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Abstract

In models of associative memory composed of pulse neu-
rons, chaotic pattern transitions where the pattern re-
trieved by the network changes chaotically were found.
The network is composed of multiple modules of pulse
neurons, and when the inter-module connection strength
decreased, the stability of pattern retrieval changed from
stable to chaotic. It was found that the mixed pattern of
stored patterns plays an important role in chaotic pat-
tern transitions.

1 Introduction

Chaotic associative memory which incorporates chaotic
dynamics into static associative memory, was proposed
by several researchers in the 1990s (Adachi & Ai-
hara, 1997; Aihara, Takabe, & Toyoda, 1990; Inoue
& Nagayoshi, 1991; Nara & Davis, 1992; Tsuda, 1992;
Uchiyama & Fujisaka, 2004). In such models, the pat-
tern retrieved by the network changes chaotically, and
such phenomena are thought to be related to chaotic itin-
erancy in high-dimensional dynamical systems (Kaneko
& Tsuda, 2000). Previous models of chaotic associative
memory were composed of conventional analog-valued
models of neurons. However, considering the actual
brain, chaotic associative memory should be modeled us-
ing pulse neural networks (PNNs) which are thought to
be more precise than networks of analog-valued neurons.
Many studies demonstrated chaotic dynamics in mod-

els of single pulse neurons (Feudel et al., 2000; Varona
et al., 2001) and in PNNs (Kanamaru, 2006; Kanamaru
& Sekine, 2005; Torikai & Saito, 2004; Tsumoto, Yoshi-
naga, & Kawakami, 2002; van Vreeswijk & Sompolinsky,
1996; Yoshioka, 2005). However, to our knowledge, there
has been no study on chaotic associative memory using
PNNs, and this may be because of the following reasons:
it is unclear whether the chaos in models of associative
memory is generated by single neurons or by neural net-
works; the range of values of parameters where chaos
exists in a pulse neuron is often narrow, namely, chaos
in a pulse neuron can easily be broken by noise; chaos
caused by neural networks is often high-dimensional, and

its analysis is difficult.
In the present study, we could construct PNNs that

show properties of chaotic associative memory. This pa-
per is organized as follows. In Section 2, a pulse neural
network composed of class 1 excitable neurons with ex-
citatory and inhibitory connections is defined, and syn-
chronized chaotic firings are found in the network. In
the subsequent sections, this network is called the one-
module system, and it is used as one element of the usual
model of associative memory. In other words, in our
model, chaos is generated by the interactions of the net-
work, but, when viewed as a model of associative mem-
ory, chaos is generated in an element of the network.
In Section 3, we construct a model of associative mem-
ory using a network of multiple modules, and we found
chaotic pattern transitions in this network. A similar
phenomenon was observed in a network composed of a
finite number of Morris-Lecar neurons. In Section 4,
the properties of chaotic pattern retrieval are examined.
It was found that the mixed pattern of stored patterns
plays an important role in chaotic pattern transitions. It
was also found that several instabilities exist even when
memory retrieval is stable. The final section provides a
discussion and conclusions.

2 One-module system

Let us define a pulse neural network composed of NE

excitatory neurons and NI inhibitory neurons with in-
ternal states θ(i)

E and θ
(i)
I , respectively, that are written

as

˙
θ
(i)
E = (1 − cos θ(i)

E ) + (1 + cos θ(i)
E )

×(rE + ξ
(i)
E (t) + gEEIE(t)− gEIII(t)), (1)

˙
θ
(i)
I = (1 − cos θ(i)

I ) + (1 + cos θ(i)
I )

×(rI + ξ
(i)
I (t) + gIEIE(t)− gIIII(t)), (2)
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, (3)

〈ξ(i)
X (t)ξ(j)

Y (t′)〉 = DδXY δijδ(t− t′), (4)
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Figure 1: (a), (b), and (c) Synchronized chaotic firings of neurons for rE = rI = −0.025, D = 0.0032, gint = 4,
and gext = 2.5. (a) A trajectory of the instantaneous firing rates JE and JI . (b) Change in JE over time. (c)
A raster plot of the firing times of the excitatory neurons in the network with NE = NI = 1000. (d), (e), and
(f) Asynchronous firings that coexist with synchronized chaotic firings. Although the values of the parameters are
identical with those of (a), (b), and (c), the system converges to this asynchronous state due to different initial
conditions.

where X and Y each denote the excitatory ensemble
E or the inhibitory ensemble I, t

(j)
k is the k-th firing

time of the j-th neuron in ensemble X , and the firing
time is defined as the time at which θ

(j)
X exceeds π in

the positive direction. IX(t) is the sum of synaptic in-
puts from the neurons in ensemble X , and the form of
the post-synaptic potential is an exponential function.
rX denotes the parameters of the neurons in ensemble
X , gXY denotes the connection strength from ensem-
ble Y to X , ξ(i)

X (t) denotes noise in the i-th neuron in
ensemble X , and it can be interpreted as the sum of
synaptic inputs from neurons that belong to other ex-
ternal networks. Note that the model of neurons with
θ̇ = (1 − cos θ) + (1 + cos θ)r is the canonical model of
class 1 neurons that is also known as the theta model (Er-
mentrout, 1996; Ermentrout & Kopell, 1986; Gutkin &
Ermentrout, 1998), and it is known that arbitrary class 1
neurons near their bifurcation points can be transformed
into the canonical model. Application of the canoni-
cal model was previously extended to slowly connected
class 1 networks (Izhikevich, 1999, 2000), and the sys-

tem governed by Eqs. (1), (2), and (3) has this form.
Therefore, arbitrary networks of slowly connected class
1 neurons with global connections can be transformed
into the above form.
In the absence of synaptic inputs IX(t) and noise

ξ
(i)
X (t), a single neuron shows self-oscillation when the
system parameter rX satisfies rX > 0. When rX < 0,
this neuron becomes an excitable system with a stable
equilibrium written by

θ0 = − arccos
1 + rX

1− rX
, (5)

in which θ0 is close to zero for rX ∼ 0. In the fol-
lowing, we use values of the parameter rX < 0 and
we consider the dynamics of networks of excitable neu-
rons. For simplicity, the restrictions, gEE = gII ≡ gint

and gEI = gIE ≡ gext, are placed, where gint is the
internal connection strength in an ensemble, and gext

is the external connection strength between excitatory
and inhibitory ensembles, and the parameters rE and rI

and the noise intensity D are set as uniform in the net-
work. We call this network composed of excitatory and
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inhibitory neurons as a one-module system.
As shown in Appendix A, in the limit of NE , NI → ∞,

the average dynamics of the one-module system can be
analyzed using the Fokker-Planck equation (Gerstner &
Kistler, 2002; Kuramoto, 1984), and various synchro-
nized firings including chaotic ones were found (Kana-
maru, 2006; Kanamaru & Sekine, 2005). A trajectory
of instantaneous firing rates JE and JI of the excitatory
and inhibitory ensembles, respectively, is shown in Fig.
1(a) and the change in JE over time is shown in Fig.
1(b). Note that JE and JI are defined as JX ≡ JX(π, t)
where JX(θX , t) is the probability flux of ensemble X as
shown in Appendix A. In Fig. 1(a), a low-dimensional
chaotic attractor is observed, and the largest Lyapunov
exponent of this strange attractor was numerically con-
firmed to be positive (Kanamaru & Sekine, 2005). Al-
though the above results were obtained for a network
composed of an infinite number of neurons, similar phe-
nomena can be observed in a network composed of a
finite number of neurons as shown in Fig. 1(c), where
a raster plot of the firings of the excitatory neurons in
a network with NE = NI = 1000 is shown. To inte-
grate the stochastic differential equations numerically,
the second-order Runge-Kutta method (Klauder & Pe-
tersen, 1985) was used.
Moreover, a stable equilibrium coexists with the

chaotic attractor, and this equilibrium is shown in Figs.
1(d), (e), and (f). It can be observed that the stable
equilibrium of the Fokker-Planck equation corresponds
to asynchronous firings of neurons in the network of a fi-
nite number of neurons. The system converges to either
the chaotic attractor or the stable equilibrium depending
on the initial conditions. For more information about the
bifurcation in this system, please see Kanamaru (2006).

3 Chaotic pattern transitions in
the system with multiple mod-
ules

In this section, we use the one-module system defined
in the previous section as a single element in a model of
associative memory, and we demonstrate chaotic pattern
transitions in this model.
We consider a network with M modules, each of which

is composed of NE excitatory neurons and NI inhibitory
neurons; namely, there are (NE +NI)M neurons in this
network. A schematic diagram of the inter-module con-
nections is shown in Fig. 2(a). Although only two mod-
ules are shown in this diagram for simplicity, M mod-
ules are actually connected. The inter-module connec-
tions stem only from the excitatory ensembles, and it is
based on the experimental fact that the inter-columnar
horizontal connections are excitatory (Gilbert & Wiesel,
1983; Ts’o, Gilbert, & Wiesel, 1986). More specifically,
the synaptic input TEi to the excitatory ensemble in the
i-th module and the synaptic input TIi to the inhibitory
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Figure 2: (a) Schematic diagram of the inter-module con-
nections between two modules. The two circles in a mod-
ule denote excitatory and inhibitory ensembles, which
are composed of NE and NI neurons, respectively. (b)
Schematic diagram that shows the reason why gE

sub and
gI

sub are subtracted from gint and gext, respectively, for
M = 2. If two modules are synchronized with each other,
the dynamics of the two modules are identical with those
of one module with gint and gext. Therefore, if appropri-
ate values of gint and gext are chosen, chaotic dynamics
are expected to exist in the synchronized modules.

ensemble in the i-th module are defined as

TEi = (gint − gE
sub)IEi − gextIIi +

M∑
j=1

εEijIEj , (6)

TIi = (gext − gI
sub)IEi − gintIIi +

M∑
j=1

εIijIEj , (7)

where IEi and IIi are defined by Eq. (3), and they denote
the synaptic inputs from the excitatory and inhibitory
ensembles in an identical module, respectively. Note that
the Fokker-Planck equations of M modules of the net-
work can also be defined using Eqs. (6) and (7). The
inter-module connection strengths εEij and εIij are defined
using the modified Hebbian rule (Kanamaru & Okabe,
2000; Yoshioka & Shiino, 1998) defined as follows:

εEij =
{

εEEKij if Kij > 0
0 otherwise , (8)
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εIij = εIE |Kij |, (9)

Kij =
1

Ma(1− a)

p∑
µ=1

ηµ
i (η

µ
j − a), (10)

where ηµ
i ∈ {0, 1} are stored patterns with an average

firing rate a = 0.5, p is the number of stored patterns,
and εEE and εIE are parameters that scale connection
strengths. When Kij based on the modified Hebbian
rule is positive, there exist both E → E and E → I
inter-module connections, and such connections tend to
facilitate inter-module synchronization. On the other
hand, when Kij < 0, there exist only E → I inter-
module connections, and such connections tend to break
inter-module synchronization.
Two additional parameters of regulation, gE

sub and
gI

sub, are defined as gE
sub = γεEE and gI

sub = γεIE us-
ing a new parameter γ that is common to all modules.
The purpose of introducing gE

sub and gI
sub is as follows.

Let us consider a situation where only a single pattern is
stored in the network, and the average behaviors of Ma
ensembles that store the binary digit “1” in this pattern
tend to synchronize with each other, namely, they sat-
isfy JEi = JEj and JIi = JIj where i and j are arbitrary
indices that store the binary digit “1”. Such excitatory
and inhibitory ensembles receive inputs with strengths
gint+ εEE and gext+ εIE, respectively (see Fig. 2(a) and
Eqs. (8), (9), and (10)). Thus, by subtracting εEE and
εIE from gint and gext, respectively, the dynamics of the
one-module system with gint and gext would also exist in
this network composed ofM modules. Such a situation is
shown in Fig. 2(b). Therefore, the chaotic dynamics ob-
served in a one-module system with gint and gext would
exist in the synchronized network. The inter-module
synchronization of chaotic firings among two or three
modules that have global connections was previously ex-
amined (Kanamaru, 2006). However, in the present net-
work of M modules, the connections are not global but
Hebbian; therefore, all of the Ma modules that store the
binary digit “1” do not perfectly synchronize with each
other because actually two or more patterns are stored
in the network. Thus, γεEE and γεIE where γ < 1
are subtracted from gint and gext, respectively, and γ is
regulated to obtain maximal synchronization. Although
the number M of modules can be arbitrarily chosen in
principle, we set M = 16 and p = 3 in the following
to reduce computational times. Moreover, the values of
the parameters are fixed at D = 0.0032, gint = 4, and
gext = 2.5, which are identical with those used in Fig.
1(a). Three patterns ηµ

i (µ = 1, 2, 3) are defined as

η1
i =

{
1 if i ≤ M/2
0 otherwise , (11)

η2
i =

{
1 if M/4 < i ≤ 3M/4
0 otherwise , (12)

η3
i =

{
1 if i mod 2 = 1
0 otherwise . (13)

Under the above configurations, we analyze the dy-

namics of this network using the Fokker-Planck equa-
tions obtained in the limit of NE , NI → ∞. Typical
dynamics of the network with εEE = 1.2 and γ = 0.7
are shown in Fig. 3. Note that JEi denotes the instan-
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Figure 3: The dynamics of pattern retrieval in a network
of 16 modules where D = 0.0032, gint = 4, gext = 2.5,
εEE = 1.2, and γ = 0.7. (a) Successful retrieval of pat-
tern 1 for εIE = 1.70. (b) Chaotic pattern transitions
for εIE = 1.55. The instantaneous firing rates JEi of
the excitatory ensembles are aligned so that they do not
overlap.

taneous firing rate of the excitatory ensemble in the i-th
module, and they are aligned so that they do not over-
lap. In Fig. 3(a), the dynamics of the network when
pattern 1 is successfully retrieved for εIE = 1.70 are
shown. Figure 3(b) shows the chaotic pattern transi-
tions for εIE = 1.55, and it is observed that the retrieved
pattern changes chaotically. To measure the distance be-
tween a set of firing rates JEi and the stored pattern ηµ

j ,
the overlap mµ, which is similar to the inner product
of two vectors, is defined in Appendix C. The change in
overlap mµ (µ = 1, 2, 3) over time calculated from the
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data of Fig. 3(b) is shown in Fig. 4. It is observed that

m 3
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Figure 4: Change in overlaps m1, m2, and m3 over time
calculated from the data in Fig. 3(b).

the overlap mµ with pattern µ takes values close to 1
when pattern µ is retrieved, and it is also observed that
the retrieved pattern changes chaotically.
The dependence of the time-average 〈m1〉 of overlap

m1 with pattern 1 on εIE is shown in Fig. 5. Note that
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Figure 5: Dependence of the time-average 〈m1〉 of over-
lap m1 with pattern 1 on εIE. The error bar denotes
the standard deviation. Chaotic pattern transitions are
observed for εIE < ε0 ∼ 1.678.

the initial state of the network was set so that pattern 1
is successfully retrieved. When 〈m1〉 takes values close
to 1, the pattern-retrieval state is stable in the network.
When εIE < ε0 ∼ 1.678, 〈m1〉 takes small values be-
cause of the chaotic pattern transitions. Three patterns
are stored in this network; therefore, 〈m1〉 should be
1/3, but it actually fluctuates widely because the num-
ber of data for time-averaging is finite. The properties
of chaotic pattern transitions will be investigated in the
next section.
The above analyses were performed using the canon-

ical model of the slowly connected class 1 network, and
similar results can be observed in the network composed
of arbitrary class 1 neurons. The chaotic pattern transi-
tions observed in the network of Morris-Lecar neurons
(Ermentrout, 1996) with 3 patterns and 16 modules,
each of which is composed of 1000 excitatory neurons
and 1000 inhibitory neurons, are shown in Fig. 6. The

Pattern
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Figure 6: Chaotic pattern transitions observed in a net-
work of Morris-Lecar neurons with 3 patterns and 16
modules, each of which is composed of 1000 excitatory
neurons and 1000 inhibitory neurons. The values of the
parameters are fixed at D = 1.7 × 10−5, gint = 0.3,
gext = 0.1875, εEE = 0.09, εIE = 0.12, and γ = 0.7.
The ratio of εEE to gint is 0.3, which is identical with
the ratio in the canonical model in Fig. 3(b).

network of Morris-Lecar neurons is defined in Appendix
D. Figure 6 shows that chaotic pattern transitions can
also be observed in a network of Morris-Lecar neurons.

4 Properties of chaotic pattern

transitions

In this section, detailed properties of chaotic pattern
transitions are examined for values of εIE in three
regions, namely, the bifurcation point where εIE =
ε0 ∼ 1.678, the chaotic-pattern-transitions region where
εIE < ε0, and the stable-pattern-retrieval region where
εIE > ε0. All analyses in this section are performed us-
ing the Fokker-Planck equations obtained in the limit of
NE , NI → ∞.

4.1 Mechanism of bifurcation

In this subsection, we consider the mechanism that gen-
erates the chaotic pattern transitions at the bifurcation
point εIE = ε0.
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First, let us examine the maximum value mµ
max of

overlap mµ and its dependence on εIE . When εIE > ε0,
the pattern retrieval is stable; therefore, onlym1

max takes
the value 1, and m2

max and m3
max would take small val-

ues. When εIE < ε0, all mµ
max (µ = 1, 2, 3) can take the

value of 1. The dependence of mµ
max on εIE is shown in

Fig. 7, and it is observed that m2
max and m3

max can take
the value 1 when εIE < ε0. Note that m2

max or m3
max
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Figure 7: Dependence of the maximum value mµ
max of

overlap with pattern µ on εIE . For values of εIE < ε0 ∼
1.678, all mµ

max take the value of 1.

sometimes takes values smaller than 1 because the time
length for simulations is finite. Moreover, it is observed
that m2

max and m3
max take somewhat large values close

to 0.5 even when εIE > ε0. This is because mµ, which
fluctuates around 0, sometimes takes large values during
short time intervals. The pattern transitions would take
place when m2

max or m3
max exceeds a threshold, which

is observed to be mµ
max ∼ 0.5. Note that the state with

overlap mµ = 0.5 is the mixed pattern of the stored
pattern µ with another pattern. For example, the i-th
component of the mixed pattern of patterns 1 and 2 is
η1

i ∨η2
i . In the following, such mixed patterns are denoted

as the mixed pattern with mµ = 0.5. When the system
happens to stay at the mixed pattern of patterns i and
j, then the system can change its state to either pat-
tern i or j. Therefore, when the fluctuating mµ reaches
mµ = 0.5, chaotic pattern transitions would take place.

4.2 Properties of chaotic pattern transi-
tions

In this section, we explain the roles of the mixed pat-
tern when chaotic pattern transitions take place. The
previous subsection introduced the mixed pattern with
mµ = 0.5. In our system, there is another mixed pattern
with mµ = 0.75 whose components are ηµ

i ∨ (ηλ
i ∧ ην

i ) or
ηµ

i ∨(ηλ
i ∧η̄ν

i ) (µ �= λ, λ �= ν, ν �= µ). Let us note that the
network switches its state from one pattern to another
pattern via mixed patterns. For example, as shown in

Fig. 3(b), when the retrieved pattern changes from pat-
tern 1 to pattern 2, the network stays at a mixed pattern
η1∨η2 for 1500 < t < 2000. At around t ∼ 4200, pattern
3 with firings of JE6 and JE8 (η3 ∨ (η1 ∧ η2)) appears.
Moreover, at around t ∼ 4500, pattern 3 with firings
of JE2 and JE4 (η3 ∨ (η1 ∧ η̄2)) appears, and a mixed
pattern η3 ∨ η1 is also observed.
To understand chaotic pattern transitions, it is im-

portant to examine statistical properties of the system,
such as the duration of pattern retrieval. To perform
such analysis, it is required to separate the stored pat-
terns, the mixed pattern with mµ = 0.75, and the mixed
pattern with mµ = 0.5. Although we separated them
by introducing an arbitrary threshold for mµ, this sepa-
ration did not give consistent results (data not shown).
Thus, such analysis is for future study.

4.3 Properties of stable pattern retrieval

Even during the stable pattern retrieval shown in Fig.
3(a), there exist some instabilities caused by chaotic
dynamics. Such instabilities are discussed in this sub-
section. First, the Lyapunov spectra (Ott, 1993) are
numerically calculated by the method proposed by Na-
gashima & Baba (1999), and their dependence on the
inter-module connection strength εIE is analyzed. To
investigate the stability of a single pattern, we utilized
the expansion rate for numerical calculation only when
mµ > 0.7 where µ is the retrieved pattern. Because
our model is a time-continuous system, there exists at
least one spectrum that is zero when periodic or chaotic
flows are stable, and we call this spectrum λ0. The re-
maining spectra are called λ1, λ2, · · · in order of decreas-
ing spectrum value in the following. The dependence of
λ4, λ5, · · · , λ8 on the inter-module connection strength
εIE are shown in Fig. 8. λ1, λ2, and λ3 are always
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Figure 8: Dependence of λ4, λ5, · · · , λ8 on the inter-
module connection strength εIE. The values of the pa-
rameters are set as D = 0.0032, gint = 4, gext = 2.5,
εEE = 1.2, and γ = 0.7. Calculations were performed
only when mµ > 0.7.
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larger than λi (i ≥ 4) and their signs do not change in
this parameter range; therefore, the plots of λ1, λ2, and
λ3 are omitted in Fig. 8 to clearly show the variations
in λ5, λ6, and λ7.

The transition from the successful pattern-retrieval
state to the chaotic pattern-transition state takes place
at εIE = ε0 ∼ 1.678 (Fig. 5), but the signs of the Lya-
punov spectra do not change at that εIE (Fig. 8). Thus,
it can be concluded that the emergence of the chaotic
pattern transitions at εIE = ε0 ∼ 1.678 is not caused by
the statistical instability of the retrieved pattern.

In the following, we explain why the signs of λ5, λ6,
and λ7 change as shown in Fig. 8. First, we con-
sider the behaviors of modules E1, E2, · · ·E8 that show
chaotic oscillations when pattern 1 is correctly retrieved
as shown in Fig. 3(a). When εIE is large, for exam-
ple, εIE = 2.2, the relationships JE1 = JE3, JE2 = JE4,
JE5 = JE7, and JE6 = JE8 hold, namely, these pairs
of modules synchronize with each other in the sense
that their instantaneous firing rates take identical values
(data not shown). In this situation, eight modules show
chaotic oscillations (see Fig. 3(a)), and four conditions
of instantaneous firing rates are given to the network;
therefore, the number of degrees of freedom is 8− 4 = 4.
Thus, for εIE = 2.2, the number of positive Lyapunov ex-
ponents is four (λ1, λ2, λ3, λ4) as shown in Fig. 8. When
the signs of the exponents λ5 and λ6 change from neg-
ative to positive, blowout bifurcation (Kanamaru, 2006;
Ott & Sommerer, 1994) takes place, and two synchro-
nizations, i.e., JE1 = JE3 and JE6 = JE8, are broken.
Moreover, when the sign of λ7 changes from negative to
positive, the synchronization, JE5 = JE7, is broken. For
εIE = 1.7, the changes in JE1 − JE3, JE5 − JE7, and
JE6 − JE8 over time calculated from the data used in
Fig. 3(a) are shown in Fig. 9. Although the pattern
shown in Fig. 3(a) is successfully retrieved, instabil-
ity of on-off intermittency (Fujisaka & Yamada, 1986;
Hata & Miyazaki, 1997; Heagy, Platt, & Hammel, 1994;
Kanamaru, 2006; Ott & Sommerer, 1994) exists in the
dynamics of the network as shown in Fig. 9, namely,
there exist nearly synchronized states where JEi ∼ JEj ,
and this synchronized state is sometimes broken by in-
termittent bursts.

The reason why pairs of modules synchronize with
each other can be understood as follows. Note that three
pairs of modules (1, 3), (5, 7), and (6, 8) have identical
bits of patterns for three patterns. Thus, for these pairs
of modules i and j, the relationship ηµ

i = ηµ
j (µ = 1, 2, 3)

holds (see Eqs. (11), (12), and (13)), and the equation
εXik = εXjk (X = E or I) is satisfied. Thus, modules i and
j receive identical inputs, and the two modules in each
of the three pairs of modules, i.e., (1, 3), (5, 7), and (6, 8)
tend to synchronize with each other.
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Figure 9: Changes in JE1−JE3, JE5−JE7, and JE6−JE8

over time calculated from the data used in Fig.3(a). The
property of on-off intermittency is observed.

5 Discussion and conclusions

In models of associative memory composed of class
1 pulse neurons, we found chaotic pattern transitions
where the pattern retrieved by the network changes
chaotically. Because this network is based on the canoni-
cal model of slowly connected class 1 neurons (Izhikevich,
1999), it is theoretically guaranteed that the phenomena
observed in this network can be observed in networks
of any class 1 neurons. Accordingly, we found chaotic
pattern transitions in a network of class 1 Morris-Lecar
neurons. It was found that the mixed pattern of stored
patterns plays an important role in chaotic pattern tran-
sitions. It was also found that several instabilities exist
even when memory retrieval is stable.
In our model, chaos was generated by interactions

in the network. However, we utilized this module of
network as a single element of a model of associative
memory. In this viewpoint, chaos is generated in an
element of a model of associative memory. Thus, our
model might be similar to the network of chaotic associa-
tive memory composed of chaotic neurons proposed by
Adachi & Aihara (1997). Although their chaotic neurons
are based on the conventional analog-valued neurons, our
networks of chaotic associative memory were composed
of pulse neurons.
As for the robustness of chaotic pattern transitions, it

is known that chaos is widely observed in a one-module
system (Kanamaru, 2006). To find chaotic pattern tran-
sitions, it is required to regulate the values of the inter-

7



module connection strengths εEE and εIE . Although the
dependence of chaotic pattern transitions on εEE was not
examined in the present study, we consider that chaotic
pattern transitions would be robust because they were
observed even in the network of finite number of Morris-
Lecar neurons (see Fig. 6).
In our network, intra-module synchronization among

neurons can be observed when a correct pattern is re-
trieved, although it is not perfect synchronization. This
intra-module synchronization is similar to partial syn-
chronization (van Vreeswijk, 1996) as shown in Fig. 1(c).
As for inter-module synchronization, some pairs of mod-
ules show synchronization or on-off intermittency ac-
cording to the strength of the inter-module connection.
Even when pattern retrieval is successful, instability of
on-off intermittency exists in the dynamics of the net-
work as shown in Fig. 9. On the other hand, in pairs
of modules that do not show synchronization nor on-
off intermittency, there may be generalized synchroniza-
tion (Rulkov, Sushchik, Tsimring, & Abarbanel, 1995)
because there are deterministic relations among the dy-
namics of all modules, and its analysis is for future study.
The memory state can be regarded as an attractor of

the system. Our network can exit from attractors us-
ing chaos, and, as a result, the pattern retrieved by the
network changes chaotically. Note that the pattern tran-
sitions in associative memory can be realized not only by
chaos but also by synchronized external inputs (Aoyagi
& Aoki, 2004). Moreover, the phenomenon observed in
Fig. 3(b) can be interpreted as a chaotic rearrangement
of clusters of firing neurons, and such an interpretation
might be related to the dynamical cell assembly hypoth-
esis (Fujii et al., 1996; Hebb, 1949).
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A Fokker-Planck equation of one-

module system

To analyze the average dynamics of the one-module sys-
tem, we use the Fokker-Planck equations (Gerstner &
Kistler, 2002; Kuramoto, 1984) that are written as

∂nE

∂t
= − ∂

∂θE
(AEnE)

+
D

2
∂

∂θE

{
BE

∂

∂θE
(BEnE)

}
, (A.1)

∂nI

∂t
= − ∂

∂θI
(AInI)

+
D

2
∂

∂θI

{
BI

∂

∂θI
(BInI)

}
, (A.2)

AE(θE , t) = (1− cos θE) + (1 + cos θE)
×(rE + gEEIE(t)− gEIII(t)),(A.3)

AI(θI , t) = (1− cos θI) + (1 + cos θI)
×(rI + gIEIE(t)− gIIII(t)), (A.4)

BE(θE , t) = 1 + cos θE , (A.5)
BI(θI , t) = 1 + cos θI , (A.6)

for the normalized number densities of excitatory and
inhibitory ensembles, in which

nE(θE , t) ≡ 1
NE

∑
δ(θ(i)

E − θE), (A.7)

nI(θI , t) ≡ 1
NI

∑
δ(θ(i)

I − θI), (A.8)

in the limit of NE , NI → ∞. The probability flux for
each ensemble is defined as

JE(θE , t) = AEnE − D

2
BE

∂

∂θE
(BEnE), (A.9)

JI(θI , t) = AInI − D

2
BI

∂

∂θI
(BInI), (A.10)

respectively. The probability flux at θ = π can be inter-
preted as the instantaneous firing rate in this ensemble,
and we denote it as JX(t) ≡ JX(π, t) where X = E or I.
IX(t) in Eq. (3) follows a differential equation that is

written as

˙IX(t) = − 1
κX

(
IX(t)− 1

2
JX(t)

)
. (A.11)

By integrating the Fokker-Planck equations (A.1) and
(A.2) and the differential equation (A.11) simultane-
ously, the dynamics of the network that is governed by
Eqs. (1) and (2) can be analyzed.

B Numerical integration of the
Fokker-Planck equations

In this section, we provide a method of performing the
numerical integration of the Fokker-Planck equations
(A.1) and (A.2). Because the normalized number densi-
ties given by Eqs. (A.7) and (A.8) are 2π-periodic func-
tions of θE and θI , respectively, they can be expanded
as

nE(θE , t) =
1
2π

+
∞∑

k=1

(aE
k (t) cos(kθE)

+bE
k (t) sin(kθE)),(B.1)

nI(θI , t) =
1
2π

+
∞∑

k=1

(aI
k(t) cos(kθI)

+bI
k(t) sin(kθI)), (B.2)

and, by substituting them, Eqs. (A.1) and (A.2) are
transformed into a set of ordinary differential equations
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of aX
k and bX

k , which are written as

da
(X)
k

dt
= −(rX + ĨX + 1)kb(X)

k

−(rX + ĨX − 1)
k

2
(b(X)

k−1 + b
(X)
k+1)

−Dk

8
g(a(X)

k ), (B.3)

db
(X)
k

dt
= (rX + ĨX + 1)ka(X)

k

+(rX + ĨX − 1)
k

2
(a(X)

k−1 + a
(X)
k+1)

−Dk

8
g(b(X)

k ) (B.4)

g(xk) = (k − 1)xk−2 + 2(2k − 1)xk−1 + 6kxk

+2(2k + 1)xk+1 + (k + 1)xk+2, (B.5)
ĨE ≡ gEEIE − gEIII , (B.6)
ĨI ≡ gIEIE − gIIII , (B.7)

a
(X)
0 ≡ 1

π
, (B.8)

b
(X)
0 ≡ 0, (B.9)

where X = E or I. Using a vector x =
(IE , II , a

E
1 , b

E
1 , a

I
1, b

I
1, a

E
2 , b

E
2 , a

I
2, b

I
2, · · ·)t, the ordinary

differential equation ẋ = f(x) is defined by (A.11),
(B.3), and (B.4). By integrating this ordinary differ-
ential equation numerically, the time series of the prob-
ability fluxes JE and JI are obtained. For numerical
calculations, each Fourier series is truncated at the first
40 or 60 terms.

C Calculation of overlap

In this section, we provide a method of calculating the
overlap mµ between a set of instantaneous firing rates
JEi of excitatory neurons in a module (1 ≤ i ≤ M) and
the stored pattern ηµ

i .
Because JEi is an oscillating quantity, the overlap of

the usual definition is also oscillating even when the cor-
rect pattern is retrieved. To obtain an overlap that main-
tains an almost constant value when the correct pattern
is retrieved, we define a peak-value function PEi(t) as
PEi(t) = JEi(t∗) where t∗ is the nearest time point that
gives a peak of JEi(t) and satisfies t∗ < t. Then we trans-
form PEi(t) to function OEi(t) with a range of [0,1]:

OEi(t) =




1 if PEi(t) > θ2

(PEi(t)− θ1)/(θ2 − θ1) if θ1 ≤ PEi(t) ≤ θ2

0 if PEi(t) < θ1

.

(C.1)
The PE1(t) and OE1(t) obtained from JE1(t) using θ1 =
0.01 and θ2 = 0.1 are shown in Fig. 10. Using OEi(t),
the overlapmµ between the state of the network and the
stored pattern ηµ

i is defined as

mµ =
1

Ma(1− a)

M∑
i=1

(ηµ
i − a)(OEi − a), (C.2)
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Figure 10: Changes in JE1(t), PE1(t), and OE1(t) over
time.

=
1

Ma(1− a)

M∑
i=1

(ηµ
i − a)OEi. (C.3)

D The network of Morris-Lecar
neurons

The dynamics of Morris-Lecar neurons in the excitatory
and inhibitory ensembles are governed by two variables,
(VEk, wEk) and (VIk, wIk), respectively, and they are
written as

˙
V

(i)
Ek = −gL(V

(i)
Ek − VL)− gKw

(i)
Ek(V

(i)
Ek − VK)

−gCam∞(V (i)
Ek )(V

(i)
Ek − VCa)

+HEk + TEk(t) + ξ
(i)
Ek(t), (D.1)

˙
w

(i)
Ek = λ(V (i)

Ek )(w∞(V (i)
Ek )− w

(i)
Ek), (D.2)

˙
V

(i)
Ik = −gL(V

(i)
Ik − VL)− gKw

(i)
Ik (V

(i)
Ik − VK)

−gCam∞(V (i)
Ik )(V (i)

Ik − VCa)

+HIk + TIk(t) + ξ
(i)
Ik (t), (D.3)

˙
w

(i)
Ik = λ(V (i)

Ik )(w∞(V (i)
Ik )− w

(i)
Ik ), (D.4)

IX(t) =
1

NX

NX∑
j=1

∑
k

1
κX

exp

(
− t− t

(j)
k

κX

)
,(D.5)

m∞(V ) = 0.5(1 + tanh((V − V1)/V2)), (D.6)
w∞(V ) = 0.5(1 + tanh((V − V3)/V4)), (D.7)

λ(V ) =
1
3
cosh((V − V3)/(2V4)), (D.8)

〈ξ(i)
X (t)ξ(j)

Y (t′)〉 = DδXY δijδ(t− t′), (D.9)
X,Y = Ek or Ik(k = 1, 2, · · · ,M), (D.10)

where the network is composed of M modules, the k-
th module is composed of the excitatory ensemble Ek
and the inhibitory ensemble Ik, HEk and HIk are exter-
nal constant inputs to each ensemble, and the synaptic
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inputs TEk and TIk are defined by Eqs. (6) and (7), re-
spectively. The firing time of the i-th neuron in ensemble
X is defined as the time at which w

(i)
X crosses the value

of 0.25 from lower values.
We choose values for the parameters that result in

class 1 behavior, namely, gL = 0.5, gK = 2, gCa = 1.33,
VL = −0.5, VK = −0.7, VCa = 1, V1 = −0.01, V2 = 0.15,
V3 = 0.1, V4 = 0.145, and κX = 7. Using these values of
the parameters, a saddle-node-on-limit-cycle bifurcation
takes place when HEk, HIk = H0 ∼ 0.0691, and this
neuron oscillates when HEk, HIk > H0. In this work,
HEk and HIk are fixed at HEk = HIk = 0.068; namely,
all neurons without connections and noise stay at their
equilibria. The values of the other parameters are fixed
at D = 1.7 × 10−5, gint = 0.3, gext = 0.1875, εEE =
0.09, εIE = 0.12, and γ = 0.7. Note that the values of
gext/gint = 0.625 and εEE/gint = 0.3 are identical with
those used in the canonical model in Fig. 3(b).
The instantaneous firing rate JXk(t) in ensemble X

(X = E or I) in the k-th module was calculated using
the definition

JXk(t) ≡ 1
NXkd

NXk∑
i=1

∑
j

Θ(t− t
(i)
j ), (D.11)

Θ(t) =
{

1 if 0 ≤ t < d
0 otherwise , (D.12)

where d = 1.
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