z) is a mapping from Z — Z5, we may
consider it to be calculable by an acyclic boolean cir-
cuit. It is therefore possible to implement it using a cas-
cade of reversible logic gates, such as the Fredkin gate
[@] For example, consider the two-bit Deutsch prob-
lem. Here, 0 < z < 4, and there exist eight possible
functions which Bob may choose (Table [l). Two circuits
which can be used to implement f(z) are shown in Fig-
ure EB. Also shown are circuits for the one-bit problem,
where 0 < z < 2 (Table [[). The reversible logic circuits
correspond directly to unitary operators which may be
implemented as quantum-mechanical transforms. This is
done simply by using a quantum Fredkin gate in place of
the classical one.

Note that this technique, of utilizing a reversible logic
implementation to determine the unitary operator neces-
sary to implement a classical function, is valid in the gen-
eral case. For example, Shor’s algorithm requires the cal-
culation of * mod N, for which the proper unitary trans-
form may be arrived at through analysis of the required
reversible logic circuit. Also note that we have chosen
the Fredkin gate in favor of the Toffoli gate, because
conservative invertible logic gates conserve the number
of “ones” and therefore are possibly more amicable to
qubit representations where a logical one implies exis-
tence of some energy packet (as will be the case for our
system) [1§]

An optical realization of the quantum Fredkin gate
(Figure E) has been proposed [E], and is understood well.
It is simply a nonlinear Mach-Zehnder interferometer,
with an external control signal which causes the exchange
of a and b by inducing a relative 7 phase shift in one arm
via cross-phase modulation in the Kerr medium. This de-
vice may be viewed as a “controlled beamsplitter,” where
the c-input determines the angle of a beamsplitter with
inputs a and b. We shall let x = 7, such that when
cfe = 1, the Fredkin operator F acts on a and b just like
a beamsplitter with angle 7/2, i.e., F|101) = —|011) and
F|011) = |101), where the state is |abc). Note that when
cfe = 0, the Fredkin operator is the identity, F' = I.

Bl01) = [|01> n |10>] . (3.2)

Note that each of the components of our quantum com-
puter, which operate on dual-rail qubit representations,
have a corresponding description in the traditional pic-
ture of single-rail qubit functions. A two-input beam-
splitter operating on modes a and a is equivalent to
Deutsch’s one-input /NOT gate [[L9] acting on the qubit
represented by the pair {a,a}. Similarly, three three-
input Fredkin gates acting on modes a, a, b, b, ¢, and
T can perform any thee-input Toffoli gate transform on
the three quibits represented by the pairs {a,a}, {b,b},
and {c,c} [R(; in this sense, the Fredkin gate is close to
DiVincenzo’s “controlled-rotation” gate [E] Incidentally,
since it has been shown that these traditional gates are
“universal,” in the sense that they can be cascaded to
synthesize any arbitrary quantum computing device, it
follows that our component set is also universal.

One more unitary operator which is needed is the phase
shift S performed by Alice after receiving the first letter
back from Bob. This is accomplished using a 7 phase
delay. Finally, the task of interference and measurement
can be performed by using an interferometer and ideal
photon counters. Alice can create and decorrelate super-
positions using beamsplitters and communicate to Bob
by sending him photons; and Bob can calculate his func-
tion using Fredkin gates. Thus, the Deutsch-Jozsa quan-
tum algorithm may be implemented using the traditional
components of quantum optics. This viewpoint will be
useful in analyzing the physics of our machine as we as-
semble it in the following section.

IV. THE MACHINE

The one-bit Deutsch problem is the simple case where
Alice sends Bob a value of z = 0 or z = 1, and Bob replies
with f(z), where he has chosen one of the four functions
shown in Table @ Clearly, in the classical case, Alice can
achieve her goal of determining the type of Bob’s function
by sending Bob just two queries. The quantum solution
can be achieved with the same number of queries, so there
is no time advantage in this case. However, it is worth-
while to consider precisely how the quantum algorithm
is implemented to understand the role which quantum
coherence plays.

The machine which we propose is diagrammed in Fig-
ure E The general operation is as follows. Alice prepares
two qubits {a, b} and {c,d}, each of which is represented
by a dual-rail single-photon eigenstate. Operationally,
this means that she sends single photon eigenstates si-
multaneously into modes d and b, and the vacuum state
into the other two. The {c,d} qubit is passed through
a /NOT gate which implemented by a beamsplitter to
prepare a value of  which is in a 50/50 superposition of
0 and 1. This qubit is passed along with the scratch-pad
qubit {a,b} to Bob. Bob uses a quantum Fredkin gate
and three classical switches to perform his calculation,



and returns f(x) in the scratch-pad. Alice gives the re-
sult a relative m phase shift, then allows Bob to invert
his first transform. Finally, Alice sends the {c,d} qubit
through a final beamsplitter, and measures the number
of photons she receives in all four modes. In the absence
of error, the detector for mode d tells Alice the type of
Bob’s function with certainty, from a single execution of
the machine.

Let us now analyze the behavior of this machine by
calculating the states |¢;), defined as

[tho) = Alice’s initial state

|t)1) = Superposition state sent to Bob

|th2) = Result returned to Alice the first time
|tbs) = Phase shifted state sent back to Bob
|th4) = Result returned to Alice the second time
|ts) = Alice’s final state, after decorrelation .

We shall label the states as |abcd), and use the fact that
S acts on mode a, B acts on ¢ and d, and Uy acts on
a, b, and c. We may think of mode c of state |¢)1) as
the value of x prepared by Alice to send to Bob, and
mode a of state [12) as the value of f(z) returned by
Bob. When k;ky = 00, the c and d modes are completely
decoupled from the lower circuit. Using our beamsplitter
convention, the states are thus

o) = [0101) (4.1)
1) = Blab) = 7 [10101) + [0110)] (4.2)
|V4) = |¥3) = [¥2) = |21) (4.3)
ls) = Bl|iha) = 0101). (4.4)

This is the expected result, because ¢ and d form an in-
dependent, balanced Mach-Zehnder interferometer, and
since the control input to the Fredkin gate is zero, no
switching occurs, and the output state is the same as the
input. Note that the result is a pure state, and so the
photon number measurement result is not stochastic. If
the function chosen by Bob is k1kg = 01, the result is
similar; this time, the phase shift S interacts with the
photon input to mode b, giving us

|tho) = |0101) (4.5)
1) = % [|0101> n |0110>} (4.6)
Ip2) = % [|1001> n |1010>} (4.7)
) = Sla) = = [~100n) — poo)] - (48)
Ia) = % [—|0101> - |0110>} (4.9)
|¢5) = BT[¢hs) = —[0101). (4.10)

Both these results are trivial, since whenever k; = 0, the
result returned by Bob, f(z), is independent of .

However, a nontrivial output results when k; = 1.
Consider ki1ky = 10. Here, Bob’s transform Uy, = F
is a Fredkin gate acting on a, b, and c, and we get

) = |0101) (4.11)
1) = Blio) = % [|0101> + |0110>} (4.12)
) = Up,oltbr) = 7 [|0101> + |1010>} (4.13)
3) = S|bo) = 7 [|0101> |1010>} (4.14)
[tha) = U gy |t65) = ﬁ [l0101) — J0110)]  (4.15)
[s) = Bilibs) = —[0110). (4.16)

This result can be understood by realizing that if the con-
trol signal input to a quantum Fredkin gate is a superpo-
sition state, then the outputs will also be superposition
states. Thus, the state |i)2) returned by Bob leaves y in
a superposition state, and since the phase shift S has an
effect only when its input is |1) (i.e., not the vacuum), it
“filters” out and marks those cases where f(x) has odd
parity. This nontrivial result is obtained by virtue of the

quantum coherence between all four states. The result

for k1kg = 11 is similar:
|tho) = 10101) (4.17)

1

[91) = Bluo) = = [J0101) + o110} (4.18)

1
iz) = Uplibr) = % [11001) + J0110)]  (4.19)
[s) = Sa) = —= [—|1001> 0110)] (4.20)

—_ gyt [ _

[9a) = U g lis) = = = [lonoy —joron)]  (a2n)
¢5) = BT[¢4) = (0110) . (4.22)

Note that the output is very different when k; is zero or
one. Let z be the measurement result for mode d. When
k1 = 0, the result is z = 1, and Alice’s correct conclusion
is that Bob’s function is type 1. Likewise, when k; = 1,
Alice finds that z = 0, and concludes that Bob’s function
is type 2.

Another way to understand physically what is happen-
ing is to reduce the circuit by breaking the abstraction
barrier around Bob’s apparatus, and taking advantage
of the fact that a 7 phase shift sandwiched between two
beamsplitters is just a crossover switch. We consider the
k1ko = 10 case, where the circuit reduces to become that
shown in Figure EA. We have two interferometers linked
by Kerr media; in the bottom interferometer, the pho-
ton is split at the first beamsplitter. If it takes the up-
per path, then it causes a 7 phase shift in mode ¢ via



cross-phase modulation in the first Kerr medium. Al-
ternatively, if the photon takes the bottom path, it also
causes a m phase shift in ¢, this time through the second
Kerr medium. FEither way, the result is the same; the
upper interferometer is unbalanced by 7, and thus its in-
puts are exchanged to give the outputs. This explains
why the output is |[¢5) = |0110) in Eq.(jt.1¢). Note the
usefulness of the Everett many-worlds interpretation of
quantum mechanics [@] in explaining the operation of
this quantum computer. Another interesting observation
is that if k&1 = 1, then inserting and removing the phase
shift S should have the effect of turing k7 on and off.
This effect is the signature of quantum parallelism in our
apparatus.

Finally, it is interesting to consider what happens if
classical operation of this machine is attempted. If a co-
herent state |a) is used to represent logical one, and the
vacuum |0) as logical zero, the machine will fail in the
following way: the measurement results will be indepen-
dent of whether S is in-place or removed. Consider the
ki1ko = 10 case, and simplify the circuit to the two cir-
cumstances shown in Figure [l Now, it is well known
that the outputs of a beamsplitter fed with a coherent
state and a vacuum input are coherent states with half
the expected photon number,

Bl0,a) = |a/V2, —a/V?2),

since this is just the expected classical behavior. In this
case, both arms of the lower interferometer will contain
the same number of photons, so the photons in mode
¢ will receive the same cross-phase modulation in both
cases. When S is in-place, ¢ will get a phase shift once
from b and once from a, and when S is removed, ¢ will
be phase shifted twice by b. Since the amount of shift is
the same in either case, the measurement result is inde-
pendent of presence of S.

This shows that quantum parallelism does not occur
in our machine under classical operation. This is not a
surprising result, since a beamsplitter does not create a
Schrédinger cat state of |0) and |«) from a coherent state
input.

(4.23)

V. ERROR CORRECTION

An important feature of our simple quantum computer
is its use of a dual-rail qubit representation. Given cor-
rect input preparation, we expect at all times that a sin-
gle photon exists in either mode c or d, but not both; like-
wise for modes a and b. This feature allows us to detect
certain cases when information is lost from the computer,
and reject the faulty data. Although this error correction
scheme is simple-minded and does not solve the general
quantum error correction problem, it is simple to imple-
ment, and effective in reducing the probability of error,
as we shall see in this section.

Because the machine operates deterministically under
perfect conditions, error correction is easy. If the mea-
surement result for the four modes ever changes without
any change of the inputs or the switch conditions, then
somewhere, a random process must be interacting with
the qubits in the machine. For example, measurement
of a total of zero or one photons at the output is indica-
tive of a loss process, while measurement of more than
two photons suggests some error in preparation of the in-
puts. Assuming that input preparation is always perfect,
we may correct for random errors by rejecting all execu-
tions which result in one of |0000), |0001), |0010), [0100),
or |1000). We may also reject [1010) and |1001), since we
know a priori that the scratch-pad (qubit {a, b}) should
remain logically unchanged. When rejection occurs, we
perform a re-trial execution.

Let us now consider a specific decoherence model. The
Kerr medium used by Bob in his quantum Fredkin gate
is experimentally known to be lossy [@], and we may
model this by inserting a loss mechanism in modes b and
c. Without loss of generality, we consider just the ki1ko =
10 case, and imagine having loss occur only during the
second instantiation of Bob’s apparatus. Specifically, just
as before, we have

lyhs) = SU,, B|l0101) (5.1)

as the state sent by Alice to Bob in her second com-
munication. We now dismantle Bob’s apparatus; in
the absence of decoherence, Bob performs the transform
Uty = Ban Ko B, , where By, is the usual 50/50 beam-
splitter acting on modes a and b, and K3, = explimbibcic]
is the Kerr operator acting on modes b and c. However,
we shall consider instead Ufm = BabeFchcBlbu where
T'; is a non-unitary amplitude damping operator acting
on mode i. The formal operation of I'; is best described
by its action on a general single qubit density matrix,

T; |:poo pou :| = [ poo + (1 —e™7)pna 67V/2p01

i 1 —~/2 _
po p1n | ° e "2p1g e Tp11

(5.2)

In other words, I'; describes the amplitude damping due
to a Caldeira-Leggett type coupling [@] of mode i to
the environment, with coupling constant v. We concern
ourselves only with the reduced density matrix of the
system here; a good description of this procedure can be
found in standard quantum-optics textbooks [R4].

The calculation of the output result is straightforward
using density matrices. We get

[¥3a) = Ban|t3)
P3a = |¥3a)(¥3al
p3y = ToTepsal IT]
P3d = BaprBdKTBZb
ps = Blps.B,



where the density matrix ps, describes the input to the
loss medium, psp is the input to the Kerr medium (cal-
culated using Eq. @), p3q is the output of Bob’s appa-
ratus, and py is the final output. The diagonal elements
of ps give us the final measurement result probabilities.
Physically, we expect errors to occur because the loss of
photons results in the possibility of the second Fredkin
gate failing to switch. Thus, loss either causes an incor-
rect total output photon count, or results in the incorrect
location of an output photon.

Without error correction, we simply look at the mea-
surement result for mode d. Since the expected result is
that z = 0 for the k1kyp = 10 case, we find that the error
probability is

1
Pnogc = - [1 +e 7 — 2e37/2| | (5.8)

4

On the other hand, if we perform error correction by

rejecting all illegal results, then the error probability is

given by the relative probability of getting |0101) (the

wrong answer) to [0110) (the right answer),

Pec = - [1—sech 2 5.9

EC—Z{ sec 2}. (5.9)

The dramatic improvement in our error rate given by use

of the dual-rail qubit error correction scheme is shown in

Figure ﬂ Work is currently in progress to extend these

results to consider other noise sources, such as phase ran-
domization.

It is possible to generalize our results to the N-bit
Deutsch problem, using the techniques outlined in the
previous two sections, although we shall not do so here.
Rather, let us summarize the findings from the study of
our simple quantum computer: (1) the concept of quan-
tum parallelism, demonstrated through the simultaneous
calculation of f(x) for two values of z, is not in conflict
with any fundamental principle of physics, or any funda-
mental source of noise that is apparent in our system, and
(2) rudimentary error correction using a dual-rail qubit
representation is simple to apply to a quantum computer,
and indeed can be effective in indicating coherence loss or
improper input preparation. These advances are hopeful
signs of the eventual practicality of quantum computing.

VI. CONCLUSION

The experimental realization of a quantum computer
is a difficult proposition. By definition, unitary evolution
requires complete isolation from the environment. How-
ever, at the same time, it must be possible for qubits to
interact with each other, so that information processing
can occur. This dilemma goes to the heart of a tradeoff
that is central to the practicality of quantum computing.

We chose to use single photons as representations of a
qubit, in part because it is easy to create superpositions

of single photons using a normal beamsplitter. However,
it turns out that it is difficult to find a nonlinear optical
material with a x(3) coefficient sufficiently strong to al-
low two single photons to give each other 7 cross phase
modulation. In contrast, it is easy to cross-phase mod-
ulate two single electrons, via the Coulomb interaction
(g, but difficult to fabricate a 50/50 electron beamsplit-
ter shorter than the dephasing length in a high-mobility
semiconductor electron gas. The tradeoff is the interac-
tion strength; it seems that in general, if bits strongly
interact, then it is easy to make them process informa-
tion, but difficult to put them into superposition states.

Another general observation comes from contemplat-
ing the structure of our quantum computer. There are
three interferometers in this simple one-bit machine! The
problem is that quantum computing involves the storage
and manipulation of information in canonically conjugate
degrees of freedom. For example, in our apparatus, in-
formation is encoded both in the photon number (in each
mode) and the phase of the photon. Interferometers are
used to convert between the two representations. This
is fine, in our system, because it is feasible to construct
stable optical interferometers. However, if an alternate,
massive representation of a qubit were chosen, then it
would rapidly become difficult to build stable interfer-
ometers, because of the shortness of typical de Broglie
wavelengths.

Both of the above problems deal with coherence. There
is also the issue of timing. The quantum computer envi-
sioned here is ballistic. Although the machine we present
is, in principle, perfectly reversible, we have implicitly as-
sumed that no scattering takes place within the system,
because such effects would lead to timing jitter which
would cause the malfunctioning of the machine. That
is because the logical state of our machine is distributed
among four modes, and we cannot deal with effects which
cause temporal synchronization to be lost. The only so-
lution we have is that given to us by our simple error cor-
rection method; in the event of a detected error, throw
out the execution trial and try again.

Despite these problems, we believe that Nature favors
quantum computing with single photon states in sev-
eral ways. First, it is very easy to create superposition
states using a beamsplitter. These states have been called
Schrédinger kittens because of their robustness compared
to macroscopic superposition states which are more mas-
sive. Also, transformations such as the phase shift S have
simple realizations, because a'a is the number operator
for a single photon, rather than for something macro-
scopic. These features suggest that single photons (or
single electrons) are appropriate physical realizations of
quantum bits.

Furthermore, we believe that imminent technological
advances in the area of single photonics may provide some
impetus to the realization of our machine. In particu-
lar, we suggest that the single photon turnstile device



[@] may be the solution for generating a quantum bit
source with high spectral purity and a well defined clock.
This would give us delocalized states with a high Kerr
interaction cross-section, and robustness against timing
errors. Also, we hope for a new generation of single-
photon detectors, such as the single-photon gate FET
[B7 and new avalanche photodetectors Rg]. Finally, we
look forward to new nonlinear optical interactions which
may give us single-photon driven switches by coherently
converting a photon to and from some other particle (e.g.,
the exiton-polariton) which has a larger nonlinear inter-
action strength [RJ].

Realization of our simple quantum computer using op-
tical components is attractive because of the simplic-
ity of our proposal. Because of mirror symmetry, only
one quantum logic gate need be implemented. Further-
more, as a practical initial test of quanutum parallelism
(and the feasibility of maintaining quantum coherence
through a nonlinear medium), Kerr media with y <
may be used. In this case, insertion and removal of
the phase shift S will still give a statistical signature
showing whether classical or quantum operation has been
achieved.

Our design of a simple quantum computer has laid
a foundation upon which more complicated and gen-
eral purpose systems may be formulated. By describing
quantum computation in terms of the traditional tools of
quantum optics, and by introducing a system complete
with rudimentary error correction, we have constructed
an simple framework for analyzing the impact of decoher-
ence, and evaluating the reality of quantum computation.
We hope that our work will lead to a future experiment
to demonstrate the practicality of quantum computing.
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1 2o fooo foor foro forr fioo fior  fio  finn
0 0 0 1 0 1 0 1 0 1
0 1 0 1 1 0 0 1 1 0
1 0 0 1 0 1 1 0 1 0
1 1 0 1 1 0 1 0 0 1
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TABLE 1. All possible functions fi,k, ko (z) for 0 < x < 4.
fooo and foo1 are type 1, while the rest are type 2.

x foo for fio fu
0 0 1 0 1
1 0 1 1 0

TABLE II. All possible functions fi,x,(z) for 0 < z < 2.
foo and fo1 are type 1, while the rest are type 2.

FIG. 1. Algorithm for solving Deutsch’s problem using a
quantum computer.

FIG. 2. Unitary transforms for the components of our
quantum computer. The operators a and a' are the usual
annihilation and creation operators.

FIG. 3. Boolean logic (left) and reversible logic (right) cir-
cuits for the calculation of the (A) one-bit and (B) two-bit
functions f(x). ko, k1, and k2 control the classical switches
which determine the function calculated. They are set (se-
cretly) by Bob.

FIG. 4. Complete quantum computer system used to solve
the one-bit Deutsch problem. The apparatus in the dashed
box is used by Bob to calculate fx(z), and everything else
belongs to Alice. In principle, it is not necessary to send
mode d to Bob, although it may simplify the implementation
in practice.

FIG. 5. Simplified versions of the quantum computer cir-
cuit when ki1ko = 10, Bob’s apparatus is merged in, and (A)
the 7 phase shift S is in-place, or (B) S is removed.

FIG. 6. Error probability for the final measurement result
in the kiko = 10 case, with and without error correction
(lower and upper curves). As loss increases to infinity, the
error correction scheme becomes ineffective because the pho-
tons become localized in an arm of the interferometer, but for
small 7, the improvement is substantial; Pyogc ~ 7/2 and
Prc ~ 72/16, where loss is 4.34~y [dB].
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