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Problem Definition

Data:
m A set of n classes of objects:
{duck, green boat, hamburger, strawberry,. .. }.
m A set of pictures for each class:

[nput: An image of an object: .

Output: The class of this object: “Strawberry”. 4
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“Focus on robust and informative patterns in the visual signal.”

Harris’ detector

—— T

Locate robust, informative patterns: the interest points.
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Local-Appearance Methods in Computer Vision

“Focus on robust and informative patterns in the visual signal.”

Not matched

Locate robust, informative patterns: the interest points.
Compute a description of the patterns: the visual features.
Choose a distance on the features (Euclidean,...).

Match images if a sufficient number of features match.
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Problem Definition
Local-Appearance Methods
Informative Features

nterest Point Detectors

Harris,

Harris-Laplace,

Harris-affine,

SIFT detector,

Random (!) < [Marée et al., 2005],.. .

Local Description Techniques

m Steerable filters,

m Differential invariants,
m SIFT keypoints,
m Raw pixels (!) < [Marée et al., 2005],. ..
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Algorithm

m Each visual feature votes for one class.

m An image is mapped to the class that has the most votes.

— cup i — tank

l'.r — plate

— truck
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Image Classification

Problem Definition
Local-Appearance Methods
Informative Features

m Flexible,

m Robust to partial occlusions,
m No need for segmentation,
m No need for 3D models of objects.

Improvements

Take spatial relationships into consideration:
m Semilocal constraints,
m Geometric model of a soccer player <= [Gabriel et al., 2005],

m Probabilistic graph-based model < [Scalzo et al., 2005]
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Local-Appearance Methods
Informative Features

Informative Features

m We use all the visual features, even if they are not informative.

m Orthogonal point of view: Use only informative features.

Incremental Selection Process

m Build a binary decision tree:

m Each internal tests the presence of one informative feature,
m Each leaf outputs one visual class.

m Standard Machine Learning algorithms are applicable:
m Maximize mutual information at each internal node.
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[llustration
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Visual space Decision tree
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Reinforcement Learning

Image Classification during Learning

Image
> j> Cameras
ENVIRONMENT
Right class
Class
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Example: Visual Gridworld

Vision-for-Action (Open-Loop)

Image
> j> Cameras
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Right Action
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Action
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Example: Visual Gridworld

Vision-for-Action (Closed-Loop)
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Reinforcement Learning

Example: Visual Gridworld

Vision-for-Action (without Supervision)

Image

ENVIRONMENT
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Qualitative feedback

i Effectors

Action
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Reinforcement Learning

Most everyday tasks can be solved by connecting images to the
appropriate reactions (direct image-to-action mappings).

Kind of learning Goal of the agent Feedback

Supervised “Do the right action, The right action
as told by my teacher”

Reinforcement | “Maximize my rewards” Reward/punishment

Unsupervised “Structure my percepts” No hint

18
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Reinforcement Learning

Historical question: How do animals learn?

RL Answer: Through their interactions with the environment,

that give rise to a positive or negative feedback
(trial-and-error).

More precisely: By learning a percept-to-action mapping that
maximizes, over time, an evaluation of its
performances given by the environment.

Examples :
m A dog learns to sit down by receiving sugars
from its master.
m A robotic hand learns to grasp objects by
receiving an information about the quality of the
grasp from the physical world.

19



Vision-for-Action
Reinforcement Learning Framework

Formalization

Example: Visual Gridworld

Reinforcement Learning Process

Basic principles :

Advantages :

The agent knows nothing about its environment.
It only knows about its percepts and actions.
After each interaction, it receives a numerical
feedback.

It progressively improves its policy by trying new
actions.

No need of a physical model of the environment
(while it can accelerate learning). Therefore :

m General approach,

m Simple design.
Allows a dynamical adaptation when the
environment changes.

20



Vision-for-Action
Reinforcement Learning Framework
Formalization
Example: Visual Gridworld

Three Main Problems

The reinforcement is often delayed (e.g., in chess).
< Temporal credit assignment problem!
How to design a suitable reinforcement signal?

< Credit structuration problem!

Should the agent:
m Innovate (i.e., randomize) to find new good actions to take?

m Take advantage of its history to re-do fruitful actions?

< Exploitation vs. exploration dilemma!

21
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Reinforcement Learning Frame
Formal n
Example: Visual Gridworld

Modeling the Environment

m Discrete time.

m Markovian probabilistic dynamics:

P (se31 =" | History) = P (sey1 =5 | st =s,a; = a) .

m Reinforcement function r(s, a).

Markov Decision Process (MDP)

m S: finite set of states;
m A: finite set of actions;
m 7 (s,a,s’): probabilistic transition function;

m r(s,a): numerical reinforcement function.
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Reinforcement Learning

iza
Example: Visual Gridworld

Modeling the Agent

m No direct access to s;.

m Sensors convert a state s; € S to a percept p; € P.

initial state

ao ai at
Po - P — P2 ... Pt — P41 —
n r re+1

Reinforcement Learning (RL) Process

Inputs: A database of interactions (p:, as, rt41, Pr+1)-

Output: An optimal control policy 7* : P — A.
23



Reinforcement Learning

Temporal Credit Assignment

We don’t want to maximize immediate rewards (the sequence of
re), but the rewards over time.

Return at Time t

o
Re = req1 +yreq2 +’Y2ft+3 T oce = Z’Ykrt—i—k:
k=1

where « € [0, 1] is the discount factor giving the current value of
the future rewards (i.e., a reward perceived k units of time later is
only worth v% what it would represent currently).

m 7 = 0 & short-sighted agent : maximize immediate rewards.

B 7 — 1 = agent with a more and more faraway horizon.
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Reinforcement Learning

Goal of Reinforcement learning

Optimal Control Policy 7*

Policy that maximizes the expected return at any time!

Algorithms

Model-based: Value lteration, Policy lteration,. ..
Model-free: @ Learning, SARSA, Actor-Critic,. . .

Sorry, but proving the existence of such a policy and the way to
get it is far outside the scope of this talk!
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Example: A Visual Navigation Task

m Consider a discrete maze
with walls.
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Example: Visual Gridworld

Example: A Visual Navigation Task

m Consider a discrete maze

with walls. ¢
m An agent moves in the

maze (penalty of —1 by

move). D = s

26



Reinforcement Learning
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Example: A Visual Navigation Task

m Consider a discrete maze
with walls.

m An agent moves in the

maze (penalty of —1 by
move).

m The agent much reach

the exit as fast as possible
(reward of +100).
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Reinforcement Learning

Fo ation
Example: Visual Gridworld

Example: A Visual Navigation Task

m Consider a discrete maze
with walls.

m An agent moves in the
maze (penalty of —1 by
move).

m The agent much reach
the exit as fast as possible
(reward of +100).

m The sensors return a
picture of an object that
depends on the cell.
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Learning Image-to-Action Mappings
m Motivation
m Reinforcement Learning of Visual Classes
m Visual Navigation around Montefiore
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Motivation
Reinforcement Learning of Visual Classes
Visual Navigation around Montefiore

Learning Image-to-Action Mappings

Reinforcement Learning on Visual Tasks

m Fully automatic;

m Flexible;
m Biologically plausible.

Visual tasks are intractable, because of an extremely
high-dimensional, noisy input space.

Our Research Interest

Apply RL on visual tasks!

28



earning of Visual Classes
around Montefiore

Learning Image-to-Action Mappings

Previous Work on Large, Discrete Input Spaces

m G Algorithm [Chapman & Kaelbling, 1991],
m “Selective Attention” in U Tree [McCallum, 1996].

Basic Idea

Build a decision tree that selects Boolean features, by iteratively
removing perceptual aliasing < Local-Appearance!

Similar Algorithms for Continuous Input Spaces

m Darling [Salganicoff, 1993],
m Continuous U Tree [Uther & Veloso, 1998],
m Variable Resolution Grids [Munos & Moore, 2002].

u ... 29



Motivation
Rein nt Learning of Visual Classes

Learning Image-to-Action Mappings Visual Navigation around Montefiore

What Kind of Features could be Used?

m Pixels? Very numerous, and not very informative.

m Patches? More informative, but still numerous.

m In general, robustness to noise, as well as to illumination and
viewpoint changes is desirable.

Our Contributions

m Take advantage of the visual features used in local-appearance
methods from Computer Vision.

m A state-splitting rule based upon Bellman's residuals and
mutual information.
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Motivation
Reinforcement Learning of Visual Classes

Learning Image-to-Action Mappings Visual Navigation around Montefiore

Reinforcement Learning of Visual Classes (RLVC)

“A feature is selected only once it has proved its relevance”

Classifier with one class }H‘ Collect interactions ‘H Split the aliased classes

‘ Reinforcement Learning ‘ Select a discriminant
visual feature

Bellman’s residuals €\ A/ Aliasing ? yes

no

Control the system using
the classifier
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Learning Image-to-Action Mappings

Summary

Motivation
Reinforcement Learning of Visual Classes
Visual Navigation around Montefiore

Visual Stimulus

Y

Informative Locations

4

Visual Features

4

Symbolic Features

4

Visual Classes

4

Image-to-action Mapping

Interest point detector

Local description

Distance

Feature selection (decision tree)

Reinforcement Learning

32
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Discriminant Feature Selection

For each (C(p), a):
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Discriminant Feature Selection

For each (C(p), a):
Compute Bellman's residuals from DB {(pt, at, re+1, pe+1) }:

e+ Y3 Q" (Clpesa). @) — Q°(C(pr). 20)
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Discriminant Feature Selection

For each (C(p), a):
Compute Bellman's residuals from DB {(pt, at, re+1, pe+1) }:

e+ Y3 Q" (Clpesa). @) — Q°(C(pr). 20)

Sort them and apply the CART learning rule once (variance
reduction).

Feature : '

no\ ° Bellman’s residuals
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Learning Image-to-Action Mappings Visual Navigation around Montefiore

Discriminant Feature Selection

For each (C(p), a):
Compute Bellman's residuals from DB {(pt, at, re+1, pe+1) }:

e+ Y3 Q" (Clpesa). @) — Q°(C(pr). 20)

Sort them and apply the CART learning rule once (variance
reduction).

Feature : '

This assumes a deterministic environment. In practice, it
works also with non-determinism, if a suitable hypothesis test
(e.g. Student’s t—test) is applied.

yes

no\ ° Bellman’s residuals
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[llustration

Visual space Decision tree

= Start with full aliasing 34
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[llustration

Visual space Decision tree
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[llustration

! : Ii
O,
| /\
s /\

Visual space Decision tree

= Adaptive discretization (target zero Bellman's residuals) 3
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Visual Navigation around Montefiore

(c) GoogleMap

m State space: (p,d), i.e. {11 places} x {4 directions}.

m Action space: {turn left, turn right, move forward}.
m Goal: Enter Montefiore Institute.
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Optimal Control Policy




Mot n
Rein ment Learning of Visual Classes

Learning Image-to-Action Mappings Visual Navigation around Montefiore

m The agent does not have direct access to (p, d).
m It perceives only a picture of the area ahead.
m Database of 11 x 4 x 24 = 1056 images (1024 x 768 pixels).




Motivation
Reinforcement Learning of Visual Classes

Learning Image-to-Action Mappings Visual Navigation around Montefiore

RLVC Parameters

m SIFT keypoint detector [Lowe, 2004].

m Mahalanobis distance.

m Learning set: 11 x 4 x 18 = 792 possible percepts.
m Test set: 11 X 4 x 6 = 264 possible percepts.
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Learning Image-to-Action Mappings

300 - 0.6
Learning ———
Test
" Class
250 P\ A Featare: 0.5
200 1 0.4
150 1 0.3
100 1 0.2
50 1 0.1
0 0
0 20 40 60 80 100 120

Results of RLVC

m Visual classes: 281;
m Distinct SIFT features: 264;
m Policy error: 0.1% on LS, 8% on TS.
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Compacting Image-to-Action Mappings
Hi hy of Visual Features
Advantage of Supervised Learning
Further Improvements and Conclusions Conclusions

(i) Compacting Image-to-Action Mappings

Problem with RLVC

m Cannot undo splits that are subsequently proved useless.

m Can get stuck in local optima.

m In a word, greedy algorithm!

41
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Possible Solution

m Periodically, aggregate visual classes that share similar
properties, such as:
m Optimal Value: |V*(c) — V*(c')| <e;
m Optimal Action: 7*(¢) = 7*(¢’);
m Optimal State-Action Value: ||Q*(c,-) — Q*(c’,")|| < e;...

m Do not do this too often, to allow exploration.

Potential Benefits

Discard useless features = enhance generalization;

More samples per class = better policies;

Re-initialize search for features = escape from local optima.
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Compacting Image-to-Action Mappings
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Well, but. ..

Original RLVC: Visual classes are conjunctions of features.

Modified RLVC: Visual classes are the result of a sequence of:
conjunctions (splitting), and
disjunctions (aggregation).

So, we must express arbitrary Boolean functions.

Decision trees are not expressive enough!
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-Action Mappings

Supervised Learn

Further Improvements and Conclusions

Binary Decision Diagrams (BDDs) [Bryant, 1992]

m Tree-based representation for encoding Boolean functions.

m Widely used in Computer-Aided Verification.

m Canonical if the order of the variables (visual features) is fixed.
m Reordering variables = Discarding useless variables.

m Optimal reordering is NP-Complete, but good heuristics exist.

Summary

Replace the decision tree by a set of BDDs such that:
m Each BDD describes one visual class;

m The BDDs define a partition of the visual space.
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Compacting Image-to-Action Mappings
Hierarchy of Visual Features

Advantage of Supervised Learning
Further Improvements and Conclusions Conclusions

200 0.6
180 1
i 0.5
160 4
140 1
0.4
120 4
100 1 0.3
80 1
0.2
60 1
40 1
0.1
20 4
0 0
0 20 40 60 80 100 120 140 160

Influence of Compacting

m Visual classes: 281 — 59 ~ 44 (number of states).
m Distinct SIFT features: 264 — 171.
m Policy error: 0.1% — 0% on LS, 8% — 4.5% on TS.
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(ii) Hierarchy of Visual Features

m RLVC depends on the discriminative power of the features.
m Not enough power = Sub-optimal image-to-action mapping.
m The physical structure imposes strong constraints

on the spatial relationships between the visual features.

a2 7 B P
m Idea: Generate spatial combinations = More discriminant.

[Jodogne, Scalzo & Piater, 2005] "
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Taking Advantage of Supervised Learning
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(iii) Taking Advantage of Supervised Learning

Fitted @ Iteration

m Function Approximation is a successful technique for RL in
continuous spaces (e.g., [Ernst et al., 2005]).

m Turn RL into a sequence of supervised regression problems.

Adaptation to Visual Tasks

Immediate:
m Use the same algorithms,

m Use supervised regression algorithms for discrete input spaces
(notably Extra-Trees [Geurts et al., 2005]),

m Use the visual feature space as the input space.

[Work in progress. . .| a
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Further Improvements and Conclusions Conclusions

Conclusions

m Closed-loop learning of image-to-action mappings.
m Interactive, task-driven.

m Biological correlates.

Long-term Goal

Build a robotic system able to solve visual, reactive tasks.

Research Directions

m Continuous action spaces (discretization? Fitted Q7).

m Highly parallelizable = Grid-ification.
m Structure a short-term memory [McCallum, 1995].
m Learning paradigms other than RL?
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of Visual Featur

g Advantage of Supervised Learning
Further Improvements and Conclusions Conclusions

Thank you for your attention!
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