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Abstract

In an important paper, Hinton and Nowlan
(1987) demonstrate the Baldwin effect in a
simple Genetic Algorithm. The ability of the
phenotype to adapt, coupled with the evolu-
tionary process, allows behavioural goals to
become over time genetically specified; this
seems Lamarckian but is not. In that paper,
as a subsidiary point, the slowness of fixa-
tion of the last few goals is commented on,
and a later paper by Belew (1989) attempts
an analysis. In this paper I show that ge-
netic drift is the explanation for this slowness
phenomenon. Using a diffusion equation ap-
proach, I give an analysis of genetic drift for
genetic algorithms, where it is too often ig-
nored. Critical relationships between muta-
tion rate, population size, and forces of selec-
tion are given which decide whether genetic
drift will be of significance or not.

1 Introduction

In an important and elegant paper, Hinton and
Nowlan (1987) demonstrate with a deliberately sim-
ple example the Baldwin effect, wherein the ability of
a phenotype to adapt in its lifetime (ability to ‘learn’)
alters the fitness landscape of the corresponding geno-
type. This has the consequence that selection within
a population moves the genotypes towards the region
where the adaptations, that were originally made in
the lifetime of the phenotypes, are genetically fixed.
This has the appearance of Lamarckism, but is not so,
as there has been no direct flow of information from
the adapted phenotype to the genotype.

The model chosen as an example uses genotypes with
a number of genes that can be specified as incorrect,
correct, or open to adaptation during the lifetime of
the phenotype. The evaluation function only favours
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those phenotypes that, within a finite lifetime, find
a perfect solution through a combination of ‘correct’
genes, and ‘adaptive’ genes which successfully adapt.
It is demonstrated that with the application of a stan-
dard genetic algorithm (GA) to the population as spec-
ified, the number of incorrect alleles on the genotype
rapidly decreases to zero; the number of correct al-
leles increases at first rapidly and then slows down;
the number of undecided (adaptive) alleles decreases
slowly. If the same experiment is tried out only with
correct and incorrect genes, and no adaptive ones, then
the ‘needle in a haystack’ nature of the single perfect
solution means that only random search works, and
takes an unreasonably long time.

The main thrust of Hinton and Nowlan’s paper is en-
dorsed here, but a subsidiary matter that is mentioned
as an aside there is taken up as the main point for in-
vestigation here in this paper:

One interesting feature of [the figure] is that
there is very little selective pressure in favor
of genetically specifying the last few potential
connections, because a few learning trials is
almost always sufficient to learn the correct
settings of just a few switches.

The figure in question indicates that there could be an
asymptote at a relative frequency of about 0.45 below
which the number of undecided alleles will not fall.

My own re-implementation of the model usually shows
an asymptote at between 0.05 and 0.2. A typical run
is shown in figure 1, showing the dramatic changes in
the first 50 generations, and the longer term behaviour
over 500 generations. The variations between runs is
indicated in table 1, showing the values at the end of 20
runs of 500 generations each. The re-implementation
by Belew (1989) shows ‘an almost steady-state’ at
about 0.3. He asserts that the curve is ‘in fact asymp-
totically approaching ...0.0’. This I will demonstrate
to be false, in the general case; the analysis of what is
really happening shows that the combination of genetic
drift and the hitch-hiking effect so completely swamps
the selective pressures that some of the genes are com-
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Figure 1: The proportions of incorrect, correct, and undecided (adaptive) alleles (0s, 1s, ?s) in the whole

population, against generations.
continued for 500 generations.

pletely converged to the undecided value, rather than
the ‘correct’ one.

Strictly speaking, if there is even the smallest amount
of mutation in the system, applied independently at
each locus on each genotype, then if you are willing
to wait long enough you will see any population state;
even a population entirely composed of incorrect alle-
les, or entirely composed of undecideds. This would
be a transitory phenomenon, and the necessary times-
pans are way beyond those being considered here. The
diffusion equation analysis of genetic drift given below
gives a picture of those circumstances under which ge-
netic drift can be expected to be a significant force.

Genetic drift — the consequences of random fluctua-
tions in relatively small populations — is a matter of
fundamental concern to population geneticists, but ap-
pears to be almost completely ignored by people using
GAs. Since 1000 is often ‘relatively small’ in this con-
text, and GAs frequently use population sizes of 100
or less, to ignore genetic drift is commonly, as in this
example, to ignore one of the fundamental processes
underlying the phenomena.

Iinclude a number of graphs (figures 3 and 4) indicat-
ing the relative influences of selection, mutation and
genetic drift for different parameter values. I also give
a reworking of standard genetic drift analysis taken
from population genetics theory, and adapted to the
haploid models common in GAs.

2 The model

For fuller details of the model used in the demonstra-
tion I refer you to the original paper, and to a subse-
quent analysis by Belew (1989). As a brief summary,

On the left, the first 50 generations of a run, and on the right the same

the model has a population of 1000, each with geno-
types with 20 genes having possible values 0, 1 and 7.
In the initial population these are randomly selected
with probabilities 0.25, 0.25 and 0.5. The derived phe-
notypes are taken to be a set of 20 switches, which
undergo a series of up to 1000 trials each. The allele
0 at a particular gene specifies that the corresponding
switch is set incorrectly, 1 specifies that the switch is
set correctly, and a 7 indicates that the corresponding
switch is flipped randomly at each trial. The series
of trials on a phenotype is stopped when all switches
happen to be set correctly, on trial number i, or al-
ternatively at ¢ = 1000, the final trial, if there is no
success. Of course, if any of the alleles in the genotype
are 0, i.e. some switch is genetically fixed at the in-
correct position, inevitably the trials will run the full
course until z = 1000.

The fitness F' is then calculated from ¢ by the formula
F =14 19(1000 — ¢)/1000. This gives an all-perfect
phenotype, which needs no trials to reach success, a fit-
ness of 20; while one which never succeeds (¢ = 1000)
either through being born without a chance (one or
more alleles of 0) or through failing despite having a
chance, has a fitness of 1. The necessary equations
to calculate the expected fitness are given in the ap-
pendix. If ¢ is the number of undecided alleles in a
genotype which otherwise is correct, then for ¢ > 14
the expected fitness is near to 1; for ¢ < 5 the expected
fitness is near to 20. The sharp transition is shown in
figure 2.

2.1 Early stages ...

At each generation the relative attained fitnesses of
each member of the population determine the proba-



Table 1: The final proportions of undecided alleles after 20 runs each of 500 generations, with no.

of loci

converging or converged on 7. 4 runsj have in fact completely converged at all 20 loci, only one runi does not

yet have a locus with 7 fixed.

Propn of ?s | Loci having | Loci having || Propn of ?s | Loci having | Loci having
at 500 gens. >50% ?s 100% ?s at 500 gens. >50% ?s 100% ?s
0.063 1 1 0.108 2 2
0.109 2 2 0.093 2 1
0.082 1 1 0.150 3 3t
0.123 2 2 0.150 3 3t
0.118 2 2 0.112 2 2
0.074 1 1 0.100 2 27
0.107 2 2 0.093 2 1
0.200 4 47 0.121 2 1
0.134 3 2 0.115 2 2
0.092 2 0t 0.115 1 1

bility of that member contributing to the reproductive
pool for the next generation. In the early stages, vir-
tually all the members will have the same minimum
fitness. Something similar will happen also at the later
stages, after the incorrect (0) alleles have been elimi-
nated; virtually all members will have small g-values,
and hence, because of the flatness of the curve for F'(¢)
at small ¢, nearly identical fitnesses. At both these
stages there is very little selective pressure.

However, as Figure 1 indicates, typically around gen-
erations 5 to 15 successful members emerge with a fit-
ness nearly 20 times as great as that of the original
random members. This enormous selective differen-
tial operates near-exponentially for a few generations,
giving the sharp swings indicated in the figure. If the
fitness function is adjusted to give a spread of fitnesses
from 1 to 2, rather than 1 to 20, this transition is typ-
ically delayed until perhaps generation 50, but due to
its fundamentally exponential nature it is then a sim-
ilarly sharp transition.

2.2 ...Hitch-hiking ...

During this transition the genetic material of the first
high-scorers dominates the reproductive pool. By
marking the genetic material of the first ‘winner’; and
then tracing the marked genes in later generations as
they are selected and recombined with others, it can
be seen that typically within 10 generations of appear-
ance 50% or more of the whole genetic pool is derived
from that first winner. Hence the accidental pattern
of 1s and 7s in that first winner has a strong chance
of dominating future generations after selection has
ceased to be a major force — the ‘hitch-hiking’ effect.

2.3 ...then Genetic Drift

Once that has happened, genetic drift will allow the
proportion of ?s at any one locus vary until it has

reached either 0% or 100%, when in the absence of
mutation change will cease; and even in the presence
of low mutation a stable state can be expected. In
the complete absence of selection, then since expected
changes from generation to generation do not alter the
expected mean, from an initial position of % 7 alleles
one can expect £% of the time convergence to all ?s,
and (100 — 2)% of the time convergence to all 1s.

The run shown in figure 1, which is also the first exam-
ple in table 1, has at 500 generations one locus 100%
converged to ?s. Hence the appearance in the graph
of a long-term trend towards no ?7s is deceptive, as the
asymptote will be at 5%. Table 1 gives an idea of the
variations in these figures over 20 separate runs.

In (Hinton and Nowlan 1987), no mention is made of
any mutation, and I am unable to account for the much
higher asymptote indicated at 45%. It may be an arte-
fact of some idiosyncracies in the programming of the
algorithms, or the fact that the graph is hand-drawn
may show that it is meant to be loosely indicative only.

In Belew’s paper (Belew 1989) the asymptote appears
to be at about 30%. This is significantly outside the
range covered in my simulations. Mutation is men-
tioned, without specifying a rate. In the two-bit coding
for each locus there described, what is in my terminol-
ogy 0, 1, and 7 translate into respectively 10, 11,
and either 00 or 01. The early selection to eliminate
Os (in my terminology) would eliminate 1s from the
left-hand bit of each pair; the occasional mutation in
these left-hand bits will be swiftly eliminated by strong
selection. The right-hand bits would then distinguish
between (in my terminology) 1s and ?s. No mutation
rate here can explain the high asymptote shown.

Belew gives three versions of an explanation for this
asymptote, which can be summed up as suggesting
that selective pressures are so low that ‘the probabil-
ity of producing more than an average number of off-
spring is infinitesimal’. For a selection as implemented



q| Fla) || 9] F(a)
0 | 20.000

1 19.962 | 11 | 4.965
9 [19.924 || 12 | 3.140
319848 |13 | 2.113
4 [ 19.696 || 14 | 1.568
5 | 19.392 || 15 | 1.287
6 | 18.784 || 16 | 1.144
7| 17.569 || 17 | 1.072
8 | 15.233 || 18 | 1.036
9 [ 11.649 || 19 | 1.018
10 | 7.868 || 20 | 1.009
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Figure 2: The expected fitness F'(q) of a gene with ¢ undecided alleles and (20 — ¢) correct ones. For ¢ = 0 it
has been assumed that success was on the ‘zero-th’ trial, to give a fitness of 20.

in a standard GA, this would not only be the wrong
answer, but it would be almost diametrically opposite
to the truth. At a single locus which has exactly 300
out of the 1000 population set to the one value, the
probability of the next generation having exactly 300
set again, in the absence of selection, is

1000
< 300 )(0.3)700(0.7)300 =0.0421

I.e. only some 4% of the time will exactly 300 of the
next generation have this same allele at this locus, and
of the balance some 48% of the time more than 300 will
(and some 48% of the time less than 300 will). It is
this variation, the tmprobability of remaining at the
same proportion from generation to generation, which
constitutes genetic drift.

An additional factor to increase genetic drift in this
particular model is the fact that the fitness evalua-
tion is non-deterministic, and has a very large vari-
ance. Where the fitness is deterministic this would
obviously have no variance. In most non-deterministic
evaluations, by taking a reasonably large sample size
the variance is normally reduced to insignificance, as
the variance of a sample of size N is 1/N times the
variance of the population it is sampled from.

However, Belew mentions that he uses the GENESIS
(Grefenstette 1983) GA simulation facility. Into this
(or at least the later versions) is built the ingenious se-
lection algorithm, due to Baker (1987), which “guar-
antees that the number of offspring of any structure
is bounded by the floor and the ceiling of the (real-
valued) expected number of offspring”. In other words,
although the expected number of offspring is main-
tained at the correct value, the variation about this
value — and it is this variation which is associated
with genetic drift — is reduced to a minimum. Nev-
ertheless, this variation is still significant, particularly
at the massive early transition stage.

3 Genetic Drift

If a coin is tossed 100 times, then on average it will be
heads 50 times, but it is unlikely to be exactly 50. The
same holds if 100 random selections are made with re-
placement from 50 heads and 50 tails, without turning
any over. In the selection case, repetition of the pro-
cess will on each occasion on average give you the same
result as on the previous occasion, but the variance al-
lows significant change in this average over time. If at
any stage the selection resulted in all heads (or tails),
then future change would be impossible.

The consequence is that, in the absence of mutation,
and even without any selection, a population will even-
tually converge to all one value or the all the other.
This also holds true for low values of mutation and/or
selective bias, and the critical values which permit ge-
netic drift to be significant can be calculated. The
theory of genetic drift is analysed in the field of pop-
ulation genetics, but usually for a diploid population
with fitnesses affected by dominant and recessive alle-
les. In general it seems to be ignored in GAs.

4 A Diffusion equation approach to
Genetic Drift

Goldberg and Segrest (1987) give a finite Markov chain
analysis of genetic drift. The alternative approach is
using a diffusion approximation. The following starts
from Roughgarden (1979), where an analysis is given
for diploid systems, and makes the necessary alter-
ations for a standard haploid genetic algorithm.

The underlying basis for this approach is that of con-
sidering one experiment with a particular set of pa-
rameters such as population size, selective bias, and
mutation rate; considering one particular locus, and



Table 2: The selection s for a gene with ¢ undecided
alleles and (20 — ¢) correct ones is calculated from
s(q) = (F(q) — F(¢ — 1))/F(q). The population size

N is 1000

q | Fla) s(q) | 2sN
0 | 20.000

1] 19.962 | 0.00190 | 3.80
2 [ 19.924 [ 0.00191 | 3.82
3| 19.848 | 0.00383 | 7.66
4 19.696 | 0.00772 | 15.44
5 | 19.392 | 0.01568 | 31.36
6 | 18.784 | 0.03237 | 64.74
7 | 17.569 | 0.06916 | 138.31
8 | 15.233 | 0.15335 | 306.70

taking a census across the population to find the dis-
tribution of the possible alleles at this locus, after suf-
ficient generations have passed for any initial transi-
tional phenomena to have died away.

For instance, in a particular experiment the proportion
of Os at this locus will be z in the range [0.0, 1.0]. But
because of the stochasticity, a series of experiments
will give different values of z. Hence a whole ensemble
of such experiments are considered — using the same
parameter settings for the whole ensemble. The census
results on different members of the ensemble will vary,
but the probabilities of different census results can be
calculated analytically.

The size of the population N is assumed large enough
for it to be valid to make a continuous approximation
to the discrete steps actually taken — the proportions
of any allele can in fact only change in steps of size
1/N. Tt is assumed that the proportions in a popula-
tion of each allele at one locus can be analysed inde-
pendently of what is happening at other loci, which are
taken to be either fixed or with no interdependence on
this locus. An ensemble of populations is considered,
all acting under the same forces of selection, mutation
and drift. It is assumed that from any starting posi-
tion, this ensemble will spread out under these forces
until some equilibrium is reached. This equilibrium
will be shown to have strikingly different features de-
pending on the values of the parameters. The figures
later on characterise the features of such an ensemble,
and hence give a perspective on what might plausibly
happen in any one individual population.

The diffusion can be analysed with the same equations
as are used for physical processes. A ‘diffusion equa-
tion’ is introduced which approximates the Markov
chain. In the analysis of a physical system of diffu-
sion we let p(z,t) denote the density of particles at
location # at time ¢. (The translation to our ensemble
of populations is: let p(z,t) denote the proportion of
populations in the ensemble that at time ¢ give a cen-

sus return of x for the proportion of 1s at the relevant
locus.) The flow across a surface at z is J(z,t). The
change in density at a location is equal to the spatial
derivative of the flow.

%p(r)t): —(%J(:p,t) (1)

In the current context the expression for J(z,t) con-
tains a term for external forces — mutation and selec-
tion — and another term for diffusion.

T, 1) = M@, 1) — 5 AV @plat)  (2)

In a short time interval At, M (z)At is the average dis-
tance travelled from a point x under force of mutation
and selection. V(x)At is the variance of the distances
travelled.

We are interested in the equilibrium distribution p(z),
where it exists. At equilibrium J(z) in (2) will be
constant, and in this context zero. Hence

SV (@)i(e) = M(2)p(x) 3)
Introduce g(z) = V(z)p(z).
3300 = e
L z) = M(z) z
=
dlnfg(z)] = Qg((;))dm
In[g(z)] = 2 Aé((;))da:—i—canstant

coup 2 %))d)

oo (2 [ 190) 1y

where ¢ is an appropriate normalizing constant to
make the area under p(z) equal to 1 in the range of
from 0 to 1.

V()

So far the calculations have followed Roughgarden ex-
actly, but now we make adjustments appropriate for a
haploid GA. With a mutation rate of m then Az due
to mutation in one generation is

Ayt = 2(—m)+ (1 —2)m =m(1l —2z) (5)

To calculate the Az in one generation due to selection,
we shall assume that the schema fitness of the allele 0
is fo and of allele 1 is f;. The average fitness f depends
on the proportion z of 1s in the current population,
f=(1—2)fo+xf. We shall define the selective force
s in favour of allele 1 as

fi - fo (6)

0

S
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Figure 3: Equilibrium distributions, varying m for particular values of s. The horizontal scale is the proportion
z of the allele being selected for, in the range = 0.001 to 0.999. the vertical scale varies from graph to graph,
as the constant ¢ in eqn. 11 has here been set to 1; whereas it should normalise the graph so that the area
underneath is unity. Hence for the U-shaped curves, only the general shape is indicative.
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Using the population size N, we now convert Az to a
new time scale where N generations equals one unit of
time.

M(I) = N(Ammui + A'rsel)
sNaz(l — )
= mN(1-22)+ 2870
(1204 L2

On calculating V (z) we use the fact that the variance
of Az over one generation is z(1 — z)/N. Converting
to the same time scale as above we have
V()= N D s 9)
N
Substituting (8) and (9) into (4) we have the following

(the constants on integration can be assimilated into
the normalizing constant ¢):

plz) = =2 exp (W(z))

where we define W (z) to be

m _or sx(l—x
N [ <4+—(1 s )dm

14sz
—2mN In (1;—“3) +4mN In(l — 2) + 2N In(1 + sz)

2me%—4meld_—xx+25Nf do

(10)

So we have p(z)
sy (155) 77 (L= )N (L sa)?

— CI2mN_1(1 _ I)ZmN—l(l + 8I)2N
c(l+sz 2N

= s (11)

Here it is clear that the term on the top relates to the
forces of selection; whereas the denominator, symmet-
rical in 2 and (1 — z), shows different characteristics
depending on whether the exponent is positive or neg-
ative — which depends on the relationship between
mutation rate and population size.

4.1 Varying the mutation rate

In the case of zero selective force, s = 0, this becomes
ﬁ(;ﬁ):crsz_l(l—;E)2mN_1 (12)

The behaviour of eqn. 12 varies dramatically according
as to whether 2mN < 1 or 2mN > 1. In the former
case of low or non-existent mutation the curve is the U-
shaped ﬁ, demonstrating that the population will
converge completely on one allele or the other. In the
latter case of mutation significantly high in relation
to the population size, then the reverse will happen
and the distribution will be centred on z = 0.5. If
selection 1s positive rather than zero, then either the
U-shaped curve or the humped curve, as appropriate,
will be skewed towards the side favoured by selection.

The graphs in figures 3 and 4 are indicative only of
the general shape. In particular, for the U-shaped
curves demonstrating genetic drift, the constant ¢ in
(12) would need to be zero for the area under the curve
to be unity. This gives a vertical bar at = 0 and at
z = 1 (emphasized in the figures), with zero elsewhere.
For this reason the graphs are only shown for z =0.001

to 0.999.

4.2 Varying selection

When m=0, then (11) becomes
(4 sz)N
o) = e (13)

which is the limit of a U-shaped curve. The denomi-
nator is symmetrical in x and 1 — z. For an indication
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Figure 4: Equilibrium distributions, varying s for particular values of m. See caption to figure 3

of the relative proportions of the converged population
that settle at £ = 0 or z = 1, the numerator should
be considered for these values; although not much re-
liance should be placed on this, as it is exactly here
that the diffusion approximation breaks down with a
finite size population.

Nevertheless, for s = 0 the numerator is constant, and
as s increases the numerator is more at z = 1 than it
isat z = 0. (1 +5)2Y becomes O(e) when 2sN = 1,
and increases exponentially as s increases above this
value. Hence when 2sN <« 1 we can expect the two
arms of the U-shaped curve to be nearly equal in size
(i.e. selection is insignificant), and when 2sN > 1 the
arm that selection favours will predominate.

Returning to the Hinton and Nowlan example, the
value of s can be calculated when there are ¢ undecided
alleles and 20—gq correct ones. The selective force s at a
locus which could change one undecided allele to a cor-
rect one can be calculated from the schema fitnesss in
figure 2. For any ¢, it is (F(¢—1)—F(q))/F(q), which
is calculated in table 2. It can be seen that, whereas
convergence on the ‘wrong’ value can be expected for
2sN < 1, in this case convergence on the wrong value
occurred for ¢ as great as 4, and hence 2sN as big as
15. This can be explained as due to the hitch-hiking
effect, where before genetic drift could take over as the
population settled down to equilibrium, the swamping

0.
nEOTY

0.7 My muth, rate
080 T

BN
w1 propn of 1s
Figure 5: Eqn. 12 for ¢ = 1, and m ranging from
0 to 0.001. Here the vertical axis is log-scaled, and
selection is zero. The transition between U-shaped
and [)-shaped curves at 2mN = 1 can be clearly seen.

of the population by the very high selection in favour
of the first successful genotype has resulted in near-
convergence on the ‘wrong’ value.

5 Conclusion

A puzzling anomaly in the Hinton and Nowlan pa-
per has been explained as the result of genetic drift,
due to low selective forces, following a period when
very high selective forces and the ‘hitch-hiking effect’
have distorted the proportions of alleles at temporar-
ily irrelevant loci. By analysing this case in detail,
the significance of genetic drift has been brought out,
and using the diffusion equation approach some more
general results demonstrated.

These can be summarised as the following, where m
is the mutation rate, N is the population size, and s
the selective force in favour of a particular allele 1, at
a binary locus, is defined as (f1 — fo)/fo, f1 and fo
being the schema fitness of alleles 1 and 0:

If and only if 2mN < 1 then the popula-
tion will converge at this locus on one value
or another; and if 2sN <« 1 it will be al-
most equally likely to converge on the ‘wrong’
value as the ‘right’ one.

Where ‘hitch-hiking’ takes place, even for
2sN somewhat larger than 1, convergence on
the wrong value can still happen.

“The case has been an interesting one,” remarked
Holmes when our visitors had left us, “because it serves
to show very clearly how simple the explanation may
be of an affair which at first sight seems to be almost
wnexplicable.” Sir A. Conan Doyle, The Adventure of
the Noble Bachelor, 1892.
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A Appendix:
The Hinton & Nowlan model

A.1 Expected fitness of potential winner

To calculate the expected fitness of a genotype com-
posed of ¢ question-marks and (20 — ¢) 1s.

Define p = 1/29 prob. success on one trial.
r = 1—p prob. failure on one trial.
R = 71909 prob. failing all 1000 trials.

If success comes on the ith trial, for < 1000, then the
actual fitness is then given by 1+ 19(1000 — ¢)/1000.
The chance of first succeeding on the ith trial, which
necessitates failing the preceding (i — 1) trials, is given

by 7~ 1p.
Hence the expected fitness F'(¢), bearing in mind the
chance R of failing all 1000 trials with a resulting fit-

ness of 1, is given by:

1000

. 19(1000 — ¢)
F = R 14 =
(q) + ; rp < + =000 )
1000 19p 1000
— 2 i—1 _ s i—1
R+ Op;r —1000;zr
But we can use:
1000 ) 1—’[’1000
DI e
1—7r

i=1

and by multiplying each side by r and then differenti-
ating w.r.t. r:

1000
$ s 4 (=
dr 1—7r

i=1
1 — 100171000 4 1000s1001
T=E

Substituting we get:
Flg) =
(1 — 1000y B 19p(1 — 10011900 4 1000,1°0%)
1—r 1000(1 — r)?

19(1 — p1000)
1000(1—r)

R+ 20p

=20-— + 191000

This is used to calculate the figures in table 1, although
care must be taken with the precision in computing as
very small numbers are involved in the intermediate
calculations.

A.2 Expected number of winners at start

In a member of the initial random population, the
probability of having no Os, i.e. of being a potential
winner, is (3/4)2°. Such a member will be all ?s and
1s, with ?7s being twice as likely as 1s at any locus..
The chance of having exactly ¢ ?s in a potential win-
ner, given by the binomial expansion of (2/3+ 1/3)2,

is
20 9 q 1 20—¢g
()6 6
and then the probability of actual success is 1 — (1 —
0.5%)1000,

So the probability of this initial random member being
a winner is

G)zoi ( 2q0 ) @)4 <%)20_q (1 (1—0.57)100)

¢=0

~ (0.000558

This figure differs from the value 0.028 given in
(Belew 1989). The probability of there being no
winner in an initial random population of 1000 is

(1= 0.000558)10% ~ 0.572.
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