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Abstract

It had previously been shown that generic cortical microcircuit models can per-
form complex real-time computations on continuous input streams, provided that
these computations can be carried out with a rapidly fading memory. We investigate
in this article the computational capability of such circuits in the more realistic case
where not only readout neurons, but in addition a few neurons within the circuit
have been trained for specific tasks. This is essentially equivalent to the case where
the output of trained readout neurons is fed back into the circuit. We show that
this new model overcomes the limitation of a rapidly fading memory. In fact, we
prove that in the idealized case without noise it can carry out any conceivable digital
or analog computation on time-varying inputs. But even with noise the resulting
computational model can perform a large class of biologically relevant real-time com-
putations that require a non-fading memory. We demonstrate these computational
implications of feedback both theoretically and through computer simulations of de-
tailed cortical microcircuit models. We show that the application of simple learning
procedures (such as linear regression or perceptron learning) enables such circuits,
in spite of their complex inherent dynamics, to represent time over behaviorally rel-
evant long time spans, to integrate evidence from incoming spike trains over longer
periods of time, and to process new information contained in such spike trains in
diverse ways according to the current internal state of the circuit. In particular we
show that such generic cortical microcircuits with feedback provide a new model for
working memory that is consistent with a large set of biological constraints.

Although this article examines primarily the computational role of feedback in
circuits of neurons, the mathematical principles on which its analysis is based apply
to a large variety of dynamical systems. Hence they may also throw new light on
the computational role of feedback in other complex biological dynamical systems,
such as for example genetic regulatory networks.
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1 Introduction

The neocortex performs a large variety of complex computations in real-time. It is con-
jectured that these computations are carried out by a network of cortical microcircuits,
where each microcircuit is a rather stereotypical circuit of neurons within a cortical col-
umn. A characteristic property of these circuits and networks is an abundance of feedback
connections. But the computational function of these feedback connections is largely un-
known. Two lines of research have been engaged in order to solve this problem. In one
approach, which one might call the constructive approach, one builds hypothetical circuits
of neurons and shows that (under some conditions on the response behavior of its neurons
and synapses) such circuits can perform specific computations. In another research strat-
egy, which one might call the analytical approach, one starts with data-based models for
actual cortical microcircuits, and analyses which computational operations such “given”
circuits can perform under the assumption that a learning process assigns suitable values
to some of their parameters (e.g. synaptic efficacies of readout neurons). An underlying
assumption of the analytical approach is that complex recurrent circuits, such as cortical
microcircuits, cannot be fully understood in terms of the usually considered properties of
their components. Rather, system level approaches that address directly the dynamics of
the resulting recurrent neural circuits are needed to complement the bottom-up analysis.
This line of research started with the identification and investigation of socalled canonical
microcircuits [1]. Subsequently it was shown that quite complex real-time computations
on spike trains can be carried out by such “given” models for cortical microcircuits ([2—
5], see [6] for a review). A fundamental limitation of this approach was that only those
computations could be modeled which can be carried out with a fading memory, more
precisely only those computations that only require to integrate information over a time
span of 200 or 300 ms (its maximal length depends on the amount of noise in the circuit
and the complexity of the input spike trains [7]). In particular, computational tasks that
require a representation of elapsed time between salient sensory events or motor actions
[8], or an internal representation of expected rewards [9],[10],[11], working memory [12],
accumulation of sensory evidence for decision making [13], the updating and holding of
analog variables such as for example the desired eye position [14], and differential process-
ing of sensory input streams according to attentional or other internal states of the neural
system [15] could not be modeled in this way. Previous work on concrete examples of
artificial neural networks [16] and cortical microcircuit models [17] had already indicated
that these shortcomings of the model might arise only if one assumes that learning affects
exclusively the synapses of readout neurons that project the results of computations to
other circuits or areas, without giving feedback into the circuit from which they extract
information. This scenario is in fact rather unrealistic from a biological perspective, since
pyramidal neurons in the cortex typically have in addition to their long projecting axon
a a large number of axon collaterals that provide feedback to the local circuit [18]. Abun-
dant feedback connections also exist on the network level between different brain areas



[19]. We show in this article that if one takes feedback connections from readout neurons
(that are trained for specific tasks) into account, generic cortical microcircuit models can
solve all of the previously listed computational tasks. In fact, one can demonstrate this
also for circuits whose underlying noise levels and models for neurons and synapses are
substantially more realistic than those which had previously been considered in models
for working memory and related tasks.

We show in the first part of section 2 that the significance of feedback for the computa-
tional power of neural circuits and other dynamical systems can be explained on the basis
of general principles. Theorem 1 implies that a large class of dynamical systems, in partic-
ular systems of differential equations which are commonly used to describe the dynamics
of firing activity in neural circuits, gain universal computational capabilities for digital
and analog computation as soon as one considers them in combination with feedback.
A further mathematical result (Theorem 2) implies that the capability to process online
input streams in the light of non-fading (or slowly fading) internal states is preserved
in the presence of fairly large levels of internal noise. On the basis of this theoretical
foundation one can explain why the computer models of generic cortical microcircuits,
which are considered in the second part of section 2, are able to solve the previously
mentioned benchmark tasks. These results suggest a new computational model for corti-
cal microcircuits, which includes the capability to process online input streams in diverse
ways according to different “instructions” that are implemented through high-dimensional
attractors of the underlying dynamical system. The high-dimensionality of these attrac-
tors (which are discussed in section 2.2) results from the fact that only a small fraction
of synapses need to be modified for their creation. In comparison with the commonly
considered low dimensional attractors, such high-dimensional attractors have additional
attractive properties such as compositionality (the intersection of several of them is in
general non-empty), and compatibility with real-time computing on online input streams
within the same circuit.

2 Results

2.1 Theoretical Analysis

The dynamics of firing activity in recurrent circuits of neurons is commonly modeled by
systems of nonlinear differential equations of the form

() = —Nai(t) + U(Zaijxj(t)—i—bi-v(t)), i=1,....n, (1)

or

2(t) = =Xwi(t) + o O aya;(t) + bi-o(u(t), i=1,....n (2)



([20-23]). Here each z;,7 = 1,...,n, is a real-valued variable which represents the current
firing rate of the ' neuron or population of neurons in a recurrent neural circuit, and
v(t) is an external input stream. The coeflicients a;;,b; denote the strengths of synaptic
connections, and the \; > 0 denote time constants. The function o is some sigmoidal
activation function (nondecreasing, with bounded range). In most models of neural cir-
cuits, the parameters a;; in these differential equations are chosen so that the resulting
dynamical system has a fading memory for preceding inputs. If one makes the synaptic
connection strengths a;; so large that recurrent activity does not dissipate, the neural
circuit tends to exhibit persistent memory. But it is usually quite difficult to control the
content of this persistent memory, since it tends to be swamped with minor details of
external inputs (or initial conditions) from the distant past. Hence this chaotic regime
of recurrent neural circuits (see [24] for a review) is apparently also not suitable for bi-
ologically realistic real-time computations on online input streams, that combine new
information from the current input with selected (e.g., behaviorally relevant) aspects of
external or internal inputs from the past.

Recurrent circuits of neurons (e.g. those described by equations (1) or (2)) are from
a mathematical perspective special cases of dynamical systems. The subsequent mathe-
matical results show that a large variety of dynamical systems, in particular also fading
memory systems of type (1) or (2), can overcome in the presence of feedback the computa-
tional limitations of a fading memory without necessarily falling into the chaotic regime.
In fact, feedback endows them with universal capabilities for analog computing, in a sense
that can be made precise in the following way (see Fig. 1A-C for an illustration):

Theorem 1 A large class S, of systems of differential equations of the form

zi(t) = fi(z1(t), ..., x0(®) + gi(z1(t), ..., xn(t)) - 0(t), i=1,...,n (3)

are in the following sense universal for analog computing:

It can respond to an external input u(t) with the dynamics of any n'" order differential
equation of the form

20 (1) = G(2(t), 2 (1), 2" (t), ..., 2"V (1)) + u(t) (4)

(for arbitrary smooth functions G : R" — R) if the input term v(t) is replaced by a suit-
able memoryless feedback function K(x1(t),...,z,(t),u(t)), and if a suitable memoryless
readout function h(xz1(t),...,x,(t)) is applied to its internal state (x1(t),...,x,(t)).

Also the dynamic responses of all systems consisting of several higher order differen-
tial equations of the form (4) can be simulated by fized systems of the form (8) with a
corresponding number of feedbacks.

This result says more precisely that for any n'" order differential equation (4) there
exists a (memory-free) feedback function K : R x R — R and a memory-free readout
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Figure 1: Computational architectures considered in Theorems 1 and 2. (A) A fixed circuit C
whose dynamics is described by the system (3). (B) An arbitrary given n'® order dynamical
system (4) with external input w(t). (C) If the input v(t) to circuit C' is replaced by a suitable
feedback K (x(t),u(t)), then this fixed circuit C' can simulate the dynamic response z(t) of the
arbitrarily given system shown in B, for any input stream u(t). (D) Arbitrary given finite state
machine (FSM) A with [ states. (E) A noisy fading memory system with feedback can reliably
reproduce the current state A(t) of the given FSM A, except for time points ¢ shortly after A
has switched its state.

function h : R® — R (which can both be chosen to be smooth, in particular continuous)
so that, for every external input wu(t),t > 0, and each solution z(t) of the forced system
(4) there is an input ug(t) with ug(t) = 0 for all ¢ > 1, so that the solution x(t) =
(1(t),...,x,(t)) of the fixed system (3)

X'(t) = f(x(t) + g(x(t) K (x(t), u(t) +uo(t)), x(0) =0 ()

(for f:R™ — R" consisting of (f1,..., fn) and g : R" — R" consisting of (g1,...,gs)) is
such that
h(x(t)) = z(t) forall t>1.

Theorem 1 implies that even if some fixed dynamical system (3) from the class S,, has
fading memory, a suitable feedback K and readout function h will enable it to carry out

5



specific computations with persistent memory. In fact, it can carry out any computation
with persistent memory which could possibly be carried out by any dynamical system
(4). To get a clear understanding of this universality property, one should note that
the feedback function K and the readout function h depend only on the function G
that characterizes the simulated system (4), but not on the external input u(¢) or the
particular solution z(t) of (4) that it simulates. Hence Theorem 1 implies in particular
that any system (3) that belongs to the class S, has in conjunction with feedback the
computational power of a universal Turing machine (see [25] or [26] for relevant concepts
from computation theory). This follows from the fact that every Turing machine (hence
any conceivable digital computation, most of which require a persistent memory) can be
simulated by systems of equations of the form (4) (this was shown in [27] for the case with
continuous time, and in [28, 29] for recurrent neural networks with discrete time; see [30]
for a review). But possibly more relevant for applications to biological systems is the fact
that any fixed system (3) that belongs to the class S, is able to emulate any conceivable
continuous dynamic response to an input stream wu(t) if it receives a suitable feedback
K(z1(t),...,z,(t),u(t)), where K can always be chosen to be continuous. Hence one
may argue that these systems (3) are also universal for analog computing on time-varying
inputs.

The class S, of dynamical systems that become through feedback universal for analog
computing subsumes systems of the form

i(t) = —\ai(t) + o (Zaij-xj(t)) +b-o(t), i=1,...,n; (6)

for example if the \; are pairwise different and a;; = 0 for all 4, j, and all b; are nonzero.!

Systems of the form (1) or (2) are of a slightly different form, since there the activation
function o (that has a bounded range) is applied to the term v(¢)). But such systems (1),
(2) can still be universal for all bounded analog responses of arbitrary dynamical systems
(4), because of the following observation:

For each constant ¢ > 0 there is a constant C' > 0 such that: for every external input
u(t),t >0, and each solution z(t) of the forced system (4) such that

lu(t)] < c and ‘z(i)(t)| <c foralli=0,...,n—1, forall t>0
the input ug can be picked so that the feedback
v(t) = K(x(t),u(t) +uo(t)) t>0

to (1) or (2) satisfies:
)| <C  forall t>0.

Fewer restrictions are needed if more then one feedback to the system (6) can be used.



Thus, if we know a priori that we will only deal with solutions of the differential equa-
tion (4) that are bounded by ¢, and inputs are similarly bounded, we could also consider
instead of (3) a system such as x'(t) = f(x(t))+g(x(t))o(v(t)) with f, g : R® — R"™, where
some bounded activation function o : R — R (e.g. ¢ - tanh(v), for a suitable constant q)
is applied to the term v(t). The resulting feedback term o (K (x(t), u(t) + uo(t))) is then
of a mathematical form which is adequate for modeling feedback in neural circuits.

In order to prove Theorem 1, one defines S,, as the class of dynamical systems (3) that
are feedback equivalent to the special linear system (consisting of n differential equations)

x'(t) = A.x(t) + b,v(t) (7)
with

01 0 . 0 0

0 01 0 0

0 0 0 . 1 0

0 0 0 . 0 1

The notion of “feedback equivalence”, which is in fact an equivalence relation, expresses
that two systems of differential equations can be transformed into each other through
application of a suitable feedback and a change of basis in the state and control value
space (see section 5.2 in [31]). One can easily see that it preserves the universality property
considered in Theorem 1. The linear system (7) has this universality property according
to the well-known feedback linearization method (see [31]), which shows that arbitrary
differential equations of the form (4) can be simulated by a linear system (7) with a
suitable feedback. We refer to section 4.1.1 for further details of the proof.

Theorem 1 implies that a generic neural circuit may become through feedback a uni-
versal computational device, which can not only simulate any Turing machine, but also
any conceivable model for analog computing with bounded dynamic responses. The “pro-
gram” of such arbitrary simulated computing machine gets encapsulated in the static
functions K that characterize the memoryless computational operations that are required
from feedback units, and the static readout functions h. Since these functions are static,
i.e. time-invariant, and continuous, they provide suitable targets for learning. More pre-
cisely, in order to train a generic neural circuit to simulate the dynamic response of an
arbitrary dynamical system, it suffices to train - apart from readout neurons - a few neu-
rons within the circuit (or within some external loop) to transform the vector x(t), that
represents the current firing activity of its neurons, and the current external input w(t)
into a suitable feedback value K (x(t),u(t)). This could for example be carried out by
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training a suitable feedforward neural network within the larger circuit, which can approx-
imate any continuous feedback function K [32]. Furthermore we will show in section 2.2
that these feedback functions K can in many biologically relevant cases be chosen to be
linear, so that it would in principle suffice to train a single neuron to compute K.

It is known that the memory capacity of such circuit is reduced to some finite number
of bits if these feedback functions K are not learnt perfectly, or if there are other sources
of noise in the system. More generally, no analog circuit with noise can simulate arbitrary
Turing machines [33]. But the subsequent Theorem 2 shows that fading memory systems
with noise and imperfect feedback can still achieve the maximal possible computational
power within this a-priori limitation: they can simulate any given finite state machine
(FSM). Note that any Turing machine with tapes of finite length is a special case of
a FSM. Furthermore any existing digital computer is a FSM, hence the computational
capability of FSM’s is actually quite large.

In order to avoid the cumbersome mathematical difficulties that arise when one analy-
ses differential equations with noise, we formulate and prove Theorem 2 on a more abstract
level, resorting to the notion of fading memory filters with noise (see section 4.1.2 for de-
tails). We assume here that the input-output behavior of those dynamical systems with
noise, for which we want to determine the computational impact of (imprecise) state
feedback, can be modeled by fading memory filters with additive noise on their output.
The assumption that the amplitude of this noise is bounded is a necessary assumption
according to [34]. We refer to [3], [4], [35] for further discussions of the relationship be-
tween models for neural circuits and fading memory filters. In particular it was shown
in [35] that every time-invariant fading memory filter can be approximated by models for
neural circuits, provided that these models reflect the empirically found diversity of time
constants of neurons and synapses.

Theorem 2 Feedback allows linear and nonlinear fading memory systems, even in the
presence of additive noise with bounded amplitude, to employ for real-time processing of

time-varying inputs the computational capability and non-fading states of any given FSM
(see Fig. 1D-E).

The precise formalization and the proof of this result is given in section 4.1.2. The
external input u(t) can in this case be injected directly into the fading memory system,
so that the feedback K (x(t)) depends only on the internal state x(¢) (see Fig. 1E). One
essential ingredient of the proof is a method for making sure that noise does not get
amplified through feedback: the functions K that provide feedback values K(x(t)) can
be chosen in such a way that they cancel the impact of imprecision in the values K (x(s))
for immediately preceding time steps s < t.



2.2 Applications to Generic Cortical Microcircuit Models

The preceding theoretical results imply that it is possible for dynamical systems to carry
out computations with persistent memory without acquiring all the computational disad-
vantages of the chaotic regime, where the memory capacity of the system is dominated by
noise. Feedback units can create selective “loopholes” into the fading memory dynamics of
a dissipative system, that can only be activated by specific patterns in the input or circuit
dynamics. In this way the potential content of persistent memory can be controlled by
feedback units that have been trained to recognize such patterns. This feedback may arise
from a few neurons within the circuit, or from neurons within a larger feedback loop. The
task to approximate a suitable feedback function K is less difficult than it may appear
on first sight, since it suffices in many cases to approximate a linear feedback function.
The reason is that sufficiently large generic cortical microcircuit models have an inherent
kernel property [7], in the sense of machine learning [36]. This means that a large reser-
voir of diverse nonlinear responses to current and recent input patterns is automatically
produced within the recurrent circuit. In particular, nonlinear combinations of variables
a,b,c,... (that may result from the circuit input or internal activity) are automatically
computed at internal nodes of the circuit. Consequently numerous low degree polynomials
in these variables a,b,c,... can be approximated by linear combinations of outputs of
neurons from the recurrent circuit. An example of this effect is demonstrated in Fig. 2G,
where it is shown that the product of firing rates r3(t) and r4(¢) of two independently
varying afferent spike train inputs can be approximated quite well by a linear readout
neuron. This kernel property of biologically realistic cortical microcircuit models arises
from the fact that these circuits have many additional nonlinearities besides those that
appear in the equations (1), (2), (6).

We refer to those neurons where the weights of synaptic connections from neurons
within the circuit are adapted for a specific computational task (rather than chosen ran-
domly from distributions that are based on biological date, like for all other synapses in
the circuit) in the following as readout neurons. Readout neurons were modeled in most of
our simulations simply by weighted sums applied to low-pass filtered spike outputs from
their presynaptic neurons (where the low-pass filter reflects properties of postsynaptic
receptors and membrane of a biological neuron). The analog output of such linear read-
out neurons can be interpreted as a time-varying firing rate. However we show in Fig. 2
that these readout neurons can (with a moderate loss in performance) also be modeled
by spiking neurons, like the other neurons in the simulated circuit. Hence not only those
circuits that receive feedback from external readout neurons, but also generic recurrent
circuits in which a few neurons have been trained for a specific task acquire computational
capabilities for real-time processing that are not restricted to computations with fading
memory.

Theorem 2 predicts that the training of a few of its neurons enables generic neural
circuits to employ persistent internal states for state-dependent processing of online input



streams. Previous models for non-fading memory in neural circuits [12, 37-39] proposed
that it is implemented through low-dimensional attractors in the circuit dynamics. These
attractors tend to freeze or entrain the whole state of the circuit, and thereby shut it off
from the online input stream (although independent local attractors could emerge in local
subcircuits under some conditions [38]). In contrast, the generation of non-fading memory
through a few trained neurons does not entail that the dynamics of the circuit is dominated
by their persistent memory states. For example, an attractor created by a neuron with a
constant target output K (x) = ¢ only constrains the circuit state x to remain in the sub-
manifold {x : K(x) = ¢} of its high-dimensional state space. This sub-manifold is itself
in general high-dimensional. In particular, if K(x) is a linear function w - x, which often
suffices as we will show, the dimensionality of the sub-manifold {x : K(x) = c} differs from
the dimension of the full state space only by 1. Hence several such sub-manifolds have in
general a high-dimensional intersection, and their intersection still leaves sufficiently many
degrees of freedom for the circuit state x to also absorb continuously new information from
online input streams.

We simulated generic cortical microcircuit models consisting of 600 integrate-and-fire
(I&F) neurons (for Fig. 2, 3), and circuits consisting of 600 conductance-based Hodgkin-
Huxley (HH) neurons (for Fig. 4), in either case with a rather high level of noise that
reflects experimental data on the high conductance state in vivo [40]. We used biologically
realistic models for dynamic synapses whose individual mixture of paired-pulse depression
and facilitation (depending on the type of pre- and postsynaptic neuron) was based on
experimental data from [41], [42]. These circuits were not constructed for any particular
computational task. In particular, sparse synaptic connectivity between neurons was
generated (with a biologically realistic bias towards short connections) by a probabilistic
rule, and synaptic parameters were chosen randomly from distributions that depend on
the type of pre- and postsynaptic neurons (in accordance with empirical data from [41],
[42]). More precisely, the 600 neurons of each circuit were placed on the integer grid
points of a 5 x 5 x 24 grid. 20% of these neurons were randomly chosen to be inhibitory.
The probability of a synaptic connection from neuron a to neuron b (as well as that of
a synaptic connection from neuron b to neuron a) was defined as C' - exp(—D?(a,b)/\?),
where D(a,b) is the Euclidean distance between neurons a and b, and A is a parameter
which controls both the average number of connections and the average distance between
neurons that are synaptically connected (we set A = 3). Depending on whether the pre- or
postsynaptic neuron were excitatory (E) or inhibitory (7), the value of C' was set according
to [42] t0 0.3 (EFE), 0.2 (El), 0.4 (IE), 0.1 (II), yielding an average of 10900 synapses for
the chosen circuit size. External inputs and feedbacks from readouts were connected to
populations of neurons in the circuit with randomly chosen connection strengths. Further
details of the simulated microcircuit models can be found in section 4.2. Details of the
subsequently discussed computer experiments are given in sections 4.3 - 4.5.

The following procedure was applied to train readout neurons, i.e. to adjust the
weights of synaptic connections from neurons in the circuit to readout neurons for specific
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computational tasks (while leaving all other parameters of the generic microcircuit model
unchanged):

e First those readout neurons were trained that provide feedback, then the other
readout neurons.

e During the training of readout neurons that provide feedback, their actual feedback
was replaced by a noisy version of their target output (“teacher forcing”).

e Each readout neuron was trained by linear regression to output at any time ¢ a
particular target value f(¢). Linear regression was applied to a set of data points
of the form (y(¢), f(¢)), for many time points ¢, where y(¢) is the output of low
pass filters applied to the spike trains of presynaptic neurons, and f(t) is the target
output.

Note that teacher forcing with noisy versions of target feedback values trains these read-
outs to correct errors resulting from imprecision in their preceding feedback (rather than
amplifying errors).

In our first computer experiment, readout neurons were trained to turn a high-
dimensional attractor on or off (Fig. 2D), in response to bursts in 2 of the 4 independent
input spike trains. More precisely, 8 neurons were trained to represent in their firing
activity at any time the information in which of the input streams 1 or 2 a burst had
most recently occurred. If it had occurred most recently in stream 1, they were trained
to fire at 40 Hz, and if a burst had occurred most recently in input stream 2, they were
trained not to fire. Hence these neurons were required to represent the non-fading state
of a simple FSM, demonstrating in an example the computational capabilities predicted
by Theorem 2. Fig. 2G demonstrates that the circuit retains its kernel property inspite
of the feedback injected into the circuit by these readouts. But beyond the emulation of
a simple FSM, the resulting generic cortical microcircuit is able to combine information
stored in the current state of the FSM with new information from the online circuit input.
For example, Fig. 2E shows that other readouts from the same circuit can be trained to
amplify their response to specific inputs if the high-dimensional attractor is in the “on”-
state. Readouts can also be trained to change the function that they compute if the
high-dimensional attractor is in the on-state (Fig. 2F). This provides an example for an
online reconfigurable circuit. The readout neurons that provide feedback had been mod-
eled in this computer simulation like the other neurons in the circuit: by I&F neurons
with in-vivo like background noise. Hence they can be viewed equivalently as neurons
within an otherwise generic circuit.

Another difficult problem in computational neuroscience is to explain how neural cir-
cuits can implement a parametric memory, i.e. how they can hold and update an analog
value, that may represent for example an intended eye-position that a neural integra-
tor computes from a sequence of eye-movement commands [43], an estimate of elapsed
time [8], or accumulated sensory evidence [13]. Various designs have been proposed for
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Figure 2: State-dependent real-time processing of 4 independent input streams in a generic
cortical microcircuit model. (A) 4 input streams, consisting each of 8 spike trains generated
by Poisson processes with randomly varying rates r;(¢),i = 1,...,4 (rates plotted in (B); all
rates are given in Hz). The 4 input streams and the feedback were injected into disjoint but
densely interconnected subpopulations of neurons in the circuit. (C) Resulting firing activity
of 100 out of the 600 I&F neurons in the circuit. Spikes from inhibitory neurons marked in red.
(D) Target activation times of the high-dimensional attractor (blue shading), spike trains of
2 of the 8 I&F neurons that were trained to create the high-dimensional attractor by sending
their output spike trains back into the circuit, and average firing rate of all 8 neurons (lower
trace). (E and F) Performance of linear readouts that were trained to switch their real-time
computation task in dependence of the current state of the high-dimensional attractor: output
2-r3(t) instead of r3(t) if the high-dimensional attractor is on (E), output r3(t) +74(t) instead of
|r3(t) —ra(t)] if the high-dimensional attractor is on (F). (G) Performance of linear readout that
was trained to output r3(t) - r4(t), showing that another linear readout from the same circuit
can simultaneously carry out nonlinear computations that are invariant to the current state of
the high-dimensional attractor.
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Figure 3: Representation of time for behaviorally relevant time spans in a generic cortical
microcircuit model. (A) Afferent circuit input, consisting of a cue in one channel (red) and
random spikes (freshly drawn for each trial) in the other channels. (B) Response of 100 neurons
from the same circuit as in Fig. 2, which has here two co-existing high-dimensional attractors.
The autonomously generated periodic bursts with a periodic frequency of about 8 Hz are not
related to the task, and readouts were trained to become invariant to them. (C and D)
Feedback from two linear readouts that were simultaneously trained to create and control two
high-dimensional attractors. One of them was trained to decay in 400 ms (C), and the other
in 600 ms (D) (scale in nA is the average current injected by feedback into a randomly chosen
subset of neurons in the circuit). (E) Response of the same neurons as in (B), for the same
circuit input, but with feedback from a different linear readout that was trained to create a
high-dimensional attractor that increases its activity and reaches a plateau 600 ms after the
occurrence of the cue in the input stream. (F) Feedback from the linear readout that creates
this continuous high-dimensional attractor.
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parametric memory in recurrent circuits, where continuous attractors (also referred to
as line attractors) hold and update an analog value. But these approaches are inher-
ently brittle [39], and have problems in dealing with high noise or online circuit inputs.
On the other hand Fig. 3 shows that dedicated circuit constructions are not necessary,
since feedback from readout neurons in generic cortical microcircuits models can also
create high-dimensional attractors that hold and update an analog value for behaviorally
relevant time spans. In fact, due to the high-dimensional character of the resulting high-
dimensional attractors, two such analog values can be stored and updated independently
(Fig. 3C,D), even within a fairly small circuit. In this example the readouts that provide
feedback were simply trained to increase or reduce their feedback at each time point. Note
that the resulting circuit activity is qualitatively consistent with recordings from neurons
in cortex and striatum during reward expectation [9],[10],[11]. A similar ramp-like rise
and fall of activity as shown in panels C, D, F has also been recorded in neurons of pos-
terior parietal cortex of the macaque in experiments were the monkey had been trained
to classify the duration of elapsed time [8]. The high-dimensionality of the continuous
attractors in this model makes it feasible to constrain the circuit state to stay simulta-
neously in more than one continuous attractor, thereby making it in principle possible
to encode complex movement plans that require specific temporal relationships between
individual motor commands.

Our model for parametric memory in cortical circuits is consistent with high noise:
Fig. 4G shows the typical trial-to-trial variability of a neuron in our simulated circuit
of conductance based HH neurons with in-vivo like background noise. It qualitatively
matches the “wide diversity of neural firing drift patterns in individual fish at all states of
tuning” that was observed in the horizontal occulomotor neural integrator in goldfish [14],
and the large trial-to-trial variability of neurons in prefrontal cortex of monkeys reported
in [9]. In addition, this model is consistent with the surprising plasticity that has been
observed even in quite specialized neural integrators [14], since continuous attractors can
be created or modified in this model by changing just a few synaptic weights of neurons
that are immediately involved. It does not require the presence of long-lasting postsy-
naptic potentials, NMDA-receptors, or other specialized details of biological neurons or
synapses, although their inclusion in the model is likely to provide additional temporal
stability [12]. Rather it points to complementary organizational mechanisms on the circuit
level, that are likely to enhance the controllability and robustness of continuous attractors
in neural circuits. The robustness of this learning-based model can be traced back to the
fact that readout neurons can be trained to correct undesired circuit responses resulting
from errors in their previous feedback. Furthermore such error correction is not restricted
to linear computational operations, since the previously demonstrated kernel property of
these generic circuits allows even linear neurons to implement complex nonlinear control
strategies through their feedback. As an example we demonstrate in Fig. 4 that even un-
der biologically realistic high noise conditions a linear readout can be trained to update
a continuous attractor (Fig. 4D), to filter out input activity during certain time intervals
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Figure 4: A model for analog real-time computation on external and internal variables in a
generic cortical microcircuit (consisting of 600 conductance based HH-neurons). (A and B)
Two input streams as in Fig. 2; their firing rates r1(t),r2(t) are shown in (B). (C) Resulting
firing activity of 100 neurons in the circuit. (D) Performance of a neural integrator, generated
by feedback from a linear readout that was trained to output at any time ¢ an approximation
CA(t) of the integral fg (r1(s) —ra(s))ds over the difference of both input rates. Feedback values
were injected as input currents into a randomly chosen subset of neurons in the circuit. Scale
in nA shows average strength of feedback currents (also in panel H). (E) Performance of linear
readout that was trained to output 0 as long as C'A(t) stayed below 1.35 nA, and to output
then ro(t) until the value of C'A(t) dropped below 0.45 nA (i.e., in this test run during the
shaded time periods). (F) Performance of linear readout trained to output r1(t) — CA(t), i.e. a
combination of external and internal variables, at any time ¢ (both r; and C'A normalized into
the range [0,1]). (G) Response of a randomly chosen neuron in the circuit for 10 repetitions
of the same experiment (with input spike trains generated by Poisson processes with the same
time-course of firing rates), showing biologically realistic trial-to-trial variability. (H) Activity
traces of a continuous attractor as in (D), but in 8 different trials for 8 different fixed values of
r1 and 7o (shown on the right).
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in dependence of the current state of the continuous attractor (Fig. 4E), or to combine
the time-varying analog variable encoded by the current state C'A(t) of the continuous
attractor with a time-varying variable r1(¢) that is delivered by an online spike input.
Hence intention-based information processing [15] and other tasks that involve a merging
of external inputs and internal state information can be implemented in this way. Fig. 4C
shows that a high-dimensional attractor need not entrain the firing activity of neurons
in a drastic way, since it just restricts the high-dimensional circuit dynamics x(t) to a
slightly lower dimensional manifold of circuit states x(t) that satisfy w-x(¢) = f(¢) for the
current target output f(t) of the corresponding linear readout. On the other hand Fig. 4E
shows that the activity level C'A(t) of the high-dimensional attractor can nevertheless be
detected by other linear readouts, and can simultaneously be combined in a nonlinear
manner with a time-varying variable ry(t) from one afferent circuit input stream, while
remaining invariant to the other afferent input stream.

Finally, the same generic circuit also provides a model for the integration of evidence
for decision making that is compatible with in-vivo like high noise conditions. Fig. 4H
depicts the time course of the same neural integrator as in panel D, but here for the
case where the rates r1,ry of the 2 input streams assume in 8 trials 8 different constant
values after the first 100 ms (while assuming a common value of 65 Hz during the first
100 ms). The resulting time course of the continuous attractor is qualitatively similar to
the meandering path towards a decision threshold that has been recorded from neurons
in area LIP where firing rates represent temporally integrated evidence concerning the
dominating direction of random dot movements (see Fig. 5A in [13]).

3 Discussion

We have presented a theoretically founded model for real-time computations on complex
input streams with persistent internal states in generic cortical microcircuits. This model
does not require a handcrafted circuit structure or biologically unrealistic assumptions
such as symmetric weight distributions, static synapses that do not exhibit pair-pulsed
depression or facilitation, or neuron models with low levels of noise that are not con-
sistent with data on in-vivo conditions. Our model only requires the assumption that
adaptive procedures (synaptic plasticity) in generic neural circuits can approximate lin-
ear regression. Furthermore, in contrast to classical learning paradigms for attractor
neural networks, it is here not required that a large fraction of synaptic parameters in the
circuit are changed when a new computational task is introduced, or a new item is stored
in working memory. Rather, it suffices if those neurons that provide the circuit output
and a few neurons that provide feedback are subject to synaptic plasticity. Such minimal
circuit modifications have the advantage that thereby created attractors of the circuit dy-
namics are high-dimensional. We have shown that the circuit state can be simultaneously
in several of such high-dimensional attractors, and still retain sufficiently many degrees of
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freedom to absorb and process new information from online input streams. In particular,
we have shown in Fig. 2 and 4 how bottom-up processing can be reconfigured in depen-
dence of discrete internal states (implemented through high-dimensional attractors) by
turning certain input channels on or off, and by changing the computational operations
that are applied to input variables. Furthermore we have shown in and 4 that analog
variables, which are extracted from an online input stream, can be combined in real-time
computations with analog variables that are stored in high-dimensional continuous at-
tractors. This provides in particular a model for the implementation of intention-based
information processing [15] in cortical microcircuits.

It remains open how learning signals can induce neurons in a biological organism to
compute specific linear feedback functions. But at least we have reduced this problem
to the feasibility of perceptron-like learning (or more abstractly: to linear regression)
for single neurons. Subsequent research will have to determine whether these learning
requirements (which can partially be reduced to spike-timing dependent plasticity [44])
can be justified on the basis of results on unsupervised learning and reinforcement learning
[45] in biological organisms.

Whereas it was previously already known that one can construct specific circuits
that have universal computational capabilities for real-time computing on analog input
streams, Theorems 1 and 2 of this article imply that a large variety of dynamical systems
(in particular generic cortical microcircuits) can acquire through feedback such universal
capabilities for computations that map time-varying inputs to time-varying outputs. It
should be noted that these universal computational capabilities differ from the well known
but much weaker universal approximation property of feedforward neural networks (see
[32]), since not only the static output of an arbitrary continuous static function is ap-
proximated, but the dynamic response of arbitrary differential equations of higher order
to time-varying inputs.

The theoretical results of this article also provide an explanation for the astounding
computational capability and flexibility of echo state networks [16]. In addition they
can be used to analyze computational aspects of feedback in other biological dynamical
systems besides neural circuits. Several such systems, for example genetic regulatory
networks, are known to implement complex maps from time-varying input streams (e.g.
external signals) onto time-varying outputs (e.g. transcription rates). But little is known
about the way in which these maps are implemented. Whereas feedback in biological
dynamical systems is usually only analyzed and modeled from the perspective of con-
trol, we propose that an analysis of its computational aspects is likely to yield a better
understanding of the computational capabilities of such systems.
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4 Methods

4.1 Mathematical Methods
4.1.1 Details to the Proof of Theorem 1

We take S, to be the class of n-dimensional globally feedback linearizable systems, that is,
systems which under coordinate changes and feedback become linear controllable systems,
cf. [31], Definition 5.3.1. 2 Instead of quoting that definition, let us provide an equivalent
one, which is more useful in the present context (see [31], Lemma 5.3.5):

Definition: A system (3), with smooth vector fields f = (fi,...,fn) and g =
(g1,---,9n), belongs to S, provided that there exists a diffeomorphism T : R* — R"
and two smooth maps «, 3 : R" — R, with B(x) # 0 for all x € R", such that, for each
x € R™:

a(x)
T.(x) f(x) = AT(x) 3(x) bn (8)
and
B(x)Tu(x) g(x) = bn, (9)
where T, denotes the Jacobian of T and
010 . 0 0
0 01 0 0
A, = : b, =
00 0 . 1 0
00 0 . 0 1

An interpretation of this definition is as follows (see [31], Chapter 5, for more discus-
sion): For each input u(t) and each solution z(t) of

2 =,

the vector function x(t) = T~!(Z(t)) satisfies (3) with the input v(t) = a(x(t)) +
px(t)u(t), where
Z(t) = (2(t),2'(),2"(t),..., 2" V() .

Most treatments of feedback linearization focus on local feedback linearization, mean-
ing that different 7', v, § are allowed in different regions of R™. Local feedback linearization

2Feedback linearization is a useful general technique in control theory, and has often been used — for
control purposes as opposed to simulation — in the context of neural computation models, see e.g. [46]
and references there.
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admits more elegant Lie algebraic characterizations than the global concept, as we briefly
mention below. The Theorem that follows is obtained by combining the proofs of Proposi-
tion 5.3.9 and of Theorem 15 in [31], as applied to the global case. Recall that, in general,
for any two vector fields f and g, one writes ad(g) := [f, g], where [f, g] is the Lie bracket
g«f — f+g. Iterations of the operator ad; are defined in the obvious way: ad[])c(g) = ¢ and
ad]f’l(g) = adf(ad]}(g)). We use the notation Ly¢, for any (smooth) vector field f and
(smooth) function ¢, to denote the Lie derivative of ¢ along f, that is, V¢ - f. This is
again a smooth function, so one can also consider iterated applications of the operator
Ly.

Theorem 3 The system x' = f(x) + g(x)v is globally feedback linearizable if and only if
there exists a smooth function
v:R"—=R

having everywhere nonzero gradient and satisfying the following properties:

1. for each x € R™, the vectors g(x), adsg(x),. .., ad;_lg(x) are linearly independent;

2. for each x € R™ and each j =0,...,n—2, Vo(x) - adgcg(x) =0;

3. the map x — (p(x), Lrp(x), ... ,L}"lgo(x)) is a bijection R" — R".

Observe that the conditions amount to the existence of a well-behaved solution
¢ of a set of first-order linear partial differential equations. Existence of a solu-
tion of this form is not trivial to verify, but the linear independence of the vectors
g(x),adrg(x), ... ,ad?_1 g(x) together with the involutivity of the distribution generated
by g,adyg, ..., ad}ldg (i.e., the Lie bracket of any two of these vectors should be, for each
X, a linear combination of these n — 1 vectors) is a necessary condition, which is in a
sense also sufficient, as follows by an application of Frobenius’ Theorem. (To be precise,
see Theorem 15 in [31], the conditions are only sufficient for local feedback linearization.
However, it turns out often in examples that the conditions lead one to a globally defined
solution, see e.g. example 5.3.10 in [31].)

Let us now show that the class S, includes some fading memory systems of the form
(6). Indeed, consider any system as follows:

x' = —diag(A,..., \)x+b-v (10)

where the \; # \; for each i # j are all positive, diag(\1, ..., A,) is the resulting diagonal
matrix, and the column vector b = col(by,...,b,) has nonzero entries: b; # 0 for all i.
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(Such a system, which has the form (6) with o(Ax) = 0, consists of n first order linear
differential equations in parallel, and is obviously fading-memory.) It is easy to see that,
up to signs (—1)*, we have

adlj}g(x) = col(\iby, ..., Alby,)

for ¢ > 0, and the linear independence of g(x),ad;g(x),... ,ad?_lg(x) follows from the
fact that these constant vectors form a Vandermonde matrix. Then we can pick p(x) as a
linear map x — ax, where a is any vector in R™ which is orthogonal to all of the vectors

col(Aby, ..., Aby),i=0,1,...,n—2.

The map x — (p(x), Lrp(x),. .., L?_lgp(x)) is represented then also by a Vandermonde
matrix, so it is a bijection.

Finally, let us prove the simulation result.

Take any system (3) in S,, and any system (4) to be simulated. Using T', o, 5 as in the
definition of the class S,,, we define:

K(x,w) = ax) + f(x) [G(T(x)) + ]

and we let h(x) be the first coordinate of T'(x). Note that these functions K and h are
smooth functions.?
Next, pick an external input u(t),t > 0, and a solution z(t) of the forced system (4).
From the interpretation of feedback linearization given earlier, it follows that for any
inputs u(t) and ug(¢) (in particular, one could take uy = 0), and each solution z(t) of

20(t) = G (2(1), 2 (1), 2"(t), ... 27V ()) + ult) + uo(t)

(that is, we use pu(t) = G (2(t),2(t ) (t), 27D ()) 4 u(t) + uo(t) as the input to
2™ = 1), the vector function x(t) = T~1(Z(t )) satisfies (3) with input

v(t) = a(x(t) + B(x(1))u(t) = K (x(t), u(t) + uo(t)) -

Furthermore, Z(t) = T(x(t)) means that z(t) = h(x(t)), as required for the notion of
simulation.

This almost proves the simulation result, except for the fact that there is no reason for
the initial value x(0) = T~*(Z(0)) to be zero, since z(t) is an arbitrary trajectory. This
is where the input wug plays a role. Let £ := T'(0). We will show that, given any solution
z(t) and any input wu(t), there is some input wug(t), with ug(t) = 0 for all ¢ > 1, so that
the solution of

y ™M@t = G (y),y' @), y" (), ...,y () + ult) + uo(t) (11)

3In the special case where (3) describes the dynamics of a circuit according to (6), « is a linear function,
[ is a constant, and T is an invertible linear map from R"™ to R”.
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trajectory to be simulated, with ug = 0.) Then letting x(t) = T (Y (¢)) instead of
T~1(Z(t)) means that x(0) = 0 and still h(x(t)) = y(t) = 2(t) for all ¢t > 1.

Consider now an arbitrary solution z(t) of the equation (4) and let ¢ be the vector
with entries

with y(0) = £ has the property that y(t) = z(¢) for all t > 1. (Where z(¢) is the desired
fi

G =29(1),i=0,...,n—1.

We next pick a scalar differentiable function ¢ such that ¢®(0) = &1 and ¢ (1) = (iyq
fori =0,...,n — 1. (It is easy to see that such functions exist. For example, one may
simply consider the linear system p = A, p + b,q with states p and input ¢. This is a
completely controllable linear system, cf. [31], Chapter 3, so we just pick an input ¢(¢)
which steers ¢ into ¢, and finally let ¢(t) be the first coordinate of p(t).) Now we let

u(t) = " (t) = G(o(t),.... " V(1) — u(t)

for t < 1, and ug(t) = 0 for t > 1, and claim that the solution of (11) with y(0) = £ has
the property that y(t) = z2(¢) for all ¢ > 1. Since u(t) 4+ uo(t) = u(t) for all t > 1, we
only need to show that y (1) = 2()(1) for every i = 0,...,n — 1. To see this, in turn,
and using uniqueness of solutions of differential equations, it is is enough to show that

y(t) := ¢(t) satisfies

¢(t) = G (6(t),¢'(1),¢" (1), ... 0" V(1)) +u(t)

on the interval [0, 1] and has derivatives at ¢ = 0 as specified by the vector £. But this is
indeed true by construction.

Finally, we remark that if |u(t)| < ¢ and [2@](f) < ¢ for all ¢ > 0 then x(t) =
T=1(Z(t)) is bounded in norm by a constant that only depends on ¢ (since 7! is contin-
uous, by definition of diffeomorphism), and the numbers b; := 2(¥(1) are also bounded by
a constant that depends only on ¢, so K (x(t),u(t) + uo(t)) also is.

Corollary 4 Analogous results can be shown for the simulation of systems consisting of
any number k of higher order differential equations as in (4). In this case fized systems
of first order differential equations of a form as in (3), but with k memoryless feedback
functions Ky, ..., Ky that depend on the simulated higher order system, can be shown to
be able to simulate the dynamic response of arbitrary higher order systems of differential
equations.

4.1.2 Details to the Proof of Theorem 2

A map (or filter) F' from input- to output streams is defined to have fading memory if
its current output at time ¢ depends (up to some precision £) only on values of the input
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u during some finite time interval [t — 7', ¢]. In formulas: F' has fading memory if there
exists for every € > 0 some § > 0 and 7" > 0 so that |(Fu)(t) — (Fa)(t)] < ¢ for any
t € R and any input functions u,u with ||u(r) — a(7)|| < ¢ for all 7 € [t — T,¢].* This
is a characteristic property of all filters that can be approximated by an integral over the
input stream u, or more generally by Volterra- or Wiener series. Note that non-trivial
Turing machines and FSMs can not be approximated by filters with fading memory, since
they require a persistent memory.

The deterministic finite state machine (FSM), also referred to as deterministic finite
automaton, is a standard model for a digital computer, or more generally for any realistic
computational device that operates in discrete time with a discrete set of inputs and
internal states [25]. One assumes that a FSM is at any time in one of some finite number
[ of states, and that it receives at any (discrete) time step one input symbol from some
alphabet {s1,..., s} that may consist of any finite number k of symbols. Its “program”
may consist of any transition function TR : {s1,...,s,} x {1,...,1} — {1,... 1}, where
TR(s;,j') = j denotes the new internal state j which the FSM assumes at the next time
step after processing input symbol s; in state j’.

We consider here a slight variation of this model, which is more adequate for systems
that operate in continuous time and receive analog inputs (for example trains of spikes in
continuous time). We assume that the raw input is some arbitrary n-dimensional input
stream u (i.e., u(t) € R™ for every t € R). Furthermore we assume that there exist pattern
detectors Fi, ..., F}, that report the occurrence of spatio-temporal patterns in the input
stream u from k different classes C',...,Cy. In the case where the input u consists of
spike trains, these classes could consist for example of particular patterns of firing rates,
of particular spike patterns, or particular correlation patterns among some of the input
spike trains. It was shown in [4] that readouts from generic neural microcircuit models
can easily be trained to approximate the role of such pattern detectors F}, ..., F. We
assume that the detection of a pattern from class C; by pattern detector F; affects the
state of the FSM according to its transition function TR in a way which corresponds to
the presentation of input symbol s; in the discrete-time version: if j was its preceding
state, then it changes now within some finite switching time to state j = T'R(s;, j’).

In order to make an implementation of such FSM by a noisy system feasible, we assume
that the pattern detectors (Fju)(t), ..., (Fru)(t) always assume values < 0, except during
a switching episode. During a switching episode exactly one of the pattern detectors
(Fyu)(t) assumes values > 0.° In order to avoid that the subsequent construction is based

4We use in this section boldface letters to denote input streams, because they typically have a dimen-
sion larger than 1.

SWe assume that this (F;u)(t) reaches values > 1 during this switching episode. We also assume that
the length of each switching episode (i.e., the time during which some (F;u)(t) assumes values > 0) is
bounded from above by some constant §, and that the temporal distance between the beginnings of any
two different switching episodes is at least A+39 (where A is the assumed temporal delay of the feedback
in the circuit).
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on unrealistic assumptions, we allow that each pattern detector Fj is replaced by some
arbitrary filter F} so that (Fju)(t) is a continuous function of time (with values in some
arbitrary bounded range [—B, B]) with |(Fju)(t) — (Fyu)(t)] < % for any input stream u
that is considered.

R A . CL-H,(t
Fu i, Fu 10
n noisy R noisy
Fru | fading Fru ——| fading
memory memory
@, _; system C ]:]l . system C cL iy (t)
RN > s !
delay A

Figure 5: Emulation of a finite state machine (FSM) by a noisy fading memory system with
feedback according to Theorem 5. (A) Underlying open loop system with noisy pattern detectors
F Tyon e B r and suitable fading memory readouts H Tyenes H ; (which may also be subject to noise).
(B) Resulting noise-robust emulation of an arbitrary given FSM by adding feedback to the
system in panel A. The same readouts as in A (denoted C'L — ﬁj (t) in the closed loop) now
encode the current state of the simulated FSM.

The informal statement of Theorem 2 is made precise by the subsequent Theorem 5
(see Fig. 5 for an illustration). It exhibits a simple construction method whereby fading
memory filters with additive noise of bounded amplitude can be composed into a closed
loop system C' that emulates an arbitrary given FSM in a noise-robust manner. The
resulting system C' can be embedded into any other fading memory system, which receives
the outputs CL — H ;(t) of C as additional inputs. In this way any given fading memory
system can integrate the computational capability and non-fading states of the FSM that
is emulated by C' into its own real-time computation on time-varying input streams u.

An essential aspect of the proof of Theorem 5 is that suitable fading memory filters
H; can prevent in the closed loop the accumulation of errors through feedback, even if
the ideal fading memory filters H; are subsequently replaced by imperfect approximations
H ;. One just has to construct the ideal fading memory filters H; in such a way that they
take into account that their previous outputs, that have been fed back into the system
C, may have been corrupted by additive noise. As long as this additive noise of bounded
amplitude has not been amplified in the closed loop, the filters H; can still recover which
of the finitely many states of the emulated FSM A was represented by that noise-corrupted
feedback.

From the perspective of neural circuit models it is of interest to note that the con-
struction of the system C' can be replaced by an adaptive procedure, whereby readouts
from generic cortical microcircuit models are trained to approximate the target filters H ;.
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General approximation results [3, 4, 35] imply that if the neural circuit is sufficiently large
and contains sufficiently diverse components (for example dynamic synapses with slightly
different parameter values), then the actual outputs H ; of these readouts can approximate
the target filters H; uniformly up to any given maximal error € > 0. Theorem 5 guar-
antees that the resulting neural circuit model with these (imperfectly) trained readouts
can in the closed loop emulate the given FSM A in a reliable manner, provided that the
neural circuit model is sufficiently large and diverse so that its readout can achieve an
approximation error ¢ not larger than 1/4.

Theorem 5 One can construct for any given finite state machine (FSM) A some time
invariant fading memory filters Hy, ..., H; with the property that any approximating filters
Hy, ... H with ]Hj—ﬁj\ < 1/4 provide in the closed loop with delay A (see Fig. 5) outputs
CL—Hy,...,CL— H, that simulate the FSM A in the following sense:

If [t1,t2] is some arbitrary time interval between switching episodes of the FSM A with
noise-free pattern detectors (Fyu)(t), ..., (Fyu)(t) during which A is in state j, then the
outputs C'L — lﬁlz(t) of the approximating filters H; in the closed loop with noisy pattern
detectors (Fiu)(t),. .., (Fru)(t) satisfy CL— H;(t) > 2 and CL—Hj.(t) < T forall j* # j
and all t € [ty,ts].

Proof: In order to prove that the given FSM A can be implemented in a noise
robust fashion, we construct suitable time invariant fading memory filters Hy,..., H;.
They receive as inputs the time-varying functions (Fju)(¢), ..., (Fyu)(t). In addition
they receive in the open loop inputs vy (), ..., v (t), where each v;(t) will be replaced by
a delayed version of the output of H; (or H;) in the closed loop (see Fig. 5). The filters
H; will be defined in such a way that H;(¢) > 1 signals in the closed loop that the FSM
A is at time t in state j. To make this implementation noise robust, we make sure that
even if one replaces the filters H; by noisy approximations ﬁj which satisfy in the open
loop |H,(t) — H;(t)| < 1 (for all ¢ € R and any time varying inputs (Fra)(t),. .., (Fpu)(t)
and vy(t),...,v(t)), then the closed loop version of such imperfect approximations H;
simulates the FSM A in such a way that ﬁj (t) > 2 implies that A is in state j at time ¢.

Let A be the time delay in the feedback for the closed-loop. We now define the target
outputs Hi(t),..., H(t) (for the open loop version, where the H; receive in addition to

(Fyu)(t), ..., (Fyu)(t) some arbitrary time-varying variables vy(t), . .., v;(t) with values in
[—1,2] as inputs). We define the target outputs of Hy,..., H; as a stationary transforma-

tion of the time-varying inputs v;(¢) and of the outputs of the following two other types
of time invariant fading memory filters:

(i) fi(t) == max{(Fu)(r) :t —A =6 <7 <t}fori=1,....,k

(i) v;(t—20) for j=1,...,L
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We will show below in Lemma 6 and Lemma 7 that both of these functions of time can
be viewed as outputs of time invariant fading memory filters that receive as inputs the
time-varying functions (Fju)(t) (for some arbitrary input stream u) and v;(t). On the
basis of these two Lemmata it is clear that the H; are time invariant fading memory
filters if one can define Hy(t),..., H,(t) as (static) continuous functions of the variables
v;(t) and the outputs of the filters (i) and (ii).® In order to define such functions H,(t) we
first define for each j € {1,...,1} two disjoint closed and bounded sets S; g, S;; C RF+2,
and we set H;(x) = 0 for x € S;o and H;j(x) = 1 for x € S;;. Since the sets S, and
S;1 will have positive distance (i.e., inf{|[[x —y|| : x € Sjp and y € S;1} > 0), it follows
from standard arguments of analysis that the definition of H; can be continued outside
of S;,9;1 to yield a continuous function from R**?" into R.

In order to define the sets S, S;1 we consider the following two types of conditions:

(A;) There exist i € {1,...,k} and j' € {1,...,1} so that TR(:,j") = j,
fi(t) > 2 and fy(t) < % for all i # 1,
vyt —26) > % and vj«(t — 20) < i for all j* # 5.

(B;) fi(t) < tfori=1,....k v;(t) > 2 and v;-(¢) < § for all j* # j.

We say that a vector (fi(t),..., fr(t),v1(t),...,0(t),vi(t — 28),...,v(t — 2§)) €
[— B, B]F x [—1,2]* belongs to set S;; if the conditions A; or B, apply, and to set Sjq if
there exists some j* # j so that the conditions A;« or B;« apply.

It follows immediately from the definition of the sets S, and S ; that they are closed
and bounded. One can also verify immediately that for any j,j" € {1,...,{} the con-
ditions A; and Bj can never be simultaneously satisfied (for any values of the variables
fi(t),v(t),v;(t — 26)). In addition the conditions A; and Aj; (B; and Bj/) can never be
simultaneously satisfied for any j # j'. This implies that the sets S and S are disjoint
for each j € {1,...,(}.

We define for each j € {1,...,l} a continuous function H; : R¥t? — [0, 1] by setting

H

J

(X) L 1 5 if diSt(X, Sj7()> Z diSt(Sj’o, Sj71)
| dist(x,S;0)/dist(S;0,5;1) , otherwise ,

where dist(x,S) := inf{||[x —y| : y € S} for any set S C R¥*?_ Tt is then obvious that
H; is a continuous function from R**? into [0,1] with H;(x) = 0 for all x € S, and
H;(x) =1 for all x € S;;. These functions H; will prevent the amplification of noise in
the closed loop, since they assume outputs 1 or 0 in all relevant situations, even if their
inputs deviate by up to i from their “ideal” values.

We consider some arbitrary imprecise and/or noisy versions H ; of these filters H; (with
inputs (Fiu)(t), ..., (Fyu)(t) and additional inputs vy (t), ..., v(t)) whose output differs

6In the following we sometimes refer to Hp,...,H; as static functions of input vectors
(f1®), -, fi(t),01(2), ..., vi(t), v1(t = 20), ..., vt —20)) from R**2 and sometimes as filters with time-
varying inputs F;u and v; (if we view the filters (i) and (ii) as being part of the computation of H).
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at any time ¢ by at most i from that of H; (of course in the closed loop these deviations
could be accumulated and amplified to values > i) We want to show that for any such

H Tye-- ,H ; the closed loop version of the circuit implements the given FSM A. As initial
condition we assume that the given FSM A is in state 1 for t < 0, and consequently also
that Hy(t) > 3 and H(t) < Tforj=2...,1, as well as f;(t) < ; for all ¢ < 0 and
i=1,... k.

We will now prove the claim of Theorem 5 for arbitrary time intervals [t1,?5] outside
of switching episodes. We assume without loss of generality that to marks the beginning
of the next switching episode [tq,t3] for some t3 > to with |t3 — t5] < §. Furthermore
we assume that either ¢; = 0 (Case 1), or ¢; is the endpoint of the preceding switching
episode [to, t;] with |t; —to| < 0 (Case 2). The formal proof is carried out by induction on
the number of preceding switching episodes (and Case 2 represents the induction step).
In both cases one just needs to analyze the outputs of the previously defined filters H (1)
in the case where some of their inputs are delayed feedbacks of their previous outputs.

Case 1: t; =0

We prove by a nested induction on m € N that CL — H,(t) > 3 and CL — H,(t) < y
for all j > 1 holds for all t € [m - A, (m +1)-A) N [t1,tz]. Since by assumption no
switching episode occurs during [t1,ts], one has f;(f) < i for i = 1,...,k and for all
t € [t1,t2]. Furthermore by our assumption on the initial condition of the FSM A (for
m = 0), or by the induction hypothesis of the nested induction (for m > 0) we can assume
that the variables v;(t) of the open loop have now been assigned in the closed loop the
values C'L — ]:Ij(t — A), therefore they are > % for j =1 and < i for all j > 1. Hence
condition B; in the definition of the sets S;0,.S;1 applies, and the current circuit input is
therefore in Sy ;. Thus H; =1 and H; = 0 for j > 1, which implies H, > 3 and H'j < 1
for 7 > 1 in the open loop, hence CL — H;(t) > 3 and CL — Hj(t) < L for j > 1in the
closed loop (since v;(t) = CL — H;(t — A) in the closed loop).

Case 2: t; is the endpoint of a preceding switching episode [t¢, ¢1].

Assume that (Fju)(t) is the (approximating) pattern detector that assumes a value
> f’I during the preceding switching episode [to, 1], while (E/u) (t) < 1 for all ¢ # i during
[to,t1]. Let t' € [to,11] be the first time point where (Fju)(t) reaches a value > 3. Then
fi(t) > 2 and fi-(¢) < § for all i* # ¢ and for all ¢ € [/,¢ + A + 6] (by the definition of
the filters f;(¢)). Furthermore one has by the induction hypothesis that for the state j’ in
which the FSM A was before the switching episode [to, ;] that CL — Hji(t — A —26) > 3
and CL—Hj. (t—A—208) < 1 forall j* # j and all ¢ € [/, '+ A+25]. We exploit here that
to <t <ty <to+9, hence tg—A—20 < t—A—20 < toforallt € [t/,t'+A+0]. Furthermore
we have assumed that the minimal distance between the beginnings of switching episodes
is A + 35. Therefore the considered range [to — A — 26,ty] for ¢ — A — 2§ is contained
in the preceding time interval before the switching episode [to, 1] to which the induction
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hypothesis applies.

The previously listed conclusions imply that for ¢ € [t/,¢' + A + §] the current input
to the open loop lies in the set S, for j = T'R(7,5’), hence H; = 1 and H >3 1, while
Hp=0and H;. <1 ; for all other j*. But if one chooses as inputs vi(t),...,v/(t ) to the
open loop Just those values which the circuit receives in the closed loop, one gets that
CL—H;(t) >3 2 and CL— Hj(t) < Tforall j* # jandall ¢ € [t',t' + A+4], in particular
for all t € [tl,tl + Al

One can then prove by a nested induction on m € N like in Case 1 that the outputs
CL— Hj.(t) for j* =1,...,1 have the desired values for t € [t; + mA,t; + (m+1)-A] N
[t1,t2]. The preceding argument provides the verification of the claim for the initial step
m = 0 of this nested induction.

In order to complete the proof of Theorem 5 it only remains to verify the following
two simple facts about time invariant fading memory filters.

Lemma 6 Assume that F; is some arbitrary time invariant fading memory filter, and
A0 are arbitrary positive constants. Then the map which assigns to an input stream u
the function f;(t) := max{(Fu)(r) : t = A — 8§ < 7 < t} is also a time inwariant fading
memory filter.

Proof of Lemma 6: Assume some ¢ > 0 is given. Fix ¢’ and T" > 0 so that
|(Fyu) (1) — (Fiv)(7)| < e forall 7 € [t — A — §,t] and all u,v with |Ju(s) — v(s)| < ¢’
for all s € [t — A —§ — T,t]. Then | max{(Fu)(r) :t —A—§ <7 <t} —max{(Fv)(r) :
t—A-o0<7<t} <e. |

Lemma 7 The filter which maps for some arbitrary fivzed 6 > 0 the function u(t) onto
the function u(t — 28) is time invariant and has fading memory.

Proof of Lemma 7: Follows immediately from the definitions (choose T' > 24 in the
condition for fading memory). |

This completes the proof of Theorem 5, which shows that any given FSM can be re-
liably implemented by fading memory filters with feedback even in the presence of noise. B

Remark: In the application of this theory to cortical microcircuit models we train
readouts from such circuits to simultaneously assume the role of the pattern detectors
Fl, e ,ﬁk, which become active if some pattern occurs in the input stream that may
trigger a state change of the simulated FSM A, and the role of the fading memory filters
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H Tyevns H 1, that create high-dimensional attractors of the circuit dynamics that represent
the current state of the FSM A.

4.2 Details of Computer Simulations of Cortical Microcircuit
Models

1&F neurons were chosen with a time constant of 30 ms, which subsumes the time
constants of synaptic receptors as well as the time constant of the neuron membrane.
Other parameters: absolute refractory period 3ms (excitatory neurons), 2ms (inhibitory
neurons), threshold 15mV (for a resting membrane potential assumed to be 0), reset
voltage drawn uniformly from the interval [13.8, 14.5 mV] for each neuron, input resistance
1 MS2, constant non-specific background current [, uniformly drawn from the interval
[13.5nA, 14.5nA] for each neuron, an additional time-varying noise input current I,y
was drawn every 5 ms from a Gaussian distribution with mean 0 and SD chosen for each
neuron randomly from the uniform distribution over the interval [4.0nA, 5.0 nA]. For each
simulation, the initial condition of each I&F neuron, i.e., its membrane voltage at time
t = 0, was drawn randomly (uniform distribution) from the interval [13.5mV, 14.9mV].

HH-neurons: We chose conductance based single compartment HH neuron models
with passive and active properties modeled according to [47, 48]. A cortical neuron
receives synaptic inputs not only from immediately adjacent neurons (which were modeled
explicitly in our computer model), but also smaller background input currents from a large
number of more distal neurons, causing a depolarization of the membrane potential and
a lower input resistance commonly referred to as 'high conductance state’ (for a review
see [40]). This was reflected in our computer model of HH-neurons by background input
currents that were injected into each neuron.

In accordance with experimental data on neocortical and hippocampal pyramidal neu-
rons ([49-52]) the active currents in the HH neuron model comprise a voltage dependent
Na* current ([53]) and a delayed rectifier K current ([53]). For excitatory neurons a
non-inactivating K current ([54]) responsible for spike frequency adaption was included
in the model. The peak conductance densities for the Na™ current and delayed rectifier
K current were chosen to be 500pS/um? and 100pS/um? respectively, and the peak
conductance density for the non-inactivating K+ current was chosen to be 5pS/um?. The
membrane area of the neuron was set to be 34636 um? as in [47]. For each simulation the
initial conditions of each neuron, i.e. the membrane voltage at time t = 0, were drawn
randomly (uniform distribution) from the interval [-70, -60] mV.

The conductances of background input currents to each neuron were modeled ac-

cording to [47] as a one-variable stochastic process similar to an Ornstein-Uhlenbeck pro-
cess with mean g. = 0.012uS and g; = 0.057uS, variance o, = 0.003uS and o; = 0.00664S,
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and time constants 7, = 2.7 ms and 7; = 10.5 ms, where the indices e/i refer to excita-
tory and inhibitory background input conductances, respectively. According to [47] this
model captures the spectral and amplitude characteristics of the input conductances of
a detailed biophysical model of a neocortical pyramidal cell that was matched to intra-
cellular recordings in cat parietal cortex in vivo. Furthermore the ratio of the average
contributions of excitatory and inhibitory background conductances was chosen to be 5
in accordance with experimental studies during sensory responses [55-57]. The maximum
conductances of the synapses were chosen from a Gaussian distribution with a SD of 70%
of its mean (with negative values replaced by values chosen from an uniform distribution
between 0 and two times the mean).

We modeled the (short term) dynamics of synapses according to the model pro-
posed in [41], with the synaptic parameters U (use), D (time constant for depression), F’
(time constant for facilitation) randomly chosen from Gaussian distributions that model
empirically found data for such connections (see supplementary information). This model
predicts the amplitude A, of the EPSC for the k™ spike in a spike train with interspike
intervals Ay, Ao, ..., Ar_; through the equations

up = U4 up1(1 —U)exp(—Ar_1/F)
Rk =1 + (Rk—l - Uk—le—l - 1)61‘])(—Ak_1/D)

with hidden dynamic variables u € [0,1] and R € [0, 1] whose initial values for the first
spike are u; = U and R; = 1 (see [58] for a justification of this version of the equations,
which corrects a small error in [41]).

Synaptic parameters: Depending on whether a and b were excitatory (E) or in-
hibitory (I), the mean values of the three parameters U, D, F' (with D,F expressed in
seconds, s) were chosen according to [42] to be .5, 1.1, .05 (E'E), .05, .125, 1.2 (ET), .25,
7, .02 (IE), .32, .144, .06 (II). The SD of each of these parameters was chosen to be
50% of its mean. The mean of the scaling parameter w (in nA) was chosen to be 70 (EE),
150 (EI), -47 (IE), -47 (II). In the case of input synapses the parameter w had a value of
70nA if projecting onto a excitatory neuron and -47nA if projecting onto an inhibitory
neuron. The SD of the parameter w was chosen to be 70% of its mean and was drawn
from a gamma distribution. The postsynaptic current was modeled by an exponential
decay exp(—t/7) with 7, = 3ms (7, = 6 ms) for excitatory (inhibitory) synapses. The
transmission delays between neurons were chosen uniformly to be 1.5ms (EE), and 0.8 ms
for the other connections.

As input x(¢) to linear readout neurons we used low-pass filtered versions (linear

filter with an exponential decay of 30 ms that qualitatively reflects time constants of
synaptic receptors and the membrane of a generic readout neuron) of spike trains from
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neurons in the circuit. Readout functions were modeled by weighted sums w - x, whose
weights w were trained to minimize the mean squared error with regard to a desired
target output function. During training the feedback from readouts was replaced by
noisy variations of their target outputs. After training the weights w were fixed, and the
performance of the otherwise generic circuit was evaluated for new input streams that
had not been used for training.

The synaptic weights w of readout neurons were computed by linear regression to
minimize the normalized root mean square error (NRMSE) with regard to a specific
target signal f(x(¢)) (which is described for each case in the text or figure legends) for a
series of randomly generated circuit input streams u of length up to 1 second. Up to 200
such test inputs u were used for training, amounting to at most 200 seconds of simulated
biological time for training the readouts.

The same performance measure NRMSE had previously been used in [16]. In the
case where the circuit was simulated for 7' ms of biological time, the outputs f(x(t)) of
readouts were sampled every AT ms, and compared with the target output f(x(t)) (we
chose T" = 1000 ms and AT = 5 ms in Fig. 2 and 3, 7' = 700 ms and AT = 2 ms in
Fig. 4). The NRMSE was defined by
R 1/2
S (fli- AT) = fx(i- AT))?

(T/AT) - 02 ’

=1

where 02 was the variance of the target signal f(x(t)).

All simulations were carried out with the software package CSIM [59], which is freely
available from http://www.lsm.tugraz.at. It uses a C*"-kernel with Matlab interfaces for
input generation and data analysis. As simulation time step we chose 0.5 ms.

4.3 Technical Details to Figure 2

4 randomly generated test input streams, each consisting of 8 spike trains (see Fig. 2A),
were injected into 4 disjoint (but interconnected) subsets of 5 x 5 x 5 = 125 neurons
in the circuit consisting of 600 neurons. Feedbacks from readouts were injected into the
remaining 100 neurons of the circuit. The set of 100 neurons for which the firing activity is
shown in Fig. 2C contained 20 neurons from each of the resulting 5 subsets of the circuit.
Generation of input streams for training and testing: The time-varying firing rate r;(t)
of the 8 Poisson spike trains that represented input stream i was chosen as follows. The
baseline firing rate for streams 1 and 2 (see the lower half of Fig. 2A) was chosen to be
5 Hz, with randomly distributed bursts of 120 Hz for 50 ms. The rates for the Poisson
processes that generated the spike trains for input streams 3 and 4 were periodically
drawn randomly from the two options 30 Hz and 90 Hz. The actual firing rates (i.e. spike
counts within a 30 ms window) resulting from this procedure are plotted in Fig. 2B.
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In order to demonstrate that readouts that send feedback into the circuit can just as
well represent neurons within the circuit, we had chosen the readout neurons that send
feedback to be I&F neurons with noise, like the other neurons in the circuit. Each of
them received synaptic inputs from a slightly different randomly chosen subset of neurons
within the circuit. Furthermore the signs of weights of these synaptic connections were
restricted to be positive (negative) for excitatory (inhibitory) presynaptic neurons.

The 8 readout neurons that provided feedback were trained to represent in their firing
activity at any time the information in which of input streams 1 or 2 a burst had most
recently occurred. If it occurred most recently in input stream 1, they were trained to
fire at 40 Hz, and they were trained not to fire whenever a burst had occurred most
recently in input stream 2. The training time was 200 s (of simulated biological time).
After training, their output was correct 86% of the time (average over 50 s of test inputs;
counting the high-dimensional attractor as being in the on-state if the average firing rate
of the 8 readout neurons was above 34 Hz). It was possible to train these readout neurons
to acquire such persistent firing behavior, although they only received input from a circuit
with fading memory, because they were actually trained to acquire the following behavior:
fire whenever the rate in input stream 1 becomes higher than 30 Hz, or if one can detect
in the current state x(t) of the circuit traces of recent high feedback values, provided the
rate of input stream 2 stayed below 30 Hz. Obviously this definition of the learning target
for readout neurons only requires a fading memory of the circuit.

The trained readouts achieved in 50 tests for new inputs over 1 s (that had been
generated by the same distribution as the training inputs, see the preceding description)
the following average performance:

Task of panel E: NRMSE = 0.0411
Task of panel F:  NRMSE = 0.0586
Task of panel G: NRMSE = 0.0387 .

4.4 Technical Details to Figure 3

The same circuit as for Fig. 2 was used. First 2 linear readouts with feedback were
simultaneously trained to become highly active after the occurrence of the cue in the
spike input, and then to linearly reduce their activity, but each within a different time
span (400 versus 600 ms). Their feedback into the circuit consisted of 2 time-varying
analog values (representing time-varying firing rates of 2 population of neurons), which
were both injected (with randomly chosen amplitudes) into the same subset of 350 neurons
in the circuit. Their weights w were trained by linear regression for a total training time
of 120 s (of simulated biological time), consisting of 120 runs of length 1 s with randomly
generated input-cues (a burst at 200 Hz for 50 ms) and noise inputs (5 spike trains at 10
Hz).
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4.5 Technical Details to Figure 4

Time-varying firing rates for the two input streams (consisting each of 8 Poisson spike
trains) were drawn randomly from values between 10 and 90 Hz. The 16 spike trains
from the 2 input streams, as well as feedback from trained readouts were injected into
randomly chosen subsets of neurons. In contrast to the experiment for Fig. 2, these
circuit inputs were not injected into spatially concentrated clusters of neurons, but to a
sparsely distributed subset of neurons scattered throughout the 3-dimensional circuit. As
a consequence, the firing activity C'A(t) of the high-dimensional attractor (see Fig. 4D)
cannot be readily detected from the spike raster in Fig. 4C. Both the linear readout that
sends feedback, and subsequently the other two linear readouts (whose output for a test
input to the circuit is shown in Fig. 4E,F), were trained by linear regression during 140 s
of simulated biological time.

Average performance of linear readouts on 50 new test inputs of length 700 ms (that
had been generated from the same distribution as the training inputs):

Task of panel D: NRMSE = 0.0591
Task of panel E: NRMSE = 0.0413
Task of panel F:  NRMSE = 0.0434 .
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