
www.elsevier.com/locate/jss

The Journal of Systems and Software 79 (2006) 480–495
Efficient and adaptive discovery techniques of Web Services
handling large data sets q

Christos Makris, Yannis Panagis, Evangelos Sakkopoulos *, Athanasios Tsakalidis

Department of Computer Engineering and Informatics, School of Engineering, University of Patras Rio, 26500 Patras, Greece

Research Academic Computer Technology Institute, Internet and Multimedia Technologies Research Unit 5, 61 Riga Feraiou Str. 26110 Patras, Greece

Received 16 April 2005; received in revised form 1 June 2005; accepted 2 June 2005
Available online 19 July 2005
Abstract

Attempts have been made concerning the search and finding of a Web Service based on keywords and descriptions. However, no
work has been done concerning the efficient selection of the appropriate Web Service instance in terms of quality and performance
factors at the moment of the Web Service consumption attempt. Such factors may include execution time and response time. The
proposed approach adaptively selects the most efficient WS among possible different alternatives with real-time, optimized and
countable factors-parameters. Implementation issues and case study experiments are presented along with the corresponding results.
Additionally, an optimal selection algorithm for series of Web Services requests is proposed. Finally, conclusions and future steps
are discussed.
� 2005 Elsevier Inc. All rights reserved.

Keywords: Dynamic discovery; Adaptive Web Services; UDDI
1. Introduction

Web Services (WS) provide a ubiquitously supported
framework for application-to-application interaction,
based on existing Web protocols and open XML stan-
dards. The Web Services framework is one of the newest
members in the Web engineering area (Deshpande et al.,
2002). It is divided into three areas: communication pro-
tocol, service description, and service discovery. Several
specifications have been developed like SOAP (W3C,
0164-1212/$ - see front matter � 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2005.06.002

q This work is partially supported by the Karatheodory Research
Program of the University of Patras, Greece.

* Corresponding author. Address: Department of Computer Engi-
neering and Informatics, School of Engineering, University of Patras
Rio, 26500 Patras, Greece. Tel.: +30 26 1096 0349; fax: +30 26 1096
0322.

E-mail addresses: makri@ceid.upatras.gr (C. Makris), panagis@
ceid.upatras.gr (Y. Panagis), sakkopul@cti.gr (E. Sakkopoulos),
tsak@cti.gr (A. Tsakalidis).
2003), Web Services Description Language (WSDL)
(W3C, 2004a) and Universal Description, Discovery
and Integration (UDDI) (UDDI, 2004), correspond-
ingly. The discovery part is particularly interesting as
the demand for WS consumption is rising. A series of
questions arise concerning the methods and procedures
to discover the most suitable WS to use.

There is much hidden behind the behavior and use of
WS. Web Services have been theoretically designed to
support four types of behavior such as request-response,
request-only, response-only and solicit-response. How-
ever, the vast majority of WS, as well as business logic
processes, are of the request-response type and only a
limited number follows the single way message transac-
tion behavior. The present work deals with problems
mainly occurring in the first and greatest category, where
the response of a Web Service is time and cost sensitive to
the end user. Intuitively, the most important factor
for the end user has to do with the necessary time that

mailto:makri@ceid.upatras.gr
mailto:panagis@ ceid.upatras.gr
mailto:panagis@ ceid.upatras.gr
mailto:sakkopul@cti.gr
mailto:tsak@cti.gr

C. Makris et al. / The Journal of Systems and Software 79 (2006) 480–495 481
a Web Service takes to produce and deliver its results,
that is the Web Service execution period. There are situ-
ations where Web Services have to deal with very large
data or may need ‘‘long’’ execution time period for other
reasons (low infrastructure availability) before returning
results back to the customer/user. The Web Service exe-
cution duration varies depending on the current status of
the infrastructure supporting it according to the avail-
able resources executing the Web Service. As a result
the customer may asynchronously wait for the Web Ser-
vice to respond so ‘‘long’’ as to even decide to request re-
sults from another available Web Service in a different
location and with higher potential availability.

Such Web Services are particularly met in business
environments where time and data intensive transac-
tions are performed between customers and offered ser-
vices/products. A typical example is found in the
telecommunication business. A common telecommuni-
cation Web Service paradigm is the presentation of on-
line analytic details for telephone calls. Carriers exist
with millions of customers and billions of daily tele-
phone call transactions. In such case, the Web Service
has to patiently search for all the unbilled calls of a
whole day�s transactions to present analytically a single
customer�s telephone calls. Imagine now that this long-
taking-to-respond Web Service may additionally be
subject to extra delays. These delays depend on the
availability and performance specifics of the carrier
infrastructure resources. Consequently taking into con-
sideration these specifics while selecting and binding to
the Web Service is important for the effectiveness of
the Web Services final choice.
2. Motivation

Our techniques and methods have been derived while
studying the case of the greatest private nation-wide
telecommunication carrier�s network in Greece. In gen-
eral, telecommunication carriers utilize gateways to pro-
vide fixed and mobile telephony services that have the
capability to record call transactions either on proprie-
tary files or directly on relational databases. (Implemen-
tation details are provided in the case study section
following.) In particular, existing web and database
applications and services implementations have served
as the basis for this study. Moreover, the carrier utilizes
the corporate network both for end-user internet service
provision as well as for the needs of data interchange
with its thousands of national business partners.

As a consequence, business partners as well as other
associates have had the need to consume several kinds
of Web Services that deliver various billing reports
and exchange data concerning the customer/call detailed
records (cdr). The cdr record is the footprint of a tele-
communication service transaction and includes billing
and communication information (caller, destination,
duration, charge, etc.). Every single transaction may
produce up to four (4) cdr records stored in a database,
storing in this way huge amount of data progressively.
Preliminary handling of such large data set is usually al-
ready performed in batch operations once per couple of
days in order to facilitate compilation of billing reports.
However, our initiative was to provide added value ‘‘ad-
vanced’’ Web Services that would allow associates and
business partners to consume ‘‘online’’ updated infor-
mation of a customers bill even for the unbilled cdr
transactions not yet compiled.

Additionally, information about Web Service based
consumption of customers transactions is also needed
to the associates. The solution designed had to provide
the necessary cdr transaction information to allow
asynchronous detection and possible prevention of
faked overcharging. Such overcharging can be per-
formed manually by malicious users or automati-
cally by computer viruses in cases of ‘‘hacked’’ or
‘‘snooped’’ telephone account PINs and passwords.
Generally, in telephony services every customer is as-
signed one or more personal identification number
and corresponding password for the authentication to
the system just as the cases of card-based telephony.
The telecommunication carriers (including internet ser-
vice providers—ISP) need measures to protect their
customers from unexpected fluctuations in their bills.
As a result, a number of services have been developed
and published to meet the needs of the business part-
ners and associates in different points of presence
(POP) at the corporate network. To provide quality
of service (QoS) in these new added-value services,
we had to maximize the throughput and execution
time of each Web Service by efficiently discovering
and binding to the most appropriate Web Service in
order to maintain the sense of ‘‘online’’ response.

Some attempts have been made concerning the search
and discovery of a Web Service based on keywords and
descriptions of a WS. However, in the area of Web Ser-
vice architecture and discovery and to the authors best
knowledge, no prior work has been proposed concern-
ing the ‘‘online’’ dynamic selection of WS at the moment
of binding and consumption process. This work presents
an effective and efficient dynamic selection of the appro-
priate Web Service instance in terms of quality and per-
formance factors such as the execution and response
time that the Web Service host can provide. Earlier
work such as the Object Management Group (OMG)
Trading Service, which was standardized in the mid-
1990s and was based on research extending over the
prior decade, supports dynamic properties, but it is both
difficult to implement and it has been only partially
adopted for reasons that led to the development and
wide acceptance of Web Service technologies in first
place. In this work, response time does not merely refer

Fig. 1. General view of the Web Service selection problem.

482 C. Makris et al. / The Journal of Systems and Software 79 (2006) 480–495
to the minimization of Web Service message hand shak-
ing but involves the overall duration of WS binding and
consumption. The proposed approach adaptively selects
the most efficient WS among different alternatives with
optimized real-time countable factors-parameters. An
early academic report of the authors technique for dy-
namic load balancing based on measurement of current
service load appears in Makris et al. (2004), before its
application on the telecommunication carrier, with no
experimental results and without support for Web Ser-
vice workflow operations. An abstract instance of the
problem as a general view is depicted in Fig. 1.

The rest of the paper is organized as follows: Section
3 presents related work. In Section 4, we outline the
algorithms and the required preparation steps, whereas
the proposed efficient and adaptive selection algorithm
is described in Section 5. Section 6 includes implementa-
tion issues and case study experiments and results. Fur-
thermore, a step further that has to do with an optimal
selection algorithm for a series of Web Services is pre-
sented in Section 7. Conclusions and future steps are
included in Section 8.
3. Related work

3.1. Sharing data and consuming remote methods

Before proceeding to early and current trends on the
Web Service Discovery techniques, a broader view of the
background will unveil the different aspects and technol-
ogies involved. An important concept in modern soft-
ware development is that of Service Oriented
Architecture or SOA (W3C, 2004b). SOA is a, relatively
new, attempt to face the old problems of sharing data
and consuming remote methods. Typical scenarios,
where the former actions appear, include businesses
sharing information with customers, departments shar-
ing data with other departments and end-user applica-
tions collaborating with other end-user applications.
All these cases are also treated by the SOA solution.

These tasks have occurred since the early years of
computer intercommunication and several methodolo-
gies have previously been presented resulting to the
introduction of the so-called distributed application
development. Distributed application development fo-
cuses in engineering methods to get data from one host
to another. In fact, there have been many technologies
for building applications that can send data back and
forth; CORBA (Common Object Request Broker Archi-
tecture), RMI (Remote Method Invocation), and
DCOM (Distributed Component Object Model) just to
name a few.

All of the aforementioned approaches presented sig-
nificant difficulties to catch up and gain wide adop-
tion from the development community. A typical
example is DCOM, the distributed counterpart of
Microsoft COM (Component Object Model). DCOM
usage is essentially also limited to Windows plat-
forms, although it is feasible to develop cross-platform

C. Makris et al. / The Journal of Systems and Software 79 (2006) 480–495 483
solutions. Common Object Request Broker Architec-
ture, or CORBA, is also a distributed technology de-
signed to facilitate development over heterogeneous
environments. Nevertheless, CORBA application devel-
opment is particularly involved, a reason for CORBA
not to become really popular.

Each of the above has failed to succeed due to several
reasons including, very complex implementation and
infrastructure requirements, complex and/or proprietary
communication protocols, lack of support of large soft-
ware companies and platform restrictions. Therefore,
the development community was led to devise the Web
Services architecture.

3.2. Web Service Discovery techniques

Though the field of Web Service Discovery is rather
new, even newer than Web Services themselves, much
work has been lately devoted to the area. The effort in
the bulk of the approaches is to enhance the Discovery
mechanisms in order to overcome the inadequacy of
the standard, keyword-based matching, where often
the user cannot discover the Web Service she wants.

In this vein Sajjanhar et al. (2004) have proposed rep-
resentation of Service Descriptions as texts and by map-
ping the generated text-vectors to a low-dimensional
feature space they are able to observe better Web Service
retrieval. A unified solution has been proposed by
Zhuge and Liu (2004), who presented an SQLlike flexi-
ble query language to support the flexible retrieval of
services. They have built upon use of the Service Grid

(Zhuge, 2002a,b,c), which organizes services in a
normalized and orthogonal multidimensional service
space.

An important trend in Web Service Discovery is to
consider network nodes as peers, sharing their avail-
able Web Services and being able to query other
nodes. A number of papers have been recently pro-
posed that are mainly based on using Chord (Stoica
et al., 2003) as the underlying network topology. Their
main advantage is that they can inherently support
load balancing. In the work of Schmidt and Parashar
(2004), a single WS is considered as a multidimen-
sional point. They also use a space-filling curve, a
transformation which injectively maps points in higher
dimensions to numbers, the service IDs. The latter are
distributed among the network peers according to
Chord principles.

Li et al. (2004) also use keyword mapping to a Chord
of Web Service Peers. Their mapping though, is
achieved using distributed hashing; the service descrip-
tions are hashed and the hashed IDs are then distributed
to the Chord network, giving thus what they call
XChord. A Web Service query starting at a peer node,
is also decomposed into keywords which are subse-
quently sought for using the Chord searching principle.
XChord is proved more stable, load balanced and less
space consuming in comparison to standard UDDI,
according to the conducted experiments. In Rao and
Su (2004), the Chord P2P protocol is also utilized as
overlay including service peers. The architecture intro-
duced is called P2P-based Web Service Discovery
(PWSD). Web Service descriptions as well as queries
are hashed and routed in the Chord network. A different
approach called NIPPERS is presented in Makris et al.
(2005). This novel technique provides improved results
in searching and managing WS compared to the popular
DHT overlay network Chord. Cross-disciplinary decen-
tralized solutions have also been proposed incorporating
ontologies. In Schlosser et al. (2002), a system is pre-
sented using Peer-to-Peer (P2P) technologies and ontol-
ogies to publish and search for Web Services
descriptions.

Significant contribution to Web Service Discovery
has been made from the semantics community. Essen-
tially the efforts are focused on modeling Web Services
as ontologies and then perform semantic matching. A
typical framework in this direction is that of Paolucci
et al. (2002) that augments WSDL and UDDI in order
to perform semantic matching. Service Profiles are
generated that encapsulate all the functional character-
istics of a Web Service, and descriptions are generated
using DAML-S (Burstein et al., 2002). A recent devel-
opment (Sycara, 2004) was the development of a new
semantic language, namely OWL-S, that allows seman-
tic annotations and semantic discovery to be inte-
grated in the UDDI and WSDL. A similar matching
approach is followed by Sivashanmugam et al.
(2003). Moreau et al. (2002), essentially transform
Web Services into XML Schemas and structurally
match Web Service queries against those schemas. Fi-
nally, Overhage and Thomas (2003) introduces seman-
tic descriptions in a special section of Web Service
descriptions, the so called ‘‘blue pages’’ section. Zhang
et al. (2004) presented the approach of WS-Net, which
substitutes current WSDL structures. This technique
takes advantage of the semantics of Colored Petri-
net with the style and understandability of object-
oriented concepts. It helps to enhance the reliability
of web-services oriented applications. However, trans-
formation of WSDL specifications into WS-Net is nei-
ther trivial nor automated.

One more interesting solution is the Woogle engine
(Dong et al., 2004). Woogle faces the problem of
approximate retrieval using clustering techniques. Clus-
tering is formed on the basis of association rules� forma-
tion among the terms constituting operation names. The
main intuition behind this approach is that, when all the
parameters inside a set frequently co-occur, then they
may correspond to similar functionalities.

The matching procedure in all the above cases, with
the exception of Paolucci et al. (2002), does not take into

484 C. Makris et al. / The Journal of Systems and Software 79 (2006) 480–495
account concerns such as the response time that was
highlighted as of primary concern in the previous sec-
tion. However, in a real-world invocation environment,
aspects such as response time are paramount. Charac-
teristics such as execution time are met under the term,
Quality of Web Service (QoWS) Characteristics. Ran
(2003) presented some more desirable characteristics
that define QoWS. A similar attempt was made by Ouz-
zani and Bouguettaya (2004). Their paper (Ouzzani and
Bouguettaya, 2004) was the first to address the issue of
Web Service Discovery that meets certain QoWS con-
straints. Although, the selection details are somewhat
unclear, they present an integrated framework to QoWS
Discovery.

Additionally, Yu and Lin (2005) present an efficient
algorithm to select the optimum execution plan when
a Web Service workflow is executed. They treat cases
where the interest is focused on execution plans compris-
ing of a sequence of k consecutively executed Web Ser-
vices {S1, S2, . . . , Sk} or a ‘‘pipeline’’ as it is phrased.
The selection of an execution sequence with total execu-
tion time below a threshold R is transformed into a Mul-
tiple Choice Knapsack (MCK). Yu and Lin (2004b),
provide a dynamic programming algorithm and varia-
tions to solve MCK, and as a result to efficiently select
the most appropriate service sequence. Furthermore,
Yu and Lin (2004a, 2005) present a mechanism named
QoS Broker for Web Services. It is an intermediate
between the UDDI registry and the end user(s) that per-
forms all exhaustive tasks to locate and ensure the deliv-
ery of the most qualified Web Services.

A generalized perspective of the challenging task to
devise a scoring function that combines the QoWS crite-
ria in a righteous manner is presented in Liu et al.
(2004). Their aim is to produce a single score for each
Web Service or execution plan by representing each
WS as an m-dimensional vector, where m is the number
of parameters taken into account.

An extensive and comparative survey of Web Service
Discovery mechanisms is also presented in Garofalakis
et al. (2004).
Fig. 2. Algorithmic roadmap.
4. Algorithmic roadmap

In this work an efficient and adaptive algorithm is
proposed that performs selection among similar Web
Services located at different infrastructures. We deal
with the existence of a number of related services that
offer similar functions such that any of them can fulfill
what the consuming business partner or associate seeks.
This is broadly met among the enterprises that collabo-
rate with a specific range of partners in order to perform
a certain series of operations, which are consequently
semantically correlated. As a result, partners develop
programmatic interfaces to discover and consume Web
Services and tend to perform only narrowed queries
for Web Services with similar functionality. Moreover,
searches are conducted within a specific range of part-
ner-Web Service provider. In such cases, our aim is to
provide a more intelligent discovery procedure for dy-
namic selection of the most appropriate Web Service,
than the naive ‘‘round robin selection’’. The latter would
entail polling all available WS instances for their perfor-
mance characteristics and then simply choose a WS that
maximizes or minimizes a specific metric.

The algorithm includes two functional components
that compose the final step of the Web Service selection.
The overall logic of the algorithm is depicted in Fig. 2.
In this figure the interaction between components is
presented.

Before proceeding to the analysis of each functional
component, an outline of the algorithm is presented.
This presentation serves as a roadmap for the reader
and the necessary details may be found in the sub-
sections following.

(1) Contour Selection: At first the proposed algorithm
takes into consideration two parameters and based
on them, it performs an efficient selection of the
best candidate Web Services. In Fig. 2, this step
is depicted in Fig. 2a. The parameters include:

• The network distance; it is the mean network

latency between the client requester and the
Web Service.

• The number of other distinct Web Services,
functionally related to the Web Service in terms
of business environment; the parameter contrib-
utes to narrowing further the number of the
candidate Web Services.
(2) As a second component, the adaptive selection pro-
cess is proposed. It is based on online quality rat-
ings of a Web Service (QoWS ratings). These are
measures, i.e., countable factors such as available
memory, etc., concerning the quality and the avail-
ability conditions of the infrastructure implement-
ing the WS at the very execution moment. A

Fig. 3. The first step of the roadmap.

C. Makris et al. / The Journal of Systems and Software 79 (2006) 480–495 485
service�s average execution time is observed over a
number of executions over time. At this point to
assure the maximization of quality in the chosen
Web Service, the fast corporate network is utilized
to collect up-to-date WS measurements and
deduce the estimation of the expected QoWS
characteristics based on previously recorded WS
execution schemes-profiles. The alternative of
scheduling regular dynamic updates of UDDI
QoWS properties can be utilized in environ-
ments, where corporate network traffic is already
high.

This process includes one preparatory and three
online/real-time actions:

(a) Creation and update of QoWS ratings; this task is
a service that maintains WS history profiles. It is a
preparatory action that records the QoWS ratings
as well as the corresponding execution time of the
WS and stores them as a history profile (hereafter
called WS execution scheme). In particular it
stores the duration that a WS took to process a
request under specific QoWS ratings as well as
the ratings themselves. This action serves as an
add-in service that takes place prior to the selec-
tion procedure.This preparatory action maintains
the WS execution schemes. Details are included
in Section 5.2.1.

(b) Online/real-time request of the current (last)
QoWS ratings; this action implements an agent
service that returns the measures of the point of
WS presence at hand, which are included in the
WS execution scheme. This online action returns
the current value of the countable factors in the
WS POP at hand. It acts as a part of the main
online action (following in Fig. 2d).

(c) Online computing of the expected WS execution
time based on the current QoWS ratings; this
action finds the nearest and therefore expected
response time in the WS�s execution scheme. It per-
forms matching based on the Euclidean distance
between the QoWS ratings in the WS execution
scheme.This online action returns the expected

WS execution time based on the values of several
countable factors available in the WS POP. It acts
as a part of the main online action (description in
Fig. 2d).

(d) Instrumentation of the online actions and produc-
tion of the selection outcome; this is the last online
action that controls the previous two ones and per-
forms the main adaptive selection steps of the
algorithm proposed. It returns the final selected
Web Service instance to be used. Detailed
description of the action may be found in Section
5.2.2.
5. Efficient Web Service selection

5.1. A first selection step based on common

computational geometry observations

The performance evaluation for each web-service-
providing node is a computationally demanding process
and thus we need to apply it to as few nodes as possible.
Therefore, we use a pruning heuristic that allows us to
rule out certain nodes as a first step. This heuristic is
called contour selection. Before we proceed with the
description, we provide some useful notions (Fig. 3).

Let S, denote the set of all candidate nodes such that
each node provides a set of Web Services that we are
interested in consuming. For an arbitrary element si 2 S,
we consider two parameters; its network distance from
the query submitting node (any Point of Presence), di;
and the number fi of the distinct Web Services it pro-
vides. The choice of distance is based on the need to ex-
clude at first, nodes having large distance from our entry
point (any Point of Presence), thus the execution time
plus network latency may potentially cause total execu-
tion time to be unnecessarily high. The choice of the
number of provided Web Services is made by following
the intuition that if a specific node provides a significant
number of Web Services, then the probability to serve a
large subset of the required set of Web Services, within
the same node, increases, especially taking into consider-
ation that consumers operate within a certain business
framework (e.g., Web Services for tourism—seeking
tour operator, booking boat tickets, reserving hotel
room, etc.). The contour selection heuristic, selects
nodes being maximal with respect to both network dis-
tance and number of functions.

More typically, each si, can be uniquely represented
as a point (�di, fi) on the xy–plane, where the distance
corresponds to the x-coordinate and the number
of Web Services, to the y-coordinate. A point
si 2 S � R2, si(xi,yi) is called maximal if there is no other

486 C. Makris et al. / The Journal of Systems and Software 79 (2006) 480–495
point sj(xj,yj) such that both xj P xi and yj P yi. It can
be easily verified that maximal points form a staircase in
the plane, which from now and on we call the contour

(see Fig. 5). The set M � S of maximal points corre-
sponds to servers that cannot be overruled in both the
number of services and the shortest distance by any
other server providing a specific service. Any of these
points (servers) could lead potentially to a good choice
regarding the service asked.

Given a set S of points on a plane, the subset M of
the maximal points, can be computed with the algorithm
CONTOUR_CONSTRUCTION. This algorithm, shown in
Fig. 4, uses a balanced binary search tree T, to store
points in M according to their x coordinate. We postu-
late that T is leaf-oriented, which means that points are
only stored in the tree leaves and internal nodes only
contain routing information. For more extensive infor-
mation on the notion of leaf oriented trees, one can con-
sult the textbook of Mehlhorn (1984). Each leaf v, apart
Fig. 4. The algorithm for contour construction.

Fig. 5. The contour of S = {(�13,2), (�11,13), (�10,5), (�9,11), (�8,3), (�
seven points. (b) Update to the contour after the insertion of s8(�3,7). Leav
line, and the old with dashed line. The corresponding snapshots of T are sh
from the x coordinate of the point p it stores, also keeps
a pointer to p. We further assume that each tree-leaf v,
contains pointers v.left and v.right to its left and right
siblings, respectively. The algorithm CONTOUR_
CONSTRUCTION presented in Fig. 4 constructs a contour
representation given a set of point in the plane.

The process taking place during the contour con-
struction is best illustrated in Fig. 5. Fig. 5 depicts
the contour (solid line) for the point set S = {(�13,2),
(�11,13), (�10,5), (�9,11), (�8,3), (�7,6), (�4,5), (�3,7)}.
After having processed the first seven points, the inser-
tion of s8(�3,7) in the tree T, is preceded by a search
(line 3), which ends at the leaf storing �4. Next we store
s8 and search to the left of it in order to eliminate any
points that the newly inserted one (s8) dominates (lines
6–10). This leads to the deletion of (�7,5) and (�4,5)
from T. This case is shown in Fig. 5b with the deleted
leaves being shadowed.

An upper bound on the complexity to build the con-
tour with the algorithm CONTOUR_CONSTRUCTION can be
derived as follows. Clearly searches and insertions in an
n-node balanced binary search tree take O(logn) time,
for a total of O(n logn) total time. However, after the
insertion of a point si in line 5, we might have to scan
the tree leaves and delete any points stored at the leaves,
whose x (and y) coordinates are dominated by si. We
may have to do up to O(n) such operations after a single
insertion, for a cost of O(n logn). Nevertheless, the total
cost for all executions of lines 6–10 is not O(n2 logn).
Suppose that the operations in lines 6–10, at the ith
point insertion, delete ki P 0 leaves, i = 1, . . . , n. Hence,
at the ith iteration the cost is O(ki logn). Notice however
that

Pn
i¼1ki ¼ n since each point can be deleted at most

once, for when a point is deleted it is not inserted again.
Thus the total cost of the execution of lines 6–10, over
7,6), (�4,5), (�3,7)}. (a) The contour after the insertion of the first
es deleted from T are shadowed. The new contour is shown with solid
own in both cases.

C. Makris et al. / The Journal of Systems and Software 79 (2006) 480–495 487
all possible i is
Pn

i¼1Oðki log nÞ ¼ Oðn log nÞ. The above
discussion leads to the following lemma.

Lemma 1. CONTOUR_CONSTRUCTION for n points is com-

pleted in O(n logn) time.
5.2. Adaptive selection based on online QoWS ratings

Since the contour selection has been completed suc-
cessfully, there is a list of more than one Web Service
candidates for the final selection. In the following sec-
tions we will describe how to optimize the matching of
registered Web Services based on the online rating feed-
back. The next step in the proposed selection method is
the adaptive selection function. At first a preparatory
action is presented, where the maintenance of Web Ser-
vices� history profile is performed. In the sequel the on-
line actions are presented in detail and the adaptive
selection mechanism description is concluded.

5.2.1. Preparatory action: maintaining WSs history

profile
The first preparatory action of the adaptive selection

algorithm records the WSs� history profile (step (a) in
Fig. 6). Every Web Service of interest is registered with
a QoWS execution scheme (that is the WS history pro-
file) that includes details of different execution plans.
The execution plans include details (QoWS ratings)
about the Web Service executed in a specific environ-
ment (these are countable measures of quality and avail-
ability of infrastructure). Additionally, every WSs�
execution needs some time to be performed that is called
the execution time. The most decisive countable factors
that may prolong the execution time can be the percent-
age of mean cpu usage, the percentage of mean memory

usage, the mean number of processes and the mean file

transactions (over the last 30 min period). One may also
take into consideration other real-time countable factors
(see Microsoft, 2004a,b, for a complete list). Including
to more or to less extent recorded factors to the execu-
tion plan does not affect the behavior of the selection
algorithm since recording is a preliminary action.
Fig. 6. Step 3 of the roadmap.
As a consequence the QoWS execution scheme in-
cludes a list of different scenarios that describe the exe-
cution time as a function of some recorded quality and
infrastructure availability factors. In case of possible
infrastructure change (due to hardware upgrade for
example), the QoWS execution scheme should be
recompiled.

The recorded parameters consist of counters and
measures at system, service and application-specific in-
stance level. There are some generic measures such as
CPU, memory, disk I/O utilization and some which
are level specific such as concurrent threads of the same
application in the system (application level), transaction
requests to other WSs (service level) and others. The
information for QoWS execution schemes of all WSs
in the network is replicated into a database together
with the catalog of available WS.

5.2.2. Online actions: instrumentation of the adaptive

selection algorithm

After the preparatory first step (step (a)) of the adap-
tive selection algorithm that involves the recording of
QoWS schemes (history) of the Web Services of interest,
we present the online actions of the adaptive selection
algorithm that chooses the WS with better responses
among the candidates (the steps involved are depicted
in Fig. 7). The players of the online actions are:

(1) the request agent service of the current QoWS
ratings,

(2) the computation algorithm of the expected WS
execution time based on the results of the fetched
ratings and

(3) the managing algorithm that performs selection.
Fig. 7. Online selection steps.

488 C. Makris et al. / The Journal of Systems and Software 79 (2006) 480–495
We have built an agent service that can communicate
with every host and retrieve the current (last) measure
information of the execution time parameters function.
Agent services of this kind are based on the perfor-
mance utilities provided by the operating system and
the specific applications wrapped by Web Services in-
stances (i.e., SQL server based WS can get QoWS rat-
ings). Implementation details of the agent service may
be found in the next section. The agent service returns
the current values for the chosen parameters of the
infrastructure implementing the WS as a result. An
example of recorded QoWS ratings is displayed in
Table 1.

Table 1 presents an example of a WS execution
scheme. It comprises the WS identification number,
the recorded execution time in seconds, a date and time
id and several system, application and service level
countable measures. As already described, the execution
characteristics for this WS and at several discrete time
instances are recorded.

Having maintained such history profiles the current
QoWS ratings are matched with an expected execution
time based on the history profile of the infrastructure.
The matching is performed by computing the Euclidean
distance between the current QoWS ratings vector and
the stored profile vectors. More concretely, consider
the profile vector h = [h1,h2, . . . ,hp], consisting of p

stored parameters and a vector c = [c1,c2, . . . ,cp] of
current service parameters. The Euclidean distance L2

between h and c is

L2 ¼
ffiXp

i¼1

ðci � hiÞ2
s

. ð1Þ

The vector hmin that minimizes L2 provides an estima-
tion for the current execution time. Possible utilization
of L1 or L1 distance metrics would provide similar
results.

The mechanism, which manages the above actions,
performs the main adaptive WS selection. Firstly, the
pruning step of Section 5.1 is performed. This step pos-
sibly reduces the working space of Web Service selection
Table 1
A simple WS execution scheme paradigm

Recorded execution time per WS
instance

System level

WS id Execution
time (s)

Date–
time id

Number of
concurrent
processes

% CPU
max
process

Mean %
available
memory

12 61 0 2 5 82
12 53 1 1 6 91
12 244 2 13 25 56
12 351 3 41 80 20
12 157 4 9 43 74
candidates to the services belonging to the contour. Let
this set be W 0. For a specific Web Service in W 0, its past
execution times are recorded and all execution times are
sorted in ascending order. We use two arrays ET and r

for storing, estimated execution times for the candidate
Web Services and real execution times at the moment of
selection, respectively. In order to derive the initial val-
ues for the entries of ET we can use two strategies
depending on the network load:

(1) Let the QoWS agent ask all nodes concurrently for
their current workload, collect responses, match
against stored profiles and set the estimated time
according to the execution time of the nearest pro-
file with respect to the L2 metric.

(2) Set ET[i] to the average of all execution times
recorded in the service profile.

Let min denote the minimum execution time. Initially,
min takes the minimum value stored in ET. The entries
of r are computed online in selection time by asking each
node the appropriate parameters and using again the L2

metric. We note again that multicast queries could be
utilized to ask clusters of nodes existing in local area net-
work for faster responses.

For each i, we have computed the network latency
L[i] that corresponds to the communication time that
is needed to contact server i. Let L also denote the
sum of all network latencies.

The selection relies on two facts. Firstly, if the total
network latency L, required to ask every node, is smal-
ler than the current minimum execution estimation, then
we can recompute all execution time estimations in the
hope that we may come up with a new minimum. If
L is larger than the minimum expected execution time,
we cannot afford asking all nodes hoping to a more
accurate estimation, because we will spend more time
in asking than in following the best execution scenario.
The algorithm must define, thus, a stopping criterion;
it keeps searching for up-to-date estimated times as long
as the latency paid so far plus the latency in asking the
next node is smaller than the minimum time encoun-
Application level Service level

of Number of
concurrent
threads of
same application

Number of
disk utilization,
reads/writes · 103

Number of
other WS
transactions

1 �200 0
1 �180 0
2 �1000 0

10 �1500 0
8 �800 0

Fig. 8. Online selection algorithm.

C. Makris et al. / The Journal of Systems and Software 79 (2006) 480–495 489
tered so far. Any steps further will not be of any use,
even if a smaller actual time is found, since we have al-
ready spent more time in seeking for an answer than in
executing the minimum execution time Web Service. The
actual selection algorithm ADAPTIVE_SELECTION is shown
in Fig. 8. Computing the most up-to-date execution esti-
mate is presented in Fig. 8 with the command ‘‘com-
pute’’ (lines 6 and 10).

Note at this point that our algorithm is temporarily
biased toward certain Web Service providing sites, for
they are optimal with respect to certain criteria. How-
ever, this situation changes during the execution should
certain nodes receive more traffic and thus respond with
larger execution times.
1 http://www.microsoft.com/net/
5.3. Performance evaluation

The rationale for using the contour selection heuristic
is twofold: (i) the set of candidate Web Service nodes is
reduced significantly, in the average case, (ii) it is guar-
anteed that the total communication cost due to net-
work latency is reduced.

In the sequel, we outline a performance evaluation
analysis, which aims to clarify the intuition behind the
contour selection. This analysis is also experimentally
validated, in the next section. Hence, let m be the num-
ber of the candidate Web Service nodes; let m 0 be the
number of the nodes that belong to the contour; let t

be the number of entries in the array storing the current
profile vectors of the specific WS and let l be the maxi-
mum communication cost due to network latency. Then
the time complexity without the contour selection heu-
ristic will be: O(m logm) {for sorting the candidates
using, e.g., mergesort (see Cormen et al., 2001; Mehl-
horn, 1984)} + O(mt) {for accessing the cells of the
array} + O(l), while the time complexity when applying
the contour selection logic will be: O(m logm) {for com-
puting the contour} + O(m 0 logm 0) {for sorting the can-
didates} + O(m 0t) {for accessing the cells of the array} +
O(l 0).
Since l 0 is always at most l it follows that the contour
selection preprocessing is surely justified when mt >
m 0 logm 0 + m 0t. However one should note that: (i) in
the general case l 0 is strictly less than l and (ii) the dom-
inant term in the contour selection is the communication
cost due to network latency and since the contour selec-
tion logic guarantees that this cost is reduced, it can be
expected that the total time complexity (being domi-
nated by the communication cost) will be reduced.
6. Implementation and case study results

The technological environment used for the imple-
mentation of the mechanisms proposed as well as the
evaluation of them is the MS .NET framework version
1.11 and the C# programming language (Microsoft,
2005). The experimental computations ran on Windows
2003 Intel Pentium IV (3 GHz) servers with 1 GB up to
1.5 GB RAM. The MS SQL 2000 with sp3 database
management systems were used. The main reasons,
which have driven the specific implementation choices,
were to promote compatibility with a strategic choice
for technological platform as well as an attempt to facil-
itate interoperation with existing services and
infrastructure.

A telecommunication carrier�s corporate network is a
well-known and balanced network where the mean net-
work latency is far less than the mean execution time of
a Web Service handling large date sets. Generally, such
is the case of most business processes in large corporate
or other networks using Web Services that have to deal
with large amounts of data before computing their re-
sponse. Results that highlight this are presented in the
following. Nevertheless, comparative experimental re-
sults are also presented for cases where network latency
is close to execution time, which show that our proposed
solution works efficiently in both cases. Finally, to eval-
uate the particular impact of the contour selection algo-
rithmic step, comparative results are also presented.

6.1. Setting up the experiment

The methodology of the experiments is described in
the following list.

(1) The QoWS execution scheme per Web Service was
recorded under several different environmental
parameters for a list of twelve (12) different Web
Services in sixty six (66) different instances
each—each instance represents different infrastruc-
ture conditions/states.

http://www.microsoft.com/net/

490 C. Makris et al. / The Journal of Systems and Software 79 (2006) 480–495
(2) WS are independent of each other. Composite
Web Services were acceptable as long as they did
not utilize other participating WS.

(3) Distinct QoWS characteristics are participating in
the execution schemes. Without affecting general-
ity as more QoWS maybe utilized, we assumed five
(5) QoWS parameters being recorded: CPU utili-
zation, memory utilization, disk I/O operations,
number of application threads and number of sys-
tem processes running on the infrastructure. All
parameters were normalized to facilitate computa-
tions: QoWS 2 [0,1].

(4) The execution duration as well as the network
latency values range: ET 2 [10, 3600], nt 2 [1,60].

(5) The same WS list was imported into a UDDI reg-
istry server implementation (UDDI service on
Windows 2003 Server (Microsoft, 2003)). All
instances of WS are recognized based on their
unique Web Service key which is used to return
to the consumer the appropriate WS description
reference.

(6) Random Web Service consumption requests have
been chosen. Making random service requests does
not influence the selection outcome: we would
obtain the same results ever if the requests were
specific. Furthermore, random request generation
ensures that our algorithm is not influenced by
the specific business process, i.e., by the request
context. Both the UDDI implementation and the
proposed algorithm returned candidate selection
WS instances of the same WS functionality under
the same infrastructure conditions/states.

Next we present comparative diagrams which depict
the results using two axes; the y-axis depicts execution
time of the WS selected by each method, and the x-axis
depicts the queries for different WS of random choice.
The diagrams in Figs. 9 and 10 present the UDDI return
Fig. 9. Experimental results with the two shorter set
results versus the proposed algorithm results. In order to
facilitate the discussion of experimental results, we have
aggregated them into four categories. Results in each
category have similar execution attributes. Results in
different categories have different ranges in execution
time and/or network delays to access a WS. The differ-
ent sets are shown in Table 2.

6.2. Evaluation of the measurements

In Figs. 9 and 10 the dotted line depicts the execution
time of the WS selected by the proposed algorithm ver-
sus the WS�s ET based on a UDDI selection. As the dot-
ted line is at most cases below the UDDI line, it appears
that the proposed selection generally results in better
total execution times. In fact the exact average distance
between the result-lines of the four sets may be found in
Table 2 above. The experimental results indicate a WS
response time improvement of 25.29%, 42.71%,
57.89%, 66.47% correspondingly at each set. The aver-
age gain of all sets is 48.09%. The experiments revealed
that the proposed algorithm returns improving results as
the execution and network time of a WS increase.

The results in Fig. 11 strengthen the hypothesis that
the proposed algorithm provides response time gain
through online WS selection. The proposed algorithm
provides efficiently maximized WS performance
selections as well as it confirms the availability of the
WS.

6.3. Evaluation of contour algorithm impact

To demonstrate the impact of the initial selection
algorithm using the contour (see step 1 in Fig. 2), we
evaluate the gain using comparative results in different
cases. In Fig. 12 selection is performed on Web Services
of WS Set 1 and 2. Fig. 12 presents the behavior of total
execution time after performing the online selection pro-
s of execution and network latency durations.

Fig. 10. Experimental results with the two shorter sets of execution and network latency durations.

Table 2
Experimental results grouped into sets

Result set ID Execution
time (s)

Network
time (s)

Average difference
of UDDI vs online
selection (s)

WS Set 1 10 up to 60 1 up to 30 +5.29
WS Set 2 30 up to 320 1 up to 30 +33.42
WS Set 3 60 up to 600 1 up to 30 +69.18
WS Set 4 180 up to 3600 10 up to 60 +399.85

Fig. 11. WS response time gain of the experimental result sets.

C. Makris et al. / The Journal of Systems and Software 79 (2006) 480–495 491
cedure of Section 5.2 with and without the initial prun-
ing step of Section 5.1.

The comparison has shown that contour based selec-
tion provides an initial threshold to reduce the search
space to those WS that have minimized network dis-
tance (response) and maximized functionality. In partic-
ular in WS Set 1 where the network distance is close to
the execution time the gain is 8.37%. In the right hand
part of Fig. 12, where WS Set 2 is utilized, an even higher
gain of 33.57% is recorded. These experiments validate
that the initial pruning step reduces significantly the
WS search space, hence resulting on the average in more
improvement of the total execution time.
7. An optimal selection algorithm for a series of Web

Services

Web Service Discovery up to now is designed for
dealing with explicitly published changes to the registry
data, which are typically done by designers. While these
processes can be regarded as an approach to automati-
cally handle changes in the registry, they do not repre-
sent a solution for the problem of dynamic service
invocation or fault tolerance. A real world example of
a Web Service selection and execution sequence is a tra-
vel plan management WS. In the case of travel plans, di-
verse Web Services need to be accessed one after the
other, e.g., booking air travel, booking hotel room and
so forth. Different paths for WSs� sequential consump-
tion will exist as companies will compete by offering
WSs with similar functionalities, e.g., different bus com-
panies offering the same connection between two cities.
An efficient way to manipulate and deliver Web Services�
functionalities is therefore needed.

In this section we consider a generalized version of
the Web Service selection problem. Before we proceed
to the problem definition we provide some notation.

Let U, denote the set of all available WS. When the
services must be executed in the strict order imposed
by their subscripts, the set W = {w1,w2, . . . ,wk} � U, is
called a Web Service execution sequence. In other words
wi must be executed before wj, for 1 6 i < j 6 k and thus
wi+1 is executed right after wi. The Web Services consti-
tuting U are served from a set V, jVj = n of servers, scat-
tered across a wide area network. Each server v 2 V,

Fig. 12. Comparative evaluation of contour selection impact on WS Set 1 and 2.

492 C. Makris et al. / The Journal of Systems and Software 79 (2006) 480–495
hosts a set of Web Services WS(v) � U. Note that nei-
ther WS(v) �W nor WS(v) �W, does necessarily hold.
Along with each Web Service ws 2WS(v) hosted in ser-
ver v 2 V, we have deduced an estimation of its execu-
tion time, ET(ws,v), based on previously recorded
execution schemes. The network latency NL(v,w) be-
tween any two nodes v, w in V is also known. An execu-

tion schedule is a function ES: V · W!
{0} [{1, 2, . . . ,k}, a function that defines which Web
Service can be executed in what node and in what order
(but can also output 0, if the service-node pair is
incompatible).

Problem 1. Given a standard execution sequence W

which does not change over time, a fixed access point s

for W, a set of candidate servers V connected in a
network along with the execution times ET(ws,v), for
each Web Service ws in v 2 V, we want to compute an
execution schedule ES for the sequence, where the
execution schedule minimizes the total execution time
for W.

We formulate the above problem as a network optimi-
zation problem. Hence, we consider the execution graph
GW ðeV ; eEÞ of W. The elements of eV are produced as fol-
lows; for each pair (vi,wsj), vi in set of network nodes V

and wsj in set of Web Services WS(vi) we construct a new
virtual node vi;j 2 eV . In simple terms, vi,j denotes Web
Service wsj executed at node vi. We choose GW to be di-
rected, thus an edge e(vi,j,vk,j+1) indicates that right after
the execution of wsj in vi we choose node vk to execute
wsj+1. Note that by defining edges in that way, we do
not allow edges between nodes vi,j and vk,j, i.e., nodes
that serve the same Web Services. Furthermore, back
edges, or in other words edges e(vi,j,vk,j�1) are not al-
lowed, since in the execution sequence, wsj is strictly fol-
lowed by wsj+1. Actually, once at a node vi,j, the edges
that leave vi,j, correspond to all possible choices for
the execution of the next Web Service, wsj+1. A cost
function C : eE ! Rþ is also needed, to assign a non-
negative weight to the edges of eE. For an edge
eðvi;j; vk;jþ1Þ 2 eE, C(e) corresponds to the execution time
of wsj+1 in vk plus the network latency to switch from vi

to node vk, i.e.,

CðeÞ ¼ ET ðwsjþ1; vkÞ þ NLðvi; vkÞ. ð2Þ

Note that since an edge e 2 eE may connect two vir-
tual nodes that are distinct entities of the same real
world computer, the latency term is zeroed out. The lat-
ter occurs in cases where two consecutive Web Services
are executed on the same machine, so we do not need
to switch between different machines.

We complement GW with two more nodes, a source s

(the access point) and a drain t. We add edges (s,vi,1) for
each possible vi,1 and edges (vi,k, t) for all possible vi,k

nodes. The edges emanating from s are assigned cost,
equal to the cost of accessing vi,1 from s. The edges lead-
ing to t are assigned zero cost. It is easy to compute the
maximum possible size of GW. eV can contain at most
O(nk) nodes, in the case that each v 2 V hosts all the k

services. In this worst case scenario, eE will have
O(kn2) edges. Inside a node vi 2 V and from a node vi,j

we can install at most one edge; that to vi,j+1. We also
need to produce the outgoing edges from vi,j to vl,j+1

for all vl,j+1 2 vl, where l = 1,2, . . . ,n excluding i. The
number of nodes of this kind are n � 1. Therefore, from
each vi,j we will have to produce at most n � 1 + 1 = n

edges and thus O(kn2), in total. Finally, from s and t

we can install at most k edges. Hence, jeEj ¼ Oðkn2Þ.
Fig. 13 illustrates an example graph GW.

Solution: With the above problem formulation, we
have managed to represent a possible execution se-
quence as an s–t directed path. It follows that the opti-
mal execution sequence, ES, is the shortest s–t path.
Since the graph GW is directed and acyclic, the minimum
cost s–t path can be found in OðjeV j þ jeEjÞ time. This be-
cause the shortest path computation can be carried out

Fig. 13. An example graph GW. Only partial information is shown.
Nodes in gray are network nodes vi which contains several virtual
nodes vi,j. Bold arrows indicate the shortest path.

C. Makris et al. / The Journal of Systems and Software 79 (2006) 480–495 493
in parallel with a topological sorting procedure in graph
GW (Cormen et al., 2001). Hence, in the worst case Web
Service selection can be completed in O(kn + kn2) =
O(kn2) time.

Note that ES is valid globally through the network or
in other words for all processes needing to execute W.
This is true since the execution sequence is standard
and all possible different access points for W will first
have to access ws1 and thus some vi,1 node. Therefore,
the construction of GW need only be performed once
for W. Nevertheless, the shortest s–t path may change
if the access point changes. Therefore, a depth-first
traversal of GW is then necessary to recompute the
new shortest path s–t path in GW. Of course a different
sequence W will require construction of another graph
and subsequent computations.
8. Conclusions and future work

In this paper we were concerned with the problem of
finding efficient solutions to the selection and binding to
a WS or a series of Web Services, according to prespec-
ified functional desiderata. We have introduced a novel
and effective solution for ‘‘online’’ dynamic selection of
Web Services. In particular, the introduced methods
take into account quality of service (QoS) factors and
maximize them in order to select the best matching
Web Service at the moment of binding and consumption
attempt. The mechanisms proposed have been designed
to support the case of single Web Service selection. Fur-
thermore, an extension has been also presented for cases
of WS based workflows.

Apart from the theoretical support, we were able to
justify our conjectures via extended experimental study
performed using a telecommunication carrier processes,
data and infrastructure as a test-bed. The results pre-
sented above clearly indicate that in most cases, our
selection strategy is both more efficient and effective in
comparison to the UDDI, in the sense that the total exe-
cution time resulting from the calculation of the optimal
execution scheme is for the majority of practical cases,
less than the time resulting from standard UDDI selec-
tion. Since the dynamic selection scheme proposed has
proved to be efficient and applicable to large-scale busi-
ness processes, we propose it as a useful approach for fu-
ture web engineering enterprise solutions.

Future steps include different solutions about pruning
first step selection beside the proposed contour selection.
We also consider possible to achieve improved perfor-
mance after integrating multicast based logic for collect-
ing attribute values from the nodes. One more step
forward is the adjustment of the proposed selection
strategy for a peer-to-peer environment. Finally, Web
Service selection algorithms may lead to further
enhancements when dealing with recursive or flows of
business Web Services.
References

Burstein, M.H., Hobbs, J.R., Lassila, O., Martin, D.L., McDermott,
D.V., McIlraith, S.A., Narayanan, S., Paolucci, M., Payne, T.R.,
Sycara, K.P., 2002. DAML-S: Web Service description for the
semantic web. In: Horrocks, I., Hendler, J.A. (Eds.), The Semantic
Web—ISWC 2002, Proceedings of the First International Semantic
Web Conference, Sardinia, Italy, June 9–12, 2002, Lecture Notes in
Computer Science, vol. 2342. Springer, Berlin, pp. 348–363.

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., 2001. Intro-
duction to Algorithms, second ed. The MIT Press/McGraw-Hill
Book Company, Cambridge, MA/New York.

Deshpande, Y., Murugesan, S., Ginige, A., Hansen, S., Schwabe, D.,
Gaedke, M., White, B., 2002. Web engineering. J. Web Eng. 1 (1),
3–17.

Dong, X., Halevy, A.Y., Madhavan, J., Nemes, E., Zhang, J., 2004.
Similarity search for Web Services. In: Nascimento, M.A., Özsu,
M.T., Kossmann, D., Miller, R.J., Blakeley, J.A., Schiefer, K.B.
(Eds.), Proceedings of the Thirtieth International Conference on
Very Large Data Bases, Toronto, Canada, August 31–September 3,
2004. pp. 372–383.

Garofalakis, J., Panagis, Y., Sakkopoulos, E., Tsakalidis, A., 2004. Web
Service Discovery mechanisms: looking for a needle in a haystack?
In: International Workshop on Web Engineering, Hypermedia
Development and Web Engineering Principles and Techniques: Put
them in use, in conjunction with ACM Hypertext 2004. Extended
version submitted. Available from: <http://www.ht04.org/work-
shops/WebEngineering/HT04WE_Garofalakis.pdf>.

Li, Y., Zou, F., Wu, Z., Ma, F., 2004. Pwsd: A scalable Web Service
Discovery architecture based on peer-to-peer overlay network. In:
Yu, J.X., Lin, X., Lu, H., Zhang, Y. (Eds.), APWeb, Lecture Notes
in Computer Science, vol. 3007. Springer, Berlin, pp. 291–300.

Liu, Y., Ngu, A.H.H., Zeng, L., 2004. Qos computation and policing
in dynamic Web Service selection. In: Feldman, S.I., Uretsky, M.,
Najork, M., Wills, C.E. (Eds.), Proceedings of the 13th interna-
tional conference on World Wide Web-Alternate Track Papers &
Posters, WWW 2004, New York, NY, USA, May 17–20, 2004.
pp. 66–73.

Makris, C., Panagis, Y., Sakkopoulos, E., Tsakalidis, A., 2004.
Efficient search algorithm for large scale Web Service data. Tech.
Rep. CTI TR 2004/09/01, RACTI.

http://www.ht04.org/workshops/WebEngineering/HT04WE_Garofalakis.pdf
http://www.ht04.org/workshops/WebEngineering/HT04WE_Garofalakis.pdf

494 C. Makris et al. / The Journal of Systems and Software 79 (2006) 480–495
Makris, C., Sakkopoulos, E., Sioutas, S., Triantafillou, P., Tsakalidis,
A., Vassiliadis, B., 2005. Nippers: Network of interpolated peers
for Web Service Discovery. In: 2005 IEEE International Confer-
ence on Information Technology: Coding and Computing
(ITCC�05), vol. II, Las Vegas, Nevada. pp. 193–198.

Mehlhorn, K., 1984. Sorting and Searching Data Structures and
Algorithms, vol. 1. Springer-Verlag, Berlin.

Microsoft, 2003. Uddi, windows 2003 implementation. <http://
www.microsoft.com/windowsserver2003/technologies/webapp/
uddi/default.mspx>.

Microsoft, 2004a. Perfomance counters and objects. <http://micro-
soft.com/windowsxp/home/using/productdoc/en/SAG_MPmonperf_
06.asp>.

Microsoft, 2004b. Perfomance monitoring, browsing counters.
<http://msdn.microsoft.com/library/en-us/perfmon/base/getting_
counter_information.asp>.

Microsoft, 2005. C Sharp Programming Language Specifica-
tion. <http://msdn.microsoft.com/library/en-us/csspec/html/
CSharpSpecStart.asp>.

Moreau, L., Avila-Rosas, A., Miles, V.D.S., Liu, X., 2002. Agents for
the grid: A comparison with Web Services (Part ii: Service
discovery). In: Proceedings of Workshop on Challenges in Open
Agent Systems. pp. 52–56.

Ouzzani, M., Bouguettaya, A., 2004. Efficient access to Web Services.
IEEE Internet Comput. 8 (2), 34–44.

Overhage, S., Thomas, P., 2003. Ws-specification: Specifying Web
Services using uddi improvements. In: Chaudhri, A.B., Jeckle, M.,
Rahm, E., Unland, R. (Eds.), Web, Web-Services, and Database
Systems, NODe 2002 Web and Database-Related Workshops,
Erfurt, Germany, October 7–10, 2002, Revised Papers, Lecture
Notes in Computer Science, vol. 2593. Springer, Berlin, pp. 100–
119.

Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.P., 2002.
Semantic matching of Web Services capabilities. In: Horrocks, I.,
Hendler, J.A. (Eds.), The Semantic Web—ISWC 2002, First
International Semantic Web Conference, Sardinia, Italy, June 9–
12, 2002, Proceedings, Lecture Notes in Computer Science, vol.
2342. Springer, Berlin, pp. 333–347.

Ran, S., 2003. A model for Web Services discovery with qos. SIGecom
Exch. 4 (1), 1–10.

Rao, J., Su, X., 2004. A survey of automated Web Service composition
methods. In: Cardoso, J., Sheth, A.P. (Eds.), Semantic Web
Services and Web Process Composition, First International
Workshop, SWSWPC 2004, San Diego, CA, USA, July 6, 2004,
Revised Selected Papers. pp. 43–54.

Sajjanhar, A., Hou, J., Zhang, Y., 2004. Algorithm for Web Services
matching. In: Advanced Web Technologies and Applications,
Proceedings of the 6th Asia–Pacific Web Conference, APWeb 2004,
Hangzhou, China, April 14–17, 2004. In: Yu, J.X., Lin, X., Lu, H.,
Zhang, Y. (Eds.), Lecture Notes in Computer Science, vol. 3007.
Springer, Berlin, pp. 291–300.

Schlosser, M.T., Sintek, M., Decker, S., Nejdl, W., 2002. A scalable
and ontology-based p2p infrastructure for semantic Web Services.
In: Proceedings of the 2nd International Conference on Peer-to-
Peer Computing (P2P 2002), 5–7 September 2002, Linköping,
Sweden. IEEE Computer Society, Silver Spring, MD, pp. 104–111.

Schmidt, C., Parashar, M., 2004. A peer-to-peer approach to Web
Service Discovery. World Wide Web 7 (2), 211–229.

Sivashanmugam, K., Verma, K., Sheth, A.P., Miller, J.A., 2003.
Adding semantics to Web Services standards. In: Zhang, L.-J.
(Ed.), Proceedings of the International Conference on Web
Services, ICWS�03, June 23–26, 2003, Las Vegas, Nevada, USA.
CSREA Press, pp. 395–401.

Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek,
M.F., Dabek, F., Balakrishnan, H., 2003. Chord: a scalable peer-
to-peer lookup protocol for internet applications. IEEE/ACM
Trans. Netw. 11 (1), 17–32.
Sycara, K.P., 2004. Dynamic discovery, invocation and composition of
semantic Web Services. In: Vouros, G.A., Panayiotopoulos, T.
(Eds.), Methods and Applications of Artificial Intelligence, Pro-
ceedings of the Third Helenic Conference on AI, SETN 2004,
Samos, Greece, May 5–8, 2004, Lecture Notes in Computer
Science, vol. 3025. Springer, Berlin, pp. 3–12.

UDDI, 2004. UDDI Version 3.0.2. <http://uddi.org/pubs/uddi-v3.0.2-
20041019.htm>.

W3C, 2003. SOAP W3C Recommendation Documents. <http://
www.w3.org/TR/SOAP>.

W3C, 2004a. Web Service Description Language. <http://
www.w3.org/TR/wsdl>.

W3C, 2004b. Web Services Architecture. <http://www.w3.org/TR/
2004/NOTE-ws-arch-20040211/>.

Yu, T., Lin, K.-J., 2004a. The design of qos broker algorithms for qos-
capable Web Services. Int. J. Web Service Res. 1 (4), 33–50.

Yu, T., Lin, K.-J., 2004b. Service selection algorithms for Web Services
with end-to-end qos constraints. In: 2004 IEEE International
Conference on Ecommerce Technology (CEC 2004), 6–9 July 2004,
San Diego, CA, USA. pp. 129–136.

Yu, T., Lin, K.-J., 2005. A broker-based framework for qos-aware
Web Service composition. In: 2005 IEEE International Conference
on e-Technology, e- Commerce, and e-Services (EEE 2005), 29
March–1 April 2005, Hong Kong, China. pp. 22–29.

Zhang, J., Chung, J.-Y., Chang, C.K., Kim, S., 2004. Ws-net: A petri-
net based specification model for Web Services. In: Proceedings of
the IEEE International Conference on Web Services (ICWS�04),
June 6–9, 2004, San Diego, California, USA. pp. 420–427.

Zhuge, H., 2002a. Clustering soft-devices in the semantic grid. IEEE
Comput. Sci. Eng. 4 (6), 60–62.

Zhuge, H., 2002b. A knowledge grid model and platform for global
knowledge sharing. Expert Syst. Appl. 22 (4), 313–320.

Zhuge, H., 2002c. Vega-kg: A way to the knowledge web. In:
Proceedings of 11th International World Wide Web Conference
(WWW2002). Available from: <http://www2002.org/CDROM/
poster/53.pdf>.

Zhuge, H., Liu, J., 2004. Flexible retrieval of Web Services. J. Syst.
Softw. 70 (1–2), 107–116.

Christos Makris was born in Greece, in 1971. He graduated from the
Department of Computer Engineering and Informatics, School of
Engineering, University of Patras, in December 1993. He received his
Ph.D. degree from the Department of Computer Engineering and
Informatics, in 1997. He is now an Assistant Professor in the same
Department. His research interests include Data Structures, Web
Algorithmics, Computational Geometry, Data Bases and Information
Retrieval. He has published over 40 papers in various scientific jour-
nals and refereed conferences.

Yannis Panagis was born in Greece, in 1978. He is currently a PhD
candidate at the Computer Engineering and Informatics Department
at the University of Patras and a member of the Research Unit 5 of the
RA Computer Technology Institute. Yannis holds an M.Sc. from the
same Department, where he has also completed his undergraduate
studies. His interests span the areas of Data Structures, String Pro-
cessing Algorithms and Web Engineering, where he has published
papers in international journals and conferences. He has also co-
authored two book chapters.

Evangelos Sakkopoulos was born in Greece, in 1977. He is currently a
PhD candidate at the Computer Engineering and Informatics
Department, University of Patras, Greece and a member of the
Research Unit 5 of the RA Computer Technology Institute. He has
received the M.Sc. degree with honors and the diploma of Computer
Engineering and Informatics at the same institution. His research
interests include Web Services, Web Engineering, Web Usage Mining,

http://www.microsoft.com/windowsserver2003/technologies/webapp/uddi/default.mspx
http://www.microsoft.com/windowsserver2003/technologies/webapp/uddi/default.mspx
http://www.microsoft.com/windowsserver2003/technologies/webapp/uddi/default.mspx
http://microsoft.com/windowsxp/home/using/productdoc/en/SAG_MPmonperf_06.asp
http://microsoft.com/windowsxp/home/using/productdoc/en/SAG_MPmonperf_06.asp
http://microsoft.com/windowsxp/home/using/productdoc/en/SAG_MPmonperf_06.asp
http://msdn.microsoft.com/library/en-us/perfmon/base/getting_counter_information.asp
http://msdn.microsoft.com/library/en-us/perfmon/base/getting_counter_information.asp
http://msdn.microsoft.com/library/en-us/csspec/html/CSharpSpecStart.asp
http://msdn.microsoft.com/library/en-us/csspec/html/CSharpSpecStart.asp
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm
http://www.w3.org/TR/SOAP
http://www.w3.org/TR/SOAP
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www2002.org/CDROM/poster/53.pdf
http://www2002.org/CDROM/poster/53.pdf

C. Makris et al. / The Journal of Systems and Software 79 (2006) 480–495 495
Web based Education, Web Services, Web Searching and Intranets. He
has more than 20 publications in international journals and confer-
ences at these areas.

Athanasios K. Tsakalidis, Computer-Scientist, Professor of the Uni-
versity of Patras. Born 27.6.1950 in Katerini, Greece. Studies: Diploma
of Mathematics, University of Thessaloniki in 1973. Diploma of
Informatics in 1980 and Ph.D. in Informatics in 1983, University of
Saarland, Germany. Career: 1983–1989, researcher in the University
of Saarland. He has been student and cooperator (12 years) of Prof.
Kurt Mehlhorn (Director of Max-Planck Institute of Informatics in
Germany). 1989–1993, Associate Professor and since 1993 Professor in
the Department of Computer Engineering and Informatics of the
University of Patras. 1993–1997 and 2001–today, Chairman of the
same Department. 1993–today, Member of the Board of Directors of
the Research Academic Computer Technology Institute (RACTI),
1997–today, Coordinator of Research and Development of RACTI,
2004–today, Vice-Director of RACTI. He is one of the contributors to
the writing of the ‘‘Handbook of Theoretical Computer Science’’
(Elsevier and MIT-Press 1990). He has published many scientific
articles, having an especial contribution to the solution of elementary
problems in the area of data structures. Scientific interests: Data
Structures, Computational Geometry, Information Retrieval, Com-
puter Graphics, Data Bases, and Bio-Informatics.

	Efficient and adaptive discovery techniques of Web Services handling large data sets
	Introduction
	Motivation
	Related work
	Sharing data and consuming remote methods
	Web Service Discovery techniques

	Algorithmic roadmap
	Efficient Web Service selection
	A first selection step based on common�computational geometry observations
	Adaptive selection based on online QoWS ratings
	Preparatory action: maintaining WSs history profile
	Online actions: instrumentation of the adaptive selection algorithm

	Performance evaluation

	Implementation and case study results
	Setting up the experiment
	Evaluation of the measurements
	Evaluation of contour algorithm impact

	An optimal selection algorithm for a series of Web Services
	Conclusions and future work
	References

