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Abstract

In the past year many developments have taken place in the area of
quantum error corrections. Recently Shor showed how to perform fault
tolerant quantum computation when, 7, the probability for a fault in
one time step per qubit or per gate, is polylogarithmically small. This
paper closes the gap and shows how to perform fault tolerant quan-
tum computation when the error probability, i, is smaller than some
constant threshold, 79. The cost is polylogarithmic in time and space,
and no measurements are used during the quantum computation. The
same result is shown also for quantum circuits which operate on nearest
neighbors only.

To achieve this noise resistance, we use concatenated quantum error
correcting codes. The scheme presented is general, and works with any
quantum code, that satisfies certain restrictions, namely that it is a
“proper quantum code”. The constant threshold 7y is a function of
the parameters of the specific proper code used.

We present two explicit classes of proper quantum codes. The first
class generalizes classical secret sharing with polynomials. The codes
are defined over a field with p elements, which means that the elemen-
tary quantum particle is not a qubit but a “qupit”. The second class
uses a known class of quantum codes and converts it to a proper code.

We estimate the threshold 1y to be ~ 107%. Hopefully, this paper
motivates a search for proper quantum codes with higher thresholds,
at which point quantum computation becomes practical.
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1 Introduction

Quantum computation[22, 23, 74] is believed to be more powerful than clas-
sical computation, due to oracle results[64, 9] and Shor’s algorithm[61].
It is yet unclear whether and how quantum computers will be physically
realizable,[49, 25, 18] but as any physical system, they in principle will be
subjected to noise, such as decoherence[75, 71, 53], and inaccuracies. With-
out error corrections, the effect of noise can accumulate and ruin the en-
tire computation[71, 16], hence the computation must be protected. Even
the simpler question of protecting quantum information is harder than the
classical analog because one must also protect the quantum correlations be-
tween the quantum bits (qubits). However, it was shown [12, 67] that good
quantum error correcting codes exist, a result which was followed by many
explicit examples(ex: [62, 51]). This does not trivially imply the existence of
noise resistant quantum computation, since due to computation the faults
propagate. One must be able to compute without allowing the errors to
propagate too much. Recently Shor[63] showed how to use quantum codes
in order to perform fault tolerant quantum computation when the noise
rate, or the fault probability each time step, per qubit or gate, is polylog-
arithmically small. In this paper we improve this result and show how to
perform fault tolerant quantum computation in the presence of constant
noise rate, which is what one might expect in a real physical system. The
cost is polylogarithmic cost in time and size.

The error corrections which have been described so far use a combina-
tion of classical and quantum operations. We would like to define a model
of noisy quantum computation [3], such that errors and error corrections
can be described entirely inside this model. In this paper we are able to
prove the main result due to working in such a formal framework. Sequen-
tial quantum computation can not be noise resistant[2], so we work with
quantum circuits[23, 74]. As the state of a noisy quantum system is in gen-
eral a probability distribution over pure states, i.e. a mized state[59], and
not merely a pure state as in the standard model, we use quantum circuits
with mixed states[3]. Since noise is a dynamic process which depends on
time, the circuit will be divided to levels, or time steps. Unlike Yao[74] we
allow qubits to be input and output at different times to the circuit. This is
crucial, since with the restriction that all qubits are initialized at time 0, it
is not possible to compute fault tolerantly without an exponential blowup in
the size of the circuit[4]. Between the time steps, we add the noise process,
which is a probabilistic process: each qubit or gate undergoes a fault with
independent probability 1 per step, and 7 is referred to as the noise rate.
The list of times and places where faults had occurred, namely the fault
path, is random, and naturally, the function that the circuit computes is a
weighted average over the noise process.

Let us first describe how one can protect quantum information against
noise, using quantum error correcting codes[12, 67]. As in classical linear
block codes, a quantum error correcting code spreads the state of each qubit
on a number of qubits, called a “block”. The code is said to correct d errors
if the whole state is recoverable given that not more than d errors occurred
in each block. The difference from classical codes is that the quantum cor-



relations should be recovered as well, and not only the logical states of the
qubits. It turns out that applying classical error corrections in one basis
of the Quantum space can correct the logical states, while applying classi-
cal error corrections in some other basis corresponds to corrections of the
quantum correlations.

In order to protect a quantum computation against faults, one can try to
compute on encoded states, and not on the states themselves, using quantum
codes. The circuit M; which will compute on encoded states is defined
as a simulation of the original circuit My. A qubit in the original circuit
transforms to a block of qubits in the simulating circuit, and each time
step transforms to a working period of several time steps. To simulate the
computation done in the t'th time step in Mj, we will apply in M; the
analog computation, on encoded states. Each gate in My will transform
to some “procedure” in M7, which computes this gate on encoded states.
The procedure might require ancilla qubits, so these are added to the circuit
Mj, and are initialized only when needed. If M; is initialized with some
encoded state, we expect this state to evolve by the computation along some
“trajectory”, such that at the end of each working period it encodes the
correct corresponding state of My. The input and output to M; will simply
be a duplication of the inputs and outputs of My, on the corresponding
blocks. We will therefore need to add on each block, before computation
begins, an input procedure, that transforms the duplicated input, i.e a string
of 0's or a string of 1’s, to the encoding state |Sy >, or [S1 >. At the end
of the computation we will need the opposite transformation, so we will use
an output procedure that transforms a block in the state |Sp > or |S1 > back
to a string of 0’s or 1's.

Computing on encoded quantum states does not automatically provide
protection against faults, since errors accumulate, and when the damage
has effected too many qubits in one block, the correct state is no longer
recoverable. In order to prevent accumulation of errors, error corrections
should be applied all the time, and so in each working period in M7 we will
add a step of error corrections of each block. The working period will be
divided to two stages: a computation stage and a correction stage. The idea
is therefore to apply alternately computation stages and correction stages,
hoping that during the computation stage the damage that accumulated is
still small enough so that the corrections are still able to correct it. One
should notice, however, that this “hope” does not always come true. During
the computation faults can spread to places not in the fault path. This can
happen if a gate operates on a damaged qubit and some “correct” qubits-
in general, this can cause all the qubits that participate in the gate to be
damaged. If for example, a gate procedure consists of one gate operating on
the whole block, then even one fault can cause an uncorrectable error. The
procedures should be designed in such a way that a fault can not effect all
the qubits in the block. In general, a fault in qubit ¢ at time ¢ can effect
qubit ¢’ at time #' > t if there is a path in the circuit connecting the points
(g,t) and (¢',t"). Define the “spread” of a procedure as the maximal number
of qubits in each block in the output of the procedure, which are effected
by a fault that happened in this procedure. If we use only procedures with
small spread, the error corrections will still be able to correct the damage



using the undamaged qubits, provided that not too many errors happened
during the computation stage in each procedure. We are actually looking
for a pair consisting of a quantum code which can correct d errors, and a
corresponding universal set of gates, such that their procedures, with respect
to the code, allow one fault to spread to at most d qubits. Since the error
corrections, input, and output procedures are also subjected to faults, we
need them to have small spread too. Such codes, with the corresponding
universal set of gates, will be called quantum computation codes.

We now want to show that the reliability of the simulating circuit is larger
than that of the original circuit. In the original circuit, the occurrence of one
fault may cause the computation to fail. In contrast, the simulating circuit
can tolerate a number of errors, say k, in each procedure, since they are
immediately corrected in the following stage. The effective noise rate of M;
is thus a function of the probability for more than k errors in a procedure,
and it will be smaller than the actual noise rate 7, if the procedures are not
too large. However, it seems that an improvement from a constant noise rate
to polynomially small effective noise rate, as we need for fault tolerance, is
hard to achieve in the above scheme. In [63] Shor shows how to apply the
above scheme to achieve fault tolerance with polylogarithmically small noise
rate, 7.

To improve this result, we use concatenated simulations, which general-
izes the works of Tsirelson [19] and Gac’s [27] to the quantum case. The
idea is that the effective noise rate of the simulating circuit can be decreased
by simulating it again, and so on for several levels. It will suffice that each
level of simulation improves only slightly the effective noise rate, since the
improvement is exponential in the number of levels. Such a small improve-
ment can be achieved when using a code of constant block size, if the noise
rate is smaller than some constant threshold 7.

The picture is hierarchical: Each qubit in the original circuit transforms
to a block of qubits in the next level, and they in their turn transform to
a block of blocks in the second simulation and so on. A gate in the orig-
inal circuit transforms to a procedure in the next level, which transforms
to a larger procedure containing smaller procedures in the next level and
so on. The final circuit computes in all the levels: The largest procedures,
computing on the largest (highest level) blocks, correspond to operations on
qubits in the original circuit. The smaller procedures, operating on smaller
blocks, correspond to computation in lower levels. Note, that each level
simulates the error corrections in the previous level, and adds error correc-
tions in the current level. The final circuit, thus, includes error corrections
of all the levels, where during the computation of error corrections of larger
blocks smaller blocks of lower levels are being corrected. The lower the level,
the more often error corrections of this level are applied, which is in corre-
spondence with the fact that smaller blocks are more likely to be quickly
damaged.

We are interested in how far the state of the noisy final circuit is, from
the correct one. Naturally, due to the hierarchical structure of this scheme,
we define the metric recursively: A block in the lowest level is said to be
close to it’s correct state if it does not have too many errors, and a higher
level block is “close” to it’s correct state if it does not contain too many



blocks of the previous level which are far from their correct state. If the
state is close to the correct state in this metric, we say that the set of errors
is sparse. Which set of faults does not cause the state to be too far from
correct in the above metric? The answer is recursive too: A computation of
the lowest level procedure is said to be undamaged if not too many faults
occurred in it. Computation of higher level procedures are not damaged if
they do not contain too many lower level procedures which are damaged. A
fault path will be called sparse, if the computations of all the highest level
procedures are not damaged. A major portion of the effort in this paper is
applied to showing that if the set of faults is sparse enough, the distance of
the state from the correct state, in the above metric, is kept bounded. It
will be rather easy to show that the probability for the set of faults not to
be sparse decays exponentially with the number of levels. In order to show
that, we use the fact that the places where errors occur are random. The
result holds also in a more general noise model, in which for all integers k
and for any set of k points, the probability that a fault occured in all the
points is bounded by 7*, and an adversary can pick a transformation that
operates on all the damaged qubits together.

Not any quantum computation code can be used in the above scheme.
There are two restrictions:(1) When applying the simulation, we replace the
gates by fault tolerant procedures. Since we want to simulate the new circuit
as well, we need that these procedures use gates that can be replaced by fault
tolerant procedures as well. Hence the universal set of gates associated with
the code, must have fault tolerant procedures which use gates from the same
universal set of gates. This is the “closeness” restriction. (2) Let us consider
a two level simulation. If a simulated error correction operates on an encoded
wrong word, it clearly corrects it. But what happens if it gets as an input
some state which does not encode any word? The simulated error correction
“understands” only encoded words. If we demand that error correction in
the lower level corrects any state to some word in the code, then the input
for the error correction of the upper level might be wrong but it will be an
encoded word, so it can be understood and corrected by the upper level.
The second restriction is therefore that the error correction takes any state
to some word in the code. Quantum computation codes which satisfy both
restrictions are called proper quantum computation codes.

We describe two classes of proper quantum computation codes, with
constant block size. We first describe a generalization of the quantum codes
in [12], to codes over F,, with p prime. These codes are defined for general
quantum circuits which consist of particles with p > 2 possible states. We
call such quantum particles qupits, as a generalization to qubits. The proofs
that these are quantum codes[12] transform smoothly from F, to Fj,. The
first example of proper codes is with p = 2. In this example the set of gates
and procedures described in [63] is used, modified to fit the definition of
proper quantum codes. For the second class of proper codes, we recall the
result in [60], showing that a quantum error correction exists if and only if
the environment gains no information about the unencoded data from the
damaged qubits. Hence there is a strong connection between quantum error
correction codes to secret sharing schemes that are used to perform secure
fault-tolerant distributed computation [8]. The second class of quantum



codes is thus the quantum analog of random polynomial codes[8]. To adopt
the techniques of [8] to the quantum setting one can use the same encoding
but instead of selecting a random polynomial to share a secret we pick the
superposition of all those polynomials. The noise threshold turns out to be
larger than ~ 10~6.

The results hold also for quantum circuits which are allowed to operate
only on nearest neighbor qubits (In this case the threshold will be smaller.)
The scheme applies also for corrections of random inaccuracies, but not for
systematic errors. Similar results to those of this paper where independently
discovered by Knill, Laflamme and Zurek[41]. Non binary codes where de-
fined independently also by Chuang[17] and Knill[43].

2 Noisy Quantum Circuits

In this section we recall the definitions of quantum circuits[59, 23, 74] with
mixed states[3], and define noisy quantum circuits[3].

2.1 Pure states

We deal with systems of n two-state quantum particles, or “qubits”. The
pure state of such a system is a unit vector, denoted |a), in the 2" dimen-
sional complex space C2". We view C?" as a tensor product of n two dimen-
sional spaces, each corresponding to a qubit: C?* = C?®... ® C%. As a basis
for C?", we use the 2" orthogonal basic states: |i) = |i1) ® [ig).... ® in),0 <
i < 2", where 1 is in binary representation, and each 7; gets 0 or 1. A general
unit vector |a) in C%" is called a “pure state”, and is a superposition of the
basic states: |a) = Y7, ¢]i), with Y2, |ci|> = 1. |a) corresponds to the
vector vg = (c1,¢2, ..., Con ). vl,, the complex conjugate of v, is denoted (c|.
The inner product between |a) and |5) is (@|8) = (v, v}) The matrix v}vs
is denoted as |a)(S|. An isolated system of n qubits develops in time by a
unitary matrix, of size 2" x 2": |a(t2)) = Ula(t1)). A quantum system in C2"
can be observed by measuring the system. An important measurement is a
basic measurement of a qubit g, of which the possible outcomes are 0,1. For
the state |a) = Y2, ¢;|i), the probability for outcome 0 is py = 1]y =0 |ci|?
and the state of the system will collapse to |5) = pio 24l =0 Cili), (the same
for 1). A unitary operation U on k qubits can be applied on n qubits, n > k,
by taking the extension U of U, i.e. the tensor product of U with an iden-
tity matrix on the other qubits. All definitions can be generalized to circuits
which operate on p—state quantum particles, or qupits. (simply replace 2
by p in the definitions above).

2.1.1 Mixed states

A system which is not ideally isolated from it’s environment is described
by a mized state. There are two equivalent descriptions of mixed states:
mixtures and density matrices. We use density matrices in this paper. A
system in the mixture {a} = {px, |ax)} is with probability py in the pure
state |ag). The rules of development in time and measurements for mixtures
are obtained by applying classical probability to the rules for pure states.



A pure state [a) = >, c;[i) is associated the density matrix pjq) = |a){c
ie. p(i,j) = cicj. A mixture {a} = {p;,|a)}, is associated the density
matrix : pra} = 22 PiP|a,)- A density matrix is thus a 2" x 2", hermitian
positive semi definite complex matrix with ¢r(p) = 1. The operations on
a density matrix are defined such that the correspondence to mixtures is
preserved. If a unitary matrix U transforms the mixture {a} = {p;,|o)}
to {8} = {p,Ules)}, then pygy = Yy piUler){ea|UT = Up(oyUT. A basic
measurement of the j'th qubit in p gives the outcome 0 with the probability
which is the sum of the diagonal terms of p, which relate to the basic states
i with i; = 0: Pr(0) = Y7, p;i6(i; = 0). conditioned that the outcome
is the eigenvalue 0, the resulting density matrix is Og o (p), which is the
minor of p that includes only rows and columns which relate to basic states
i with 4; = 0. (This minor should of course be normalized to have trace
one). Without conditioning on the outcome the resulting density matrix
will be Oo (p) = Pr(0)Og o (p)+ Pr(1)O; o (p). which differs from p, only in
that the entries in p which connected between 0 and 1 on the same qubit,
or coordinate, are put to zero. Given a density matrix p of n qubits, the
reduced density matrix of a subsystem,A, of, say, m qubits is defined as an
average over the states of the other qubits: p|a(i,j) = Yoy p(ik, jk).

2.2 Quantum circuits with mixed states

A quantum unitary gate, g, of order k is a complex unitary matrix of size
2k % 2k A density matrix p will transform by the gate to g o p = UpUT,
where U is the extension of U. A Quantum circuit is a directed acyclic
graph with n inputs and n outputs. Each node v in the graph is labeled
by a quantum gate g,. The in-degree and out-degree of v are equal to
the order of g,. Some of the outputs are labeled “result” to indicate that
these are the qubits that will give the output of the circuit. The wires in
the circuit correspond to qubits. An initial density matrix p transforms by
a circuit @) to a final density matrix QQ o p = g4 0 ... 0 g9 0 g1 o p, where
the gates g;...g1 are applied in a topological order. For an input string ¢,
the initial density matrix is pj;. The output of the circuit is the outcome of
applying basic measurements of the result qubits, on the final density matrix
Qo pj;y- Since the outcomes of measurements are random, the function that
the circuit computes is a probabilistic function, i.e. for input 7 it outputs
strings according to a distribution which depends on s.

2.3 Noisy Quantum Circuits

As any physical system, a quantum system is subjected to noise. The pro-
cess of noise is dynamic and depends on time. We therefore divide the
quantum circuit to time steps. We permit that qubits are input and output
at different times, and we say a qubit is alive from t; to to if it is input to
the circuit at #; and output at fo. The space-time of the noisy quantum
circuit is a two dimensional array, consisting of all the pairs (g, t), of a qubit
g and time ¢, where the qubit ¢ is alive at time t. V(M), the volume of
the circuit M, is the number of points in it’s space-time. In our model of
noisy quantum circuits, between every two time steps, each qubit and each



gate are damaged with independent probability . The damage operates as
follows: A unitary operation operates on the qubit, (or on the qubits that
are output from the gate in the case of a gate damage) and on a state of
the environment (The environment can be represented by m qubits in some
state). This operation results in a density matrix of the n + m qubits. We
reduce this density matrix to the n qubits of the circuit to get the new den-
sity matrix after the damage. The density matrix of the circuit develops
by applying alternately computation steps and noise steps. Each “run” of
the computation is subjected to a specific fault path, which indicates where
and when fault occured. Each run ends up with some output. The function
computed by the noisy quantum circuit is naturally the average over the
outputs, on the probabilistic process of noise.

3 Computing on encoded states

In the following section we define quantum codes and quantum computation
codes. Then it is explained how to improve the reliability of the computation
using quantum computation codes.

3.1 Quantum block codes

A quantum linear block linear code is a function ¢ from the Hilbert space of
a qubit to a Hilbert space of m qubits: ¢ : C2 — C?". m is called the size
of the block in the code. Such a code induces a linear function from C2" to
C?™ in the following way: a pure state in C2", |a) = 3, ¢;|i) will transform
to |B) = X cidli1)Plia)...dlin). A pure state in the image of ¢ is called a
word in the code. The above definition can be extended to density matrices:
A mixed state of n qubits will be encoded by the corresponding probability
over the encoding of the pure states. A mixture of words in the code is also
said to be in the code.

The error in the encoded state is sparse if not too many qubits in each
block are damaged. Using this notion of sparse sets, we can define a metric
on block density matrices. They will be close if the difference between them
is confined to a sparse set of qubits:

Definition 1 Let B be the qubits in n blocks of m qubits. A set A C B
of qubits is said to be k—sparse if in each block there are not more than k
qubits in A. The deviation between py, and po of the qubits B is the minimal
k such that 3A which is a k-sparse set of qubits, and p1|p—a = p2|B—4.

A quantum code is said to correct d errors if there is some correction
procedure, such that when which operating it on all the blocks in any density
matrix that deviates by d from a code word w, we get the correct word w.

3.2 Quantum computation codes

A computation code is a quantum code which provides a way to perform
gates on the encoded states fault tolerantly. The procedure Pg that sim-
ulates a gate g with respect to a quantum code is a sequence of gates
which transforms the encoded state to the encoded output of the gate:



Pg(¢li > ®|0 >) = ¢(go|i >) ®|a >, where we have used extra ancilla
qubits. These qubits are not counted as the inputs or outputs of the pro-
cedure. A quantum procedure is said to have spread [ if no qubit or gate
effects more than [ outputs of the procedure. We will need procedures with
small spread for fault tolerant computation. Since we want to convert any
arbitrary circuit to a more reliable one, we need the set of gates that have
l-spread procedures to be universal.

Definition 2 A quantum block code C is said to be a quantum computation
code with spread | if there exists a universal set of quantum gates G such
that (1) for any gate g € G there exists a procedure P, with respect to C,
with spread [, and (2) There exist correction, input and output procedures
with spread [.

3.3 Improving reliability by block simulations

To simulate some circuit by a quantum computation code, we first convert
it to a circuit which uses only gates from the universal set of the code. Then
we simulate this new circuit as was explained: We now convert each qubit to
a block of qubits, each time step to a working period, and each gate to the
corresponding procedure, and besides that we add in each working period
a correction procedure on each block. Apart from all that, we also add an
input procedure before the first working period of each block and an output
procedure after the last working period of each result block.

The space-time of the simulating circuit M; can be divided to rectangles,
where each rectangle will correspond to one procedure, in the following way:
First, divide the time to alternating stages: computation stages, in which
one time step of M is simulated, i.e. one gate procedures is applied (in
parallel), and a correction stage, in which one error correction procedures
is applied (in parallel). Each stage is a strip in the space time. Each strip
can be divided to rectangles by dividing the qubits to sets: A correction
strip will be divided such that in each rectangle a correction of one block
is computed. In a computation strip, we divide the strip to rectangles by
dividing the qubits to sets, where each set of qubits participates in exactly
one procedure. Each rectangle thus corresponds to one procedure.

We show that if a fault path in M; is such that no more than a few
faults occured in each rectangle, then indeed the computation succeeds. The
number of faults allowed in one rectangle is bounded so that when taking
into account the spread of the fault, the number of qubits effected in each
block at the end of one working period is not too big, so that the density
matrix can still be recovered.

Definition 3 A fault path of My that block simulates My is said to be a
“k—sparse fault path” if no more than k faults occured in each rectangle.

Lemma 1 Let C be a quantum computation code that corrects d errors,
with spread . Let My be a block simulating circuit. Consider a computation
of My subjected to a k—sparse fault path with d > 2kl. At the end of each
working period the density matriz is d— deviated from the correct one.



Proof: We will prove by induction on ¢ a stronger assertion, that at the
end of the t'th working period the density matrix is d/2—deviated from
the correct one. For ¢ = 0 the deviation is zero. Suppose that the density
matrix at the end of the ¢'th working period is d/2-deviated from the correct
matrix. After the computation stage, not more than kI qubits are effected
in each block, so the density matrix is kl + d/2-deviated. Since kl+d/2 < d,
the correction procedure indeed corrects the error, only that during the
corrections new errors occur. Again, the number of effected qubits is not
more than k[ in each block, and all the other qubits transform as they should,
so they are corrected. Hence after the correction procedure the matrix is
kl-deviated. Since kl < d/2 this proves the induction step.l

Lemma 2 If the final density matriz of M1 is d—deviated from the correct
final matriz of M1, then when measuring the result qubits of M1, a majority
of them gives the correct answer of MO.

Proof: Let p0 be the correct final density matrix of M0, describing the
mixed state {a} = {px, |ax >}, where |ax >= 3, cF|i >. Due to the output
procedures, the correct final density matrix, p;, of M1, the mixed state
{B} = {pk,|Br >} where |Bx > is generated from |ay > by duplicating
each qubit m times: |8y >= Y, cF|i%5..i™ >. Let o be a density matrix
which is d—deviated from pl, where 2d < m. The probability to get an n-
string + when measuring p0, equals the probability to get an n-string ¢ when
measuring pl, and taking the majority. We claim that the distribution D on
n — strings generated by measuring all qubits in pl and taking the majority
is the same as the distribution D’, generated when measuring o1 and taking
the majority. Take A to be the maximal set of qubits such that o1|4 = pl|4.
Hence, when measuring the qubits in A, in o1, one gets the same answer on
all the qubits in one block, as in pl. Since 2d < m, these qubits determine
the majority vote. I

The above two lemmas together show that if the faults are sparse, a
majority of the result qubits will give at the end the correct answer. We
can now compute the effective noise rate of M;. The probability of M, to
be correct is (1 — )V (M), We define the effective noise rate of M; to be 1
minus the V' (M)j)’th root of the probability of M; to be correct.

Theorem 1 Let My simulate My by the computation code C, which corrects
d errors, have spread [, with all rectangles smaller than a. The effective noise

a d
is < atl,
rate of M, zs_2< /20 + 1 >7721

Proof: If the fault path in M; is d/2l sparse, a majority of the result
qubits will give the correct answer, by lemmas 1. and 2. The probability
for a rectangle to have more than d/2[ faults is smaller than the number of
possibilities to choose d/2] + 1 points in the rectangle, times the probability
for these points to have a fault. The number of the rectangles in M is less
than 2V (M;). Computing the probability that no rectangle had more than
d/2l faults, and taking the V(Mj)’th root and subtracting from 1 gives the
desired result. I



The effective noise is smaller than 7 if the parameters of the code are
chosen correctly, and in this way one can improve the reliability of the
computation. However, in the above scheme, it seems difficult to find a
code which will give an improvement from a constant 7 to polynomially small
effective noise rate. To achieve such an improvement, we use concatenated
simulations.

4 Concatenated simulations

In this section, we define proper quantum code, and concatenated simula-
tions by such codes. We prove that the reliability of the computation can
be improved to a constant using log(log(n)) levels of simulations, when the
noise is smaller than some constant imposed by the parameters of the code.

4.1 Improving reliability to a constant

We would now like to apply recursively simulations, using the simulation
from the last section for several times. This scheme will work if certain
restrictions are imposed on the quantum computation code:

Definition 4 A quantum computation code which is associated with a set
of gates G is said to be proper if (1) all procedures use only gates from G,
and (2) The correction procedure takes any density matriz to some word in
the code.

Let My be a quantum circuit. We define recursively M,., an r-simulating
circuit of a circuit My by the proper quantum computation code C, as the
simulation by C' of M,_;. The recursive simulations induce a definition of
s-blocks: Every qubit transforms to a block of m qubits in the next level,
and this block transforms to m blocks of m qubits and so on. One qubit
in M,_, transforms to m® qubits in M,. This set of qubits in M, is called
an s-block. An 0-block in M, is simply a qubit. This hierarchy of blocks
requires a definition of a metric which is recursive. A density matrix of M,
is recoverable, i.e close to the correct state, if it deviates on a “sparse” set
of qubits:

Definition 5 Let B be the set of qubits in n r—blocks. An (r,k)-sparse
set of qubits A in B is a set of qubits in which for every r—block in B,
there are at most k (r — 1)—blocks such that the set A in these blocks is
not (r — 1,k) sparse. An (0,k)—sparse set of qubits A is an empty set of
qubits. Two density matrices p1, p2, are said to be (r,k)-deviated if k is the
minimum integer such that there ezist an (r, k)-sparse set of qubits A C B,
with pi1|B—a = p2|B—Aa-

The deviation is a metric, since the union of two sets which are (r, 1), (r, l2)-
sparse respectively is (r,l; + l3) sparse. This is easily shown by induction
onr.

The recursive simulations also induce a definition of s-rectangles: Each
space time point in M,_ transforms to a set of space time points in the
following simulation M, 1), which in their turn transform to more points



in the following levels of the simulation. The set of all these points in M, that
originated from one space time point in M(,_,) are called an s-rectangle. The
definition of s-rectangles defines a division of the space time of M,, and this
division is a refinement of the division to (s + 1)-rectangles. An 0-rectangle
is just a space time point in M,.. Using this hierarchy of rectangles, we define
a notion of “sparse” fault paths. We will show in lemma 3 that given that
the fault path is sparse, the deviation of the state from the correct state is
kept bounded throughout the computation.

Definition 6 A set of space time points in an r—rectangle is said to be
(r, k)-sparse if there are no more than k (r — 1)—rectangles, in which the set
is not (r — 1,k)-sparse. An (0,k)-sparse set in an 0—rectangles (which is
one space time point) is an empty set. A fault path in M, is (r,k)-sparse if
in each r—rectangle, the set is (r, k)—sparse.

We claim that if the fault path is sparse enough, then the error correc-
tions keep the deviation small.

Lemma 3 Let C be a proper code that corrects d errors, with spread l. Let
M, be the r—simulation of My by C. Consider a computation subjected to
an (r,k)-sparse fault path with kl(l +1) < d. At the end of each r—working
period the density matriz is (r,d/2)-deviated from the correct one.

Proof: We first prove by induction on the number of levels r three asser-
tions, together. The first two assertions, when applied alternately for the
r—computation and r—correction stages in M,, will give the desired result.

1. Consider n r—blocks, in a density matrix which is (r, kl)—deviated
from ¢"(pg), where pg is a density matrix of n qubits. After applying
one stage of r—computations on these blocks, simulating the operation
g on pg, with an (r, k) sparse set of faults, the density matrix is (7, d)
deviated from ¢" (g o po)-

2. Consider n r—blocks, in a density matrix p,, which is (r,d) deviated
from a word ¢"(pg), where pg is a density matrix of n qubits. After
applying r—corrections, on all of the r—blocks, with an (r, k) sparse
set of faults, the density matrix is (r, kl) deviated from ¢"(po).

3. Consider n r—blocks, in some density matrix, p,. After applying
r—corrections, on all of the r—blocks, with an (r, k) sparse set of faults,
the density matrix is (r, kl) deviated from a word ¢"(pg), where py is
a density matrix of n qubits.

For r = 0 the proof is trivial. The computations are just faultless, and
(O—corrections are the identity. For instructiveness, let us consider also the
case of r = 1. Claims 1,2 are satisfied merely because we use a computation
code. Claim 3 is satisfied by the extra restriction on the error correction
which a proper code satisfies. Let us now assume all the claims for r, and
prove each of the claims for r + 1. In our proof, we refer to r-correction
stages and r-computation stages. An r-correction stage will start and end
with an (r — 1)-correction stage, and an r-computation stage will start and
end with an (r — 1)-computation stage.



1. We consider an (r+1)—computation stage, (r+1)—simulating the op-
eration g on pg. It can be viewed as a sequence of alternating r—computation
stages and and r-correction stages. ( The number of these r-stages is w.)
Let us consider the density matrices in the trajectory of "1 (pg), at the end
of each of these r—stages. These matrices can be written as ¢"(p}). Where
P = ¢(po) and p¥ = ¢(g o py). Let us assume for a second that all the
r—rectangles in the (r + 1)—stage have (r, k) sparse set of faults. (This as-
sumption is wrong- in each (r+1)—rectangle we might have k r—rectangles in
which the faults are not (r, k) sparse, but we will deal with this in a second.)
Let us also assume that the density matrix we start with is (7, kl)-deviated
from ¢"*1(pg). (Again, a wrong assumption- there might be kI r—blocks in
each (r+1)—block that are not (r, kl)—deviated.) With these assumptions,
we now prove by induction on t that applying an r—computation stage fol-
lowed by an r—correction stage, on a matrix which is (r, kl)-deviated from
¢ (p}), gives a matrix which is (r, kl)-deviated from ¢"(pit!). This is true
by applying the induction assumption of claims 1, and 2. Now, taking into
account our wrong assumptions, the “bad” k r-rectangles and kl r-blocks
which did not obey the assumptions can effect at most [(k + kl) r—blocks
in each (r + 1)—block, at the end of the (r + 1)—stage, since the (r + 1)-
computation stage r—simulates a procedure with spread . So if l(kl+1) < d,
we have that the final density matrix at the end of the (r + 1)—stage is
(r + 1,d)—deviated from the correct one.

2. We consider an (r + 1)—corrections stage of n (r + 1)—blocks. Again,
we view this stage as alternating r—correction stages and r-computation
stages, where the number of r-stages is w. Let us consider the trajectory
(i.e. no errors) starting with ¢"(p1), where p; is a density matrix which
is (1,d)—deviated from some word ¢(pg), and denote the density matrices
in this trajectory at the end of each r—stages by #"(p}). Then since the
(r + 1)—rectangle simulates error correction, and the simulated matrix is
not too deviated, the trajectory which starts with ¢"(p?) = ¢"(p1) will end
with ¢"(p%) = ¢"(¢(po)) = ¢ 1 (po). Now, let us assume, again, that all
the r—rectangles in the (r + 1)—stage have (r, k)-sparse set of faults, and
that the density matrix we start with is (r, d)-deviated from ¢"(p1). Under
these assumptions, induction on ¢ shows that applying an r—correction stage
followed by an r—computation stage, on a matrix which is (r, d)-deviated
from ¢ (p}), gives a matrix which is (r,d)-deviated from ¢"(p{*!). This is
true by applying the induction assumption of claims 1, and 2. So under the
above assumptions, we end up with a matrix which is (r, kl)-deviated from
¢ t1(po), using the fact that the last r—stage is a correction stage. Now, we
actually start the computation with a matrix which is (r + 1, d)—deviated
from ¢"t1(pg). So most of the r—blocks are (r,d)—deviated from ¢"+1(pg),
except maybe d r—blocks in each (r+1)—block which are not. By the induc-
tion stage on claims 2 and 3, after the first stage of r—corrections, most of
the r—blocks are (r, kl)—deviated from ¢"+1(pg), except maybe d r—blocks
in each (r 4+ 1)—block which are (r, kl)—deviated from ¢"(p}). So after the
first r—correction the density matrix is (r, kl)—deviated from ¢"(p1), where
p1 is (1,d)—deviated from ¢(pg). We can now use the induction from be-
fore and say that the final density matrix is (r, kl)-deviated from ¢ +1(py).
We now take into account the fact that there where k r—rectangles in each
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(r 4+ 1)-rectangle where the faults where not (r, k) —sparse. By the fact that
the (r + 1)—correction r—simulates a correction procedure with spread [,
these can effect only kI r—blocks in each (r + 1)—block, at the end of the
(r + 1)—stage, so we have that the final density matrix at the end of the
(r + 1)—stage is (r + 1, kl)—deviated from the correct one, ¢" 1 (pp).

3. We consider one stage of (r + 1)—corrections on the n (r + 1)—blocks
in an arbitrary density matrix. Again, let us assume that the faults in all
the r—rectangles are (r, k)—sparse. By the induction stage on claim 3, after
one stage of r—corrections, the density matrix is (r, kl)—deviated from some
@"(p1). Let us consider the trajectory of ¢"(p1) in the (r + 1)—correction
rectangle. Since it is an r—simulation of a correction, it takes the density
matrix to some word ¢"t1(py). As before, we can prove by induction on
the r—stages that at the end of the (r 4+ 1)—rectangle we end up with a
matrix which is (r, kl)—deviated from ¢"t!(pg), and taking into account
the r—rectangles with faults which are not (r, k)—sparse, we end up with a
density matrix which is (r + 1, kl)—deviated from ¢"+1(py).

We can now use claims 2 and 1 alternately to prove by induction on the
number of r—working period that at the end of each r—working period in
M, the density matrix is (r, kl)—deviated from the correct one. 1

We can now prove the main result of this paper:

Theorem 2 Let C be a quantum computation code, which corrects d errors,
have spread l, and size of all procedures smaller than a. Let My be a quantum
circuit, with size s and depth t. There exists a quantum circuit M, of size
O(s-polylog(s)) and depth O(t-polylog(t)), such that in the presence of noise

1 which satisfies AW+ < 1 M, outputs the correct

a
dii+1)+1 )"
answer with probability > 2/3.

Proof: Set k = d/I(l + 1). If the fault path is (r, k)-sparse, then the final
density matrix is indeed (r,d)-deviated from the correct one, by lemma
3. Measuring all result blocks in a density matrix (r, d)-deviated from the
correct final density matrix, and taking majority in each r-block, gives the
correct answer by an argument similar to that of the proof of lemma 2.
Hence the probability for M, to succeed is larger than the probability for
a fault path to be (r, k)-sparse. Let us show by induction on r that the
probability, P(r), of the faults in an r—rectangle to be (r, k) sparse is higher

(1+e)"

than 1 — 7 , where we set b+l — plte. We can do that

a
k+1 )"
because of the assumption on the parameters, and € is a positive constant.
The probability for an O—rectangle, i.e. one space time point, to have faults
which are (0,k) sparse, i.e. that in this point a fault did not occur, is
1 — 7. For the step of the induction, assume for r, and let us prove for
r + 1. For the faults in an (r + 1)-rectangle to be (r + 1,k) sparse, there
must be at most k r—rectangles in which the fault is not (r, k) sparse. So
a
k+1
assumption. This proves that the probability of success of Mr is > (1 —
n(1+6)")2V(Mo) gince the number of r —rectangles is less than 2V (MO0). Taking

Pr+1)>1- (1 — Pr)k+1 > 1 — n+9™™ "ysing the induction



r = O(log(log(V (My))) gives a constant probability of success. Since the
growth in time and in space is exponential in 7, the cost is polylogarithmic
(We use codes of constant size). Il

Remark: Theorem 2 requires that the code can correct d > 1 errors.
b
9 |7 < 1 where
b is the maximal size of slightly different rectangles, defined to contain a
computation and a correction procedure together. The proof is almost the
same. In some cases this threshold is better. I

A similar result holds for d = 1, with the threshold

5 Explicit proper codes

Linear quantum codes[12] are represented, using classical codes over F,
and shown to be proper for p = 2. A subclass of linear codes, polynomial
quantum codes, is defined and shown to be proper for p > 2.

5.1 Linear quantum codes over F,.

A linear code of length m and dimension k over the field F), is a subspace of
dimension k in F}", where F;" is the m dimensional vector space over the
field of p elements. Given two linear codes C; and Cs such that {0} C Cy C
C1 C F;" consider the following set of quantum states in the Hilbert space
cr™:

Va € Cl: |8, >=p (M k)2 Z la+v > .
veC)

If (al — a2) € Cy then |Sa1 >= |Sa2 >, otherwise < S;1|Sq2 >= 0. Hence
these states construct a basis for a linear subspace of the Hilbert space C?™,
with dimension z = pdm(C1)—dim(C2) =~ Thig subspace is our quantum code.
Define a second basis of this subspace to be:

1 2mi
Va € Cy : |Cy >= — Z w8y > , w=e"r.
\/EbECH/Cz

If C1 and Cy both have minimum weight d, then the quantum code can
correct for t = [%J, by applying classical error corrections with respect to
the code C1, first in the S—basis, and then in the C'—basis. The proofs in
[12] transforms smoothly to this general case.

Theorem 3 For p = 2, linear block codes are proper. The universal set of
gates associated with the code is :

(1) |a,b >— |a,a+ b >,

(2) la >— 12 5,(~1) b >,

(3) la >—— |1 —a >,

(4) la >—— (i)*|a >, and

(5) la,b,c > |a,b,c+ ab >,

where all the addition and multiplication are in Fy(i.e. mod 2). These
ezrist gate procedures, correction, input and output procedures, with respect
to the code which have spread | = 1.



Proof: This set of gates is universal by [63]. We describe input, correction,
output and gate procedures, all with spread 1.

Input procedure: It is enough to show how to generate a state |Sy >
in an ancilla block, since we can apply afterwards a controlled not (gate 1)
from the i'th input bit to the #'th bit in the ancilla, and we get |Sp > or
|S1 > in correspondence with the input. To generate the state |Syp >, we
actually apply a correction procedure with respect to a code which consists
of one word: |Sp > alone. We start with a state |0™ >, and we want to
correct it with respect to the code of one word, |Sy >. First, rotate each bit
around the z axis, using gate 2. We now want to compute the syndrome of
the error. We will compute the syndrome independently m times, one for
each qubit. To compute the j'th bit of the syndrome, we do the following;:
After [63], we will use a cat state, generated in the following way: Start with
|0™ >, apply a rotation around the z axis (gate 2) on the first qubit and
then a controlled not (gate 1) from this qubit to all the other m —1 qubits, to
get %(|Om > +|1™ >). Now apply a controlled not bitwise from the block

we are initializing to the cat state only on the coordinates which in the j'th
raw of H, the parity check matrix of C, are 1. From this cat state apply
a controlled not bitwise to m qubits in |0 >, to imitate a measurement of
the cat state. Now compute from the measured cat state the j'th syndrome
bit, using only gates from the universal set. Compute in this way all the
bits of the syndrome, and now from these bits we can compute whether the
7th bit has an error, as follows: the vector space can be divided to non-
intersecting cosets of the subspace C. Each coset can be written as C-+e
where e is a vector. Each such e gives one possible syndrome.(He = s).
Given the syndrome, we compute the table s— > e, and decide whether a
qubit is wrong by asking whether it is in the support of e, meaning that the
corresponding coordinate in e is 1. Finally apply a controlled not from the
result to the 7'th qubit. This can be done independently for all the qubits.
We have used 2m? ancilla qubits. To see that we indeed get the state Sy >,
note that after the first rotations we have E%;no_l |i >. The corrections will
then take this state to a uniform distribution over all the basic states in C'*,
due to the linearity of the code. The spread of this procedure is 1: a fault
in the cat states, in the first rotations and in the first controlled not gates
can only effect one bit at the end.

Correction procedure: The correction is similar to what is done in
the input procedure (Computing the syndrome with respect to C1, indepen-
dently for each qubit, and correcting the qubits.) There is one difference:
Since the code must be proper, any density matrix must be corrected to some
word in the code. We guarantee this in the following way: Before starting
the correction procedure, Generate another state |Sy > on ancilla qubits, as
in the input procedure. When computing from the #'th copy of a syndrome
whether the i'th qubit is wrong, also compute whether the number of faults
according to the syndrome is larger than d, and write the answer on another
qubit. The controlled not from the result to the i'th qubit is replaced by
a Toffoli gate (gate 5) which also checks if the number of faults is smaller
than d. We also add a gate which swaps the qubit with a qubit from the
state |So > if the number of faults is indeed larger that d, using a Toffoli
gate again. After applying classical error corrections, with respect to the



code C7, we transform to the C'—basis by applying bitwise gate 2, correct
again and rotate back to the S—basis.

Output procedure: The output procedure is applied by computing
independently m times the a from the state |S, >. This procedure requires
m(m + 1) ancilla qubits. First we apply controlled not from each of the
qubits to one of the last m ancilla qubits to simulate m basic measurements
of these qubits[3]. We repeat this operation again to each one of the m blocks
of m ancilla qubits, so we have m copies of the measured state. On each of
these copy we apply an operation that computes the bit that is represented
by this state, using only gates from the universal set. (This might require
more ancilla qubits.) The resulting qubits are the m qubits which carry the
results from these m computations. The spread of this procedure is 1. A
fault in the first stage of copying the qubits m times can only effect one qubit
in each of the copies, and if the number of faults is smaller than the critical
number, the fault has no effect on the resulting qubits. A fault during the
computation of one bit can only effect this bit. So the spread is 1, as long
as the sum of damage in the block and number of faults in the first stage is
smaller than half the minimal distance of the code.

Gate procedures: The procedures of gates 1 — 4 are performed by
applying bitwise the gates on each of the qubits in the block.

Toffoli gate: we define a Toffoli procedure as is described in [63], where
all the measurements are replaced by controlled not gates. The only piece
of this procedure which is not straight forward is creating the ancilla state
|A >, without involving classical operations. To do that, generate m cat
states, |So >™, rotate the first block by applying gate 2 bitwise, and then
copy this block bitwise on all the other blocks, giving the encoded cat state:
%(|So > |So > ...|So > +|S1 > |S1 > ...|S1 >). Generate three such ancilla
states. Also generate |A > +|B > as in [63]. Now apply the transformation:
1Sg > b>e>|d>——— > (=1)F)|S, > |b> |c > |d > on a
block in the first encoded cat state and three bits in the three blocks of
|A > +|B >, and do that for all blocks in the first encoded cat state, i.e.
m times. Repeat with the second cat state and then the third. To measure
the cat state, rotate all qubits in the encoded cat states in the = direction.
Now compute from each block the bit it represents, and then independently
m times the parity of these bits in each encoded cat state. For each qubit in
the third block of |A >, compare three parity bits from the three cat states
by a majority vote and apply a controlled not from the result to the qubit
in |A >. If only one fault occurred in this procedure, then in each block of
|A > there is at most one effected qubit.i

5.2 Polynomial quantum codes

Here we define the quantum analog of random polynomial codes[8]. To
correct d errors, set m =4d + 1 and set p > m + 1. Let a1, a9, ..., ay, be m
distinct non zero elements of F}, such that the polynomial G(z) = II}2 (z —
;) has a non-zero coefficient of z2¢. (Such «; exist because |Fp| > m + 1).
Denote by

Vi={f(z) € F(z) | degf(z) < d},



Va={feW|f(0)=0},
Cy ={(f(a1),-.., flam)) | f € Vi} C F,
Cy = {(f(ar); s flam)) | f €V} C Cr.

As before, we use the codes C; and C5 to define the quantum code:

VaeF,  |Sa>=— Y [f(0r)s e flam) >

vivel fEVL,f(0)=a

Theorem 4 Polynomial codes are proper quantum computation codes with
spread | = 1. The universal set of gates is:

(1) la>b>—|a>|la+b>,

(2)Vc€eF, |a>—|la+c>,

(3) 0#c€ F: |a>— |ac >,

(4) la > 1b>|c>—|a>|b>|c+ab>,

(5) Ve € F |a >— w®|a >, and the Fourier transform

(6) |a >— % Sher Wb >,V0 < 1 < p.

Proof:

Universality: Clearly, all classical reversible functions can be spanned
by this set. We find an explicit unitary matrix in the group generated by
this set, which has infinite order. We then use group representation theory
to show that this group is dense in SU(n). By [65], a general product of j
such matrices, is exponentially(in j) close to any finite matrix, so the rate
of approximation is exponential.

Input, output and correction procedure: These are exactly as in
the general linear code, where transforming between the S—basis and the
C'—basis is done by the Fourier transform.

Gate procedures: The procedures of gates 1,2 and 3 are performed
by applying pitwise the corresponding gates.

Procedure of general Toffoli gate (4): This procedure we use in-
terpolation techniques[8]. First we apply pitwise the general Toffoli gate on
the m coordinates. On the third block we obtain the sum:

>_lA(e1)B(en) + C(en), ..., Alm) B(om) + Clom) >,

where the sum is over A(z), B(z),C(z) € V1, A(0) = a,B(0) =b,C(0) = c.
The polynomial D(z) = A(z)B(z) + C(x) satisfies D(0) = ab+ ¢, and it’s
degree deg(D) < 2d. To reduce the degree we use a quantum analog of the
techniques in [8], where we keep the procedure fault tolerant. we can still
correct d errors in D since m = 4d+ 1. We proceed as follows: we apply the
input procedure to each coordinate in the third block, which will give the
state
|S(d1),S(dm) >, dj = D(Otj).
D(z),D(z)=A(z)B(z)+C(z)
We then first run the error correcting procedure of the code with degree

2d, and after this compute the linear combination S(}°; ¢;d;) = Sd, where
the ¢; are the interpolation coefficients such that V f € F[z], deg(f) <

m —1, f(0) = 353% cif (o).



Procedure of general rotation around the z axis by the angle 7
(5): This is done by applying on the I'th qupit the gate |a >—— w%|a >.
The proof that this achieves the desired operation is :

|Sq >

1
= —— |f(a1), ey flam) >—
\AV2| fevg(‘:))m 1

Yoo Iz we | f(ay), ., fom) >=

FEVLF(0)=a

= Z wa‘f(al)a af(am) >
feV,f(0)=a

Procedure of the Fourier transform:(6) |[Sa > % Sper wP|Sh >
. (This can be done with any w" by replacing in the following w by w". This
operation generalizes the rotation around the z axis by the angle =.)

To perform this procedure we first note that there are fixed non zero
e1,...,em such that for any polynomial f(z) over F, with deg(f) < m —
1, foa = X, eif(a;). This is true since interpolation via ai,...an, is a
linear functional. Denote w; = wee d,l = 1,...,m. Let us operate on each
coordinate, that is qupit, by the Fourier transform

la >— Z wi®|a > .
bEF,

We claim that this indeed gives the desired operation. This is true since

1
|Sa >= ——— [f(en); ooy fOm) >—

V,f(0)=a
1 ST a2
— Z Z wlai=1 &9 f(a’)bl|b1, Lomo>
\/ﬁ b1,b2,..omeF feV,f(0)=a
Let b(z) be the unique interpolation polynomial b(e;) = by, with degree
deg(b) < m — 1, for some by, ...b,, € F,. We distinguish two cases:

e CASE 1: Deg(b) < d. In this case the polynomial h(z) = 22%b(z) f ()
for f(z) € V1 is of degree < 4d =m — 1 and so

Y eai?fe)by = f(0)b(0) = coef f of &* in h(x).

=1

In the above sum, we will have:

LIS Y w01, bm >=
VP b1,b2,..bmeF,b(z)EV1 fEV,f(0)=a
= Z w®|Sb > .

bEF,



e CASE 2: Deg(b) > d. We claim that the sum vanishes for the ¢'s in
this case. Let h(x) be the interpolating polynomial through the values
a2l f(cy)b;. Then h(z) = 222 f(z)b(z)(modG(z)). recall the definition
of G(z). The power of w in the sum is the coefficient of z% in this
polynomial. It is enough to show that this is not always the same
value when summing over f € V1 with f(0) = a, since then the
sum vanishes. Let r = deg(b) > d. Picking f(z) = a + cx?"+1
deg(f) < d, and deg x2If(x)b(z) = 4d + 1 = m. Therefore h(z) =
220 f(2)b(x) — cB,G(x) where Br is the leading coefficient in b(z), i.e
b(z) = Bya" + ... + By. B, # 0. Looking at the coefficient of 22¢ of
h(z) we have aBy — cB;gog Where gag # 0 is the coefficient of z2¢ in
G(z). This can obtain any value we want by selecting an appropriate
ce F,1

6 Generalizations and open problems

The result implies that quantum computation might be practical if the noise
in the system can be made very small. We hope these results motivate
physicists to achieve lower noise rates, and theoreticians to develop a theory
for proper quantum codes, and seek such codes with better parameters,
in order to push the threshold as high as possible. The point at which the
physical data meets the theoretical threshold is where quantum computation
becomes practical.

The results of this paper hold also in the case of circuits which allow to
operate only on nearest neighbors. (We thank Richard Cleve for pointing
this out to us.) This is true since the procedures we use, which are of
constant size, can be made, with constant cost, to operate only on nearest
neighbors, by adding gates that swap between qubits. However, the bound
on 7 in this case will be smaller.

Our scheme requires a polylogarithmic blow-up in the depth of the cir-
cuit. Reducing this to a constant, as in the classical case, remains an open
problem.

This result might also have an impact on a long standing question
in quantum physics, regarding the transition from quantum to classical
physics[75]. In [2] it was shown that for a very high noise rate, the quantum
circuit behaves in a classical way. In this paper we show that for very small
noise rate, the system can still maintain it’s quantum nature. If indeed the
quantum nature can not be imitated by classical systems[26], or in other
words if BPP # BQP, then, increasing the noise, a transition from the
quantum behavior to classical behavior occurs. Does this transition happen
at a critical noise-rate? Indications for a positive answer are already shown
in [2]. We view this connection between quantum complexity and quantum
physics as extremely interesting.
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