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Problem Definition

Data:
A set of n classes of objects:
{duck, green boat, hamburger, strawberry,. . . }.
A set of pictures for each class:

Input: An image of an object:
Output: The class of this object: “Strawberry”. 4
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Local-Appearance Methods in Computer Vision

“Focus on robust and informative patterns in the visual signal.”

1 Locate robust, informative patterns: the interest points.
2 Compute a description of the patterns: the visual features.
3 Choose a distance on the features (Euclidean,. . . ).
4 Match images if a sufficient number of features match.
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Local-Appearance Methods in Computer Vision

“Focus on robust and informative patterns in the visual signal.”

Harris’ detector

1 Locate robust, informative patterns: the interest points.

2 Compute a description of the patterns: the visual features.
3 Choose a distance on the features (Euclidean,. . . ).
4 Match images if a sufficient number of features match.
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Local-Appearance Methods in Computer Vision

“Focus on robust and informative patterns in the visual signal.”

Matched

1 Locate robust, informative patterns: the interest points.
2 Compute a description of the patterns: the visual features.
3 Choose a distance on the features (Euclidean,. . . ).
4 Match images if a sufficient number of features match.
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Local-Appearance Methods in Computer Vision

“Focus on robust and informative patterns in the visual signal.”

Not matched

1 Locate robust, informative patterns: the interest points.
2 Compute a description of the patterns: the visual features.
3 Choose a distance on the features (Euclidean,. . . ).
4 Match images if a sufficient number of features match.
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Interest Point Detectors

Harris,

Harris-Laplace,

Harris-affine,

SIFT detector,

Random (!) ⇐ [Marée et al., 2005],. . .

Local Description Techniques

Steerable filters,

Differential invariants,

SIFT keypoints,

Raw pixels (!) ⇐ [Marée et al., 2005],. . .
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Algorithm

Each visual feature votes for one class.

An image is mapped to the class that has the most votes.

→ cup

→ plate

→ truck

→ tank

→ phone

→ frog
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Advantages

Flexible,

Robust to partial occlusions,

No need for segmentation,

No need for 3D models of objects.

Improvements

Take spatial relationships into consideration:

Semilocal constraints,

Geometric model of a soccer player ⇐ [Gabriel et al., 2005],

Probabilistic graph-based model ⇐ [Scalzo et al., 2005]
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Informative Features

We use all the visual features, even if they are not informative.

Orthogonal point of view: Use only informative features.

Incremental Selection Process

Build a binary decision tree:

Each internal tests the presence of one informative feature,
Each leaf outputs one visual class.

Standard Machine Learning algorithms are applicable:

Maximize mutual information at each internal node.
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Illustration

Visual space Decision tree

duck

duck
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Illustration

Visual space Decision tree

duck strawberry

duck strawberry
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Visual space Decision tree
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Vision-for-Action (without Supervision)

Cameras

Effectors
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Image

Action

Qualitative feedback
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Fact

Most everyday tasks can be solved by connecting images to the
appropriate reactions (direct image-to-action mappings).

Kind of learning Goal of the agent Feedback

Supervised “Do the right action, The right action
as told by my teacher”

Reinforcement “Maximize my rewards” Reward/punishment

Unsupervised “Structure my percepts” No hint
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Reinforcement Learning

Historical question: How do animals learn?

RL Answer: Through their interactions with the environment,
that give rise to a positive or negative feedback
(trial-and-error).

More precisely: By learning a percept-to-action mapping that
maximizes, over time, an evaluation of its
performances given by the environment.

Examples :
A dog learns to sit down by receiving sugars
from its master.
A robotic hand learns to grasp objects by
receiving an information about the quality of the
grasp from the physical world.
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Reinforcement Learning Process

Basic principles :

The agent knows nothing about its environment.
It only knows about its percepts and actions.
After each interaction, it receives a numerical
feedback.
It progressively improves its policy by trying new
actions.

Advantages :
No need of a physical model of the environment
(while it can accelerate learning). Therefore :

General approach,
Simple design.

Allows a dynamical adaptation when the
environment changes.
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Three Main Problems

1 The reinforcement is often delayed (e.g., in chess).

⇔ Temporal credit assignment problem!

2 How to design a suitable reinforcement signal?

⇔ Credit structuration problem!

3 Should the agent:

Innovate (i.e., randomize) to find new good actions to take?
Take advantage of its history to re-do fruitful actions?

⇔ Exploitation vs. exploration dilemma!
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Modeling the Environment

Discrete time.

Markovian probabilistic dynamics:

P
(
st+1 = s ′ | History

)
= P

(
st+1 = s ′ | st = s, at = a

)
.

Reinforcement function r(s, a).

Markov Decision Process (MDP)

S : finite set of states;

A: finite set of actions;

T (s, a, s ′): probabilistic transition function;

r(s, a): numerical reinforcement function.
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Modeling the Agent

Sensors

No direct access to st .

Sensors convert a state st ∈ S to a percept pt ∈ P.

initial state

p0
a0−→ p1

a1−→ p2 . . . pt
at−→ pt+1 −→ · · ·

↓ ↓ ↓
r1 r2 rt+1

Reinforcement Learning (RL) Process

Inputs: A database of interactions 〈pt , at , rt+1, pt+1〉.
Output: An optimal control policy π∗ : P 7→ A.
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Temporal Credit Assignment

We don’t want to maximize immediate rewards (the sequence of
rt), but the rewards over time.

Return at Time t

Rt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞∑

k=1

γk rt+k ,

where γ ∈ [0, 1[ is the discount factor giving the current value of
the future rewards (i.e., a reward perceived k units of time later is
only worth γk what it would represent currently).

γ = 0 ⇔ short-sighted agent : maximize immediate rewards.

γ → 1 ⇒ agent with a more and more faraway horizon.
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Goal of Reinforcement learning

Optimal Control Policy π∗

Policy that maximizes the expected return at any time!

Algorithms

Model-based: Value Iteration, Policy Iteration,. . .

Model-free: Q Learning, SARSA, Actor-Critic,. . .

Sorry, but proving the existence of such a policy and the way to
get it is far outside the scope of this talk!
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Example: A Visual Navigation Task

Consider a discrete maze
with walls.

An agent moves in the
maze (penalty of −1 by
move).

The agent much reach
the exit as fast as possible
(reward of +100).

The sensors return a
picture of an object that
depends on the cell.
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Reinforcement Learning on Visual Tasks

RL: Pros

Fully automatic;

Flexible;

Biologically plausible.

RL: Cons

Visual tasks are intractable, because of an extremely
high-dimensional, noisy input space.

Our Research Interest

Apply RL on visual tasks!
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Previous Work on Large, Discrete Input Spaces

G Algorithm [Chapman & Kaelbling, 1991],

“Selective Attention” in U Tree [McCallum, 1996].

. . .

Basic Idea

Build a decision tree that selects Boolean features, by iteratively
removing perceptual aliasing ⇔ Local-Appearance!

Similar Algorithms for Continuous Input Spaces

Darling [Salganicoff, 1993],

Continuous U Tree [Uther & Veloso, 1998],

Variable Resolution Grids [Munos & Moore, 2002].

. . . 29
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What Kind of Features could be Used?

Pixels? Very numerous, and not very informative.

Patches? More informative, but still numerous.

In general, robustness to noise, as well as to illumination and
viewpoint changes is desirable.

Our Contributions

Take advantage of the visual features used in local-appearance
methods from Computer Vision.

A state-splitting rule based upon Bellman’s residuals and
mutual information.
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Reinforcement Learning of Visual Classes (RLVC)

“A feature is selected only once it has proved its relevance”

the classifier
Control the system using

Classifier with one class

Select a discriminant
visual feature

Aliasing ?

Collect interactions

Reinforcement Learning

Split the aliased classes

yes

no

Bellman’s residuals
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Summary
Visual Stimulus

⇓

Informative Locations

⇓

Visual Features

⇓

Symbolic Features

⇓

Visual Classes

⇓

Image-to-action Mapping

Interest point detector

Local description

Distance

Feature selection (decision tree)

Reinforcement Learning
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Discriminant Feature Selection

For each (C(p), a):

1 Compute Bellman’s residuals from DB {〈pt , at , rt+1, pt+1〉}:

rt+1 + γ max
a′∈A

Q∗(C(pt+1), a
′)− Q∗(C(pt), at).

2 Sort them and apply the CART learning rule once (variance
reduction).

Feature :

yes

no Bellman’s residuals

3 This assumes a deterministic environment. In practice, it
works also with non-determinism, if a suitable hypothesis test
(e.g. Student’s t−test) is applied.
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Visual space Decision tree
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⇒ Adaptive discretization (target zero Bellman’s residuals) 34
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Visual Navigation around Montefiore

N

(c
)

G
o
o
g
le

M
a
p

State space: (p, d), i.e. {11 places} × {4 directions}.
Action space: {turn left, turn right, move forward}.
Goal: Enter Montefiore Institute. 35
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Optimal Control Policy
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The agent does not have direct access to (p, d).

It perceives only a picture of the area ahead.

Database of 11× 4× 24 = 1056 images (1024× 768 pixels).
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RLVC Parameters

SIFT keypoint detector [Lowe, 2004].

Mahalanobis distance.

Learning set: 11× 4× 18 = 792 possible percepts.

Test set: 11× 4× 6 = 264 possible percepts.
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Results of RLVC

Visual classes: 281;

Distinct SIFT features: 264;

Policy error: 0.1% on LS, 8% on TS.
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(i) Compacting Image-to-Action Mappings

Problem with RLVC

Cannot undo splits that are subsequently proved useless.

Can get stuck in local optima.

In a word, greedy algorithm!
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Possible Solution

Periodically, aggregate visual classes that share similar
properties, such as:

Optimal Value: |V ∗(c)− V ∗(c ′)| ≤ ε;
Optimal Action: π∗(c) = π∗(c ′);
Optimal State-Action Value: ||Q∗(c , ·)− Q∗(c ′, ·)|| ≤ ε;. . .

Do not do this too often, to allow exploration.

Potential Benefits

1 Discard useless features ⇒ enhance generalization;

2 More samples per class ⇒ better policies;

3 Re-initialize search for features ⇒ escape from local optima.

42



Image Classification
Reinforcement Learning

Learning Image-to-Action Mappings
Further Improvements and Conclusions

Compacting Image-to-Action Mappings
Hierarchy of Visual Features
Taking Advantage of Supervised Learning
Conclusions

Well, but. . .

Original RLVC: Visual classes are conjunctions of features.

Modified RLVC: Visual classes are the result of a sequence of:

1 conjunctions (splitting), and
2 disjunctions (aggregation).

So, we must express arbitrary Boolean functions.

Decision trees are not expressive enough!
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Binary Decision Diagrams (BDDs) [Bryant, 1992]

Tree-based representation for encoding Boolean functions.

Widely used in Computer-Aided Verification.

Canonical if the order of the variables (visual features) is fixed.

Reordering variables ⇒ Discarding useless variables.

Optimal reordering is NP-Complete, but good heuristics exist.

Summary

Replace the decision tree by a set of BDDs such that:

Each BDD describes one visual class;

The BDDs define a partition of the visual space.
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Influence of Compacting

Visual classes: 281 → 59 ≈ 44 (number of states).

Distinct SIFT features: 264 → 171.

Policy error: 0.1% → 0% on LS, 8% → 4.5% on TS.
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(ii) Hierarchy of Visual Features

RLVC depends on the discriminative power of the features.
Not enough power ⇒ Sub-optimal image-to-action mapping.
The physical structure imposes strong constraints
on the spatial relationships between the visual features.

Idea: Generate spatial combinations ⇒ More discriminant.

[Jodogne, Scalzo & Piater, 2005] 46
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(iii) Taking Advantage of Supervised Learning

Fitted Q Iteration

Function Approximation is a successful technique for RL in
continuous spaces (e.g., [Ernst et al., 2005]).

Turn RL into a sequence of supervised regression problems.

Adaptation to Visual Tasks

Immediate:

Use the same algorithms,

Use supervised regression algorithms for discrete input spaces
(notably Extra-Trees [Geurts et al., 2005]),

Use the visual feature space as the input space.

[Work in progress. . . ] 47
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Conclusions

Closed-loop learning of image-to-action mappings.

Interactive, task-driven.

Biological correlates.

Long-term Goal

Build a robotic system able to solve visual, reactive tasks.

Research Directions

Continuous action spaces (discretization? Fitted Q?).

Highly parallelizable ⇒ Grid-ification.

Structure a short-term memory [McCallum, 1995].

Learning paradigms other than RL?
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Thank you for your attention!
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