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Abstract

We define and analyze quantum computational variants of random walks on one-dimensional
lattices. Several striking differences between the quantum and classical cases are observed. In our
analyses we employ techniques that may find further use in analyzing discrete quantum processes.

1 Introduction

Classical random walks on the line are very well-studied processes. In the simplest variation, a single
particle moves on a two-way infinite, one-dimensional lattice. At each step, the particle moves one
position left or right, depending on the flip of a fair coin. Such random walks may be generalized to
more complicated lattices and to finite or infinite graphs, and have had several interesting applications
in computer science (see, for instance, [2, 3, 8, 10]). We refer the reader to Kemeny and Snell [9] for
basic facts regarding random walks.

In this paper we consider quantum variations of random walks on one-dimensional lattices—we
refer to such quantum processes as quantum random walks. Although our basic definition looks quite
similar to the classical random walk, the quantum random walk has strikingly different behavior. The
reason for this is quantum interference. Whereas there cannot be destructive interference in a classical
random walk, in a quantum random walk two separate paths leading to the same point may be out of
phase and cancel one another out.

We study three basic quantum variations of classical random walks, which correspond to random
walks with zero, one, or two absorbing boundaries. We call these infinite, semi-infinite, and finite
quantum random walks. Each of the three cases illustrates surprising behavior that underscores the
differences between quantum and classical processes.

For the infinite random walk, it is well-known that the classical random walk is at the expected
distance ©(+/%) from the origin at time ¢. The probability of the classical random walk being at a
distance €Q(t¢) is exponentially small. In contrast, the quantum random walk spreads quadratically
faster and is quite evenly distributed over an interval of size ©(¢). The expected distance from the
origin is O(t) after ¢ steps.

In the semi-infinite case, we assume we have an absorbing boundary one location to the left of the
origin; the process is terminated if the particle reaches this location. Again, it is well known that in
the classical case the random walk stops with probability 1. In contrast, the quantum random walk
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stops with probability 2/m. Thus, a considerable part of the quantum state keeps going infinitely in
the other direction (to the right) without ever returning to the origin.

Finally, in the finite case, we assume there is a second absorbing boundary n positions to the right
of the origin for arbitrary n. Again, in the classical and quantum cases, the process is terminated if
the particle reaches an absorbing boundary. Naturally, the presence of the second boundary decreases
the probability of reaching the left boundary in the classical case. Again surprisingly, in the quantum
case, adding the second boundary on the right actually increases the chance of reaching the boundary
on the left (as long as the second boundary allows the particle at least two non-boundary locations
on which to walk). In the limit for large n, the probability of reaching the left boundary tends to
1/+/2 (and not 2/7). The reason for this strange behavior is, again, the quantum interference. Adding
a right boundary removes a part of the quantum state (the part which reaches the right boundary),
which would otherwise have interfered destructively with another part of the state reaching the left
boundary. Thus, removing a part of the quantum state at the right boundary increases the chance of
reaching the left boundary.

To obtain our results, we express the amplitudes of the quantum random walk by recurrence rela-
tions and solve the recurrences. In two cases, this requires sophisticated techniques. The recurrences
for the infinite line are obtained by first expressing the amplitudes by a sum of binomial coefficients and
then generating a recurrence from this sum by Gosper-Zeilberger method. For the two-sided bounded
case, we require methods from real and complex analysis, including a (possibly new) nonlinear version
of the Riemann-Lebesgue lemma.

Our primary motivation for studying quantum random walks is to develop techniques for analyzing
discrete quantum processes. Indeed, while our quantum random walks are very simple to describe,
they appear to be quite difficult to analyze. Analysis of various more complicated quantum processes,
such as certain definitions for quantum random walks on arbitrary finite graphs, seem to be out of
our reach at the present time. However, as quantum algorithm design and quantum complexity theory
become more and more sophisticated, we believe it will be inevitable to develop methods for accurately
analyzing discrete quantum processes. This paper represents one step toward this goal.

In this paper we are only considering one way to define quantum random walks, and it should be
noted that we are not suggesting that this is the only definition—there are several ways one can define
quantum variations on random walks (see, for instance, the quantum processes considered by Farhi
and Gutmann [4]).

1.1 Related work

Quantum random walks have been studied by Meyer [11] and Farhi and Gutmann [4] but their results
are mostly unrelated to ours. Meyer’s model (quantum lattice gas automata or QLGA) is the same as
our two-way infinite quantum random walk but the questions that he asks are quite different from ours.
The only overlapping result is the formula for the amplitudes as the sum of binomial coefficients (our
Lemma 6). After obtaining this result, he proceeds to analyzing the continuous-time limit of QLGA
and shows that this limit is given by the Dirac equation [5]. The results about the continuous-time
limit does not imply anything for the discrete case which we study in this paper.

Farhi and Gutmann [4] analyze quantum random walks on trees and exhibit a collection of trees on
which the quantum process hits one particular leaf exponentially faster than the corresponding classical
process. Their model, results, and methods seem to be quite different from ours.

Watrous [15] considered quantum processes on graphs that mimic classical random walks in order
to obtain results about space-bounded quantum computation. In this case, however, the quantum



processes are designed so that quantum effects do not ruin the behavior given by classical random
walks on graphs, and so give a much less natural definition for quantum random walks.

Recently, inspired by a preliminary version of this paper, Aharonov et.al. [1] have introduced and
analyzed quantum random walks on other types of graphs—the particular questions they address and
results they obtain, however, are of a different nature than those of this paper. Also, Nayak and
Vishwanath [12] have obtained an another proof of some of our results regarding the infinite random
walk using a different technique (eigenvector analysis).

2 Definitions and Statement of Results

In this paper we consider three different quantum processes that may be described as quantum random
walks on a one-dimensional lattice. We now describe these processes in a unified framework.

Let Z denote the integers and let ¥ = {0,1}. Shortly we will make the identification 0 = right,
1 = left. The quantum systems we will consider will have the underlying classical state set Z x 3. We
view a state (n,d) € Z x ¥ as consisting of a location n and a direction d.

The pure quantum states of our systems may be identified with unit vectors in the Hilbert space
H = 45(Z x X). This space consists of (square-summable) mappings of the form ¢ : Z x ¥ — C, along
with the usual inner product. We will use the Dirac notation to represent elements of H; |n,d) denotes
the vector mapping (n,d) to 1 and all other elements of Z x ¥ to 0, and is identified with the classical
state (n,d). Other vectors of H may be expressed as linear combinations of this basis (which will be
referred to as the computational basis).

Let us define two unitary operators on H. First, define Uj,,ye by the following action on computa-
tional basis states: Umope |1,0) = |2+ 1,0) and Upope |7, 1) = |n — 1,1). Extending this mapping to an
operator on H clearly gives a unitary operator (since the operator is nothing more than a permutation
of computational basis states). The second operator, which we will denote Uyyg, acts only on the
direction component of quantum states, and has the following action on computational basis states:

1 1
V2 V2

(Again we extend Uy to all of A by linearity.) In short, the operator Uy applies the Hadamard
transform to the direction component of a quantum state, leaving the location unaffected. The operator
Utwiri 18 obviously unitary. Finally, define Uygir as Uyar = Umove Utwiri-

It should be noted that there is nothing special about the choice of the Hadamard transform in
defining Uyy,;;—other quantum operations on the direction component would simply yield different
quantum processes having possibly very different behaviors from the processes we consider.

The action of Uygy, on any state |n,0) is as follows: Uygp [7,0) = (Jn — 1,1) + |n + 1,0))/v/2.
Similarly we have Upqp |1, 1) = (=|n — 1,1) + |n + 1,0))/V/2.

We may imagine a system that starts in some classical state, such as |0,0), and undergoes the
evolution obtained by repeatedly applying the operator Uy,y. If we consider the process obtained by
alternately applying U, and observing the location of the system, then the system behaves precisely
as a classical random walk. However, without such observations that serve to “collapse” the state of
the system after each application of Uy, the system evolves much differently because paths interfere
with one another.

In order to discuss processes that may be categorized as above as quantum random walks in a
physically meaningful way, we must consider observations of the system. The particular observations

Utwirl |’I'L, O) = (|n7 0) + |’I'L, 1)), Ut'U)iT‘l |’n” 1) = (|7L, O) - |n7 1))



considered are what give rise to the three separate processes we consider. We now describe the three
processes individually and state the main results obtained for each process.

2.1 Two-way infinite timed quantum random walk

The simplest process we consider is the two-way infinite timed quantum random walk. The process is
as follows.

1. Initialize the system in classical state |0, 0).

2. For any chosen number of steps ¢, apply Uyqx to the system t times, then observe the location.

We show that the location of the quantum random walk after ¢ steps is quite evenly distributed
over (n) locations. This sharply contrasts with the classical random walk which after ¢ steps is at
location within O(v/%) of the origin with a high probability.

Theorem 1 For any € > 0, there are Q(t) values n such that the measurement of U} ,.10,0) gives
|n,0) with probability at least (1 — e)%ﬂt and Q(t) values n such that the measurement gives |n,1) with

probability at least (1 — €)5.

Theorem 2 For any € > 0, there exists ¢ such that, if (—% +e)t <n < (L —e)t, then the probability

that the measurement of U, ,,.|0,0) gives |n,0) or |n,1) is at most <.

S

It may still be possible that the probability of |n,0) or |n,1) grows faster than ¢ for any constant
~ __t ~ _t_
¢ when n = 73 Or R o

Computer experiments suggest that the probability of location n grows fast from n = —t to n =
VoL reaches a maximum at n = 73 then oscillates between n =~ 7 and n = 7 (with the

amplitude of oscillations slightly decreasing from n &~ —% to n = 0 and then slightly increasing from
% and then rapidly decreases to 0 after that.
Data from our experiments do not clearly indicate whether the probability of location n at the peaks

n & —% and n & % is still O(}) or higher.

n=0ton~ %), reaches another maximum at n ~

2.2 Semi-infinite quantum random walk

For the second process we introduce an absorbing boundary. This is done by considering a measurement
that corresponds to the question “Is the system at location n?”. This measurement may be described
as corresponding to the projection operators II},; = [n,0)(n,0[ + |n, 1)(n, 1| and I}, = I — IIj,,. For
example, suppose a system is in the state

1 1 1 1
- —210,1) + =|2 4,1

and is observed using the above measurement for n = 0. The answer obtained is “yes” with probability

i

in which case the system “collapses” to state (|0,0)—|0,1))/v/2, and the answer is “no” with probability
1/2, in which case the system “collapses” to state (|2,0) + [4,1))/V/2.
Now we are ready to define our second quantum process:

1

2
1 1
== - 20,1

1 1 1 1
o, | = —2]0,1) + 2|2 ~l4,1
S (51000 = 51010+ 512,00+ 314.1))
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1. Initialize the system in classical state |1,0).

2. a. Apply Uy

b. Observe the system according to {II,II%,} (i.e., measure the system to see whether it is or is

not at location 0).

&

3. If the result of the measurement was “yes” (i.e., revealed that the system was at location 0), then
terminate the process, otherwise repeat step 2.

There are several questions one might ask about this process. We will restrict our attention to the
following simple question: What is the probability that the system ever reaches location 09 In other
words, what is the probability that the measurement eventually results in the answer “yes”? Let poo
denote this probability. We have

Theorem 3 po, = 2/.

This theorem is in sharp contrast with the classical case, for which it is well-known that the probability
of eventually reaching location 0 is 1.

2.3 Finite quantum random walk

The third and final process we consider is similar to the second, except that two absorbing boundaries
are present rather than one. Specifically, using the same measurements as defined for the semi-infinite
quantum random walk, we consider the following process:

1. Initialize the system in classical state |1,0).

2. a. Apply Uy
b. Observe the system according to {II%,,, 119 }

yes?

c. Observe the system according to {II7,,,II7,} (for some fixed n > 1).

yes»

3. If the result of either measurement was “yes” (i.e., revealed that the system was either at location
0 or location n), then terminate the process, otherwise repeat step 2.

For fixed n > 1, let us define p,, to be the probability that the above process eventually exits from the
left, i.e., the measurement in step 2b eventually results in “yes”. Also define g, to be the probability
that the process exits from the right.

Proposition 4 For alln > 1, p, +q, = 1.
The asymptotic behavior of p,, is as follows.

Theorem 5 lim,,_,o0 p, = 1/v/2.

Once again, this result is in sharp contrast to the classical case, for which the probability of exiting
from the left is 1 — 1/n.

When comparing this situation to the semi-infinite quantum random walk, it is interesting to note
that 1/v/2 > 2/m. (1/4/2 = 0.7071... while 2/7 = 0.6366....) This means that for sufficiently large
n, terminating the walk at location n actually increases the probability of reaching location 0. (Indeed,
since p3 is easily shown to be 2/3, this holds already for the case n = 3.)

We are not yet able to derive a closed form for p,. However, we conjecture the following.



Conjecture 2.1 The probabilities p, obey the following recurrence.

p = 03
1+2p,
— iP5,
pn—l—l 2+2pn, n -~

3 Analysis of the two-way infinite timed quantum random walk

To obtain our results, we bound the amplitudes of |z,0) and |z,1) in the superposition UL, |0,0).
Since the probability of measuring |z,4) is a square of the absolute value of the amplitude, bounds on
amplitudes imply bounds on the probabilities.

To reach |z,0) or |z, 1) in ¢ steps, there should be m = Zt moves left and t —m = 52 moves right.
By counting the paths consisting of m moves left and ¢t — m moves right, one gets

Lemma 6 [11] The amplitude of |z,0) after t applications of Uyqi is

EEC( e

The amplitude of |x,1) after t applications of Uyaix, is

e

This allows to calculate the amplitudes of |z,0) and |z,1) for any z. However, formulas (1) and
(2) involve the difference of two numbers which are both much bigger than the amplitudes. For this
reason, they cannot be directly used to bound the amplitudes.

If z is close to 0, a simple manipulation with binomial coefficients gives nice formulas for |z,0) and
|z, 1).

Lemma 7 The amplitudes of |0,0) and |0,1) after t steps are:
1. 0if t is odd,

2. zim(—l)% (%721) if t = 2m, m even,

3 2%(_1)“17“(%@—1)1/2) and 2%(_1)7"7‘1((771@—1)1/2) if t =2m, m odd.

By Stirling’s approximation, (m772) ~ \/Q:_m Therefore, the amplitudes of |0,0) and |0,1) after

t = 2m steps is zim((m"i_l)l /2) = 2%% =3 \/1”71 = \/% and the probabilities of measuring them are

approximately 2+rt
However, for an arbitrary x, applying the idea of Lemma 7 still gives a difference of two very large
numbers.




3.1 Recurrences
We now focus on the sum
m\ [(n
[ E —1)*.

Because of Lemma 6, calculating the amplitude of |z,0) at time ¢ is equivalent to calculating S, , for
Hz 1 g =t=2
2 ’ -

m =
Using Gosper-Zeilberger method[6, 7, 16] for generating recurrences from sums of binomial coeffi-
cients, we get

Lemma 8 (n+2)Spyni2=Bn+4—m)Smnt1 — (2n+2)Smn

Together with Lemma 6, this relates the amplitudes of |z,0) at the time ¢, |z — 1,0) at the time
t+1 and |z —2,0) at the time ¢ + 2. We can also obtain a similar (but more complicated) recurrence
that relates Sp,—1n+1, Sm,n and Spy1n—1 (or, equivalently, amplitudes of |z —1,0), |z,0) and |z +1,0)
at time t).

3.2 Solving the recurrences

Let
n—1
S:n,n = a02n/2 sin(z gm,j + Oé)

j=m

3j+4—m

where 6, ; = arccos ENCTEREIR Then, we have

Lemma 9 Let d < - 2\/— If ag and o are such that Sy, ;m = S;nm and Spmt1 = 5]

mm-+1, then, for

any n satisfying n < m < dn,
|Smn = Syl < f(d)2"?ag

for any n satisfying n < m < dn. f(d) is such that f(1+ 6) = ©(6) for small 6 and f(d) < oo for all
d< ——.
3—2v2

Then, we use the method of Lemma 7 to obtain the precise values of Sy, ,, and Sy, 41 and use
Smm and Sy, m1 to determine ag and «.

Because f(1+ §) = ©(6), this gives a good approximation of amplitudes of |z,0) for —dt < z < dt.
This approximation can be then used to show that, for any ¢ and € > O Q(t) amplitudes of |z,0) must
be at least (1 — €) times the amplitude of |0,0), i.e., at least (1 — e) . This implies Theorem 1.

Theorem 2 follows from the approximation of Lemma 9 and f(

1
3ava" is equivalent to z < f for location z and time t.)

) < 00. (The requirement m <



4 Analysis of the semi-infinite quantum random walk

The probability po may be expressed as poc = > ;51 ||H285U5) atie |15 O)”Q. (Note that renormalizations
do not appear in this expression because we are calculating an unconditional probability.) The sum
will be evaluated by counting paths.

Let A; be the set of t-tuples (a1, ... ,a;) € {—1,1} for which (i) Yicj@i > 0, forall j < ¢, and
(ii) > ;<4 a;i = —1. The set A; is in one-to-one correspondence with the set of all paths starting in state
|1,0) and entering location 0 for the first time at time ¢ (each a; indicates (—1)% for d; the direction
after ¢ applications of Uy ). Let A; denote the subset of A; for which #{i |1 <4 < t, a; = a;11 = —1}
is even and let A; denote the subset of A; for which #{i|1 <1i <t, a; = a;y1 = —1} is odd. Now, the
amplitude associated with each path in A;" is 27%/2 and the amplitude associated with each path in
A7 is 2742, Tt follows that

poo = 3 (#(AF) — #(4,)) 27" (3)
t>1
We will evaluate the sum in (3) by defining a generating function for # (A4;) — # (4;). Let
f(2) = Yis (# (Af) — # (A47)) 2*. The function f(z) obeys the equation

e 2 3oy, 2A0E)
1&) = 2= 2 (21(&) + GFEP + (I () +-+) = 2= =2 (4)

which follows from the fact that —z(zf(2))* is a generating function similar to f, but restricted to
paths which pass through location 1 exactly k times, k > 1. Solving for f(z) we obtain

14222 -1+ 428

5
f(2) 5 (5)
Equation (5) is similar in form to the generating function for the Catalan numbers. We have
1 t=1
#(AD) —# (A7) ={ (-DM1C, t=4k+3
0 otherwise

where C, = k+-1 (Qkk) is the kth Catalan number. Thus peo = 1/24 (32450 C?227*) /8. Using induction,

it is straightforward to prove Y,y C227% = (16 N3 4+ 36 N2 + 24 N + 5) C% 2%V — 4, and hence

poo:1+%<lim (16N3—|—36N2—|-24N—|—5)C]2V2_4N—4) :%+1(E—4) -2

2 N—»00 8\ 7 T

5 Analysis of the finite quantum random walk

The goal of this section is to show that p,, the probability of exit to the right for the walk on
{1,...,n —1}, has the limiting value 1/v/2. The idea is to express p, as an oscillatory integral,
whose limit is a two-dimensional integral we can evaluate exactly.

As in the semi-infinite case, we count paths. Define A;” and A; as in Section 4, and let A;': nand A;

denote the subsets of A;” and A;, respectively, for which paths are restricted to locations 1,... ,n — 1
before reaching location 0 on the last step. Defining
fn(2) = Z (# (A?,_n) —# (A;n)) Zt’ (6)
>0



we have for n > 1 that p, = > ;5 (# (A;"'n) — # (A;n))227t = (fn © fn)(1/2), where ® denotes the
Hadamard product [14, p. 157]. The generating functions f,, satisfy

1- 2zfn—1>
1—2zfn1

) = 7)

with f1(z) = 0. The reasoning is similar to the semi-infinite case. We will let z = € /+/2 in the analysis
that follows.

5.1 Integrals for exit probabilities
Lemma 10 We have

/2 .
Pn = ;/0 | fn(e?® /V/2)[2 db.

Proof. (Sketch.) Use the integral for the Hadamard product [14, p. 157] and symmetries implied by
(7). |
Lemma 11 Forn > 1 and |z| = 1/V/2, we have |f,| < 1.

Proof. (Sketch.) Use the maximum modulus principle and (7) to show that g, = zf,(z/v/2) satisfies

|gn] <1 on the unit disk. .

Lemma 12 Let

(222 — 1) £ /1 + 422
A2 = 5 (8)

(subscript 1 for +; principal branch taken) and

(222 + 1) £ V1 + 421

222

H1,2 =
(ditto). Then for n > 0 we have

fn A/ A)" —1
hy i = — = .
"z mmuz(h/)\z)” — K1

Proof. (Sketch.) Let ¢, denote the Mobius transformation w — 25%2=L so that h, = ©7(0). Evaluate

z22w—1"

this using the technique in [13]. ]

Lemma 13 Let z = €9/v/2. Then we have: (i) |A1/X2| = 1 for 0 < 0 < w/4; (ii) |Ai/Xo| < 1 for
T/4 < O < w)2; (iii) |p2|? = 2 for n/4 < 0 < 7/2; and (iv) 1 /ue = 1+ 2cos 260 + 2 cos Hv/2cos 20 € R
for 0 < 6 < /4

Proof. Unenlightening computation; omitted from the abstract. ]



5.2 A nonlinear Riemann-Lebesgue lemma

For a smooth function on the torus T = {|z| = 1} x {|u| < =}, the following result is physically
plausible. Our application motivates the precise assumptions.

Lemma 14 Let F: T — R be C? for |u| < 7, bounded when z = ¢, with radial average

2T .
G(u) := %/0 F(e u)de

bounded and Riemann integrable on |u| < w. Then

W ™

lim F(e™ u)du = G(u)du.
n—oo —r —r

Proof: Approximate the integral of F' over intervals of length 27 /n, to get a Riemann sum for G. =

5.3 The limiting exit probability.

In this section we prove Theorem 5. It follows from the two lemmas below.

i 1 4 /W/‘l do
i =+ — e
n—)n;opn 2 T Jo ul/lj,g +1

Lemma 15 We have

Proof. From Lemma 10 we have, since |f,| is even,

1 7T'/4 1 71'/2
mz—/ uﬁw+—/ () 2[2d8. (10)
T Jr/a

T J—7/4

By Lemma 11 and (ii)-(iii) of Lemma 13, the second term has the limit 1/2 as n — oo.
In the first term, we consider 6 to be a function of u = arg(A;/A2) (real by Lemma 13), choosing
the branch that maps 0 to 0. This gives
(Ai/A2)" =1

w/4 9 [T
S inae=2 |
T J 4 T J x| H2(A1/A2)™ —

Applying Lemma 14 with F(z,u) = |(z — 1)/(u2z — p1)|> d0/du and undoing the substitution, this

becomes
2 _ 4 w/4 do 2 1—
/ d9/ OSP4 = —2/ = / 9 _gp (1)
|p2e?® — |2 72 Jo  wel? Jo  (u1/p2 — cos $)? + (sin )
Now apply Poisson’s integral formula [14, p. 124] to the inner integral and observe that uigz =2. =
/”/4 9 ( 11 )
o m/me+1l  4\y2 2)°

Proof. Use of )iv) of Lemma 13, followed by an orgy of substitutions (¢ = 26, then ¢t = tan/2,
p = sin ', finally u = tan p/2) reduces the integral to an arctangent. We omit the details. [ ]

2 do

Lemma 16 We have
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