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Abstract

Individual lifetime learning can ‘guide’ an evolv-
ing population to areas of high fitness in geno-
type space through an evolutionary phenomenon
known as the Baldwin effect (Baldwin, 1896; Hin-
ton & Nowlan, 1987). Tt is the accepted wisdom
that this guiding speeds up the rate of evolu-
tion. By highlighting another interaction between
learning and evolution, that will be termed the
Hiding effect, 1t will be argued here that this de-
pends on the measure of evolutionary speed one
adopts. The Hiding effect shows that learning can
reduce the selection pressure between individuals
by ‘hiding’ their genetic differences. There is thus
a trade-off between the Baldwin effect and the
Hiding effect to determine learning’s influence on
evolution and two factors that contribute to this
trade-off, the cost of learning and landscape epis-
tasis, are investigated experimentally.

1 Introduction

In recent years there has been a renewed interest in the
Artificial Life and Adaptive Behaviour communities in
an evolutionary phenomenon known as the Baldwin Ef-
fect (Baldwin, 1896; Hinton & Nowlan, 1987; Gruau &
Whitley, 1993; Belew, 1989; Belew & Mitchell, 1996;
Whitley, Scott Gordon, & Mathias, 1994). Tt has be-
come the accepted wisdom that, through the Baldwin
Effect, the inclusion of learning ‘guides’ an evolutionary
system to fit solutions and therefore ‘speeds up’ the evo-
lutionary process. The emphasis in this body of work
has been on the rate at which fit phenotypes can be pro-
duced by a genetic algorithm (G.A.) in what are largely
function optimisation experiments. However, there are
many evolutionary scenarios that cannot be described
as function optimisation; for example, the Species Adap-
tive Genetic Algorithms (SAGA) of Harvey (1992) or co-
evolutionary systems that are prone to Red-Queen effects
(Cliff & Miller, 1995). In these cases, measures of evo-
lutionary speed, rate or progress that simply involve the
number of generations until a fit phenotype is produced
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are meaningless since there will always be evolutionary
driven movement in genotype space that may not lead
to fitness increases.

The purpose of this paper is to show that the view con-
cerning the speeding up of evolutionary progress afforded
by the inclusion of learning depends on the measure of
evolutionary speed one adopts. As an aid to this T will
highlight a second evolutionary phenomenon which oc-
curs when learning is included in an evolutionary system
that, under some measures, slows down evolution. T will
call this effect the ‘Hiding effect’.

I will first describe the Baldwin effect and how it’s ef-
fect on the dynamics of an evolving population on a fit-
ness landscape is generally viewed. I will then describe
the Hiding effect and how the evolutionary dynamics are
different to the Baldwin effect. Section 4 discusses the
trade-off between the two effects, suggesting conditions
under which one would dominate the other. Section 5
describes the simulation experiments that were run to
investigate the topics discussed, Section 6 defines the
measures used to assess the rate of evolution and the
results are presented in Section 7.

2 The Baldwin Effect

The Baldwin effect is an evolutionary phenomenon that
has been discussed, on and off, for the past 100 years.
Introduced independently by Baldwin (1896) and Lloyd
Morgan (1896) it was a means of explaining cases of ap-
parent inheritance of acquired characteristics without re-
course to Lamarckianism. It was first tested empirically
on drosophile by Waddington in the 1950’s (Wadding-
ton, 1953, 1956) and was finally brought to the attention
of the A-life/Adaptive Behaviour communities by Hin-
ton and Nowlan (1987). The Baldwin effect deals with a
specific interaction between the two adaptive processes of
evolution and learning. Here, learning is taken to be any
environmentally-driven phenotypic change that increases
an individual’s survival chances (fitness). The two pro-
cesses are arranged thus: a population of individuals are
evolving to perform a specific task (in artificial evolution
with a G.A.). Their phenotypes are generated from their
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Figure 1: The Baldwin Effect: The one dimensional genotypes are translated to phenotypes which can then modify
themselves in phenotype space. The heights of the phenotypes represent relative filness. a) Some individuals in the
population are able to achieve a fit trait through learning and will therefore be selecied; b) Differing levels of learning
among individuals in the population leads to the genetic assimilation of the trait. (Note: for clarity only a few arrows
are shown — in fact the majority of phenotypes are learning); c) The trait is now innate. Learning has guided

evolution to the fitness peak.

genotypes at the beginning of a generation and are then
modified by learning on the same task (Menczer & Belew,
1994) and given a fitness score. The fitness score of the
modified individual is used for the purposes of selection
among conspecifics but no information about the struc-
ture or behaviour of the modified individual is translated
back into the genotype. Despite this non-Lamarckian
framework, the learning process can still effect the course
of evolution through the Baldwin effect.

Referring to Figure 1, we can see that within a popula-
tion of non-identical individuals, some will be ‘closer’ in
genotype space than others to areas of increased fitness.
If these individuals are able to learn the appropriate phe-
notypic trait that corresponds to the increased fitness
they will, therefore, be selected for (Figure la). The
‘centre of gravity’ of the population thus moves in geno-
type space towards the area of increased fitness (Figure
1b) and the initially learned trait may become innate in
subsequent generations (Figure 1c) in a process known as
genetic assimilation (Waddington, 1942). Tt can be said
that learning is ‘guiding’ evolution (Hinton & Nowlan,
1987; Maynard Smith, 1987). This process is subject to a
few conditions, though. First, once the entire population
is learning the fitter trait, there must be further selection
pressure for the reduction in the level of learning to oc-
cur. This is supplied by a cost for learning. That is, there
are certain evolutionary costs to be paid by a learning
individual over a non-learning one for displaying a par-
ticular phenotypic trait (see Johnston (1982) for biologi-
cal review and Turney (1996), Anderson (1995), Mayley
(1996a, 1996b) for examples from the A-Life/S.A.B. liter-
ature). Assuming these costs become reduced the ‘more
innate’ a trait becomes, then they provide the selection
pressure for the reduction in the level of learning that is
necessary for genetic assimilation to occur. Another con-
dition that has been discussed in (Mayley, 1996b) is that
the genotypic space and the phenotypic space must have

the property of neighbourhood correlation with respect
to the genetic operators and the learning rule for genetic
assimilation of a learned trait to be guaranteed. That is,
the small changes in the phenotype that are a result of
learning must correlate to possible small changes in the
genotype using the genetic operators available.

Now that I have described the Baldwin effect, we can
look at it in terms of its influence on the speed or rate
of evolution. In Figure la, those individuals that are
learning the fitter trait will achieve an increased fitness
score. An experimenter monitoring the average fitness
of the population will notice an increase in this measure.
However, at this stage, there has been no movement of
the population in genotype space and therefore no evolu-
tion. Learning is increasing the fitness scores additively.
It is in the transition from Figure la to Figure 1b that a
learning-directed movement in the population’s position
in genotype space occurs and so it is only at this stage
that we can say learning is guiding evolution. With re-
spect to the Baldwin effect, the question is: How can we
be sure that evolution and learning are not producing a
fitness increase in a purely additive fashion rather than
through learning guiding evolution? That is, in compar-
ing a graph of average fitness over generations in a learn-
ing and evolution experiment with that from an evolution
alone experiment, if we were to remove that aspect of the
fitness scores that was attributable to learning, how can
we be sure we wouldn’t have identical graphs? Evolu-
tion implies genotypic change, and an increased level of
average population fitness in an experiment combining
learning and evolution is not necessarily a good indi-
cation of increased evolutionary progress. So what is?
Well, this will be dealt with in Section 6 but for now I
just want to emphasise that the Baldwin effect implies
that learning produces (directed) population movement
through genotype space that would not be there if evolu-
tion were applied alone (as was most definitely the case



in Hinton and Nowlan (1987)).

3 The Hiding Effect

This phenomenon, that T will call the Hiding effect of
learning on evolution, is by no means a new idea. It
has been described in several reviews of the effects of
learning on evolution in the biology literature (Johnston,
1982; Gordon, 1992) and is mentioned in the Artificial
Life/Adaptive Behaviour literature in the introduction to
Belew and Mitchell (1996). However, unlike the Baldwin
effect, I have not see any investigation into the nature or
conditions of this effect.

The Hiding effect can be considered as one of the costs
or selective disadvantages of learning (intro. Belew &
Mitchell, 1996). Tt occurs like this: Members of an evolv-
ing population with different genotypes are selected for
according to their phenotypic traits. The differences be-
tween the genotypes produce differences between their
associated phenotypes that allow selection to get a hold
and make a discrimination. Therefore, individuals with
differing genotypes that learn to perform the same trait,
or modify their phenotypes so that they are the same,
reduce selection’s ability to discriminate between them.
Genetic differences are hidden from selection by learn-
ing. This is illustrated in Figure 2. Conceptually, each
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Figure 2: The Hiding Effect: The one dimensional geno-
types are translated to phenotypes which can then mod-
ify themselves in phenotype space. (Note: again, only a
few arrows are shown). The heights of the phenotypes
represent relative fitness. The differences between indi-
vidual’s genotypes are hidden to selection by their phe-
notypes learning the same trait.

genotype in genotype space, represented by the black
crosses in Figure 2, can be thought of as having an in-
nate phenotype in phenotypic space, represented by the
black blobs. The distances between the blobs indicate
differences in the innately specified trait and translate
directly to their associated genetic differences. If these
individuals were unable to learn, then selection would
have these phenotypic differences to work on and, be-
cause of the fitness differentials indicated by the height
of the phenotypic landscape and the fact that the phe-
notypic differences are a good indicator of genetic dif-

ferences, evolution would move the population towards
areas of increased fitness. However, with each individ-
ual possessing the ability to learn, as indicated by the
arrows, (i.e. change their phenotype to one situated in
an area of increased fitness in phenotype space) then the
differences between the individuals’ phenotypes are re-
duced. Since their phenotypes are now identical, each
member of the population will achieve the same fitness
and so the selection pressure between them is reduced by
the learning over a non-learning population in the same
position. We would expect this decrease in the selection
pressure to lead to a reduction in the rate of movement of
the population through genotype space, i.e. the rate of
evolution would be reduced by the inclusion of learning
in this case.

4 The Baldwin/Hiding Trade-off

The previous two sections have described how evolution
can be both speeded up and slowed down by the inclu-
sion of learning. There must, therefore be some sort of
trade-off between the Baldwin effect and the Hiding ef-
fect or a set of conditions that determine whether one
dominates the other in the determination of the actual
rate of evolution. This section will describe two possible
conditions which will then be tested in the experiments
presented in Section 5. The first factor that influences
the trade-off between the Baldwin effect and the Hiding
effect is the cost of learning. It has already been stated
in Section 2 that the ability to learn a specific trait can
cost an individual over a non-learning conspecific. This
cost i1s what supplies the selection pressure for the genetic
assimilation of a learned trait, as in Figure 1b. It was
also stated that the Hiding effect itself can be considered
a learning cost or a selective disadvantage. However, the
Hiding effect is of a fundamentally different nature to
the costs which provide the selection pressure for genetic
assimilation. Instead of being paid by the individual rel-
ative to its conspecifics, it 1s borne by the population
as a whole!. It is the slowing-down of the rate of evolu-
tion that is the penalty that the Hiding effect bestows on
the whole population relative to a non-learning one (or
indeed a different population that is competing for re-
sources may be able to ‘out-evolve’ the population that
is experiencing the Hiding effect). Although the Hid-
ing effect is itself a selective disadvantage against learn-
ing, for it to be sustained and genetic assimilation of the
learned trait prevented, the individual-specific learning
costs must be minimal. That is, to show this effect, we
want to avoid the situation in Figure 1b in which the
costs provide the selection pressure for the population
to reduce the level of learning and climb to the area of

1In the classification of the various costs that have to be paid in
an evolutionary system for learning, presented by Mayley (1996b),
the Hiding effect falls into category 4 — individual non-specific
costs.
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Figure 3: The Trade-off Between the Baldwin Effect and the Hiding Effect Brought about by Epistasis: The one
dimensional genotypes are translated to phenotypes which can then modify themselves in phenotype space. The
heights of the phenotypes represent relative filness. a) Members of the population are learning their local filness
mazima. (Note: again, only a few arrows are shown); b) Differences in the heights of the local fitness mazima lead
to the selection of individuals that achieve the highest mazimum. This mazimum is then hidden from selection by the

individuals’ learning.

increased fitness in genotype space. In natural systems
it 1s very difficult for organisms to avoid the costs of
learning since their fitness is effectively continuously as-
sessed throughout their lifetime and any mistakes made
or time wasted whilst learning will cost them over a non-
learning individual. However, it is possible to avoid in-
dividual specific costs in artificial evolution by awarding
individuals their fitness depending on their performance
achieved at the end of any learning trials as in Chalmers
(1990) (see Mayley (1996a) for greater discussion of this
point).

The second condition that influences the trade-off be-
tween the Baldwin effect and the Hiding effect is epista-
sis. We can see this if we refer to Figure 3. Members of
a learning population that are spread over several peaks
will each be able to learn their local peak (Figure 3a).
Those that learn the highest peak will be selected for and
so come to dominate the population (Figure 3b). Thus
we have a directed movement of the population in geno-
type space towards an area of high fitness that i1s driven
by traits that have been learnt by the individuals dur-
ing their lifetime (Baldwin effect). However, once all the
members of the population are learning the high peak,
the genetic differences between them are no longer avail-
able for selection and, in the absence of any individual-
specific learning cost, the learned trait(s) cannot be ge-
netically assimilated (Hiding effect). This illustrates the
trade-off between the Baldwin effect and the Hiding ef-
fect and we can have situations where there is a mix-
ture of the two phenomenon. We would therefore expect
the Hiding effect to dominate in evolutionary situations
where there is low individual-specific learning costs and
low epistasis but as epistasis increases the Baldwin effect
gains more and more influence and as costs increase it
should come to dominate the Hiding effect.

5 Simulation Experiments

A set of experiments is described that make explicit the
cost of learning and landscape epistasis as parameters.
Section 6 will describe the techniques used to monitor
the rates of evolution in these experiments.

9.1 Genotypes, Phenotypes and Fitness

Each individual has a genotype and a phenotype that
both consist of a binary string of length N. The goals of
evolution and learning are to produce phenotypes with
the highest fitness according to Kauffman’s NK fitness
landscape model (Kauffman, 1993). Tt is expected that
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Figure 4: [llustration of the calculation of fnx(n) on
Kauffman’s NK fitness model with N =8, K = 2.

the majority of the readership is familiar with NK fit-
ness landscapes but for those who are not, here is the
briefest of descriptions. N refers to the length of a bi-
nary string and the value of K sets the level of epistasis
by determining the dependence the partial fitness of a
bit at location n has on the bits in a neighbourhood of
K other locations. The neighbourhood may be the K
locations nearest to n in the string or a set of K lo-
cations randomly picked from anywhere on the string.



A series of N lookup tables are generated, one for each
location. Each table has 2K+! random entries in the in-
terval (0,1). The fitness, Fyk, of a particular string is
calculated by Fiyg = % 227:1 fnk (n) where the partial
fitness fyx (n) is obtained from the nth lookup table us-
ing the values of the bits in location n and its neighbour-
hood as the lookup key (Figure 4). Thus when K = 0,
each location contributes independently to the overall
fitness of the string and the landscape is smooth; when
K = (N — 1) the fitness landscape is maximally rugged.

5.2 Learning

Lifetime learning is implemented as a steepest-ascent
hill-climb by the phenotype on the NK landscape. The
bits in an individual’s phenotype are initially set to be
the same as those in its genotype, giving the individ-
ual a definite innate phenotype and a starting point
from which to begin its learning search. The fitness
of this innate phenotype is tested using the NK fitness
model. Learning then proceeds as a set of learning tri-
als. Each bit is flipped, the fitness of the resulting phe-
notype tested and the bit flipped back again. When all
N bits have been tested, the bit that produced the best
fitness increase is flipped permanently. This process of
testing each bit and selecting the best, called a learning
operation, continues until no further fitness increase is
achieved. We thus have the phenotype performing a lo-
cal hill-climb to its nearest local optima, in accordance
that with the view that learning is a local search whilst
evolution is a population based one. To make the learn-
ing cost an explicit parameter, it is incorporated into the
fitness function (Section 5.3).

5.3 KErperiment Overview

A population of random genotypes of size 100 is gener-
ated with N = 20. Each individual’s genotype is copied
to its phenotype and learning takes place as described in
Section 5.2. The fitness is evaluated using the equation:

F(gi) = Fng(p}) — cx (1)

where F'(g;) is the fitness awarded to genotype g¢;,
Fni(p}) is the NK fitness of the best string found by
learning, ¢ is the cost of each learning operation and
z is the number of learning operations it took find p}.
The cx term in Equation 1 is used to provide a cost for
learning. The individual is penalised a fixed amount for
each learning operation that actually takes place. Once
the fitnesses of all the individuals in the population have
been evaluated, they are bred to form the next genera-
tion using fitness-proportional selection with 0.99 x the
fitness of the worst as the base, a crossover probability of
0.7 and an average mutation rate of 0.3 bits per genotype

(0.3/N per bit).

6 Measuring the Rate of Evolution

In the above discussion we have been considering the
influence of learning on the rate of evolution, but what
exactly 1s meant by this term?

It was stated in Section 2 that monitoring the average
fitness of the population in a non-Lamarckian framework
could lead to a false idea of the rate of evolution. The
average fitness of the population is an indication of the
rate at which the system is able to produce fit pheno-
types. If the experimenter’s motivation is an engineer-
ing one, where the requirement is to produce a good,
working solution to a problem, then this is sufficient.
However, that is not the motivation here. We are inter-
ested in the effect learning has on the movement of the
population through genotype space: The Baldwin effect
promotes that movement; the Hiding effect suppresses it.
A similar situation was encountered by Cliff and Miller
(1995) in which problems of assessing continued evolu-
tionary activity in co-evolutionary scenarios were consid-
ered. Here, tracking average fitness is meaningless since
the fitness of one population depends on the other. Cliff
and Miller used image-processing techniques to look at
patterns of genetic change and persistence over genera-
tions in bitmap images of elite and consensus sequences?.
Although giving a good indicator of genetic activity, their
results were largely qualitative making checking the rate
of evolution in any given system difficult. Bedau and
Packard (1991) monitored evolutionary activity in a dif-
ferent way. All of the phenotypic traits of the members
of the population were monitored for their lifetime us-
age and therefore their contribution to fitness® could be
individually assessed. The genes that directly coded for
those traits that persisted population-wise over genera-
tions were thus considered evolutionarily favourable and
the rate at which new, favourable genes were created was
considered a measure of evolutionary activity. The prob-
lem with the approach as a general method of measuring
evolutionary activity is that once the direct mapping be-
tween genotype and phenotypic traits is lost (e.g. some
sort of morphogenesis scheme is used to construct a phe-
notype from a genotype) then the decision as to which
gene contributes to which phenotypic trait is a hard one.
More specifically, when dealing with learning and evolu-
tion, if the phenotype changes during its lifetime through
learning then the decision is impossible.

One of the biggest problems encountered by both Cliff
and Miller (1995) and Bedau and Packard (1991) in
tracking evolutionary movement in genotype space is
that of distinguishing between useful, directed popula-
tion movement and random drift. Harvey and Thomp-

20ther techniques were also described that only apply to co-
evolutionary scenarios.

3Bedau and Packard actually used an energetic model where an
individual’s fitness was implicit but that distinction is not impor-
tant here.



son (1996) have developed methods to try and accom-
plish this and the techniques described here draw on this
work. I will describe a collection of measures of evolu-
tionary activity that together are sufficient to give us a
picture of the different effects that learning has on evo-
lution when influenced by the Baldwin effect and the
Hiding effect.

Centroid Movement: The centroid of a population
at any given generation is its center of gravity in geno-
type space. Each genotype is treated as a vector of 0.0’s
and 1.0’s and the centroid is average of these vectors:
C; = % Z?:l gij- Where Cj is the centroid at genera-
tion 7; P is the population size and g;; is the jth geno-
typic vector at generation i. We can thus plot the dis-
tance moved by the centroid from generation i — 1 to i:
|C; — Ci—q].

Centroid Direction Correlation (C.D.C.): A
population under no selection pressure that is performing
a random walk will show a large centroid movement each
generation. We want to capture a more directed form of
movement; a movement that is sustained over genera-
tions as new genetic material takes over the population.
This is done by taking the cosine of the angle between
the vectors of the motion of the centroid between two
generations:

(Ci — Ci-1) - (Ci—1 — Ci—9)

C.D.C;=
|C; — Ci1]|Ciq — Ci_s

(2)

Thus, when the centroid moves in a similar direction
through genotype space over two generations, this mea-
sure will be close to 1.0; in opposite directions it will be
close to -1.0 and orthogonally, close to 0.0 (most likely
with random movement in high dimensional space).

Principal Component Analysis: Harvey and
Thompson (1996) use a technique to visualise the move-
ment of their evolving population through genotype
space that reduces the dimensionality of their genotypes
from 1800 to 2. This is done by projecting the centroids
of the population over generations onto the first and sec-
ond principal components of the trace they made through
genotype space. The direct genotype to phenotype map-
ping and the one to one relationship between evolution-
ary task and the learning task in the particular experi-
ments above, allow us to go further. As well as projecting
the genotypic centroids onto the principal components,
we can also project the phenotypic centroids. This will
effectively lay phenotype space on top of genotype space,
viewed from the angle of most movement in genotype
space, and should allow us to see if learning is indeed
guiding evolution.

Innate Phenotype Fitness: Since the above exper-
iment was designed such that each individual has an in-
nate phenotype on which learning acts, we can remove
the components of the fitness scores that are attributable
to learning. We can then plot the average of this across

the population; it should indicate whether the popula-
tion has moved to areas in genotype space that are in-
nately fitter.

7 Results

The experiment was run with parameter values ¢ =
0.00 (individual-specific cost-free learning), ¢ = 0.03
(costly learning), and K = 0 (non-epistatic), K = 5
(epistatic). The results presented in this section are the
average of 50 runs of the simulation unless otherwise
stated.

7.1 Cost-Free Learning

Figure 5 shows the results for when ¢ = 0.00. In the case
where K = 0, the first thing to note is that the aver-
age fitness graph and the fitness of the best individual
(Figure 5a) are constant and equal throughout the evo-
lutionary run (the two graphs are laid over each other so
there appears to be only one line). All members of the
population have been able to find the globally optimal
phenotype from the first generation, regardless of their
genetic make-up. This continues for the entire simula-
tion run. Because their phenotypes are all achieving the
same score, there is no selection between the genotypes,
and the average fitness scored by the innate phenotypes
remains at 0.5, the average score that a randomly gener-
ated string would achieve on an N K fitness landscape.
That is, there is no selection pressure for the genotypes
to move to areas of increased fitness in genotype space
that are achievable without learning. Each individual
obtains it’s fitness score purely through learning. With
¢ = 0.00 and K = 0 we are seeing the Hiding effect at
its most prominent: Each individual obtains its fitness
score purely through learning and there is no evolution.

However, this is not to say that there is no movement
of the genotypes in genotype space at all, as we can see
if we look at Figure 5b, the graph of distance moved by
the centroid of the population each generation. We no-
tice that there is in fact a consistent level of movement
throughout the simulation run (average over generations
= 0.208). Since there is no evolution, i.e. no selection
resulting in directed population movement, this motion
is due to random drift*. Confirmation of this is given by
the C.D.C. graph (Figure 5¢). Remembering that this
is a measure of directed centroid movement over gen-
erations and will be positive for a correlated direction,
negative for anti-correlated and zero for uncorrelated, we
can see that during this experiment there was very lit-
tle directed movement within genotype space (average
over generations = -0.0064). We can get strong qual-

4The level in Figure 5b is the same as that produced in a sepa-
rate experiment where members of population were each awarded
a random fitness with all other experimental conditions identical
(not shown).
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Figure 5: Results from experimental runs with ¢ = 0.00 and K =0, K = 5: a), d) Fitness of the best member in the
population, average fitness of members in the population and average innate fitness of members in the population, all
over generations, plotted on the same azes; b), e) Distance moved by the centroid of the population in genotype space;
¢), f) Centroid Direction Correlation — indication of the correlation in the direction of movement of the genotypic

centroid each generation.

itative confirmation of this picture from the Principal
Component Analysis shown in Figure 7a. The crosses
represent the projection of the genotypic centroids on
the first two principal components of the genotypic cen-
troids over generations, the circles, the learnt phenotypic
centroids from the same perspective and the lines con-
nect genotypic centroids with phenotypic centroids from
the same generation, representing learning. All the phe-
noytpic centroids are positioned on top of each other at
the top of the Figure. This is because the phenotypes all
learn the global optima throughout the evolutionary run.
However, the genotypic centroids move around genotype
space in a random way — there is no selection pressure
for them to move in any particular direction.

Moving on to the case where ¢ =0.00 and K =5 —a
more epistatic fitness landscape — we can see a marked
difference in the fitness graphs in Figure 5d when com-
pared with Ha. First of all, the best fitness remains high
for the entire run as in the case with K = 0 but the
average fitness is no longer constant over generations. It
starts off high, well above the 0.5 random average, and
climbs steadily in the first 40 generations or so, until it is
near the best fitness. We can see why this happens from
the other three lines. The population starts off spread

out all over genotype space. Their phenotypes all learn
their local fitness peaks, which will vary in size, and the
ones that achieve the higher fitness scores will be selected
for. The phenotypic selection has the effect of moving
the population in genotype space so that they are near
the area corresponding to increased fitness in phenotype
space. The graph of innate fitness thus starts off at the
random average of 0.5 and increases steadily in the same
period to reach a level of 0.56 as the population moves
to the fitter area. Figure 5e show the magnitude of this
movement in genotype space indicated by the increased
level (above 0.208) of this line in the first 20 generations
or so. Confirmation that this is directed movement is
given in Figure 5f where the C.D.C. is beginning to show
consistent levels above zero in the same period. The fact
that the innate fitness graph doesn’t climb any further
indicates that there is still a large level of learning occur-
ring once the population has settled around a peak; the
peak now being hidden from selection by that learning.

The P.C.A. in figure 7b shows the movement in geno-
type space in this case. The genotypic centroids start
off in the bottom righthand corner of the Figure with
the centroids of their learned phenotypes to the north-
west of them. The population then moves in genotype
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Figure 6: Results from experimental runs with ¢ = 0.03 and K =0, K = 5: a), d) Fitness of the best member in the
population, average fitness of members in the population and average innate fitness of members in the population, all
over generations, plotted on the same azes; b), e) Distance moved by the centroid of the population in genotype space;
¢), f) Ceniroid Direction Correlation — indication of the correlation in the direction of movement of the genotypic

centroid each generation.

space in this same direction, following the phenotypes.
In the latter generations, the genotypic centroids never
quite ‘catch up’ with the phenotypic centroids indicat-
ing that full genetic assimilation has not occurred. The
population has moved to an area in genotype space that
innately produces fitter that random phenotyes, through
fitness scores that were achieved through learning. It is
fairly clear that the situation described in Section 4 has
occurred here in which there has been a trade-off between
the Baldwin effect and the Hiding effect.

7.2 Costly Learning

We now turn to Figure 6 which shows the results from
simulation runs where learning costs the individuals 0.03
fitness points for each learning operation performed.
Firstly, when K = 0, it is noticeable from Figure 6a that
both the best fitness and the average fitness start off ap-
preciably lower than in the cost-free cases and then climb
up to a similar value after about 30 generations. The rea-
son for these lower levels of fitness is that, although the
individuals are learning the global optima, they are being
penalised for that learning. The increasing fitness levels

over generations then comes about through the selection
pressure to reduce these costs which can only be done
by the population moving in genotype space towards the
area that produces innate, globally-optimal phenotypes
to reduce the level of learning. This is shown by the
innate fitness graph in Figure 6a. It climbs to a level
similar to the other two lines indicating that the major-
ity of an individual’s fitness is a result of the position of
its innate phenotype in phenotypic space and only min-
imally as a result of learning. This shows strongly that
the global optima has been genetically assimilated®. Fig-
ure 6b and ¢ show the strong movement across genotype
space as this assimilation takes place. In the early gen-
erations the levels are well above their baselines of 0.208
and 0.0 respectively, but it is interesting to note what
happens to them after the genotypes reach the global
optimum at about generation 30 — Figure 6b falls well

50One point to note in passing with these graphs is that the in-
nate fitness graph is higher that the average fitness graph. This is
because the individuals are being penalised heavily for their learn-
ing but, because we are imposing learning on them, can only evolve
to areas in genotype space that require less learning rather than
to not learn at all. This is of little consequence to the arguments
presented here since we are dealing only with learning individuals.
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Figure 7: Projection of the genotypic centroids (crosses) and the phenotypic centroids (circles) on the first two prin-
cipal components of the genotypic centroids over generations. The lines connect genotypic and phenotypic centroids
from the same generation to represent learning (for clarity they are only shown for every fifth generation) and the
numbered labels indicate generation (every 10). These plots are each from a single simulation run with the parameter

settings as shown.

below 0.208 and the C.D.C. becomes negative. This is
because the population is converged on the global opti-
mum with little selection pressure in any direction. Mu-
tation will cause individuals to fall off the optimum and
any imbalance in the direction that individuals fall will
cause the centroid to slowly shift away from the opti-
mum. The fallen individuals will then have to learn the
optimal phenotype and therefore incur a cost of learn-
ing. These individuals will then be selected against and
the centroid will move back towards the optimum — the
opposite direction from which it moved previously. We
therefore get small, frequent movements of the centroid
that are negatively correlated with the previous direc-
tion.

The P.C.A. for costly learning on a non-epistatic land-
scape is shown in Figure 7c and is rather different from
the cost-free case in Figure Ta. Once again, all the
centroids of the learned phenotypes are situated on the
global optimum (to the right of the Figure) throughout
the evolutionary run but in the first 30 generations the
genotypic centroids quickly arrive in the same area as
the learning becomes genetically assimilated, in contrast

with Figure Ta. Subsequent to that, the genotypic cen-
troids remain very close to the optimum, confirming the
picture of a population continually falling off the peak
and then being pushed back.

We look now at costly learning with K = 5. In this
case the fitness, centroid movement and C.D.C. graphs
indicate a less severe but more prolonged movement of
the centroid across genotype space than in the K = 0
case. This is because there are more fitness peaks across
phenotype space for the learning individuals to explore,
reducing the selection pressure between them. This is
born out by the P.C.A. shown in Figure 7d where the
phenotypic centroids progress across the projection in
contrast to Figure Tc where they were firmly fixed to
the global optimum. The genotypic centroids follow the
phenotypic centroids in their associated space in a simi-
lar manner to Figure 7b but at a faster rate because of
the selection pressure of reducing the cost of learning.
Notably also is that, in the later generations, the geno-
typic centroids are packed more tightly around the area
of genotype space that innately corresponds to the fitness
peak in phenotype space that the population eventually



settles on. This is because the selection pressure from
the cost of learning overcomes the Hiding effect that was
seen in Figure 7b.

& Conclusion

I started with a discussion of the Baldwin effect and
stated that the accepted wisdom is that the inclusion of
learning in a evolutionary scenario speeded up the rate
of evolution. It was noted that this is usually assumed
from an increased production of fit phenotypes as indi-
cated by an average or best fitness measure. I then sug-
gested that these measures may not be appropriate, high-
lighting the Hiding effect as a phenomenon that slowed
the progress of an evolving population through genotype
space, whilst still producing fit phenotypes. Factors gov-
erning whether the Baldwin effect or the Hiding effect
dominates in any given evolutionary scenario were sug-
gested and it was shown experimentally that the Hiding
effect dominates when epistasis and the cost of learn-
ing are low, the Baldwin effect dominates when the cost
of learning is high, but when the costs are low and the
epistasis is high there 1s a mixture of the two.

One note concerning C.D.C. measurement of evolu-
tionary rate used here: On the NK fitness landscapes it
was a good indicator of directed genotypic movement.
However, on more realistic landscapes in which there is
significant levels of ‘junk D.N.A.” and neutral networks,
hitchhiking may lead to some problems.
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