On Crossing Fitness Valleys with the Baldwin Effect

Rob Mills and Richard A. Watson

School of ECS, University of Southampton, Southampton, SO17 1BJ, UK
rmmOSr@ecs.soton.ac.uk

Abstract

Escaping local optima and crossing fitness valleys to reach
higher-fitness regions of a fitness landscape is a ubiquitous
concept in much writing on evolutionary difficulty. The
Baldwin effect, an interaction between non-heritable
lifetime plasticity (e.g. learning) and evolution, has been
shown to be able to guide evolutionary change and
‘smooth out’ abrupt fitness changes in fitness landscapes —
thus enabling genetic evolution that would otherwise not
occur. However, prior work has not provided a detailed
study or analysis on the saddle-crossing ability of the
Baldwin effect in a simple multi-peaked landscape. Here
we provide analytic and simulation studies to investigate
the effectiveness and limitations of the Baldwin effect in
enabling genotypic evolution to cross fitness valleys. We
also discuss how canalisation, an aspect of many prior
models of the Baldwin effect, is unnecessary for the
Baldwin effect and a hindrance to its valley-crossing
ability.

Crossing fitness valleys and the Baldwin effect

One of Darwin’s basic tenets for the operation of evolution
by natural selection was that it must be possible for
adaptations to arise via monotonic improvements provided
by successive slight variations (1859). Local fitness peaks,
or local optima, genotypes for which no small genetic
change affords a fitness improvement, present a problem
for incremental improvement, and the greater the width of
a fitness saddle (for our purposes, the distance from the
local optimum to the nearest genotype of equal or higher
fitness), the greater the difficulty of continued adaptation.
Wright described the problem of finding “a trial and error
mechanism by which the locus of a population may be
carried across a saddle from one peak to another and
perhaps higher one” as the “central problem of evolution”
(1935, p.264). And in general, there is widespread
understanding that the presence of local optima and the
likelihood of escaping them is fundamental in
understanding the difficulty of both biological evolution
and applications of evolutionary algorithms (e.g.
Kauffman 1993).

Many mechanisms that effect the likelihood of escaping
local optima, or avoiding them, have been proposed and
investigated including: neutral networks (Huynen et al.
1996) that increase connectivity of genotypes via neutral
evolution; extra-dimensional bypass (Conrad 1990) where
the number of features an entity exhibits increases over
evolutionary time so a population might be able to move
around an impasse in the extra degrees of freedom thus

provided; exaptation (Gould & Vrba 1982) where a
collection of features adapted for some purpose is co-opted
for some other purpose; sexual selection via mate choice
(Todd and Miller 1997) which considers the modifications
on fitness landscape made by mate choice, allowing
populations to move into new adaptive zones; and genetic
operators such as sexual recombination that allow large
non-random genetic changes by crossing diverse
individuals (Jansen and Wegener 1999; Watson 2004,
2006). In this paper we investigate the influence of a
different mechanism on the possibility of escaping local
optima and crossing fitness saddles — the Baldwin effect.

The Baldwin effect (Baldwin 1896), modelled in detail
in the following sections, is an effect resulting from the
interaction of learning (or more generally, any non-
heritable lifetime plasticity) with evolution (Hinton and
Nowlan 1987). Although the Lamarckian inheritance of
acquired characteristics is not involved, the Baldwin effect
nonetheless describes a mechanism whereby non-heritable
characteristics acquired during an organism’s lifetime can
influence the selective pressures on an evolving
population, and more specifically, over time thereby cause
the population to genetically assimilate the previously
non-heritable characteristics.

Many examinations and computational simulations of
the Baldwin effect have been undertaken (e.g. see Turney
et al. 1996, Belew and Mitchell 1996). A particularly
celebrated computational model of the Baldwin effect by
Hinton and Nowlan (1987) provided a simple model of the
effect on a single-peaked landscape. Although many
studies of the Baldwin effect have involved more general
fitness landscapes, some of which will certainly involve
multiple fitness peaks, studies which specifically address
this seem lacking. One exception (Wiles et al. 2001)
provides a simulation study of the Baldwin effect on an
explicitly multi-peaked landscape — however, the findings
of this paper are concerned with the interaction between
the Baldwin effect and the operation of genetic crossover
on the underlying modular structure that produced these
peaks. In this paper we address the influence of the
Baldwin effect on crossing fitness valleys using a simple
two-peaked example (building on Hinton and Nowlan’s
approach), and we provide quantitative analysis of its
abilities and limitations in this process.

One way to understand the effect of lifetime plasticity
on the selective pressures acting on a population is as a
‘smoothing’ of the fitness landscape (Watson et al. 2000).
This is demonstrated clearly in Hinton and Nowlan’s
model where the smoothing effect produces fitness slopes



around an otherwise abrupt fitness needle standing on a
fitness plateau. This model was sufficient for illustrating
the Baldwin effect, but although it introduces the idea of
smoothing the fitness landscape, it does not (and was not
intended to) inform our understanding of the potential for
the Baldwin effect to escape local optima and cross fitness
valleys.

In this paper we introduce a simple two-peaked fitness
landscape, one higher than the other, and examine the
likelihood of a population at the low peak escaping and
traversing to the high peak, with and without learning. We
find that the smoothing concept of the Baldwin effect is
useful for understanding the consequences of learning in
this scenario, and we find that there are cases where,
although reaching the high peak is infeasible for a non-
learning population, a learning population can reach the
high peak easily. This fits straightforwardly with what we
might expect about the operation of the Baldwin effect, but
the contributions of this paper exceed this basic result.

Specifically, in addition to showing that the Baldwin
effect can enable the crossing of fitness valleys, we provide
quantitative analysis of the modified fitness landscape
provided by phenotypic plasticity, and examine specific
conditions and probabilities describing the strength and
limitations of the effect. We show that, whereas in the
Hinton and Nowlan model the Baldwin effect merely
converts a flat area of the landscape to an inclined area,
the Baldwin effect can go further and convert a negative
selective gradient into a positive selective gradient for the
learning population. This can enable the complete removal
of a fitness valley, providing a path of monotonic
improvement leading genetic evolution of the learning
population across the valley to the higher fitness peak.

We also reiterate the difference between genetic
assimilation and canalisation (Mills and Watson 2005),
often conflated in prior work, and discuss how, not only is
the latter not required for the former, but that canalisation
is actually a hindrance to the use of the Baldwin effect for
the crossing of fitness valleys. We argue that the
incorporation of canalisation in Hinton and Nowlan’s
model seems natural only because they use a single-peaked
landscape, and in a multi-peaked landscape canalisation
would be a hindrance to finding the higher peak.
Moreover we see that the particular way in which Hinton
and Nowlan represent canalisation in their model is
questionable as well as unnecessary.

The next section details the two-peaked landscape and
the model of the learning population that we will examine
in this paper. This is followed by an analytic study of the
effect that lifetime plasticity/learning has in smoothing the
fitness landscape and removing fitness valleys in this
scenario. Subsequently, simulation studies illustrate the
effect that the modified landscape has on an evolving
population. Finally we review the conceptual difference
between genetic assimilation and canalisation introduced
in prior work (Mills and Watson 2005) and discuss how
canalisation hinders wvalley crossing and moreover
obfuscates the mechanism of the Baldwin effect in general.

A Model of Learning on a Two-Peaked
Landscape

Fitness Landscape

In order to investigate the ability of the Baldwin effect in
crossing valleys, we study a simple landscape comprising
two peaks on an otherwise flat plateau; that is, all
genotypes aside the two peaks have the same fitness, F).
We nominate a unique genotype for each peak and,
without loss of generality, we choose the two peaks to be
from the set of genotypes G=1"0""* for 0<k<N (where N is
the number of bits in a binary genotype), using k=m and
k=n for the two selected peaks. The two peaks are
straightforwardly represented in a one-dimensional cross-
section of the fitness landscape that passes through the two
peaks. One should be careful with a one-dimensional
representation of an N-dimensional space: this section
usefully represents genotypes that are ‘between’ the two
peaks (in the sense of being on one of the length |n-m|
shortest mutational paths between them), but note that
other genotypes exist which are not on this cross-section.

To find the capability of the Baldwin effect we choose
the distance between the two peaks to be great enough that
if a population were located at the lower peak, random
mutation alone would be extremely unlikely (quantified
later) to allow the population to cross this valley to the
higher peak.
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Figure 1: Two peaked fitness landscape

Lifetime Plasticity and Learning Model

For a population to exhibit the Baldwin effect it requires
some form of phenotypic plasticity. For a non-plastic
population we let the N-bit genotype represent the
phenotype of the individual directly. A plastic individual,
in contrast, produces a number of different phenotypes
(each one represented by an N-bit string) in each of its
lifetime time-steps. Each phenotype is produced by
applying mutation-like variation to the individual’s
genotype. That is, each phenotype is produced by copying
the genotype then, with some probability, replacing each
bit with a new random bit for each bit independently. Note
that, in contrast to Hinton and Nowlan’s model and many
other studies, our simpler model of lifetime plasticity does
not involve any demarcation of which bits are plastic and



which bits are non-plastic, nor any mechanism that varies
the number of bits that are plastic over evolutionary time.
Accordingly, we refer to our model as a constant plasticity
(CP) model. The important reasons for selecting these
properties for the CP model are discussed later.

We investigate two variants of how the set of
phenotypes produced in an individual’s lifetime are
mapped to its fitness: one where individuals have a simple
form of phenotypic plasticity (without learning) (CP), and
a second where individuals have a learning ability (CP-L).
In the CP model, an individual’s fitness is simply the
mean of the fitnesses of all of its phenotypes. In the CP-L
model, the fitness of an individual is based on that used by
Hinton and Nowlan but extended to suit a multiple-peaked
landscape. At each lifetime time-step, we allow
individuals to exhibit the most fit phenotype found in all
time-steps thus far, then take an average of the exhibited
phenotypes. As in Hinton and Nowlan’s model, this model
of learning represents the ability of an individual to
recognise and exploit successful phenotypes when they are
discovered. However, ours does not assume that an
individual knows it has found the global optimum; thus
exploration continues throughout its lifetime.

Note that whilst neither of the constant plasticity model
variants exhibit any canalisation, this does not imply that
there are no costs to this plasticity (or learning): if no
mechanism exists to facilitate canalisation (i.e. reduce
plasticity) then the costs of plasticity are irrelevant.

We use a simple example to illustrate the two fitness
models (see figure 2). For an individual with Z=200
phenotypic trials, and a landscape with plateau fitness (F))
of 1, and peak fitnesses (F,, F,) of 10 and 100, and if the
lower peak is first found after 60 trials (7,), and the
higher peak is found after 180 trials (7,), assuming each
peak is found only once, we find the overall fitness as
follows: for the plastic individual: F = (198*1+
10*1+100*1) / 200 = 1.54; for the learning individual: F'=
(60*1+10*(180-60)+100*(200-180)) / 200 = 16.3;.
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Figure 2: Calculating the fitness for phenotypes of (a) a
plastic individual, and (b) a learning individual.

Analytic Results

In this section we provide analytic results of how the
plasticity and learning models detailed above ‘smooth’ the
aforementioned two-peak landscape. We find the extent of
modifications to this landscape provided by plasticity, by
calculating the expected fitness of individuals as a
function of their location with respect to the two peaks.
This is calculated for any width fitness valley between the
two peaks and any heights of those peaks.

CP Expected Fitness Derivation

In this model each of the phenotypic trials is independent
and the fitness of an individual is calculated by the mean
of the fitness of all of its phenotypes. We calculate the
probability of hitting each peak from a genotype, K=10"*,
lying on the section drawn in Figure 1, for a variation rate
of p, position of peaks m and n, fitness of these peaks F,,
and F,, and genotype size N loci.

The probability, p, of a genetic change at a locus is p/2,
(with binary alleles, the probability of a genetic change is
half the probability of assigning a new random allele), and
the probability of no change, », is 1-p. The Hamming
distances from peaks m and n to the genotype K are
d,=n-k| and d,=|m-k|, respectively. The probabilities, 0O,
and Q,, of exactly the correct variation occurring to hit
peaks m and n from genotype K are:
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Finally, we calculate the expected fitness, Ej;, for a
genotype K from the contributions of peaks F,, and F, and
the plateau fitness F:

E, =0,F,+0,F,+(1-0,-0,)F,

The number of phenotypic lifetime trials does not affect
the mean expected fitness — it only affects the variance in
the expected fitness (in practice, the sample provided by
lifetime trials will need to be large enough to reflect these
probabilities).

This derivation should apply for the expected fitness
calculation of any genotype, and for any given peak
configuration, not just those described by G;. The one
necessary change is in calculating the Hamming distances
d, and d,, where a modulus operation would not be
sufficient. Instead we can use an xor operation between
each peak genotype and the genotype we wish to calculate
the expected fitness for. However we choose to consider
G in order that interpreted of results be straightforward.

CP-L Expected Fitness Derivation

At each lifetime time-step, the individuals in the CP-L
model employ the best phenotype they have found thus far,
which means that the fitness afforded by each learning



trial is not independent of the trials which have already
occurred. This calls for a different approach in calculating
the total expected fitness, and for this we extend the
method used by Harvey (1993) to analyse Hinton and
Nowlan’s model.

Where symbols are reused from the CP analysis they
have the same meaning and definition. The probability
that peak » has been hit in at least one time-step by time-
step ¢ is g, below, and likewise g,,, for peak m.

q,=1-(1-0,)
4 i :1_(1_Qm)[

We use a probability tree to find the expected fitness
contribution for each time-step. Since the learning model
grants an individual the fitness of the greatest peak found
by that time-step, we firstly consider the probability
highest peak being hit by this time-step (g,), in which
case the fitness contribution is F,. If this does not occur (1-
qn) we construct a branch for the alternative events, in
fitness order: the probability that the low peak is hit (g,.)
by its contribution F,,, and a final branch if the low peak is
not found (1-g,, the fitness contribution is from the
plateau (F)). Finally, the expected fitness is calculated by
summing the probability for each peak being hit over all
learning trials:

Bo= 2 0+ (=0, )Xo+ 0= 0,)R)

In this section we have extended Hinton and Nowlan’s
learning population fitness function, and Harvey’s analysis
of it, from a specific case of a one-peaked landscape to a
two-peaked landscape. In doing so, this also provides a
means to calculate the expected fitness of a learning
individual with a given genotype in a landscape with any
number of peaks. In principle, this allows the method to
apply to any fitness landscape using the limit where a
landscape is modelled as a field of neighbouring fitness
‘needles’.

Example study

We now consider the specific landscape introduced above,
with N =20, F, =100, F,, =10, Fy =1, pn = 0.2, n = 20,
m =15, L = 1024 for each of the models.

Figure 3(a) shows the ‘expected-fitness landscape’ of a
non-learning plastic population, which shows a small
amount of smoothing around the two peaks; whilst the
plasticity affords an advantage in fitness for individuals
not on a peak (compared with the plateau fitness), this
advantage is neither significant nor far reaching from each
peak. Note also that for a plastic individual whose
genotype is on a peak, its expected fitness is greatly
reduced when compared to a non-plastic individual with
the same genotype. Figure 3(b) depicts the expected-fitness
landscape of a learning population for a variety of lifetime
trial counts. The landscape is smoothed far more
significantly even at low trial counts, indicating that
learning individuals make much better use of information

found during the lifetime trials than their non-learning
counterparts. This confers a learning individual a greatly
improved chance of survival a number of bits away from a
peak when compared with a non-learning or non-plastic
individual with the same genotype.
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Figure 3: Expected fitness for (a) plastic and (b)
learning populations

When the fitness landscape is modified to the extent that a
positive gradient toward peak n exists at all genotypes
between peak m and peak n, a population will be able to
cross the valley in very few generations. In the specific
case shown in Figure 3(b); the learning population with
2'% learning trials, this condition is satisfied and
consequently we expect the valley to be crossed very
quickly. In contrast, for a non-plastic population, there is
no fitness gradient leading the population to the high
peak, of course, and accordingly such a population will not
discover that a higher-fitness peak exists unless by chance.

The expected time for an individual situated at the low



peak to hit the high peak by random mutation is

V(p“r =)y,

This time increases exponentially with both the width of
the valley and, more importantly the size of the search
space, N. Thus, a population will have to wait an
exponentially large number of trials before its first hit on
the high peak, in order to cross the valley. Accordingly,
we see that the Baldwin effect has a dramatic influence on
the expected time of a population to cross a fitness valley —
changing it from infeasible for a non-learning population,
to easy for a learning population.

However, it should be noted that the number of lifetime
trials required to modify the expected-fitness landscape
sufficiently for valley-crossing, is dictated by the same
probabilities as those that required for a non-learning
population to cross the valley via genetic variation alone.
That is, the Baldwin effect provides valley-crossing ability
only if we assume a number of lifetime trials that are
exponential in N. Thus from an engineering perspective,
the Baldwin effect is not an efficient means for crossing
valleys in terms of the number of fitness evaluations.

Note that in some cases the fitness of a non-plastic
population is greater than for a plastic or learning
population when the population exists on the lower peak
(see figures 3(a) and 3(b)). However in other cases
(depending on height of the high peak, distance from the
high peak, number of lifetime trials and other costs of
learning) the learning population out-competes a non-
plastic population.

Although in prior work we have shown that the CP
model is sufficient for exhibiting the Baldwin effect in a
single-peaked landscape (Mills and Watson 2005), here
we see that the ability of the CP model is very limited
compared to that of the CP-L model and not likely to
facilitate valley crossing except in very restricted
circumstances. For this reason we disregard the CP model
for further investigation in this study.

Simulated Experiments

In the previous section we have shown the effective
smoothing on the fitness landscapes provided by plasticity
and learning, given by an analytic result for the expected
fitness of a genotype under these models. We have argued
that the crossing times for the learning population will be
very fast when the selective gradient to the high peak is
monotonically improving, as it is with 2'° trials for
example, and that the crossing time without the Baldwin
effect will be very long (exponential in N). In this section
we illustrate these crossing-times using a basic form of
genetic algorithm (as is common in other work on the
Baldwin effect, e.g. Hinton and Nowlan 1987).

Our evolving population is modelled using a constant
population size of 200 N-bit genotypes, initialised on the

low-fitness peak. Each new generation is formed by
fitness-proportional reproduction. Mutation is the only
genetic variation operator used (with a 0.1 probability of
assigning a new random allele to each bit independently).
Note that this genetic variation therefore has the same
variation neighbourhood (Mayley 2000) as the mutation-
like phenotypic variation we have been studying.

We compare the performance of a population with
learning phenotypes against a population without any form
of phenotypic plasticity (as previously shown a plastic
population without learning is expected to have a similar
performance to the non-plastic case so is not investigated
further).
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Figure 4: Simulation results of learning populations

We can see in Figure 4 that the phenotypes of the
learning population found the higher peak within 3
generations, which is followed by the genotypes of some
individuals (see the ‘min in genotype’ line). Within 12
generations the consensus genotype has completely moved
to the high peak (the consensus genotype takes the modal
allele across the population for each loci). The consensus
in phenotypic trials remains approximately 2 bits away
from the higher peak even after the consensus genotype is
on the peak, indicating lifetime search continues. In 100
additional runs the population moves over to the new peak
in a mean of 13.3 generations.

Simulations of the non-plastic population over 3000
generations do not find the high peak until a mean time of
at least 2382 generations. We can see the difference in
performance is in the order of 100 times in favour of the
learning population. To make the most demanding
comparison of the learning population with the non-plastic
population we might ask which genetic mutation rate
would give the non-plastic population the best chance of
mutating a genotype at the low peak to hit the genotype at
the high peak. The optimal new-random-allele mutation
rate to get from the low peak to the high peak that is 5 bits
away in our example landscape is 0.5; this rate gives a
mean of 5 genetic changes (since new random alleles have
a 50% chance of changing the value of their locus) in 20
bits. With this mutation rate the probability of hitting the



high peak from the low peak is 0.0000131 and the
expected number of trials before this occurs is therefore
76,000 or 380 generations with a population size of 200 —
clearly still far greater than the 13.3 generations that the
learning population requires to reach the high peak1 (also
note that we have not optimised the learning model
performance carefully).

Moreover, it should be noted that a mutation rate of 0.5
is too high for a population of 200 to maintain its position
on the high peak if it were found (or maintain its position
on the low peak it starts on for that matter) since the
genetic drift is too strong. In principle, a small amount of
elitism, retaining the fittest individuals in the population
without variation, would alleviate this problem — but this
is obviously not an option for a natural population. In
contrast, in the learning population the genetic mutation
rate may be low even though the phenotypic variation rate
is high, so this problem does not arise.

Discussion

Two mechanisms have often been presented as required
components to demonstrate the Baldwin effect, genetic
assimilation and canalization. However, as highlighted in
previous work (Mills and Watson 2005), only genetic
assimilation is necessary. By canalisation we mean a
reduction in phenotypic plasticity, whereas genetic
assimilation occurs when a behaviour that was once
acquired in the phenotype becomes specified in the
genotype. The conceptual distinction is easily recognised
by considering how the mean and variance of the
distribution of phenotypes of an individual changes over
evolutionary time: canalisation means that the variance in
phenotypes reduces, genetic assimilation means that the
mean phenotype is moved (but does not necessarily
suggest that the width of that distribution might reduce).
In (Mills and Watson 2005) we stress that many works
have conflated these two concepts and that this confusion
is in large part because they are difficult to disentangle in
the particular model that Hinton and Nowlan provided.
The issue of canalisation impacts the saddle-crossing
ability of the Baldwin effect considerably. Specifically, to
the extent that a population canalises to one peak it will be
unable to explore varied phenotypes that may find another,
perhaps higher, peak. In the more general case, if there
were a number of valleys which were individually
crossable, if moving to the first peak requires canalising to
that peak, then the first jump would prohibit the crossing
of any further valleys. In the single-peaked landscape that

1 To consider performance from an engineering perspective, we
find the learning population takes approx. 13.3*200*1024 =
2,723,840 evaluations, which is significantly more than for the
non-plastic case (approx. 2382*200 = 476,400 evaluations).
However, this model is not intended to show any engineering
advantage; from a biological viewpoint, generation time is
approximately fixed. Thus the important comparison to make is
upon the number of generations required.

Hinton and Nowlan use, this issue cannot arise and
canalising on a peak, even in the limit of removing all
phenotypic variation, seems unproblematic. But in a multi-
peaked landscape it is not at all clear how a population
might avoid what might be termed ‘premature
canalisation’. In contrast, in a ‘constant plasticity’ model
such as we have used in our study, this problem is moot. If
some mechanism for canalisation were to operate after one
peak had been found, then to the degree that no plasticity
remained, the Baldwin effect could provide no further
valley crossing capability, since its fundamental
requirement is for individuals to exhibit some phenotypic
plasticity. But there is a further issue about the particular
way that Hinton and Nowlan model canalisation that we
would like to discuss.

A large factor contributing to the difficulty of finding a
phenotype at the high-peak is the low probability of
variation changing not only the correct number of loci, but
ensuring those changes occur at the appropriate loci —
changing those that need to be changed, leaving the other
loci unchanged. The number of ways of choosing the
correct k-loci in an n-locus problem increases with n
factorial. In other words, for non-trivial sized problems,
the probability of the arrangement of mutations occurring
in exactly the right combination to jump a long distance is
very small. Naturally, the probability of making a useful
jump could be increased if somehow the variation
mechanism knew which bits required modification. Hinton
and Nowlan allow their individuals to adapt which alleles
are variable and which are not (using the special ‘question
mark’ alleles that indicate a locus of phenotypic plasticity,
and a model that does not allow non-question-mark alleles
to vary at all in an organism’s lifetime). It essentially
guards the bits which are already correct from further
modification, and in each learning trial, incurs a new
random allele variation rate of exactly 1 in the loci which
are not yet correct. Again, for the single-peaked landscape
this seems unproblematic. The fitness rewards that are
enjoyed by an individual that has canalised a locus with a
correct allele are wunambiguously valuable to that
individual. However, in a multi-peaked landscape there
are many canalisations that would increase the average
fitness of an offspring at the low peak but only some of
these are “correct” for the high peak. There is no means
for the selective pressures that promotes canalisation of
loci to distinguish between the 15 loci (to use our
example) where the alleles of the two peaks are the same,
and the other 5 loci that should remain plastic because the
alleles of the two peaks disagree. Thus, we see no way to
utilise Hinton and Nowlan’s particular model of
canalisation appropriately in a multi-peaked scenario.
Hence, although their mechanism of canalisation works
well on a single-peaked landscape, where fitter alleles are
unambiguously “correct”, and it would clearly be an
advantage to saddle-crossing if a population could
somehow identify which loci should remain plastic, it is
not clear to us that this mechanism of canalisation makes
sense in general.



The interaction of canalisation with genetic
assimilation, and in particular the model of canalisation
that Hinton and Nowlan employ, has become quite
embedded in how researchers view the Baldwin effect. In
particular, the ‘two phase’ aspect of the Baldwin effect in
their model — first the purging of incorrect alleles, then
the continued replacement of plastic alleles with correct
alleles — seems unnecessarily complicated to us. In the
constant plasticity model, genetic assimilation occurs by
the continued genetic change of genotypes toward
phenotypes that are fit. This simplification allows us to
exploit the intuitive notion of smoothing the fitness
landscape as the only concept that needs to be understood
in order to understand how lifetime learning can guide
evolution, as we have shown in the above example.

In summary, the problem of how to escape local optima
is fundamental for incremental improvement processes. In
this paper we have verified that a population with learning
can alleviate this problem, by means of the Baldwin effect.
We have provided analysis of the modifications to the
fitness landscape that learning grants, and this helps us to
understand the capabilities and limitations of the effect,
specifically when crossing fitness valleys. The analysis is,
in principle, applicable to arbitrary fitness landscapes. Our
study shows how the Baldwin effect can operate without
canalisation and this aids significantly in simplifying
understanding of how the Baldwin effect works by
smoothing out of the fitness landscape.
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