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Abstract

Traditionally optimization problems are solved by analytical methods or
an iterative refinement of a single candidate solution. However, traditional
methods can fail if the quality function of the optimization problem is not
well-defined or the number of possible solutions is too enormous. In context
of real world optimization problems the objective function is often very
complex and implicit. Additionally, real world optimization problems are
often non-static. Therefore other optimization techniques are often needed,
than traditional methods, to solve this class of problems.

Evolutionary algorithms (EAs) are incremental search techniques in-
spired by Darwinian evolution in nature. EAs use the concept of a pop-
ulation of individuals representing candidate solutions to the optimization
problem. The population is refined and driven towards better and bet-
ter candidate solutions by an iterative process of evolution by operators,
known as selection, recombination, and mutation. EAs are known to yield
valuable solutions to stationary optimization problems, but in context of
non-stationary optimization problems they have a tendency to lose track of
the optima, due to the low level of diversity in the EA population.

In the literature implicit memory approaches, i.e. redundant genome
representation, as well as explicit memory approaches, i.e. an extra storage
area, have been introduced to yield better optimization techniques for non-
stationary search landscapes. The problem with these approaches is that
the memory is not able to self-adapt to the changes in the search landscape
and thus, the GA still loses track of optima if they do not reappear at the
same location.

In this thesis I introduce a dynamic explicit memory approach to evolu-
tionary algorithms that uses the presence of cyclic and repetitive patterns
in a non-stationary search landscape to obtain better approximations to the
optimization problem. The memory self-adapts by gradually moving stored
candidate solutions towards the genotype of the best individual in the EA
population. The experiments yielded better results regarding the quality of
the best solution than a classic GA, a static memory scheme and four ant
colony optimization approaches on non-static and real world like benchmark
problems. The outcome of my research shows that dynamic memory can be
valuable to evolutionary algorithms in the context of non-stationary real
world like environments.
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Notation

ABC : ant-based control
ACO : ant colony optimization
AS : ant system
CEC : Congress on Evolutionary Computation
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EA : evolutionary algorithm
EP : evolutionary programming
ES : evolutionary strategies
GA : genetic algorithm
SMGA : static memory GA
TCG : test case generator
TSP : travelling salesman problem





Chapter 1

Introduction

1.1 General introduction

In numerical optimization problems the quality function is well-defined (see
definition in appendix A), i.e. the function itself, but in many real world
applications the quality function is unknown or implicit. Additionally, real
world problems may change over time, making the optimization task more
difficult.

Traditionally solutions to optimization problems are found by analytical
methods, such as the derivative extremum test. Analytical methods produce
an exact solution and are often computationally fast. However, analytical
methods can only be used if the problem is well-defined. In the case of the
derivative extremum test the function has to be described in mathematical
terms and the derivatives have to exist. The analytical methods can not cope
with complex problems that are dynamic, NP-hard1, or not well-defined.

As an alternative to analytical methods incremental search techniques
have been introduced. Incremental search techniques approximate candidate
solutions through an iterative refinement process, and therefore there is no
guarantee of the quality of the solutions. However, compared to analytical
methods the incremental search techniques are almost always applicable,
unless it is a needle in the hay-stack problem or the fitness function is ex-
tremely noisy.

Evolutionary algorithms (EAs) are an incremental search technique using
the concept of a population of candidate solutions. EAs were created based
on inspiration from Darwinian evolution where the main concepts are the
notion of adaptation, speciation, and the process of natural selection. In the
iterative process the population of candidate solutions is refined by applying
genetic operators. The competition among the individuals in the population
struggle for “survival of the fittest”, which drives the population to better

1NP-hard problems are those problems that can be solved in polynomial time on a
non-deterministic Turing machine.
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2 Chapter 1 – Introduction

solutions to the optimization problem.
One of the main problems with EAs is loss of diversity, which in station-

ary environments may lead to premature convergence, i.e., the population
converge to a similar suboptimal solution, and in non-stationary environ-
ments decrease the chance of following or finding optima after a change in
the environment.

In this thesis, I introduce a new extension of classic EAs to produce
robust and valuable solutions, in the context of non-stationary real world
problems.

1.2 The Objective of this thesis

Real world problems are often non-stationary and can cause cyclic and
repetitive patterns in the search landscape. Storing old solutions to the
optimization problem might give the search algorithm the ability to retrieve
reoccuring optima after a change. However, memory might also lead to fur-
ther premature convergence if the stored solutions are static and not able to
self-adapt to the continuously changing environment yielding a few solutions
that are optimal at certain time periods.

The primary goal of this thesis is to introduce a dynamic memory model
to Evolutionary Algorithms that uses the presence of cyclic and repetitive
patterns that do not reoccur at the exactly same location of the search
landscape to obtain robust and better approximations to the optimization
problem. In order to accomplish this, I addressed the following questions:

• How can memory contribute to real world problem solving ?

• How can dynamic memory cover reappearing patterns to be able to
follow optima in a non-stationary environment ?

• Can dynamic memory yield robust solutions to real world optimization
problems ?

In order to answer these questions I created a new explicit dynamic
memory approach, called the Dynamic Memory Model (DMM). This model
tries to close in on the trajectory of moving optima in a non-stationary
environment by producing checkpoints at different locations.

To verify the model the best thing would be to use real world scenarios,
such as a real phone routing network and real data, but because of the
limited time to finish this thesis, this has to be covered in future work.
For this thesis I have used simulators instead that try to model real world
scenarios. I have used a non-stationary test case generator, a simulation of
a crop producing greenhouse, and a simulator of a phone routing network.
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Though these are not real world problems they still illustrate interesting
characteristics of real world problems.

The DMM will be compared to a static memory approach and other
optimization techniques that are known to produce good approximations to
the benchmark problems.

1.3 Outline

The thesis is organised as follows:

Chapter 2 contains the scientific background for this thesis, in which I
present a theoretical and historical overview of the areas that I have been
involved with during my research.

Chapter 3 contains an introduction to the scientific papers constituting this
thesis.

Chapter 4 contains the paper “Dynamic Memory Model for Changing Op-
timization Problems”, which introduces a new memory scheme as an en-
hancement to evolutionary algorithms in context of dynamic and real world
problem solving. The paper has been submitted to the Congress of Evolu-
tionary Computation (CEC) 2002.

Chapter 5 contains the paper “Phone-Routing using the Dynamic Mem-
ory Model”. The paper investigates the approach of using the Dynamic
Memory Model in context of the real world routing problem. The paper has
been submitted to the Congress of Evolutionary Computation (CEC) 2002
as well.

Chapter 6 describes the capabilities of the novel approach and possible fu-
ture research scenarios regarding the model and work presented in this MSc
study.

The last chapter (7) contains a summary and conclusions of the thesis,
including my contribution to the field of evolutionary algorithm.
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Chapter 2

Scientific Background

2.1 Introduction

In this chapter the scientific background for this thesis is covered. In the
first section, I give an introduction to EAs and their history. In the second
section the concept of memory is introduced as an extension to evolutionary
algorithms. Further, I discuss the question “why introduce memory? ”
and present some state of the art approaches. The third section covers
the EA related Ant Colony Optimization approach, which derives from the
stigmergetic1 behaviour of ants and the related ABC and AntNet algorithms.
In the fourth section the focus is on problem domains and the different test
problems used throughout the thesis.

2.2 Evolutionary algorithms

2.2.1 Introduction

In nature the problem that each species faces is survival, which requires the
ability of adapting to a complicated and changing environment over genera-
tions. The key concepts in Darwinian evolution are adaptation, speciation,
and natural selection. The idea behind evolutionary algorithms (EAs) is
to mimic nature i.e. simulate evolution, but this in a very simplified way.
EAs are not meant to be a model of evolution, but only use evolution as
an inspiration for a powerful optimization technique. The way EAs work is
by approximating a solution in a step-wise process (see figure 2.1) instead
of performing a formal calculation and deriving an exact solution (as an
analytical model).

The EA consist of a population of individuals representing candidate so-
lutions to the optimization problem. The candidate solutions are stored in

1Stigmergy: the indirect interaction between individuals by changing the environment
and acting on the changes made by other individuals.
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Figure 2.1: The iterative process of an evolutionary algorithm.

the artificial genes of each individual, also denoted as the genome or chromo-
some. The first step of the EA is to initialize the population and to evaluate
each individual by calculation of its fitness, i.e. how good the solution is,
according to some fitness criteria. Afterwards the following evolutionary
process is iterated over a number of time steps (normally mentioned as gen-
erations): First, individuals are selected from the population at generation
t for the next population at t+1 according to their fitness. This process
imitates ”natural selection” by weeding out less fit individuals and giving
fit individuals a larger chance to survive. Second, the selected individuals
of the new population are recombined. The recombination process is most
often done by taking a part of two different genomes to create a new indi-
vidual called the offspring, this creates a new variation but inspired from
the old. The last step of the process is to mutate some of the individuals by
changing some of the genes in the genome with random noise.
Even though one has to be careful about comparing real evolution to EAs
the technical terms are often borrowed from real evolution. I will therefore
try to describe the biological meaning of these terms and the distinction to
the use in EAs.
All living organisms consist of cells and each cell contains the same set of
one or more chromosomes, i.e. strings of DNA. Each chromosome can be
further divided into genes, functional blocks of DNA, which encode a partic-
ular protein. The different genes are located at a particular position (called
locus) on the chromosome. Every gene controls the inheritance (encoding)
of one or several features or traits (for example eye colour). Any feature has
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a set of feature values (for example green or blue) and the different possible
”settings” that a gene can express are called alleles. Many organisms have
multiple chromosomes in each cell (man, for example, has 46 of them). If
the chromosomes are arranged in pairs with corresponding genes to create
the phenotype then the organism is called diploid, if unpaired it is called
haploid. The entire set of chromosomes in a cell is called the organisms
genome or genotype. The genotype gives rise to the organisms phenotype
which is the physical and mental characteristics.
In EAs the individuals are most often haploid. In EAs the terms individual,
genome and chromosome (some misleadingly) all refer to the parameter en-
coding of a candidate solution to a given problem. The genome consist of
artificial genes, each encoding a particular parameter of the candidate solu-
tion. The span of all parameters and their possible ”settings” constitute the
”search space”. Another important concept is the ”fitness landscape”. The
fitness landscape is a representation of the space of all possible genotypes
(the search space) along with their fitness. In EAs the fitness is usually de-
termined by a mathematical function. All individuals receive a fitness value
to determine how good their candidate solution is to the problem at hand.
The search process in EAs is often described by the topology of the fitness
landscape. A fitness landscape can be pictured as a (l+1)-dimensional plot
where each genotype is a point in l dimensions and the fitness is plotted on
the (l+1)st axis. A simple landscape for l = 2 (a 3D fitness landscape) would
form ”hills”, ”peaks” and ”valleys”. By the crossover and mutation oper-
ators the EA is capable of moving the genotypes of the individuals around
in the search space. The EA balances between ”exploring” the entire search
space together with ”exploiting” the best known position. Hereby finding
new good solutions and still trying to fine-tune known good solutions.

2.2.2 History and background

Historically, Evolutionary Algorithms originated independently as Evolu-
tionary Programming [Fogel et al., 1966], Evolutionary Strategies [Rechenberg, 1965,
Rechenberg, 1973] and Genetic Algorithms [Holland, 1975]. The term Evo-
lutionary Algorithms was introduced several years later to cover the whole
area of different approaches [Michalewicz, 1999].

Evolutionary Programming (EP) was introduced by Lawrence Fogel in 1960.
It is often used as an optimizer, although it arose from the desire to gen-
erate machine intelligence. The representation in EP directly follows from
the problem domain, for example, in real-valued optimization problems, the
individuals within the population are real-valued vectors. Further EP does
not attempt to model genetic operators. Evolutionary Strategies (ES) were
introduced by Rechenberg in 1963 with selection, mutation, and a popula-
tion size of one as a method to optimize real-valued parameters for devices
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such as air-foils. Later on recombination and populations of more than one
individual were introduced by Schwefel. Even though EP and ES are very
similar they were developed completely independently of each other. Also
in the 1960 John Holland introduced Genetic algorithms (GAs). In contrast
to EP and ES the original goal for GAs was not to solve specific problems,
but rather to formally study the phenomenon of adaptation as it occurs in
nature and develop ways to import it into computer systems. For a more
elaborate overview of Evolutionary Algorithms see [Spears et al., 1993]
Although all mentioned approaches use different representations, selection
mechanisms, form of genetic operators, and measurement of performance,
the overall structure of the algorithms is very similar. In the next section
the classic genetic algorithm will be presented.

2.2.3 The classic GA

The structure of the classic genetic algorithm (see figure 2.2) follows the
evolution process described in section 2.2.1. When implementing a GA one
has to decide on which genetic operators to use as well as the structure of the
individual, the evaluation function etc. For this thesis I have implemented a
classic GA that uses a real valued numerical encoding, arithmetic crossover,
Gaussian mutation and tournament selection. The implementation issues
and different operators will be further described in the following sections.

procedure Genetic Algorithm
begin

t =0
initialize P(t)
evaluate P(t)
while (not termination-condition) do

begin
t = t + 1
select Parents from P(t-1)
recombine P(t) from Parents
mutate P(t)
evaluate P(t)

end
end

Figure 2.2: The structure of the classic GA
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2.2.4 Implementation issues

When implementing a GA there are many issues that have to be considered.
Some of these issues will be described in the following sections.

Encoding

The first thing one has to consider is how to encode the candidate solution
to an optimization problem as the individuals genome in the GA. In prin-
ciple, any problem parameters can be encoded by a binary representation,
but it is often convenient to use a high-level representation, such as a vec-
tor of doubles or a parse tree, that is more related to the problem domain.
Traditionally, all genetic algorithms used binary encoding, with bit arrays
as the data structure, for all types of problems. Using binary representation
when the problem is non-binary requires for a function that maps the binary
representation of the genome to a floating point number. Today, the trend
has changed towards using high-level representations instead. One reason
for this is that it gives the opportunity to design specialised operators that
can take advantage of the representation. Further, studies have indicated
that using real valued numerical representations compared to binary repre-
sentations produce faster and more accurate results on real valued numerical
problems [Janikow and Michalewicz, 1991].
In my MSc study I have used a real-numerical representation.

Initialization

The initialisation of the population indicates the starting positions of the
search. The straightforward and most common approach of initialisation is
to create random candidate solutions within the range of the search space by
a uniform distribution. This provides an unbiased initial population. An-
other approach, is to create candidate solutions according to a regular grid
pattern covering the search space. These methods are useful in benchmark-
ing evolutionary algorithms, but when solving real problems it is often the
case that one specifically can set the initial population if one knows more
about the problem domain. In this case the population can be initialized
with genes that are known to be close to the optimum or at least avoid areas
in the search space that are known to be inferior. This approach can speed
up the process and additionally make the algorithm perform better.
In my MSc study I have used a uniform random distribution. The reason
for this was that even though I have worked with real world like problems
I did not have any expert knowledge of the problem domains and therefore
it was more interesting to see how the algorithms performed from scratch
instead of excluding solutions.



10 Chapter 2 – Scientific Background

Selection

The motivation for selection is to remove individuals with a low fitness and
drive the population towards better solutions. This is done by amplifying
fitter individuals in the hope that their offspring will have an even higher
fitness. The selection has to be balanced with variation from crossover and
mutation. A too strong selection might support a few suboptimal highly
fit individuals that will take over the population and reduce the diversity
needed for further progress. A too weak selection might result in too slow
evolution. In the literature different selection schemes have been proposed.
There are no common guidelines regarding which scheme to use for which
problem. The differences in the schemes are how to choose the individuals
and how many offspring the chosen individuals produce. The most common
schemes are tournament selection, proportional selection and steady state
selection(also called (µ + λ) selection) [Michalewicz and Fogel, 2000].
In my MSc study I have used tournament selection. The reason for this is
that tournament selection produces good results in short time, which speeds
up the overall computation time of the GA. The way tournament selection
works is by holding a tournament among the current population for each
slot in the next generation population. The size of the tournament is most
often two but can be generalised to any number greater than two. In each
of the tournaments random individuals are chosen from the population and
their fitness is compared. The individual with the better fitness is then
copied to a slot in the next generation population. The selection pressure
can be altered by changing the tournament size or introducing stochastic
tournaments where the fittest individual wins with a probability of p.

Termination criteria

There are a number of different criteria for stopping the EA process. Which
criterion to use depends on the context in which the EA is used and often
on a combination of such criteria. Some of the criteria are: the genera-
tional criterion that stops the EA after a predefined number of generations
(iterations), which is the most commonly one. The real-time criterion that
indicates that the EA should stop after a certain amount of time. The
solution criterion that indicates that if a certain solution quality has been
obtained then the EA should stop. And finally the stagnation criterion that
determines that if there are no further progress over a certain number of
iterations then the EA should stop.
In my MSc study I have only used the generational criterion. For me the
purpose was to compare different EAs and most often this is done by iter-
ating over a certain number of generations.
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Fitness evaluation

The fitness of an individual is a variable that expresses the quality of a solu-
tion to the problem at hand. In most numerical problems the fitness function
is explicitly given by a mathematical equation, but many real world prob-
lems can not be expressed explicitly by a mathematical equation. However,
in any case the fitness function has to fulfil certain requirements for the GA
to perform well, because the selection method is solely based on this quan-
tity. Additional expert knowledge is often essential in the design of a good
fitness function. One of the most important issues when designing a fitness
function is that adjacent solutions in the search space should correspond
to similar fitness values. If the function contains frequent discrete jumps
the search becomes almost impossible for most algorithms (not only GAs).
Further the fitness function has to rank the individuals so that the highest
ranked is the most desirable solution. Therefore if the model is inaccurate
then the evolved solution may result in suboptimal performance in the real
system. Another way of measuring fitness of individuals is the competitive
fitness method. Here all individuals have to compete with some or all other
individuals and they are ranked according to their success. Instead of find-
ing the best solution to the current situation this method find solutions that
are measured on their capabilities during different competitions. In natural
evolution the fitness of an organism is defined by its reproductive success,
which is a combination of its ability to survive, reproduce, and keep its off-
spring alive. If the environment changes the organism has to adapt and thus
an organism with a high reproductive success has to be robust regarding its
environment. The competitive fitness method try to take this into account,
but it may result in a lack of performance for the EA.
The fitness evaluations that I have used in my MSc study will be described
in connection with the different optimization problem descriptions.

2.2.5 Genetic Operators

The basic operators used in the classic genetic algorithm are selection,
crossover, and mutation. These operators are inspired from real biologi-
cal operators. While exploring the search space on the one hand, they are
refining the best known solutions on the other hand.

Crossover

In nature recombination occurs when at least two organisms produce an
offspring together. During recombination the genes of two or more organ-
isms are combined to create a new variation of their genomes. The inten-
tion is that combining organisms holding different good elements can form
an even fitter offspring. In binary and real-valued encoding a widely used
crossover operator is the n-point crossover operator. This operator is closely
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Parent 1 11000011 00111001

Parent 2 01110110 11011100

Parent 1 11000 011 00111001

Parent 2 01110 110 11011100

Offspring 1 11000 110 11011100

Offspring 2 01110 011 00111001

Figure 2.3: One-point crossover operator.

connected to natural recombination. The way it works is by splitting two
individuals genomes at n different locations and recombine them to produce
two offspring. The one offspring gets its first gene part from individual A
and the second offspring gets its first gene part from individual B etc (see
figure 2.3).

Another crossover operator often used with real-valued encodings is
arithmetic crossover. Here the offspring genome is generated by the weighted
mean of each gene in two parent genomes i.e. offspring = ω × parent1 + (1
- ω) × parent2.
In my MSc I have used arithmetic crossover for my real-value encoded EA.

Mutation

In nature mutation often occurs as a copy error when recombining two sets
of gene sequences. In GAs the motivation for using mutation is to add
some random noise to the genes of the individuals which might recreate
genes that have been deleted by selection or explore new areas in the search
space that might be of interest. The mutation operator in GAs is often
related to the representation or the type of problem to solve. The most
common mutation operator for binary encoding is bit flip mutation. The
way it works is by iterating over all genes (bits) in the individual and if
a uniform random number is smaller than a certain probability threshold
then the gene is flipped (if gi = 1 then gi is set to 0 else it is set to 1). For
real-valued encoding the most common used mutation operator is Gaussian
mutation, which adds a random generated vector M = (m1,m2,...,mn) to
the solution vector x. The random numbers (mi) are generated from a
Gaussian distribution (N(0, α)) with a mean of zero and a variance of α.
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The performance of the mutation operator depends on the parameter α. If
α is set too high it will produce large mutation steps making it difficult for
the algorithm to fine-tune solutions and if α is set too low the algorithm
might end up at a local optimum. Several techniques have been suggested
to control α 2.
In my MSc study I have used Gaussian mutation with a mean of zero and a
variance of 0.5 for my real-valued encoded EAs.

2.2.6 Advantages and disadvantages

In this section I will summarise some of the advantages and disadvantages
of evolutionary algorithms.

Advantages

The most important advantage of EAs is that they are widely applicable.
EAs can be applied to almost any kind of problem as long as the represen-
tation reflects the problem and an appropriate fitness function exists. The
reason for this is, that EAs are general search (problem solving) methods,
which do not require any knowledge, and thereby no presumptions, of the
optimization problem. This also makes the EA easier to implement than
traditional analytical methods. The EA also provides many alternative so-
lutions and the solutions are interpretable. The algorithm can even be run
interactively such that the user can propose preferred solutions. Another
advantage of EAs is that they can approximate solutions to complex prob-
lems that are NP-hard, fuzzy, or dynamic. The latter is beneficial when
working with non-stationary (dynamic and real-world) environments, where
the changing conditions influence the problem to be solved. Finally, EAs can
easily be combined with problem specific knowledge, local search methods,
or other techniques to form a hybrid system that usually performs better
than the EA alone.

Disadvantages

Because EAs find solutions by a iterative approximation there are no guar-
antee for finding the optimal solution within finite time. If the problem is
easy one should rather use an analytical method instead, because it will
produce a more precise solution in shorter time. The choice of parameters,
such as population size, crossover and mutation probabilities, and opera-
tors in general, are very difficult, because they are usually dependent on the
problem to optimize. Also finding a suitable fitness function is not always a
trivial task, especially when the problem is complex and implicit.

2In search algorithms such as simulated annealing α is calculated from a decreasing
function
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2.3 Memory as an Extension to Evolutionary al-
gorithms

2.3.1 Introduction

Even though several studies showed that evolutionary algorithms can be
very powerful optimization methods, they often yield suboptimal solutions
on very hard problems such as more real-world like problems or dynamic
problems. To enhance the algorithm and make it capable of solving these
problems different kinds of extensions have been introduced. In the following
I will describe the approach of enhancing evolutionary algorithms with the
concept of memory.

2.3.2 Memory

When a child gets born it is not able to survive on its own. It is first
after a couple of years of learning and growing that it has adapted to the
environment. This is actually a fact for most higher level organisms. Though
evolution has evolved organisms that are more equipped to survive, learning
is a very important aspect as well.

In the standard evolutionary algorithm the evolution process evolves fit
individuals, but every time the optimization problem changes the individuals
have to evolve to overcome the changes even though it has happened before.
This is the same as saying that every time I want to use a plate, I have to
invent it.

Many real world problems are non-static. Therefore to be able to solve
the problem the algorithm has to be very fast at adapting to the changes or
ideally would anticipate the change before it occurs. In the literature many
different approaches have been used (see 4.2) such as keeping diversity in the
population or storing states that can help the algorithm instead of starting
over.

My contribution to the use of memory regarding evolutionary algorithms
is to store candidate solutions which are likely to reoccur in the neighbour-
hood of the search space and to make some adjustments to keep track of
changes and fuzziness in the reoccuring patterns of the optimization prob-
lem. This gives the opportunity to remember the invention of the plate, but
doing this in a dynamic way, such that most of the memorized solutions are
useful further on and not just filling up memory (see chapter 4).
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2.4 Ant Colony Optimization

2.4.1 Introduction

Ant Colony Optimization (ACO) algorithms are inspired by the complicated
group behaviour that arises from simple individual behaviour and the way
simple individuals communicate in the task of cooperative problem solving.
The models have proven especially valuable in the context of communica-
tion networks where the distributed dynamics can be updated by individual
mobile agents.

When foraging, many ant species use a trail-laying and trail-following
behaviour. This works in the simple way that each individual ant can de-
posits a chemical substance called pheromone when moving around. The
pheromone is used to build trails, for example if an ant reaches a food source
it leaves a pheromone trail on its way back to the nest to attract other ants
to the food source. If there is more than one trail the ant that uses the
shortest trail will return to the nest quickest and attract other ants. Here
again the ants that follow the shortest trail will return to the nest quickest
and the shortest trail will be more frequently marked with pheromone. This
positive reenforcement of the shortest trail, makes it more likely that ants
follow the shortest trail when they forage for food. Goss and his colleagues
have experimented with argentine (Linepithema humile) ants constructing
two bridges between the nest and a foraging area, such that one branch was
longer than the other [Goss et al., 1989]. Figure 2.4 shows the experimental
setup and describes how the trail-laying trail-following process works.

The experiments showed that within a few minutes the entire colony
selects the shortest branch. If on the other hand the shortest branch was first
introduced after some time, the ants would not take this into consideration,
because the long branch had already been marked with pheromone. In
computer science this problem can be overcome in an artificial system by
introducing pheromone decay. In the next section I will describe the basics
of the ACO algorithm and two related algorithms that I have used in my
thesis.

2.4.2 The Basic ACO algorithm

The basic idea in the ACO algorithm is to simulate the stigmergetic be-
haviour of ants. The initial ant colony optimization algorithm (Ant System)
was initiated by Dorigo, in collaboration with Colorni andManiezzo [Dorigo et al, 1991].
They used the metaphor of artificial ants depositing pheromone to solve the
Travelling Salesman Problem (TSP) [Bonabeau et al, 1999]. The goal of
the Travelling Salesman problem is to find a closed tour of minimal length
connecting n cities, where each city must be visited once and only once.
The problem is very hard to solve and belongs to the class of NP-hard
problems. A common encoding of the TSP is to construct a graph (N,E)
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path.
takes the short path and the other the long
mone on either branch, therefore one ant

Now the second ant, that chose the short path 

are equilly marked in front of the nest, but
the short path is marked stronger at the food source, 
therefore the ant that took the short path returns first.

reaches the food source and returns by the short 

path reaches the food source (S). The two branches 

path again, because it is marked strongest.

Two ants start out from the nest (N) foraging
for food. From the start there is no phero−

After a while, the ant who chose the shorter
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Figure 2.4: How ants produce pheromone trails.

where the nodes N correspond to the cities and the edges E correspond to
the connections between the cities. The basic ACO algorithm works by re-
peatedly letting ants choose a path through the graph. At each node the
ant chooses among the nodes that are connected to the current node. The
probability (pk

ij(t)) for choosing a connection is taken from the amount of
virtual-pheromone (τij(t)) that is deposited on edge(i,j) and an inverse mea-
sure of the length (called visibility) of edge(i,j), i.e.,
in case of euclidian TSP the length of pathij is the Euclidian distance dij

between i and j:
dij = [(xi

1 − xj
1)

2 + (xi
2 − xj

2)
2]1/2

Let πij(t+1) be the intensity of trail on pathij at time t+1, given by:

πij(t+ 1) = ρ · πij(t) +∆πij(t, t+ 1)

where ρ is an evaporation coefficient;

∆πij(t, t+ 1) =
m∑

k=1

∆πk
ij(t, t+ 1)
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where ∆πk
ij(t, t + 1) is the quantity per unit of length of trail substance

(pheromone in real ants) laid on pathij by the k-th ant between time t and
t+1.
Further, each ant maintains a memory (called tabu list) of whether or not
a city has already been visited. If the city has already been visited the
probability for going to this city is zero. The transition rule, that is the
probability for ant k to go from city i to city j is given in figure 2.5.

pk
ij(t) =




[τij(t)]α × [1/dij ]β∑
l /∈V isitedk(t)

[τil(t)]α × [1/dil]β
ifEdge(i, j) /∈ V isitedk(t)

0 otherwise

Figure 2.5: Random proportional transition rule (taken from
[Dorigo et al, 1991]). V isitedk(t) is the tabu list holding the cities
that have already been visited by ant k, dij is the length of edge(i,j), and
α, β are two adjustable parameters that control the relative weight of the
trail intensity (deposited virtual pheromone) and visibility (inverse distance
measure).

The transition rule ensures that ants choose short paths and edges with
high intensity of the virtual-pheromone. After all k ants have completed
their tour, some of the virtual-pheromone decays on all edges in the graph.
Afterwards, each ant lays a quantity of virtual-pheromone on each edge(i,j)
it has used according to how well the ant has performed. Figure 2.6 shows
a sketch of the basic ACO algorithm.

Dorigo and colleagues were able to solve relatively small travelling sales-
man problems using the Ant System (AS) [Dorigo et al, 1996] but for grow-
ing dimensions of the problem disappointingly the AS never reached the best
known solution.

Dorigo and colleagues compared the Ant System (AS)with other general
purpose heuristics on relatively small travelling salesman problems [Dorigo et al, 1996]
and has been able to find better or similar solutions. In the case of grow-
ing dimensions of the problem disappointingly it never reached the best
known solution. Though the initial ACO algorithm does not scale well, im-
proved versions have been invented and in combination with local search
they yielded outstanding performance [Gambardella et al, 1997].

In the next section I will describe two ACO algorithms that I have used in
my thesis for a comparison with my memory-based EA approach (chapter 5),
constructed to solve call and packet routing in communication networks.



18 Chapter 2 – Scientific Background

1 Initialize;
Set t:=0
Set an initial value πij(t) for trail intensity on every pathij

Place bi(t) ants on every node i
Set ∆πij(t, t+ 1) := 0foreveryiandj

2 Repeat until tabu list is full (this step will be repeated n times)
2.1 For i:=1 to n do (for every town)

For k:=1 to bi(t) do (for every ant on town i at time t)
Choose the town to move to (pij)
move the k-th ant to the chosen location
Insert the chosen town in the tabu list of ant k
Set ∆πij(t, t+ 1):= ∆πij(t, t+ 1) +∆πk

ij(t, t+ 1)
2.2 Compute πij(t+ 1) and pij(t+ 1)

3 Memorize the shortest path found up to now and empty all tabu lists
4 If not(End Test)

then
set t:=t+1
set ∆πij(t, t+ 1):=0 for every i and j
goto step 2

else
print shortest path and Stop

Figure 2.6: Sketch of the basic ACO algorithm (taken
from [Dorigo et al, 1991]

2.4.3 ACO algorithms in Communication networks

One desirable feature of the ACO approach is that it may allow enhanced
efficiency when the representation of the problem is spatially distributed
and changing over time. The reason for this is that each ant only need local
knowledge and it the problem changes there always is a small probability
that the ant would chose a new trail. Hereby a group of ants can solve a
distributed problem using the local knowledge of each ant and they are able
to keep alternative trails based on the small probability for exploration.

Routing is a mechanism that allows information transmitted over a net-
work to be routed from a source to a destination through a sequence of
intermediate stations or nodes. The problem a routing algorithm has to
solve is directing the traffic from the source to the destination while max-
imizing network performance (see also chapter 5). In real networks, traffic
conditions are constantly changing and the structure of the network may
even change (stations may break down). Therefore the routing algorithm
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has to be able to adapt to local congestion, such that data still reaches their
destination.

In communication networks the problem of routing calls and packages is
very dynamic and distributed and the use of static routing schemes is often
insufficient.

In comparison to the basic ACO algorithm the common denominator
for ACO algorithms working on communication networks is that instead of
updating pheromone intensity on links they update probabilities in rout-
ing tables found in every node or station. The routing table holds infor-
mation about the probability for establishing connections between neigh-
boured nodes regarding further routing to a particular destination node (see
figure 2.7).
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Figure 2.7: Routing table for node 4.

The way the ACO routing algorithms work is by repeatedly putting
simulated ants in the network, which update the probabilities for selecting
neighbouring nodes for all the nodes that they use on their path to the des-
tination. The updating procedure differs from one algorithm to another. In
the next two sections, I will describe the ABC algorithm designed with a
telephone network application in mind and the AntNet algorithm primar-
ily designed for packet-switching in connection-less networks although the
extension to connection-oriented data networks is straightforward.

The ABC algorithm

The ant-based control (ABC) algorithm was proposed by Schoonderwoerd
and his colleagues [Schoonderwoerd et al. 1996] as an adaptive routing algo-
rithm based on the use of many agents (called ants) that modify the routing
policy at every node in a telephone network by depositing virtual-pheromone
on routing table entries. The goal of the algorithm is to build routing ta-
bles and adapt these to load changes at run time such that the network
performance is maximized.

The way the algorithm works is by launching ants from nodes in the
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network. The next node the ant moves to is determined probabilistically
according to the routing table in the current node. When an ant reaches
its destination all the routing tables in the nodes it has visited are updated.
That is the ant deposits virtual-pheromone on the routing table entry it has
used. More formally this is done by the function:

ri
i−1,s(t+ 1) =

ri
i−1,s(t) + δr

1 + δr
,

ri
n,s(t+ 1) =

ri
n,s(t)
1 + δr

, n �= i− 1

The entry ri
i−1,s is reinforced while the other entries ri

n,s, n �= i − 1 in
the same column decay by probability normalization. The δr denotes a re-
inforcement parameter that depends on characteristics of the ant, such as
its time spent in the network. Note that this updating procedure normalizes
the values if they are initially normalized, i.e

∑
n ri

n,s(t) = 1. By this up-
dating procedure, an entry that is small will be more reinforced than when
it is large. This allows to discover new routes quickly when the preferred
route gets congested.

The AntNet algorithm

The AntNet algorithm was proposed by Di Caro and Dorigo [Caro and Dorigo, 1998].
It is an adaptive routing algorithm based on ant colonies that explore the
network with the goal to build and keep routing tables that adapt to net-
work traffic conditions. Even though the principles are very similar to the
ABC algorithm the most important difference is that the AntNet algorithm
is constructed such that it can be applied to both connection-oriented and
connection-less types of communication networks.

The way the algorithm works is by launching ants (called forward ants)
from nodes in the network and selecting the next node from the routing
table entries (in a packed switching network the status of local queues can
also be used). Instead of updating the entry right away, the algorithm waits
and when the ant arrives at its destination another ant is created (called
backward ant) that follows the same way back that the forward ant chose
(see figure 2.8). When the backward ant arrives at a node it updates the
routing table entries according to the function:

ri
i−1,d(t+ 1) = ri

i−1,d(t)× (1− r) + r.

ri
n,d(t+ 1) = ri

n,d(t)× (1− r), n �= i− 1.
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Figure 2.8: The AntNet update. The black ants are the forward ants and
the white ants are the backward ants.

The connection (ri
i−1,d) that the ant has used on its path is positively

reinforced, while all the other entries in the same column are decayed by
probability normalisation. Because another ant is sent back to update the
route, the algorithm is able to use information of the established connection
in the reinforcement parameter, such as the recorded time to move from
one particular node in the connection to the destination node. An example
of this is that the best known time to a destination can be stored in each
node and according to this, it can update the entry compared to the best
known and the current path. The way the update procedure works is by
increasing a value proportionally to the received reinforcement and to the
previous value of the node probability, i.e., given the same reinforcement
small probabilities are increased proportionally more than big probabilities.

2.5 Dynamic problems/ real world problems

2.5.1 Introduction

Most research in evolutionary algorithms has been concerned with static
optimization problems. Evolutionary algorithms have successfully been ap-
plied to a large number of problems from the real world, but most of these
were static or treated as static. However, in recent years there has been
a growing interest in dynamic and time varying problems, because many
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real world problems have these properties. A lot of effort has been made to
propose a benchmark test suite for dynamic problems, but disappointingly
it remains doubtful that these test case generators can resemble real-world
problem dynamics.

In the following I will describe three different dynamic optimization prob-
lem simulators. The first one, created by De Jong, which is supposed to be
able to generate general dynamic and time varying problems together with
static ones. The other two problem simulators, the greenhouse simulator and
the phone routing simulator, are supposed to simulate a real world problem.
The greenhouse simulator, was implemented using a test case generator lan-
guage capable of constructing general control problems. The three problem
simulators have been used in my thesis.

2.5.2 De Jong Test Case Generator

In 1999 Kenneth A. De Jong and Ronald W. Morrison developed a test
problem generator [De Jong and Morrison, 1999]. Their goal was to create
dynamic fitness landscapes for easy and systematic testing and evaluation
of EAs over a wide range of dynamics.

The way the generator works is by defining a landscape of peaks with dif-
ferent morphological characteristics. The peaks can be changed in different
ways, such as peak re-ordering, relocation and re-shaping. The dynamics
of the environment can be defined arbitrarily, including drifting motion of
small step-size or large step-size, recurrent motion or even chaotic motion.

In my thesis I have used the specific DF1 implementation of the prob-
lem generator (also described in [De Jong and Morrison, 1999]). Here the
basic morphology of the landscape is a field of cones of different heights and
different slopes scattered across the landscape. The fitness function used in
DF1 is a height measure of the highest cone at its current position. In case
of 2-dimensions (which can easily be generalized):

f(X,Y ) = maxi=1,N

[
Hi −Ri ∗

√
(X −Xi)2 + (Y − Yi)2

]

where N specifies the number of cones in the environment and each cone is
specified by its location (Xi,Yi), its height Hi, and its slope Ri.

This function has some advantages as the static basis for the dynamic
environment, such as:

• the ability to represent a wide range of complex landscapes

• that the surface contains non-differentiable regions

• that landscape characteristics are parametrically identified

• that fitness values can be easily restricted
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• that function can easily be extended to higher dimensional space

• that the function offers three different features that can be made dy-
namic

To generate different problems of varying complexity, one can define the
number of peaks, the location, the height and the slope. Further one can
define functions that change the height, the slope or even the location of the
cones over time to reflect different dynamics.

The problems can be made arbitrarily difficult or easy, hereby it is pos-
sible to test different abilities of a search technique to cover its strengths
and weaknesses. However, there is no connection to a real world problem.

2.5.3 The greenhouse simulator

In 2001 Rasmus K. Ursem and colleagues [Ursem et al., 2001 A] introduced
a simple simulator for a crop producing greenhouse. The simulator worked as
a benchmark test of an underlying controller design [Ursem et al., 2001 B].

In the model there is feedback interaction between the controller and the
controlled system (which is characteristic for control problems) such that the
state of the system is changed by the controller. Further, it represents the
environment that surrounds the system and let this affect the system as
well. Figure 2.9 shows the control design.

Controller

Environment

System
State: x(t)

State: z(t)

u(t) y(t)

Figure 2.9: Model for controller, system and environment. x(t) represents
the internal state of the system, z(t) represents the state of the environment,
u(t) is the control signal, y(t) is the output from the system, and t is the
current time.

In my thesis I have used the greenhouse simulator described in [Ursem et al., 2001 A]
(see chapter 4.4). The objective of the simulator is to maximize the profit
of a crop producing greenhouse, i.e, to maximize the production while min-
imizing the expenses of heating, CO2, and electricity. The production is
controlled by heating, injection of CO2, ventilation, and optional use of
artificial light. The produced crops are sold at a time-varying market price.

The variables in the greenhouse simulator are categorized into three
groups for control, system, and environment variables.
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The time-varying system and environment states are modelled by a num-
ber of difference equations:

xi(t+ 1) = xi(t) + ∆xi(t) (2.1)

where ∆xi(t) depends on other variables of the controller, the system,
and the environment.

Control variables are heating (uheat), ventilation (uvent), CO2 injection
(uCO2), and artificial light (ulight). System variables are indoor temperature
(xitemp), CO2 level in the greenhouse (xCO2), and the amount of harvested
crop (xcrop). Environment variables are outdoor temperature (zotemp), sun-
light intensity (zsun), price for crops (zpcrop), heating (zpheat), CO2 gas
(zpCO2), and electricity (zpelec). The outdoor temperature and sunlight in-
tensity are based on real weather data representing a standard March month
in Denmark.

k1 = 0.5 k2 = 0.3 k3 = 0.005 k4 = 0.1
k5 = 0.15 k6 = 0.5 k7 = 0.05 k8 = 1
k9 = 3.0 k10 = 3.0

Table 2.1: Constants for ∆-functions.

During the simulation, each system variable is updated using equa-
tion 2.1 and the following equations (constants are listed in table 2.1). A
step in the simulator corresponds to 15 minutes.

The indoor temperature is changed by:

∆xitemp = k1 · uheat + k2 · zsun + (k3 + k4 · uvent)(zotemp − xitemp)

where k1 is the temperature increase due to heating, k2 is the increase
from sunlight radiation, k3 is the minimal heat exchange with the environ-
ment, and k4 is the exchange rate when ventilation is used.

The indoor CO2 level is changed by:

∆xCO2 = −k5 ·∆xcrop + k6 · uCO2 + (k7 + k8 · uvent)(k9 − xCO2)

where k5 is the CO2 consumption by the plants, k6 is the increase due to
injected CO2, k7 is the minimal CO2 exchange with the environment, and
k9 is the atmospheric CO2 level.

The crop production per time-step is modelled as a percentage of the
optimal growth, i.e., the growth under optimal conditions of temperature,
light, and CO2 level. The change in crop growth is:

∆xcrop = k10 ·min(Gtemp, Glight, GCO2)

where k10 is the maximal amount of produced crops. The min-function
models that plant growth is limited by the most limited growth resource.
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Gtemp, Glight, and GCO2 are growth transfer functions (see the graphs in
appendix B). The transfer function for the temperature models an optimal
growth temperature of 30 degrees Celsius with a near optimal range of 25
to 35 degrees. The interval from -20 to 0 degrees and 45 to 60 do not allow
any growth, i.e. if the indoor temperature is not between 0 to 45 degrees
the plants die and have to be replanted. The transfer function for CO2-level
models a saturation effect. The light transfer function maps both sunlight
and artificial light to a production percentage, which is also modelled as a
saturation relationship.

Finally the profit per time-step is modelled as:

pprofit = zpcrop ·∆xcrop − (zpheat · uheat + zpCO2 · uCO2 + zpelec · ulight)

To calculate the fitness, eight time steps (2 hours) are simulated and the
sum of the profit is used as the objective function:

Fitsum(I) =
8∑

i=1

pprofit[i]

where pprofit[i] denotes the profit in the i ’th measurement in the simu-
lation.

Though the implemented model only represents a simplified subset of
the real components found in a real greenhouse, it still illustrates interesting
characteristics of greenhouse control.

2.5.4 The Phone-Routing Simulator

Routing in a communication network is a process that routes information
from a source to a destination through a sequence of intermediate stations
or nodes. The problem to be solved by any routing algorithm is to direct
traffic from sources to destinations maximizing network performance while
minimizing costs (as also mentioned in section 2.4.3). As another real world
like test case for my dynamic memory EA approach I have implemented a
phone network simulating the phone routing problem. Routing in a commu-
nication network has been shown to belong to the class of NP-hard problems
in case that the nodes have a limited capacity [Ahuja et al. 1993]. On top
of this a lot of different dynamic routing problems exists because the traffic
conditions are constantly changing, and the structure of the network itself
may fluctuate (nodes or links can fail).

The objective of the phone routing simulator is to model a simple phone
routing network. The network is represented by a graph of N nodes and E
directional links. Each node holds information of its capacity, i.e. how many
calls can be routed through the node, its spare capacity, i.e. the percentage
of capacity still available, and a routing table. Each link has a weight (or
cost) specifying how expensive it is to use this link. I designed the network
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simulator such that any size and network structure can be modelled. It
is also very easy to simulate dynamic problems such as node break downs
etc. I used this simulator to model various benchmark problems that reflect
different real-world scenarios.

During run time, phone calls are introduced to the system that have to be
routed through the network. In the case of using the evolutionary algorithm
approach to solve the routing problem, the system was controlled by the best
individual in the EA population (as in the case of the greenhouse simulator
in section 2.5.3). That is the evolutionary algorithm evolved controllers for
a certain time period and the best individual was selected to control the
real simulator. In the next time step the state of the system affected by the
controller, was used as the starting point. For further details of the phone
routing simulator see chapter 5.3.

2.5.5 Advantages and disadvantages

The main difference between the three dynamic optimization problem sim-
ulators are that the De Jong TCG constructs rather artificial, but system-
atically designable dynamic fitness landscapes.

The ability to construct the landscape gives the advantage that an anal-
ysis is possible and it is even possible to construct special simple problems
that tests specific abilities of a search technique. On the other hand, those
artificial problems are no real world problems. Search techniques that are
able to track a peak or multiple peaks might not be of any use in another
real world scenario, because they turn out to be too complex.

The two simulators, model a real world system and produce the fitness
landscape as a “by-product”.

Modelling a real world problem uses the complexity of the specific real
world scenario, but it is difficult to figure out the strengths and weaknesses of
a search technique. This is because it is not possible to simplify the problem
without changing the complexity and thereby the scenario. Of course one
could analyse the underlying fitness landscape, but this might be very hard,
especially in control problems where the controller determines the future
fitness landscape.
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Introduction to the Scientific
Papers

The motivation for the two papers was to introduce and investigate the
abilities of a new dynamic memory approach, called the Dynamic Memory
Model (DMM).

The first paper introduces the DMM and shows how it can compete
with a static memory approach and a classic GA on problems generated by
a non-stationary test case generator and a greenhouse simulator.

The second paper investigated the DMM further in the context of the
complex problem of phone routing. A phone routing network was designed
and used to illustrate different problem class in the phone routing problem.
The DMM was compared to four ant colony optimization approaches which
are specially designed to solve the problem of routing.

The two papers have both been submitted to the Congress on Evolu-
tionary Computation (CEC) 2002.
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abstract

Real-world problems are often non-stationary and can cause cyclic, repetitive
patterns in the search landscape. For this class of problems, we introduce a
new GA with dynamic explicit memory, which showed superior performance
compared to a classic GA and a previously introduced memory-based GA
for two dynamic benchmark problems.

Keywords: evolutionary algorithms, dynamic environments, memory

4.1 Introduction

In recent years non-stationary optimization has become a growing field of
research because of its importance in real-world applications. Industrial
applications such as elevator systems or phone-call routing controllers are
required to adapt to customers whose behaviour cannot be estimated well in
advance. In job shop scheduling new jobs may arrive, machines may break
down or wear out. For this type of optimization, an effective evolutionary
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algorithm (EA) must be able to keep up with the pace of changes or ide-
ally anticipate changes before they occur. This turns out to be a problem
for classic GAs, since they can only follow but not anticipate changes in
the objective function and, depending on the speed of changes, may lose
track of optima in the changing fitness landscape. Many experts in this
field suggested extensions of classic GAs, which tackle the latter problem by
maintaining or reintroducing diversity. Cobb [3] introduced triggered hyper-
mutation to control the mutation rate whenever a change occurs. Other ap-
proaches such as random immigrants [9], ageing individuals [7], tag bits [12]
and dynamic distributed sub-populations [20] aim to maintain diversity by
spreading out the population and keeping track of moving peaks.

In real world problems, dynamic changes are often affected by natural
rhythmic patterns, such as day-night, weekly, or seasonal cycles in staff-
scheduling problems. In these cases, solutions with a high fitness may hap-
pen to reappear at a near optimum at a later stage. Additionally, redundant
genome representations can slow down convergence and favour diversity. In
previous work, memory has either been modelled implicitly by a redun-
dant genome representation, such as diploid chromosomes [8] or explicitly
by storing and retrieving candidate solutions from a separate memory [2].
In this paper, we introduce a new EA model for explicit memory, the so-
called dynamic memory EA. In our approach, the memory is adjusted to the
dynamic changes by moving externally stored candidate solutions gradually
in the search space towards the currently nearest best genomes in the EA
population.

The paper is structured as follows: Section 4.2 reviews the memory
related literature and motivates our approach. Afterwards, we introduce
our dynamic memory model in section 4.3 and describe the benchmark test-
problems and the experimental setup for a performance comparison with
other EAs in sections 4.4 and 4.5. Finally, we present the results of these
experiments in section 4.5.2 and discuss our new approach in section 4.6.

4.2 Memory-based approaches

The following subsection gives a brief review of memory related research
with evolutionary computation. For a more comprehensive survey see [1].

4.2.1 Implicit Memory

Perhaps the most prominent approach to redundant representation by mem-
ory is to use diploid instead of haploid chromosomes. This was first suggested
as an extension of the simple GA by Goldberg and colleagues [8] and further
investigated by others, such as Ng and Wong [15]. In these two approaches,
the authors used a tri and four allele scheme respectively, in which the genes
have recessive and dominant attributes and dominant alleles determine the
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gene exclusively. Another approach is to use additive diploidy [17, 11], in
which all alleles are added and the gene becomes 1 if a certain threshold is
exceeded and 0 otherwise. The results produced by multiploid representa-
tions so far indicate that they are useful in periodic environments where it
is sufficient to remember a few states and important to be able to return
to previous states quickly. Further, as Corne pointed out [4], diploidy can
also be useful in stationary landscape in cases where a haploid EA would be
likely to irretrievably lose genetic material necessary to find an optimum.

Apart from diploidy, Dasgupta and colleagues introduced an approach
with haploid chromosomes and multilayered gene regulation, where high
level genes control the activation of a set of low level genes. Here, a single
change of the genome can have drastic effects on the phenotype [5].

4.2.2 Explicit Memory

The main idea with explicit memory is that remembering old solutions can
turn out to be an advantage later on in a dynamic fitness landscape. It may
even allow the population to jump to a different area in the landscape in
one step, which would not be possible without a strong hyper-mutation in a
classic GA. Compared to hyper-mutation the difference is that with memory
the jump is clearly directed whereas hyper-mutation requires numerous trials
and errors.

Different approaches have been reported in the literature using explicit
memory. Louis and Xu [13] studied scheduling and re-scheduling by means of
restarting the EA with individuals evolved by a related problem. Whenever
a change occurred, the EA was restarted and the population was initialized
with a seed from the old run and the rest randomly. The authors concluded
from the experiments that a seed of 5-10 % from the old run produced better
and faster results than running the EA with a totally randomly initialized
population after a change occurred. In this approach, memory was only
used to seed a new run of an EA, but not as permanent memory.

Ramsey and Greffenstette [16] introduced an EA model that stored good
candidate solutions for a robot controller in a permanent memory together
with information about the robot environment. The idea is that if the
robot environment becomes similar to a stored environment instance the
corresponding stored controller solution is reactivated. For this they used a
simulator to train good strategies for robot movement and obstacle avoid-
ance. In the article the authors reported that their technique prevented
premature convergence by a higher level of diversity and yielded significant
improvements. The only drawback of this approach is that it assumes that
the similarity of the robot environment is measurable.

Another approach was introduced by Trojanowski and Michalewicz [18],
in which each individual remembers some of its ancestor’s solutions. After a
change in the environment, the current solution and the memory solutions
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are re-evaluated and the best solution becomes the active solution, keeping
the other solutions in memory. The size of the memory is fixed and individ-
uals from the first generation start with an empty memory buffer. For each
of the following generations the parent solution is stored in memory and if
the memory is already full the oldest memory solution is removed.

Further more, Eggermont and colleagues [6] suggested an EA model,
which focuses on a shared memory instead of a local memory, only avail-
able to the individual. They implemented the model for a bit representation
based on a real numerical representation by Branke [2]. In this approach the
best individuals from some of the generations are stored in a shared mem-
ory. The size of the memory is fixed and different approaches of replacement
strategies, when storing individuals, were tested, such as replacing individu-
als by their age or their contribution to diversity and fitness. Branke [2] and
Eggermont et al. [6] found significant improvement compared to approaches
without memory on dynamic test problems.

In the following section we will introduce our approach to explicit mem-
ory, which is closely related to the just mentioned approach, but instead
of storing old solution we let the memory itself keep track of the dynamic
changes.

4.3 The Dynamic Memory Model (DMM)

When dealing with real-world problems it is rarely the case that the exact
same solution will receive the identical fitness at a later stage. However the
dynamic change may cause the optima to be in the neighbourhood of an
old solution more often. Therefore keeping a static memory of old solutions
may, in some cases, turn out to be superfluous and yield no performance
improvement.

In this paper, we introduce a dynamic explicit memory approach. Like
in previous work on explicit memory, we keep a fixed number of candidate
solutions in an explicit memory. However, instead of replacing memory
items with individuals from the current EA population, we keep the same
memory items and let them adjust to the changes in the search environment.
For the adjustment, the algorithm selects the currently best individual in
the EA population and finds the closest (most similar) stored candidate
solution. The closest stored candidate solution is then gradually moved
towards the currently best individual in the EA population. The result
of this iterative process is that the stored candidate solutions close in on
the trajectory of moving optima in the changing environment by producing
checkpoints at different locations (see figure 4.1). If the optima return to
the same proximity in the search space the memory points can self-adjust
to the translocated optima.

The model works as follows (see figure 4.2 and figure 4.3): The DMGA
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Figure 4.1: Movement of memory points. The curve is an example of a
dynamic changing optimum. The black circles are the memory points, the
light gray scaled circles are the population solutions and the gray circle is
the best individual in the population.

procedure DMGA
begin

initialize population
initialize memory
evaluate
while (not termination-condition) do

begin
select
recombine
mutate
evaluate
update memory
replace worst individual by best memory point

end
end

Figure 4.2: The structure of a GA enhanced with the DMM.

is based on a classical GA, but differs in the memory handling. In the ini-
tialization process an explicit memory of a fixed number of stored candidate
solutions is initialized with random candidate solutions. In each iteration
the best individual in the population is found and the closest stored can-
didate solution to the best individual is moved towards the best individual
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procedure update memory()
begin

for each memory point i do
begin

if memory point i closest to best individual
closest = memory point i

end
move closest in the direction of best individual
for each memory point i do

begin
if memory point i never affected by best

individual
mutate(memory point i)

end
end

Figure 4.3: The structure of the update memory action.

(see figure 4.1). The movement distance is the actual distance between the
the two locations multiplied with the absolute value of a Gaussian random
number with a mean of zero and a variance of 0.5. Afterwards the best
stored candidate solution is introduced in the search population by replac-
ing the worst individual. Until a stored candidate solution has been affected
(moved) by a best individual, it makes small random jumps by a minor
mutation to explore the environment. The random jump is implemented by
adding a random Gaussian number with a mean of zero and a variance of
0.5 to all the EA parameters.

4.4 Test Problems

In order to investigate how the model could cope with dynamic problems,
we have tested it on a simple circular moving peak problem using a non-
stationary test-case-generator (described on chapter 2.5.2) [14]. We have
compared our approach with a classic GA and another explicit memory
approach by Branke (see section 4.2.2) [2].

Further, we have tested the performance of our algorithm regarding a
more real world like control problem of a greenhouse [10]. The greenhouse
model is an implementation of a crop producing greenhouse where the pro-
duction is controlled by heating, injection of CO2, ventilation, and optional
use of artificial light. The objective is to maximize the profit, i.e. to max-
imize the production while minimizing the expenses of heating, CO2, and
electricity.
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The greenhouse simulator is based on a controller design shown in fig-
ure 4.4 [19]. The model uses direct control, which means that the on-line
evolved controller, that is the best individual at time t, directly controls the
system for a time-period and changes the state of the system. This leads to
a situation where the search for optimal control affects the changes of the
fitness landscape. This is a characteristic property of direct control and can
not be modelled with a simplistic dynamic test case generators such as the
one by Morrison and colleagues [14]. In addition to control feedback, the
system is affected by changes in the surrounding environment.

Controller

Environment

System
State: x(t)

State: z(t)

u(t) y(t)

Figure 4.4: Model for controller, system, and environment. x(t) represent
the internal state of the system at time t, u(t) is the control signal, z(t) is
the state of the surrounding environment at time t, and y(t) is the output
from the system.

The variables in the greenhouse simulator are categorized into three
groups for control, system, and environment variables. Control variables
are heating, ventilation, CO2 injection and artificial light. System variables
are indoor temperature, CO2 level in the greenhouse and the amount of har-
vested crops. The environment variables were based on real weather data
including outdoor temperature and sunlight intensity representing a stan-
dard March month in Denmark. Additionally prices for crops, heating, CO2

gas, and electricity were used as environment variables.
Finally the profit per time-step was modelled as:

pprofit = zpcrop ·∆xcrop − (zpheat · uheat +
zpCO2 · uCO2 + zpelec · ulight)

Where zpcrop, zpheat, zpCO2, zpelec denote the prices, xcrop is the current
amount of crop and uheat, uCO2, and ulight denote the control variables.

To calculate the fitness, eight time steps (2 hours) were simulated and
the sum of the profit was used as the objective function:
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Fitsum(I) =
8∑

i=1

pprofit[i]

Where pprofit[i] denotes the profit in the i ’th measurement in the simu-
lation.

4.5 Experiments

4.5.1 Experimental design

For our experiments, we implemented a classic GA with real-valued encod-
ing, tournament selection, arithmetic crossover, and Gaussian mutation.

We enhanced the classic GA with our Dynamic Memory approach (DMGA)
and implemented a static memory scheme by Branke (SMGA)(as mentioned
in section 4.2.2) for comparison.

The static memory model adds an explicit memory with a fixed size to
the classic GA and in every 10’th iteration the best individual is stored in
memory. The memory is initialized empty and filled up throughout the run.
If the memory has reached its capacity a new memory point replaces the
most similar point of the stored memory

All three algorithms were compared regarding the two benchmark test
problems introduced in section 4.4.

In all experiments, we used a population size of 110 (including memory,
when used) and a memory size of 10.

For the fast moving peak problem, we used the following settings: prob-
ability of crossover pc = 0.7, probability of mutation pm = 0.2, variance σ
= 0.5, number of generations = 800, and repetitions = 25. The 2D search
space was defined as -10 ≤ x ≤ 10 and -10 ≤ y ≤ 10. The peak was moving
in a circular motion around (0,0) with a distance of 4. The static period was
set to 2 and the speed of the peak was set to 100, i.e. it takes 200 time-steps
before the peak return to its origin. The peak was cone shaped, its size was
set to a height of 3 and its slope to 3.

For the greenhouse problem, we used the following setting: probability
of crossover pc = 0.9, probability of mutation pm = 0.5, and variance σ =
0.5. The controller was updated between each time-step and the problem
was simulated for 28 days, i.e. 2880 generations, for 50 repetitive runs.

Further more, we investigated the effect of using random jumps in our
Dynamic Memory Model by runs with and without random jumps.

4.5.2 Results

The graphs in all figures show the fitness of the best individual averaged
over 25 runs in the fast moving peak problem and 50 runs in the greenhouse
problem.
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Figure 4.5: Fast moving peak problem (average of 25 runs). The GA is the
classic GA, the DMGA is the classic GA enhanced with our Dynamic Mem-
ory Model and SMGA is the classic GA enhanced with the static memory
model [2], which has also briefly been described in this section.

Figure 4.5 shows that only our dynamic memory GA was able to follow
the dynamic change of the environment. In contrast the classic GA started
out with a near optimum solution, but after a few problem cycles it could
not find the optimum anymore and the fitness slowly dropped as a result of
premature convergence. Further, the static memory approach quickly found
a near optimum and saved this location to memory, but as the environment
changed it was not able to follow it. Because of the fixed saved location
it always found the near optimum when the environment returned to this
location, but the population also tended to converge prematurely.

Figure 4.6 and 4.7 show the results accordingly for the greenhouse prob-
lem optimization (see table 4.1 for standard errors). The results clearly
show that adding our memory approach to the classic GA produces better
results than without. On this problem Branke’s static memory model [2]
did not improve the performance at all (see figure 4.6), but rather yielded
worse results then the classic GA.

In order to investigate the effect of the random jumps, we performed two
different experiments on the greenhouse problem. One with and one without
random jumps. Figure 4.7 shows that even without random jumps there
was a clear improvement compared to not using memory at all. However,
a comparison of figure 4.6 with figure 4.7 shows that the results are better
using random jumps.
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Figure 4.6: memory with random jump (average of 50 runs). The GA is
the classic GA, DMGA is the classic GA enhanced with our Dynamic Mem-
ory Model and SMGA is the classic GA enhanced with the static memory
approach introduced in [2].
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Figure 4.7: memory without random jump (average of 50 runs). The GA
is the classic GA, DMGA is the classic GA enhanced with our Dynamic
Memory Model and StdError is the standard error for the respective model.

4.6 Discussion and Conclusions

In this paper, we have introduced a new approach to enhance evolutionary
algorithms with memory. Instead of using a static memory we have used
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Model Days Current profit Std. error
GA 0 1394.86 ± 7.37

5 1468.34 ± 8.04
10 1424.34 ± 7.48
15 1510.33 ± 6.35
20 1341.86 ± 5.23
25 1517.53 ± 5.78
29 1512.02 ± 5.37

DMGA 0 1408.46 ± 10.02
with 5 1473.06 ± 9.19

random 10 1446.69 ± 11.55
jump 15 1537.62 ± 11.67

20 1365.01 ± 10.34
25 1544.69 ± 11.62
29 1532.12 ± 8.29

SMGA 0 1383.55 ± 7.03
5 1453.82 ± 8.00
10 1424.93 ± 6.15
15 1512.12 ± 6.18
20 1344.71 ± 4.43
25 1498.25 ± 5.64
29 1508.23 ± 5.08

Table 4.1: Mean and standard error of profit (average of 50 runs), taken
from figure 4.6.

a dynamic memory, where the memory self-adapts to the changes in the
environment. We tested the performance of the model regarding two differ-
ent non-stationary problems, a rather simple fast moving peak problem and
a more real-world like control problem simulating a crop producing green-
house. We compared the results of our new model with a classic GA and
another static explicit memory model introduced by Branke [2].

Based on these experiments, we can conclude that on both problem
classes our dynamic memory model produced superior results.

In case of the fast moving peak problem, the classic GA and the static
memory model were not able to follow the significant changes in the en-
vironment. In contrast our dynamic memory model did not prematurely
converge and was able to follow the changes in the environment very well.

Also regarding the greenhouse problem we achieved clearly superior re-
sults with our model compared to the classic GA and the static memory
model. Further we investigated how much additional random jumps con-
tribute to the performance of the DMGA. Our experiments showed that
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superior results could even be achieved without random jumps. The static
memory model, in contrast had a tendency to produce even worse results
then the classic GA regarding this benchmark. This might be because old
solutions are not useful for future solutions, but require continuous adjust-
ments to the changing fitness landscape.

As mentioned in section 4.3 our main idea with the dynamic memory was
that the memory points should spread out as checkpoints in the dynamic
environment. From our experiments this is actually what happens, but if the
problem domain becomes too large then our current random initialization of
the memory may turn out to be inadequate, because too few memory points
would be affected. In future work we will look into the initialization process
of the memory to overcome this problem. Further we plan to run additional
experiments with different problems and compare our approach with other
memory approaches.
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abstract

In earlier studies a GA extended with the Dynamic Memory Model has
shown remarkable performance on real-world-like problems. In this paper
we experiment with routing in communication networks and show that the
DMGA performs remarkably well compared to Ant Colony Optimization
algorithms that are specially designed to this problem.

Keywords: routing, EAs, dynamic memory, ACO algorithms.

5.1 Introduction

Routing is the core of network control systems. In recent years the num-
ber of services that a modern communication network has to supply has
grown exponentially. Incorporating wired and wireless devices into the ex-
isting wire-link infrastructure is a tremendous challenge. Packet-switched
networks, virtual circuit networks and even the Internet are becoming a
increasingly complex collection of a diversity of subnets. Static routing al-
gorithms are not adequate to tackle these networks anymore. To be able to
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accommodate conflicting objectives and constraints, imposed by technolo-
gies and user requirements evolving under commercial and scientific pres-
sures, efficient adaptive routing algorithms have to be used.

In modern communication networks the routing problem is no longer to
find the single shortest route through the network. The load of data and
connections in the network are time dependent and hard to predict. Maxi-
mizing throughput for a time varying load in a limited-capacity transmission
line has been shown to belong the the class of NP-complete problems [1].
On top of this, network instabilities may arise from node failures.

The most common adaptive approach to tackle the routing problem in
communication networks is to use swarm intelligence. Swarm intelligence ex-
hibits emergent behaviour wherein simple interactions of autonomous agents,
with simple primitives, give rise to a complex behaviour that has not been
specified explicitly on the local level. This phenomenon is often found in
nature, for example many ant species use lay and follow pheromone trails in
the process of foraging. The indirect interaction happens by stigmergy, i.e.
communication through the environment, where agents modify the environ-
ment and other agents act on the changes [3]. Swarm intelligence or Ant
Colony Optimization algorithms are known to be very powerful in the con-
text of routing optimization. Not only do they find optimal single shortest
routes, but they are also capable of adapting to changes that occur in the
network by limited-capacity and failures.

In this paper, we tackled the phone routing problem from another angle
than by swarm intelligence by an evolutionary algorithms approach. Evolu-
tionary algorithms are known to have problems with premature convergence
and in the case of dynamic or real-world like problems they are often not able
to follow the changes in the environment, and thereby stagnate at subopti-
mal solutions. In an earlier study we introduced a dynamic memory model
for GAs which has shown remarkable performance in particularly real-world
like problems [2]. In this paper, we studied the capability of the Dynamic
Memory GA in context of the phone routing problem. We compared our
results with four different Ant Colony Optimization approaches and a classic
simple GA.

The outline of the paper is as follows: Section 5.2 describes the phone
routing problem. In section 5.3 we introduce the phone routing simulator
that we designed and used in this study. In section 5.4 the new approach
of adding Dynamic Memory to Evolutionary Algorithms is introduced. Sec-
tion 5.5 specifies the test-problems and the experimental setups. Finally, we
present our results in section 5.6 and discuss this study in section 5.7.
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5.2 Phone Routing

Phone Routing in distributed systems can be characterized as follows. Let
G = (V,E) be a directed weighted graph, where each node in the set V
represents a processing or forwarding unit and each edge in the set E is
a transmission system. The main task of a phone routing algorithm is to
connect calls from source to destination nodes while maximizing network
performance. In real phone systems the call flow follows a stochastic profile
that is very hard to model.
A common feature of all routing algorithms is the presence of a data struc-
ture, called the routing table, in every network node. This structure holds
all the information used by the algorithm to make the local forwarding de-
cisions. The routing table is both a local database and a local model of the
global network status. The type of informations that it contains and the way
this information is used and updated strongly depends on the algorithms.

The main characteristics of the phone routing problem can be described
in the following way:

• Intrinsically distributed with strong real-time constraints. The routing
database and the decision systems are completely distributed over all
the network nodes. It is therefore not possible to get complete up-
to-date knowledge of the entire system. Each node can only rely on
up-to-date local information and delayed non-local information from
the other nodes.

• Stochastic and time-varying: the generation of calls is stochastic and
moreover if many calls use the same node and thus its capacity is
exceeded, alternative routes have to be used.

• Multi-objective: several conflicting performance measures are usually
used. The most common is throughput and average call delay. Through-
put measures the quantity of calls connected successfully over a certain
amount of time. Average call delay measures the quality, that is how
long time it takes to establish a connection from the source node to
the destination node, produced over the same time.

• Multi-constraints: constraints are imposed by different parties. In
general, users ask for low-cost, high-quality and reliable services. The
network builders and service providers try to accommodate these re-
quests while maximizing some profit criteria.

A phone routing algorithm has to take all these characteristics into ac-
count. In the following sections we will describe different approaches for
solving the phone routing problem and a simulator used to test the algo-
rithms.
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5.3 The Phone routing Simulator

The objective of the phone routing simulator is to model a simple phone
routing network.
The simulator is constructed in the following way: First, a network is defined
by its nodes and the links connecting the nodes. The links can either be
directional or bidirectional. Each node holds information of max capacity
(Ci), i.e. how many calls can be routed through the node, spare capacity
(Si), i.e. the percentage of capacity that is still available, and a routing table.
The routing table contains probabilities for routing a call via a neighbour
node to a certain destination node (see figure 5.1).
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Figure 5.1: Routing table for node 4.

The simulator is run for a certain number of simulated hours where each
simulated hour is further divided into smaller time steps (granularity can be
set such that each time step simulated is 1 second, 10 milliseconds or any
other time measure). The generation of calls is made by selecting a certain
number of calls for one day and then stochastically distribute the calls such
that realistic request patterns occur. We used the following patterns: on a
weekday the critical periods are 8:00-16:00 and 19:30-21:00. The former is
because of working hours and the latter is because in Denmark it is cheaper
to make a phone-call after 19:30 in the evening. On a weekend-day the
critical periods are between 8 and 20 in the evening. To distribute the calls
we used the settings mentioned in table 5.1. These settings are arbitrarily.

Each call has a duration, a setup time, a source node and a destination
node. When trying to connect a call the probability of routing a call to a
certain neighbour node is looked up in the routing table of the node and the
next node is picked probabilistically. If a call arrives at a node where it has
already been at, the call is terminated, otherwise it could lead to a circle
that would not terminate. If the call reaches its destination node the call
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Percent (%)
Weekdays
8:00 - 16:00 80
16 - 19:30, 21 - 22 13
19:30 - 21:00 5
22:00 - 8:00 2
Weekend-days
8:00 - 20:00 95
20:00 - 8:00 5

Table 5.1: Distribution of calls on weekdays and weekend-days.

is connected and the network resources remain occupied for the time steps
specified by its duration. When setting up a call the number of failures
before the call is connected is calculated together with the connection cost,
i.e. the weight of the links on its route. If the capacity of a node is reached
then the node will not receive any more calls before some of the calls using
the node are disconnected. The simulator has been constructed, such that
any network can be modelled, dynamic costs of the links can be used, nodes
can momentarily be taken out to simulate a node breakdown, etc.

5.4 The Dynamic Memory Model (DMM)

The Dynamic Memory Model is a way to enhance an EA with memory.
Unlike in traditional memory approaches the memory is not static, instead it
tries to follow the dynamic changes that occur in the fitness landscape. This
is implemented by keeping a fixed number of stored candidate solutions, of
which in every iteration (generation) of the EA the closest stored candidate
solution to the current best solution is selected and moved towards the
current best solution. Finally the current best stored candidate solution is
introduced to the EA population by replacing the worst candidate solution.
The structure of the Dynamic Memory EA can be seen in figure 5.2 and 5.3.
For a more detailed description of the Dynamic Memory Model see [2].

5.5 Experiments

Since the introduction of Ant Colony Optimization (ACO) algorithms there
has been a large focus on ACO algorithms in context of optimization in com-
munications networks. However EAs have the advantage of keeping several
candidate solutions to the problem at hand. The Dynamic Memory GA has
earlier proved that it is powerful and achieves robust solutions especially
on dynamic real-world problems. The phone routing problem is indeed a
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procedure DMEA
begin

initialize population
initialize memory
evaluate
while (not termination-condition) do

begin
select
recombine
mutate
evaluate
update memory
replace worst individual by best memory point

end
end

Figure 5.2: The structure of an EA enhanced with the DMM.

procedure update memory()
begin

for each memory point i do
begin

if memory point i closest to best individual
closest = memory point i

end
move closest in the direction of best individual
for each memory point i do

begin
if memory point i never affected by best

individual
mutate(memory point i)

end
end

Figure 5.3: The structure of the update memory action.

very hard (real-world like problem) and the stochastic call flow makes the
problem behave in a dynamic and hardly predictable manner. To test the
Dynamic Memory GA, we defined a ten node network in the phone routing
simulator (see figure 5.4).

Each individual in the GA population encodes the probabilities used in
the routing tables of the network. That is, a gene reflects a routing table
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entry. The overall dimension of the genome is (N-1)
∑N

i=1bi, where N is
the number of nodes in the network and bi is the number of neighbours for
node i. To evaluate the fitness of a candidate solution the simulator is run
for one simulated hour. After the evaluation of the whole population the
best candidate solution is selected as the controller for the simulator and
the simulated state is transfered to the next hour.

In our expermentation, we studied a lot of different test setups. In the
following we will describe the three most interesting ones.

The first one (referred to as the dynamic cost problem) includes dynamic
cost on two links (see network at figure 5.4). In each simulated day between
6:00 and 12:00 the link between nodes five and seven is set to the value six.
Between 12:00 and 18:00 the former cost is reset to one and the link between
the nodes eight and nine is set to the value six. In the remaining time period
these links are set to the value one. The source of all calls are node number
one and the destination node is node number ten. This introduces a discrete
dynamic problem, on top of the call flow dynamics, such that in the three
different time periods three different paths have minimal costs

In the second experiment (referred to as the multi destination problem)
we modelled three different destination nodes. The source node is still node
number one, but the destination is randomly distributed between nodes five,
seven and eight. One could say that this is a very easy problem, because the
preferred path to each destination node is very easy to choose, but because
all destination nodes prefer one or more similar nodes on their path these
nodes soon exceed their capacity and alternative paths have to be chosen to
connect all calls.

The third experiment (referred to as the plain problem) is the most
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simple one where the source node is number one and the destination node
is node number ten. The only dynamic property is the call flow.

The fitness criteria that we wanted to investigate with this setup was
robustness and quality of connections, i.e. quantity of connected calls in
respect to how many failures occur before a call was connected and the cost
of connected calls. For the average connection failure we set that one failure
is free, less than six failures contribute with a constant of two, and more
than six failures are expensive, that is they contribute with three times the
number of failures. The maximum number of tries a call has to connect is
ten. To reflect the quality of the connected calls, we calculated the average
cost (weights on the links) of the connected calls. Explicitly the fitness
function was:

e(t) = fe +
∑

i∈Connectedcalls costi

#connectedcalls

fe =




0 if #failures
#callsintimeperiod ≤ 1

2 if1 < #failures
#callsintimeperiod ≤ 6

#failures
#callsintimeperiod · 3 otherwise

where e(t) is the fitness at time t, costi is the cost of the i ’th connected
call and fe is the expense of the failures.

The GAs were both running with a total population size of 110 individ-
uals, in case of the Dynamic Memory GA with a memory size of 10. As
genetic operators we used tournament selection, arithmetic crossover and
Gaussian mutation. The following GA parameters were used: in the classic
GA implementation pc = 0.6, pm = 0.25, and variance σ = 0.5. For the
Dynamic Memory GA pc = 0.7, pm = 0.05, and variance σ = 0.5. These
probabilities were selected based on parameter tuning for both GAs.

In the case of the ACO algorithms, we have implemented an AntNet
(inspired by [3] and [4]) and an ABC algorithm (inspired by [6] ). The
phone routing simulator was used as the actual network and 5 % of the calls
further acted as ants (or routing table updating agents). If an ant connected
a call then all the routing tables in the nodes on its route were updated.

In case of the AntNet the routing table Ri was updated in the following
way: The probability explicitly associated with the route of the ant was
incremented by:

ri
i−1,d(t+ 1) = ri

i−1,d(t)× (1− r) + r.

All the other probabilities associated with the destination node d were
decreased by normalization (i.e all the other probabilities associated with
the neighbours different from neighbour node i-1, for the same destination):

ri
n,d(t+ 1) = ri

n,d(t)× (1− r), n �= i− 1.
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where ri
i−1,d(t) is the probability associated with the neighbour node i-1

and the destination node d. For the value r, we tried two different measures.
As a simple approach we used r = constant = 0.1. If an ant travels on a fast
path it increments its route just as much as an ant travelling on a slower
path, i.e. simple stigmergetic behaviour.
The other approach that we tried requires more information in the nodes
about the best known cost of a path to every destination node: here r
= Wi→d /(Ti→d × 10), where Wi→d is the best of the ten last costs to
destination node d and Ti→d is the current ants travel cost to destination
node d.

Because the AntNet algorithm is constructed in such a way that back-
ward ants are created to update the routing tables, it is able to use extra
information about the connected call, such as the total elapsed time until
connection. As earlier mentioned the second evaluation of r requires that
the nodes are able to store extra information about all destination nodes in
memory. Note that the GAs do not need this extra information. A second
thing to mention about the AntNet is the implicit decrease of probabilities
that are not affected by the ants route. That is, there is no decrease of
probabilities associated with time in the AntNet. When a probability is
reinforced the other probabilities are decreased by normalization.

In the case of the ABC algorithm the structure is more or less the same
as the AntNet. Only the update procedure is a little bit different, because it
reinforces small probabilities comparatively more than larger probabilities.
In the AntNet the reinforcement measure is proportionally larger for small
probabilities than for large probabilities. The reinforcement procedure in
the ABC algorithm is done in the following way: The probability explicit
associated with the route of the ant is incremented by:

ri
i−1,d(t+ 1) =

ri
i−1,d(t) + δr

1 + δr

All the other probabilities associated with the destination node d is
decreased by normalization (i.e all the other probabilities associated with
the neighbours different from neighbour node i-1, for the same destination):

ri
n,d(t+ 1) =

ri
n,d(t)
1 + δr

, n �= i− 1.

where ri
i−1,d(t) is the probability associated with the neighbour node i-1

and the destination node d. δr is a reinforcement parameter that depends
on the ant’s characteristics. In case of the ABC algorithm, we tried out two
different measures for δr. A simple approach corresponding to the simple
strategy in the AntNet δr = constant = 0.1. For the second approach we
used the cost of the call: δr = 1

Tk
, where Tk is the absolute age of ant k

(cost). Here short paths will get more reinforced than long ones.
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For all experiments the simulator was run for 1000 simulated hours and
one time step corresponded to 15 simulated seconds. For all weekdays in the
simulator the number of calls were set to 300 and for Saturday and Sunday
set to 100 calls. The duration of the calls was randomly distributed between
5 and 50 time steps ( i.e. between 11

4 minute and 121
2 minutes).

5.6 Results

Since it is not useful to report the overall best solution achieved for dynamic
fitness functions, the reported values in the figures are the average of ten
runs of the off-line performance [5], which is the average of the best solutions
at each time step i.e. x∗(T) = 1

T
∑T

t=1 e
∗
t with e∗t being the best solution at

time t. Note that the number of values that are used for the average grows
over time, thus the curve tends to get smoother over time.
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Figure 5.5: Dynamic cost problem. GA is the classic GA, DMGA is the clas-
sic GA extended with the DMM, AntNet is the simple stigmergetic approach
to the AntNet alg., AntNet Plus is the AntNet alg. using extra information,
ABC is the simple stigmergetic approach to the ABC alg., ABC Plus is the
ABC alg. using cost of calls, and stdError is the standard error measure.

The dynamic cost problem; where the cost of some of the links in the
network is varied over time corresponds to a scenario in which a phone
company has to buy additional network capacity from other companies at
certain peak hours. Figure 5.5 shows that already after 200 simulated hours
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the Dynamic Memory GA is able to follow the dynamic changes over time in
the environment. Compared to the classic GA the two models start out with
the same performance, but after 200 simulated hours the classic GA tends
to converge to suboptimal paths. Those paths are the best in some time pe-
riods, but after a cost change the classic GA is unable to shift to a new and
better path. This can also be seen from the continuing oscillations in the
graph, where a good solution is found and after some change this solution
looses some of its fitness. The Dynamic Memory GA, on the other hand, is
a lot better at keeping alternative paths and following the dynamic changes.
The comparison to the ACO algorithms show that the simple stigmergetic
approach for the reinforcement measure in the AntNet and the ABC algo-
rithm (listed as AntNet and ABC) also converge to suboptimal paths. The
ABC algorithm using connection cost in the reinforcement measure (listed
as ABC Plus) produce somewhat better results then the simple stigmergetic
approaches, but are still unable to adapt to new and better paths. The
local memory enhanced AntNet algorithm (listed as AntNet Plus) is bet-
ter in keeping alternative paths based on memorizing earlier good paths.
Even though the AntNet Plus approach yields better results it is not able
to produce as valuable results as the Dynamic Memory GA.

The results were similar regarding the multi destination problem; where
there is one source node, but three different destination nodes. The difficulty
in this problem is that when a node reaches its capacity and a lot of calls
normally would like to use it there has to be an alternative path that is much
longer than the others, but if the algorithm does not use it many calls do not
reach their destination. Figure 5.6 shows that the simple AntNet, and the
simple ABC algorithm, can not adequately solve the problem. The other
four approaches outperform them by approximately 20 % performance. The
Dynamic Memory GA is again competing with the AntNet Plus and the
ABC Plus algorithm approaches, where the Dynamic Memory GA produces
a slightly better result. Compared to the classic GA the Dynamic Memory
GA produces results that are about 15 % better.

For the plain problem; where the only dynamics are the ones created by
the call flow. The reason why we have used this problem was to test how
powerful the Dynamic Memory GA is in a simple case of the phone routing
problem. Our results show that also in this case the classic GA is not able
to follow the dynamic changes that occur in the environment (figure 5.7).
The Dynamic Memory GA, the AntNet Plus and the ABC Plus approaches
on the other hand solve the problem very well. The difference between the
classic GA and the Dynamic Memory GA is again more than 10 %.

In general, we can conclude that the Dynamic Memory GA clearly out-
performs the classic GA on all problem classes. Only the advanced versions
of the ACO algorithms turned out to be competitive (as the local memory
approach in the AntNet Plus) in comparison to the Dynamic Memory GA.
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Figure 5.6: Multi destination problem. GA is the classic GA, DMGA is
the classic GA extended with the DMM, AntNet is the simple stigmergetic
approach to the AntNet alg., AntNet Plus is the AntNet alg. using extra
information, ABC is the simple stigmergetic approach to the ABC alg., ABC
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measure.

5.7 Discussion and Conclusions

In this paper, we have investigated the performance of the Dynamic Memory
GA (DMGA) regarding a selection of phone routing problems. Phone rout-
ing problems are very dynamic, unpredictable and real-world typical. For
this performance evaluation we compared the DMGA with a classic GA and
four different approaches of Ant Colony Optimization (ACO) algorithms.

From the experiments we can conclude that it has great significance to
use the Dynamic Memory GA instead of the classic GA. The classic GA is
simply not able to adapt to the discrete and dynamic changes that occur in
the phone routing system. The Dynamic Memory GA on the other hand is
able to keep and maintain alternative paths, which it can reuse at a later
stage. In the experiments the Dynamic Memory GA even outperformed
some classical ACO approaches to this problem. Our experiments strongly
suggest that a local memory approach outperforms simple approaches in all
cases. The amazing part is that the Dynamic Memory GA performs just as
well as an advanced ACO algorithm and in some of the cases even produce
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Figure 5.7: Plain problem. GA is the classic GA, DMGA is the classic
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better results.
The question that still need to be answered, now that the Dynamic

Memory GA has shown that it can produce valuable results is, whether
it is possible to use GAs in real communication networks. GAs can not
work directly on the real network, but have to evolve routing strategies in
a simulator off-line. Phone routing problems are intrinsically distributed
and it is very difficult to design simulators such that it has high predictive
value. ACO algorithms are able to work on the real network, but they also
create traffic, slowing down the network. Secondly, communication networks
are often unable to sample and store the extra information needed for the
advanced ACO algorithms. Another aspect is the collection of knowledge in
the ACO algorithms, which are only approximations, because sending the
ant back to the nodes it visited might not take the same time as connecting
a call.

Although the applicability of our approach the Dynamic Memory GA
once again has shown that on real-world-like problems it outperforms the
classic GA clearly and is even able to produce results simular to specialized
algorithms for the investigated routing problem.
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Chapter 6

The capabilities of the
Dynamic Memory Model

In this MSc thesis I have introduced a novel approach of dynamic memory
to evolutionary algorithms. In this chapter I will try to describe what this
approach is capable of in connection with some examples on future research
directions that could refine the model and some test scenarios that could
further explain how the memory works and why it works. Additionally, I
will give an example of another search algorithm where the memory ap-
proach could be used in order to illustrate future potential applications of
my approach.

The dynamic peak tracking experiment showed that the memory items
in the Dynamic Memory Model are able to close in on the trajectory of a
moving optimum. However, this is only a small part of what the DMM
is capable of. In the phone routing problem, the changes are much more
discrete and still the DMM performs remarkable well. Figure 6.1 try to
illustrate how this work in theory on a non-continuous curve. In the figure
first (A) the optimum is located in a neighbourhood of the EA population
and the closest memory point is attracted towards the population. Second
(B) the optimum changes its location, but is still located on the same curve
as before and the same memory point as before is moving in this direction.
The third thing that happens (C) is that a discrete change happens, which
means that the optimum pops up another place. A new memory item is
then attracted to this new location and the old memory item is left on the
old curve, waiting for a reappearance of optima in a neighbourhood location.
The last thing (D) that happens is that memory items are spread out over
the search space in neighbourhood locations to earlier optima positions.
Therefore after a reappearing discrete change the stored candidate solutions
can improve further search.

The example of the non-continuous curve can easily be generalised, such
that it covers reappearing fuzzy features in general. The DMM extended to
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Figure 6.1: Movement of memory items on discrete changing optima. The
black dots are the memory items and the white dots are the EA individuals.

a classic GA has proven that it boosts performance, compared to a classic
GA, in both the greenhouse simulator and the phone routing simulator.
Below I will mention future research directions and test scenarios that could
further investigate how the DMM works and why it works.

In this MSc thesis I have only used a fixed memory size of ten in all bench-
mark experiments. All though this choice yielded a remarkable performance
it would be interesting to investigate whether a smaller or larger memory
size could make the model perform even better. Additionally, the movement
distance of the stored candidate solutions towards the best individual in the
GA population was set in the same way in all the experiments as a Gaussian
random number with a mean of zero and a variance of 0.5. Although this pa-
rameter choice yielded very good results in all tested benchmark problems
the robustness of this parameter should be further investigated regarding
other optimization problems.

To study how and why the memory works and in particular to investigate
how well it deals with reappearing fuzzy features in the search landscape a
lot of different approaches could be used. Measuring the diversity among
the memory items could give an indication on how many memory items
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are needed and how well they cover the search landscape. Additionally,
in context of the phone routing problems one could measure how many
different memory items are introduced to the EA population over time and
how often one particular memory item is used. This could give valuable
insights regarding how well the different patterns and time-varying problems
are predicted and tackled. Further, in the phone routing system the memory
items could be visualized such that one could see how different the memory
items are and how well they predict the changes in the problem landscape.
The visualization could be implemented by showing the network topology
and making the thickness of the links accordingly to the probabilities in the
routing tables of the nodes.

In the thesis it has been mentioned that the Dynamic Memory Model
can be easily extended to any EA. Another search technique with which
the model could work well is a particle swarm [Kennedy, 1997]. The parti-
cle swarm algorithm is based on the metaphor of individuals refining their
knowledge by interacting with one another. A particle is a moving point
in a hyperspace. The particle swarm approach already uses the notion of
distance by remembering and being attracted to locations to the globally
best solution and individual best solution. Introducing the Dynamic Mem-
ory Model to a particle swarm could be easily done and might improve the
performance on dynamic and real-world problems as the case for EAs. The
reason for this is, that under the same assumptions of dynamic real world
problems, that features or patterns in the environment reappear, the DMM
would be able to store candidate solutions and adapt to changes. If a feature
reoccur in a neighbourhood of the last occurrence, then the DMM would be
able to retrieve this solution from the earlier stored candidate solution and
improve further search for the swarm.

Finally and maybe most importantly would be to see how the DMM
performs on dynamic real world optimization problems. Instead of using
assumptions of the problem landscape topology this would give an indica-
tion of the usefulness of the DMM to yield robust solutions to real world
problems.



62 Chapter 6 – The capabilities of the Dynamic Memory Model



Chapter 7

Summary and Conclusions

In numerical optimization the objective function is explicitly given by the
numerical function itself. In contrast, in many real-world problems the qual-
ity function is unknown or implicit.

Traditionally, analytical methods, such as the derivative extremum test,
or traditional computing approaches, such as dynamic programming, are
used in optimization. The problem with analytical methods is, that the
optimization problem has to be well-defined, and the problem can not be
NP-hard. Incremental search techniques are an alternative to analytical
methods. They perform an approximation to the problem by an iterative
refinement process, thereby always finding a solution, but with no guarantee
of the quality.

Evolutionary algorithms (EAs) are incremental search techniques in-
spired from Darwinian evolution. The main concepts in Darwinian evolution
is the notion of adaptation, speciation and the process of natural selection.
EAs are not meant to be a model of evolution, but only use evolution as
an inspiration to a powerful optimization technique. EAs introduce the no-
tion of a population of candidate solutions and apply operators inspired
by genetics and real evolution (mutation, crossover, and selection) to refine
the population. The competition among the individuals in the population
lead to better and better candidate solutions to the optimization problem.
However, in context of non-stationary problems the EA is often not able to
adapt to the changes and it can results in a bad performance. In the litera-
ture different approaches have been used to tackle non-stationary problems
and dynamic real world problems, such as maintaining diversity or adding
a explicit or implicit memory structure [Branke, 1999].

In this thesis I have introduced a new explicit memory structure, called
the Dynamic Memory Model (DMM). The objective was to produce robust
solutions to real-world problems. This was accomplished by storing alter-
native candidate solutions and let the stored solutions adapt to the changes
in the environment.
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The main idea of the DMM was to keep a specific number of candidate
solutions in an explicit storage area. The stored solutions should then follow
the changes in the problem domain, instead of storing new solutions. Under
the assumption that repetitive patterns and reoccuring features are typical
for real world problems, such as day-night, weekly, or seasonal cycles in staff-
scheduling problems, the stored solutions should lead to various candidate
solutions acting as checkpoints, i.e., the candidate solutions should spread
out covering reappearing patterns in the environment. Hereby it a optima
reappear in the environment a stored candidate solutions should be located
in the neighbourhood and improve further search.

The DMM has been tested on different dynamic optimization problems
and simulated real world problems.

In a peak tracking experiment in a dynamic environment it turned out
that the DMM added to a classic GA was able to follow the peak, whereas
the classic GA loses track of the peak and ends up with worthless solutions.
Perhaps more importantly the DMM also produces superior results com-
pared to a static memory scheme. The static memory scheme is only able
to keep static candidate solutions in memory, which means that the stored
solutions are only optimal in short time periods. The GA is not able to
follow the peak on its own therefore these statically stored solutions are the
only good solutions, but only in short time periods, and they take over the
whole GA population causing premature convergence or at least decreases
the GA ability for further search.

In another experiment with a simulator for a crop producing greenhouse
the dynamic objective was to maximize the profit by optimal system con-
trol. The dynamics in the system of this control problem were generated
by the changes that occur in the surrounding environment and by the sys-
tem controller. Evolving the system controller using the DMM applied to a
classic GA yielded superior results compared to the classic GA and a static
memory scheme.

Finally, I studied the potential of my approach regarding a simulated
phone routing problem which resembled features of real phone routing net-
works. Routing in communication networks has been shown to belong to
the class of NP-hard problems if the nodes have a limited capacity of calls
that can be routed through the nodes. The call flow in the routing problem
is very unpredictable and other significant changes in the network may oc-
cur, such as links may become more expensive or attractive in certain time
periods or nodes may break down. In these experiments, I compared the
DMM added to a classic GA (DMGA) to four different ant colony optimiza-
tion (ACO) approaches and the classic GA. Regarding the classic GA, the
DMGA produced superior results in the range of 20 % improvement. In
the case of the ACO algorithms, which are especially designed to tackle the
routing problem, the DMGA was able to produce similar and in some cases
slightly better performance.
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My study shows that incorporating the concept of dynamic memory can
be a very valuable improvement of the classic genetic algorithm. Under
the assumption that the dynamics in non-stationary real world problems
include repetitive reoccuring fuzzy features the dynamic memory approach
is able to follow optima of the optimization problem by storing reappearing
solutions and adapting to changes. Which means, that reoccuring optima
in a neighbourhood location can be discovered and yield high performance
for the optimization technique. I hope that my contribution can be useful
leading to new models providing robust solution in the context of real-world
problem solving.
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Appendix A

Numerical optimization
problems

Definition of a numerical optimization problem:

Let the mathematical function f : X ⊆ �n → � be a problem and let X
be the domain of solutions to f . The task of finding x0 ∈ X such that
∀x ∈ X : f(x0) ≥ f(x) is a numerical maximization problem and the
task of finding x0 ∈ X such that ∀x ∈ X : f(x0) ≤ f(x) is a numerical
minimization problem. Numerical optimization problems is the common
term for numerical minimization and maximization problems.
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Appendix B

Limits
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Figure B.1: The graph for Gtemp in the greenhouse simulator.
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Figure B.2: The graph for Glight in the greenhouse simulator.
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Figure B.3: The graph for GCO2 in the greenhouse simulator.
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