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Abstract

The Bayesian framework is ideally suited for induction problems. The proba-

bility of observing xt at time t, given past observations x1:::xt�1 can be computed

with Bayes' rule if the true generating distribution � of the sequences x1x2x3::: is

known. The problem, however, is that in many cases one does not even have a rea-

sonable guess of the true distribution. In order to overcome this problem a universal

(or mixture) distribution � is de�ned as a weighted sum or integral of distributions

�2M, whereM is any countable or continuous set of distributions including �. This

is a generalization of Solomono� induction, in whichM is the set of all enumerable

semi-measures. It is shown for several performance measures that using the univer-

sal � as a prior is nearly as good as using the unknown true distribution �. In a

sense, this solves the problem of the unknown prior in a universal way. All results

are obtained for general �nite alphabet. Convergence of � to � in a conditional

mean squared sense and of �=�!1 with � probability 1 is proven. The number of

additional errors E� made by the optimal universal prediction scheme based on �

minus the number of errors E� of the optimal informed prediction scheme based on

� is proven to be bounded by O(
p
E�). The prediction framework is generalized to

arbitrary loss functions. A system is allowed to take an action yt, given x1:::xt�1

and receives loss `xtyt if xt is the next symbol of the sequence. No assumptions on `

are necessary, besides boundedness. Optimal universal �� and optimal informed ��

prediction schemes are de�ned and the total loss of �� is bounded in terms of the

total loss of ��, similar to the error bounds. We show that the bounds are tight and

that no other predictor can lead to smaller bounds. Furthermore, for various perfor-

mance measures we show Pareto-optimality of � in the sense that there is no other

predictor which performs better or equal in all environments �2M and strictly bet-

ter in at least one. So, optimal predictors can (w.r.t. to most performance measures

in expectation) be based on the mixture �. Finally we give an Occam's razor argu-

ment that Solomono�'s choice w��2�K(�) for the weights is optimal, where K(�)

is the length of the shortest program describing �. Furthermore, games of chance,

de�ned as a sequence of bets, observations, and rewards are studied. The average

pro�t achieved by the �� scheme rapidly converges to the best possible pro�t. The

time needed to reach the winning zone is proportional to the relative entropy of �

and �. The prediction schemes presented here are compared to the weighted ma-

jority algorithm(s). Although the algorithms, the settings, and the proofs are quite

di�erent the bounds of both schemes have a very similar structure. Extensions to

in�nite alphabets, partial, delayed and probabilistic prediction, classi�cation, and

more active systems are brie
y discussed.
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1 Introduction

1.1 Induction

Many problems are of induction type in which statements about the future have to be

made, based on past observations. What is the probability of rain tomorrow, given the

weather observations of the last few days? Is the Dow Jones likely to rise tomorrow,

given the chart of the last years and possibly additional newspaper information? Can we

reasonably doubt that the sun will rise tomorrow? Indeed, one de�nition of science is to

predict the future, where, as an intermediate step, one tries to understand the past by

developing theories and, as a consequence of prediction, one tries to manipulate the future.

All induction problems may be studied in the Bayesian framework. The probability of

observing xt at time t, given the observations x1:::xt�1 can be computed with Bayes'

rule, if we know the true probability distribution, which generates the observed sequence

x1x2x3:::. The problem is that in many cases we do not even have a reasonable guess of

the true distribution �. What is the true probability of weather sequences, stock charts,

or sunrises?

1.2 Universal Sequence Prediction

In order to overcome the problem of the unknown true distribution, one can de�ne a

mixture distribution � as w� weighted sum or integral over distributions �2M, whereM
is any discrete or continuous (hypothesis) set including �. M is assumed to be known

and to contain the true distribution, i.e. �2M. Since the probability � can be shown to

converge rapidly to the true probability � in a conditional sense, making decisions based

on � is often nearly as good as the infeasible optimal decision based on the unknown

� [MF98]. Solomono� [Sol64] had the idea to de�ne a universal prior � as a weighted

average over all (semi)computable probability distributions. Lower weights were assigned

to more complex distributions. He uni�ed Epicurus' principle of multiple explanations,

Occams' razor [simplicity] principle and Bayes' rule into an elegant formal theory. If the

environment possesses some e�ective structure at all, Solomono�'s posterior \�nds" this

structure, and allows for a good prediction. In a sense, this solves the induction problem

in a universal way, i.e. without making problem speci�c assumptions.

1.3 Contents

The main new contributions of this work are to

� generalize the convergence [Sol78, LV97] of � to � (Section 3),

� derive general error and loss bounds measuring the performance of � relative to �

(Section 4), improving upon previous results [Hut01a, MF98],

� apply the results to games of chance (Section 5),
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� show that the error/loss bounds are tight and that Solomono�'s universal prior is

optimal (Section 6),

� generalize the bound in [CB90] on the relative entropy between � and � for contin-

uous i.i.d. probability classes M to the non-i.i.d. case (Section 7),

� compare the universal prediction scheme and its loss bounds to the weighted ma-

jority scheme and its loss bounds [Ces97] (Section 9).

Section 2 explains notation and de�nes the universal or mixture distribution � as the

w� weighted sum of probability distributions � of a set M, which includes the true dis-

tribution �. No structural assumptions are made on the �. � multiplicatively dominates

all � 2M, and the relative entropy between � and � is bounded by lnw�1
� . Convergence

of � to � in a mean squared sense is shown in Theorem 2. Furthermore, an elemen-

tary proof of �=�! 1 (not based on semi-martingales) including the convergence rate

is given. The representation of the universal posterior distribution and the case � 62M
are brie
y discussed. Various standard sets M of probability measures are discussed, in-

cluding computable, enumerable, cumulatively enumerable, approximable and �nite-state

(semi)measures.

Section 3 is essentially a generalization of the deterministic error bounds found in

[Hut01a] from binary alphabet to a general �nite alphabet X . Theorem 3 bounds the

number of additional errors (E���E��) made by optimal universal predictor ��, as com-

pared to optimal informed prediction scheme �� by O(
p
E��). The non-binary setting

cannot be reduced to the binary case! One might think of a binary coding of the symbols

xt2X in the sequence x1x2:::. But this makes it necessary to predict a block of bits xt,

before one receives the true block of bits xt, which di�ers from the bit by bit prediction

scheme considered in [Sol78, Hut01a].

Section 4 generalizes the prediction framework to the case where an action yt2Y results

in a loss `xtyt if xt is the next symbol of the sequence. Optimal universal �� and optimal

informed �� prediction schemes are de�ned for this case, and loss bounds similar to the

error bounds of the last section are proved. No assumptions on ` have to be made, besides

boundedness. For unit loss (0�`xtyt�1) the loss bounds in Theorem 4 are essentially the

same as the error bounds of Theorem 3 with error replaced by loss, but the proofs are

much more involved. The bounds are compared to the loss bound obtained in [MF98].

Theorem 7 generalizes the bounds to non-unit and non-static loss functions. Convergence

of the instantaneous losses are also studied. Some popular loss functions, including the

absolute, square, logarithmic, and Hellinger loss are discussed.

Section 5 applies Theorem 7 to games of chance, de�ned as a sequence of bets, observa-

tions, and rewards. The average pro�t �p
��
n achieved by the �� scheme rapidly converges

to the best possible average pro�t �p��n achieved by the �� scheme (�p
��
n ��p��n =O(n�1=2)).

If there is a pro�table scheme at all (�p��n >">0), asymptotically the universal �� scheme

will also become pro�table. Theorem 8 bounds the time needed to reach the winning zone.

It is proportional to the relative entropy of � and � with a factor depending on the pro�t

range and on �p��n . An attempt is made to give an information theoretic interpretation of

the result.
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Section 6 discusses the quality of the universal predictor and the bounds. We show

that there are M and � 2M and weights w� such that the derived error bounds are

tight. This shows that the error bounds cannot be improved in general. We also show

Pareto-optimality of � in the sense that there is no other predictor which performs better

or equal in all environments �2M and strictly better in at least one. Optimal predictors

can always be based on a mixture distributions �. This still leaves open how to choose

the weights. We give an Occam's razor argument that Solomono�'s choice w� =2�K(�),

where K(�) is the length of the shortest program describing � is optimal.

Section 7 generalizes the setup to continuous probability classes M= f��g consisting

of continuously parameterized distributions �� with parameter � 2 IRd. Under certain

smoothness and regularity conditions a bound for the relative entropy between � and �,

which is central for all presented results, can still be derived. The bound depends on the

Fisher information of � and grows only logarithmically with n, the intuitive reason being

the necessity to describe � to an accuracy O(n�1=2).

Section 8 discusses further applications. Two ways of using the prediction schemes for

partial sequence prediction, where not every symbol needs to be predicted, are described.

Performing and predicting a sequence of independent experiments and online learning of

classi�cation tasks are special cases.

Section 9 compares the universal prediction scheme studied here to the weighted ma-

jority (WM) algorithm(s) [LW89, Vov92, LW94, Ces97, HKW98, KW99]. WM combines

forecasts of experts e2E to form its own prediction. The number of prediction errors of

WM are compared to the best expert in E . No assumption is made on the distribution of

the strings { the bounds are worst case bounds. Although the algorithms, the settings,

and the proofs are quite di�erent, the WM bounds and the last bound of Theorem 4 have

the same structure.

Section 10 outlines possible extensions of the presented theory and results. They include

in�nite alphabets, delayed and probabilistic prediction, active systems in
uencing the

environment, learning aspects, and a uni�cation with WM.

Section 11 summarizes the results.

Appendices A-D contain some technical proofs.

1.4 Introductory References

There are good introductions and surveys of Solomono� sequence prediction [LV92, LV97],

inductive inference in general [AS83, Sol97, MF98], reasoning under uncertainty [Gr�u98],

and competitive online statistics [Vov99], with interesting relations to this work. See

Section 9 for some more details. This paper is more or less self-contained. Exceptions are

Subsections 2.7 and 6.4 on Solomono� mixtures, Section 7 on continuous classes M, and

Section 9 on WM.
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2 Setup and Convergence

2.1 Random sequences

We denote strings over a �nite alphabet X by x1x2:::xn with xt 2 X . We further use

the abbreviations xn:m :=xnxn+1:::xm�1xm and x<n :=x1:::xn�1. We use Greek letters for

probability distributions (or measures). Let �(x1:::xn) be the probability that an (in�nite)

sequence starts with x1:::xn:X
x1:n2Xn

�(x1:n) = 1;
X
xn2X

�(x1:n) = �(x<n); �(�) = 1; (1)

where � is the empty string. We also need conditional probabilities derived from Bayes'

rule:

�(xtjx<t) = �(x1:t)=�(x<t); (2)

�(x1:::xn) = �(x1)��(x2jx1)�:::��(xnjx1:::xn�1): (3)

The �rst equation states that the probability that a string x1:::xt�1 is followed by xt
is equal to the probability that a string starts with x1:::xt divided by the probability

that a string starts with x1:::xt�1. For convenience we de�ne �(xtjx<t)=0 if �(x<t)=0.

The second equation is the �rst, applied n times. Whereas � might be any probability

distribution, � denotes the true (unknown) generating distribution of the sequences. We

denote probabilities by P, expectations by E and further abbreviate

Et[::] :=
X
xt2X

�(xtjx<t)[::]; E1:n[::] :=
X

x1:n2Xn

�(x1:n)[::]; E<t[::] :=
X

x<t2X t�1

�(x<t)[::]:

ProbabilitiesP and expectations E are always w.r.t. the true distribution �. E1:n=E<nEn

by Bayes' rule and E[:::]=E<t[:::] if the argument is independent of xt:1, and so on. We

abbreviate \with �-probability 1" by w.�.p.1. We say that zt converges to z� in mean sum

(i.m.s.) if
P
1

t=1E[(zt�z�)2]<1. One can show that convergence in mean sum implies

convergence with probability 1.1 Actually it allows a much stronger conclusion; it gives

the \speed" of convergence in the sense that the expected number of times t in which zt
deviates more than " from z� is �nitely bounded E[(zt�z�)2]="2.
In a more statistical language we have a sample space 
=X1 with elements !=!1!2!3:::2

 being in�nite sequences over the �nite alphabet X . The cylinder sets �x1:n :=f! :!1:n=

x1:ng are events. We de�ne the �-algebra F as the set generated from the cylinder sets by

countable union. A probability measure � is uniquely de�ned by giving its values �(�x1:n)

on the cylinder sets, which we abbreviate by �(x1:n). See [LV97, Doo53] or any other

statistics book for a more thorough treatment.

Some expressions (like conditional or inverse probabilities) are unde�ned when � gets zero.

In this case one should restrict the analysis to the set of strings with non-zero �-probability.

1
Convergence in the mean, i.e. E[(zt�z�)

2
]
t!1
�! 0, only implies convergence in probability, which is

weaker than convergence with probability 1.
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If we de�ne the critical set Z := f! 2X1 : 9t : �(!1:t)= 0g=S1t=1

S
x1:t:�(x1:t)=0�x1:t: Since

Z is a countable (for discrete alphabet) union of cylinder sets �x1:t of measure zero, Z

itself is measurable with �-measure zero. So all theorems proven with �-probability 1 on


nZ still hold on 
 with �-probability 1, since �(Z)=0. In critical situations, sums over

x have to be restricted to exclude Z. Some measures on 
, especially �, de�ned in the

next paragraph, deteriorate to semimeasures on 
nZ. In order to keep the presentation

simple, we will usually simply ignore these subtleties and proceed as if � (and �) were

always non-zero. Only in critical cases we use
P
0 do indicate a sum restricted to 
nZ

and exploit

Et[::] =
X
xt2X

0�(xtjx<t)[::] with � probability 1 (w.�.p.1): (4)

2.2 Universal Prior Probability Distribution

Every inductive inference problem can be brought into the following form: Given a string

x<t, take a guess at its continuation xt. We will assume that the strings which have to be

continued are drawn from a probability2 distribution �. The maximal prior information

a prediction algorithm can possess is the exact knowledge of �, but in many cases (as for

the sunrise example) the true distribution is not known. Instead, the prediction is based

on a guess � of �. We expect that a predictor based on � performs well, if � is close

to � or converges, in a sense, to �. Let M := f�1;�2;:::g be a �nite or countable set of

candidate probability distributions on strings. Results are generalized to continuous sets

M in Section 7. We de�ne a weighted average on M
�(x1:n) :=

X
�2M

w� ��(x1:n);
X
�2M

w� = 1; w� > 0: (5)

It is easy to see that � is a probability distribution as the weights w� are positive and

normalized to 1 and the � 2M are probabilities.3 For �nite M a possible choice for

the w is to give all � equal weight (w� =
1
jMj

). We call � universal relative to M, as it

multiplicatively dominates all distributions in M
�(x1:n) � w� ��(x1:n) for all � 2 M: (6)

In the following, we assume that M is known and contains the true distribution, i.e.

�2M. If M is chosen suÆciently large, then �2M is not a serious constraint. Generic

classes, especially where M contains all computable probability distributions, are dis-

cussed in Subsection 2.7. Generalizations to the case where M does not contain � are

brie
y discussed in Subsection 2.6. In the next Subsection we motivate and in Subsection

2.5 we show the important property of � converging to the true distribution �2M in a

sense and, hence, might being a useful substitute for the true, but in general, unknown

distribution �.

2
This includes deterministic environments, in which case the probability distribution � is 1 for some

sequence x1:1 and 0 for all others. We call probability distributions of this kind deterministic.
3
The weight w� may be interpreted as the initial degree of belief in � and �(x1:::xn) as the degree

of belief in x1:::xn. If the existence of true randomness is rejected on philosophical grounds one may

consider M containing only deterministic environments. � still represents belief probabilities.
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2.3 Universal Posterior Probability Distribution

All prediction schemes in this work are based on the conditional probabilities �(xtjx<t).
It is possible to express also the conditional probability �(xtjx<t) as a weighted average

over the conditional �(xtjx<t), but now with time dependent weights:

�(xtjx<t) =
X
�2M

w�(x<t)�(xtjx<t); w�(x1:t) := w�(x<t)
�(xtjx<t)
�(xtjx<t) ; w�(") := w�: (7)

The denominator just ensures correct normalization
P

�w�(x1:t) = 1. By induction and

Bayes' rule we see that w�(x<t)=w��(x<t)=�(x<t). Inserting this into
P

�w�(x<t)�(xtjx<t)
using (5) gives �(xtjx<t), which proves the equivalence of (5) and (7). The expressions (7)

can be used to give an intuitive, but non-rigorous, argument why �(xtjx<t) converges to
�(xtjx<t): The weight w� of � in � increases/decreases if � assigns a high/low probability

to the new symbol xt, given x<t. For a �-random sequence x1:t, �(x1:t)� �(x1:t) if �

(signi�cantly) di�ers from �. We expect the total weight for all � consistent with �

to converges to 1, and all other weights converge to 0 for t!1. Therefore we expect

�(xtjx<t) to converge to �(xtjx<t) for �-random strings x1:n.

Expressions (7) seem to be more suitable than (5) for studying convergence and loss

bounds of the universal predictor �, but it will turn out that (6) is all we need, with

the sole exception in the proof of Theorem 11. Probably (7) is useful when one tries to

understand the learning aspect in �.

2.4 Distance Measures between Probability Distributions

We need several distance measures between vectors y=(yi) and z=(zi) in general, and

probability distributions for which yi� 0, zi� 0, and
P

iyi =
P

izi = 1 in particular, i=

f1;:::;Ng. The absolute distance a, the quadratic or Euclidian distance s, the Hellinger

distance h, and the relative entropy or Kullback-Leibler divergence d are de�ned as follows:

a(y; z) :=
X
i

jyi � zij; s(y; z) :=
X
i

(yi � zi)
2; (8)

h(y; z) :=
X
i

(
p
yi �pzi)2; d(y; z) :=

X
i

yi ln
yi

zi
:

The relative entropy is not a true distance measure, but for probability distributions, for

which it is de�ned, it is at least non-negative and zero if and only if y=z. All bounds we

prove in this work heavily rely on the following inequalities:

Lemma 1 (Entropy Inequalities) Let fyig and fzig be two probability distributions,

i.e. yi�0, zi�0, and
P

iyi=
P

izi=1and f be a convex and even (f(x)=f(�x)) function
with f(0)�0, then the following inequalities hold:

1
2

X
i

f(yi�zi)
(f)

� f(

s
1
2

X
i

yi ln
yi

zi
);

X
i

(yi�zi)2
(s)

� X
i

yi ln
yi

zi

X
i

jyi�zij
(a)

�
s
2
X
i

yi ln
yi

zi
;

X
i

(
p
yi�

p
zi)

2
(h)

� X
i

yi ln
yi

zi
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Proofs are given in Appendix A. Inequality (Lemma 1s) is a generalization of the binary

N=2 case used in [Sol78, Hut01a, LV97]. If we insert

X = f1; :::; Ng; N = jX j; i = xt; yi = �(xtjx<t); zi = �(xtjx<t) (9)

into (8) we get various instantaneous distances (at time t) between � and �. If we take the

expectation over x<t and sum over t=1::n, (
Pn

t=1E<t[:::]) we get various total distances

between � and �:

at(x<t) :=
X
xt

����(xtjx<t)� �(xtjx<t)
���; An :=

nX
t=1

E<tat(x<t) (10)

st(x<t) :=
X
xt

�
�(xtjx<t)� �(xtjx<t)

�2
; Sn :=

nX
t=1

E<tst(x<t) (11)

ht(x<t) :=
X
xt

�q
�(xtjx<t)�

q
�(xtjx<t)

�2
; Hn :=

nX
t=1

E<tht(x<t) (12)

dt(x<t) :=
X
xt

�(xtjx<t) ln �(xtjx<t)
�(xtjx<t)

; Dn :=
nX
t=1

E<tdt(x<t) (13)

For Dn the following can be shown [Sol78, LV97]

Dn =
nX
t=1

E<tdt(x<t) =
nX
t=1

E1:t ln
�(xtjx<t)
�(xtjx<t) = (14)

= E1:n ln
nY
t=1

�(xtjx<t)
�(xtjx<t) = E1:n ln

�(x1:n)

�(x1:n)
� lnw�1

� =: b�

In the �rst line we have inserted (13) and used Bayes' rule �(x<t)��(xtjx<t)=�(x1:t). Due

to (1), we can further replace E1:t by E1:n as the argument of the logarithm is independent

of xt+1:n. The t sum can now be exchanged with the E1:n expectation and transforms to a

product inside the logarithm. In the last equality we have used the second form of Bayes'

rule (3) for � and �. Using universality (6) of �, i.e. ln�(x1:n)=�(x1:n)� lnw�1
� for �2M

yields the �nal inequality in (14).

2.5 Convergence of � to �

Theorem 2 (Convergence of � to �) Let there be sequences x1x2::: over a �nite al-

phabet X drawn with probability �(x1:n) for the �rst n symbols. The universal conditional

probability �(xtjx<t) of the next symbol xt given x<t is related to the true conditional



Universal Bayesian Sequence Prediction 11

probability �(xtjx<t) in the following way:

i)
nX
t=1

E<t

X
x0t

�
�(x0tjx<t)� �(x0tjx<t)

�2 � Sn � Dn � lnw�1
� < 1

ii)
X
x0t

�
�(x0tjx<t)� �(x0tjx<t)

�2 � st(x<t) � dt(x<t)! 0 for t!1 w.�.p.1

iii) �(x0tjx<t)� �(x0tjx<t)! 0 for t!1 w.�.p.1 (and i.m.s) for any x0t

iv)
nX
t=1

E

2
64
0
@
vuut �(xtjx<t)
�(xtjx<t) � 1

1
A

2
3
75 � Hn � Dn � lnw�1

� < 1

v)

vuut �(xtjx<t)
�(xtjx<t) ! 1 i.m.s and

�(xtjx<t)
�(xtjx<t) ! 1 w.�.p.1 for t!1

vi) at(x<t) �
q
2dt(x<t); An �

q
2nDn;

where dt and Dn are the relative entropies (12), and w� is the weight (5) of � in �.

Proof: Inequality (ii) follows from the de�nitions (11) and (13) and from the entropy

inequality (1s). From the de�nition and �niteness of D1 (14), and from dt(x<t)�0 one

sees that dt(x<t)!0 for t!1 w.�.p.1. The inequality (i) follows from (ii) by taking the

E<t expectation and the
Pn

t=1 sum. (iii) is a direct consequence of (ii)=(i). The reason

for the astonishing property of a single (universal) function � to converge to any �2M
lies in the fact that the sets of �-random sequences di�er for di�erent �. (iv) and (v) are

related (but incomparable) convergence results to (i) and (iii). To prove (iv) we use the

abbreviations yt=�(xtjx<t) and zt=�(xtjx<t).

Et

��szt

yt
� 1

�2�
=
X
xt

0�(xtjx<t)
�szt

yt
� 1

�2
=
X
xt

0(
p
zt �pyt)2 � ht(x<t) � dt(x<t): (15)

The �rst equality holds w.�.p.1 (4), the last two inequalities follow from (12) and (1h).

(iv) now follows by taking the E<t expectation and the
Pn

t=1 sum. (v) follows from (iv) by

the de�nition of convergence i.m.s., which implies convergence w.�.p.1. In (vi), at�
p
2dt

immediately follows from inequality (1a) and De�nitions (10) and (13). An �
p
2nDn

follows from

1
n
An � 1

n

nX
t=1

E<t[at] � 1

n

nX
t=1

E<t[
q
2dt] � 1

n

nX
t=1

q
E<t[2dt] �

vuut1

n

nX
t=1

E<t[2dt] �
q

2
n
Dn

(16)

where we have used Jensen's inequality for exchanging the averages ( 1
n

Pn
t=1 and E<t) with

the convex functions (
p

). ut
Since the conditional probabilities are the basis of all prediction algorithms considered in

this work, we expect a good prediction performance if we use � as a guess of �. Perfor-

mance measures are de�ned in the following sections.
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The elementary proof for (v) given here does not rely on the semi-martingale convergence

Theorem [Doo53, pp. 324{325] as the proof given in [LV97]. Furthermore, (iv) gives the

\speed" of convergence. Note the subtle di�erence between (iii) and (v). If x1:1 is a

�-random sequence, and x01:1 is any (possibly constant and not necessarily �-random)

sequence then �(x0tjx<t)��(x0tjx<t) converges to zero, but no statement is possible for

�(x0tjx<t)=�(x0tjx<t), since lim inf�(x0tjx<t) could be zero. On the other hand, if we stay

on the �-random sequence (x01:1=x1:1), (v) shows that �(xtjx<t)=�(xtjx<t)!1 (whether

inf�(xtjx<t) tends to zero or not does not matter). Indeed, it is easy to give an example

where �(x0tjx<t)=�(x0tjx<t) diverges. If we choose

M=f�1; �2g; ���1; �1(1jx<t)= 1
2
t�3 and �2(1jx<t)= 1

2
t�2

the contribution of �2 to � causes � to fall o� like �2 � t�2, much slower than �� t�3

causing the quotient to diverge:

�1(01:n) =
nY
t=1

(1� 1
2
t�3)

n!1�! c1 = 0:450::: > 0 ) 01:1 is a �-random sequence;

�2(01:n) =
nY
t=1

(1� 1
2
t�2)

n!1�! c2 = 0:358::: > 0 ) �(01:n)! w1c1 + w2c2 =: c� > 0:

�(0<t1) = w1�1(1j0<t)�1(0<t) + w2�2(1j0<t)�2(0<t)! 1
2
w2c2t

�2

=) �(1j0<t) = �(0<t1)

�(0<t)
! w2c2

2c�
t�2 =) �(1j0<t)

�(1j0<t) !
w2c2

c�
t!1 diverges:

Further interesting convergence results can be found in [Vov87].

2.6 The case where � 62M

In the following we discuss two cases, where � 62M, but most parts of this work still

apply. Actually all theorems remain valid for � being a �nite linear combination �(x1:n)=P
�2Lv��(x1:n) of �'s in L�M. Dominance �(x1:n)�w���(x1:n) is still ensured with w� :=

min�2L
w�

v�
�min�2Lw�. More generally, if � is an in�nite linear combination, dominance

is still ensured if w� itself dominate v� in the sense that w� ��v� for some �> 0 (then

w���).

Another possibly interesting situation is when the true generating distribution � 62M,

but a \nearby" distribution �̂ with weight w�̂ is inM. If we measure the distance of �̂ to

� with the Kullback Leibler divergence Dn(�jj�̂) :=Px1:n�(x1:n)ln
�(x1:n)

�̂(x1:n)
and assume that

it is bounded by a constant c, then

Dn = E1:n ln
�(x1:n)

�(x1:n)
= E1:n ln

�̂(x1:n)

�(x1:n)
+E1:n ln

�(x1:n)

�̂(x1:n)
� lnw�1

�̂ + c:

So Dn� lnw�1
� remains valid if we de�ne w� :=w�̂ �e�c.
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2.7 Probability Classes M

In the following we describe some well-known and some less known probability classesM.

This relates our setting to other works in this area, embeds it into the historical context,

illustrates the type of classes we have in mind, and discusses computational issues.

We get a rather wide class M if we include all computable probability distributions in

M. In this case, the assumption �2M is very weak, as it only assumes that the strings

are drawn from any computable distribution; and all valid physical theories (and, hence,

all environments) are computable (in a probabilistic sense).

We will see that it is favorable to assign high weights w� to the �. Simplicity should be

favored over complexity, according to Occam's razor. In our context this means that a

high weight should be assigned to simple �. The pre�x Kolmogorov complexity K(�) is

a universal complexity measure [Kol65, ZL70, LV97]. It is de�ned as the length of the

shortest self-delimiting program (on a universal Turing machine) computing �(x1:n) given

x1:n. If we de�ne

w� :=
1



2�K(�) ; 
 :=

X
�2M

2�K(�) < 1

then, distributions which can be calculated by short programs, have high weights. The

relative entropy is bounded by the Kolmogorov complexity of � in this case (Dn �
K(�) � ln2). Solomono�'s universal semi-measure4 is obtained if we take M to be the

(multi)set enumerated by a Turing machine which enumerates all enumerable semi-

measures [Sol64, Sol78, LV97]. In this case, 
 (sometimes called the number of wisdom)

has interesting properties in itself [Cal98, Cha75, Cha91]. Recently, M has been further

enlarged to include all cumulatively enumerable semi-measures [Sch00, Sch02]. In the

enumerable and cumulatively enumerable cases, � is not �nitely computable, but can still

be approximated to arbitrary but not pre-speci�able precision. If we consider all approx-

imable (i.e. asymptotically computable) distributions, then the universal distribution �,

although still well de�ned, is not even approximable [Sch00]. An interesting and quickly

approximable distribution is the Speed prior S de�ned in [Sch00]. It is related to Levin

complexity and Levin search [Lev73, Lev84], but it is unclear for now, which distributions

are dominated by S. If one considers only �nite-state automata instead of general Turing

machines, � is related to the quickly computable, universal �nite-state prediction scheme

of Feder et al. [FMG92], which itself is related to the famous Lempel-Ziv data compres-

sion algorithm. If one has extra knowledge on the source generating the sequence, one

might further reduce M and increase w. A detailed analysis of these and other speci�c

classes M will be given elsewhere. Note that �2M in the enumerable and cumulatively

enumerable case, but � 62M in the computable, approximable and �nite-state case. If � is

itself inM, it is called a universal element ofM [LV97]. As we do not need this property

here, M may be any �nite or countable set of distributions. In the following we consider

generic M and w. Continuous classes M are considered in Section 7.

4
Normalization has to be treated di�erently in this case
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3 Error Bounds

3.1 Deterministic Predictors

We start with a very simple measure: making a wrong prediction counts as one error,

making a correct prediction counts as no error. In [Hut01a] error bounds have been proven

for the binary alphabet X = f0;1g. The following generalization to arbitrary alphabet

involves only minor additional complications, but serves as an introduction to the more

complicated model with arbitrary loss function. Let �� be the optimal prediction scheme

when the strings are drawn from the probability distribution �, i.e. the probability of xt
given x<t is �(xtjx<t), and � is known. �� predicts (by de�nition) x

��

t when observing

x<t. The prediction is erroneous if the true tth symbol is not x
��

t . The probability of this

event is 1��(x��

t jx<t). It is minimized if x
��

t maximizes �(x
��

t jx<t). More generally, let

�� be a prediction scheme predicting x
��

t := argmaxxt�(xtjx<t) for some distribution �.

Every deterministic predictor can be interpreted as maximizing some distribution.

3.2 Total Expected Numbers of Errors

The � probability of making a wrong prediction for the tth symbol and the total �-expected

number of errors in the �rst n predictions of predictor �� are

e
��

t (x<t) := 1� �(x
��

t jx<t) ; E��

n :=
nX
t=1

E<te
��

t (x<t): (17)

If � is known, �� is obviously the best prediction scheme in the sense of making the least

number of expected errors

E��

n � E��

n for any ��; (18)

since

e
��

t (x<t) = 1��(x��

t jx<t) = min
xt

(1��(xtjx<t)) � 1��(x��

t jx<t) = e
��

t (x<t)

for any �. Of special interest is the universal predictor ��. As � converges to � the

prediction of �� might converge to the prediction of the optimal ��. Hence, �� may not

make many more errors than �� and, hence, any other predictor ��. Note that x
��

t is

a discontinuous function of � and x
��

t !x
��

t cannot be proved from �!�. Indeed, this

problem occurs in related prediction schemes, where the predictor has to be regularized

so that it is continuous [FMG92]. Fortunately this is not necessary here. We prove the

following error bound.

Theorem 3 (Error bound) Let there be sequences x1x2::: over a �nite alphabet X
drawn with probability �(x1:n) for the �rst n symbols. The ��-system predicts by de�-

nition x
��

t 2X from x<t, where x
��

t maximizes �(xtjx<t). �� is the universal prediction
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scheme based on the universal prior �. �� is the optimal informed prediction scheme.

The total �-expected number of prediction errors E
��
n and E��

n of �� and �� as de�ned

in (17) are bounded in the following way

0 � E��
n � E��

n �
q
2(E

��
n +E

��
n )Sn � Sn +

q
4E

��
n Sn + S2

n � 2Sn + 2

q
E

��
n Sn

where Sn�Dn� lnw�1
� . Sn is the squared distance (11), Dn is the relative entropy (14),

and w� is the weight (5) of � in �.

The �rst bound actually contains E
��
n on the r.h.s., so it is not particularly useful, but this

is the major bound we will prove, the others follow easily. Furthermore it has a somewhat

nicer structure than the second bound. In Section 6 we show that the second bound is

optimal. The last bound, which we discuss in the following, has the same asymptotics as

the second bound.

First, we observe that the number of errors E
��
1 of the universal �� predictor is �nite if the

number of errors E1��
of the informed �� predictor is �nite. This is especially the case

for deterministic �, as E��
n �0 in this case5, i.e. �� makes only a �nite number of errors on

deterministic environments. This can be proven by elementary means. Assume x1x2::: is

the sequence generated by � and �� makes a wrong prediction x
��

t 6=xt. Since �(x
��

t jx<t)�
�(xtjx<t), this implies �(xtjx<t)� 1

2
. Hence e

��

t =1��ln�(xtjx<t)=ln2=dt=ln2. If �� makes

a correct prediction e
��

t =0�dt=ln2 is obvious. Using (14) proves E��
1 �D1=ln2�log2w�1

� .

A combinatoric argument given in Section 6 shows that there are M and �2M with

E
��
1 � log2jMj. This shows that the upper bound E

��
1 � log2jMj for uniform w is sharp.

From Theorem 3 we get the slightly weaker bound E
��
1 �2S1�2D1�2lnw�1

� . For more

complicated probabilistic environments, where even the ideal informed system makes an

in�nite number of errors, the theorem ensures that the error regret E
��
n �E��

n is only of

order

q
E

��
n . The regret is quanti�ed in terms of the information content Dn of � (relative

to �), or the weight w� of � in �. This ensures that the error densities En=n of both systems

converge to each other. Actually, the theorem ensures more, namely that the quotient

converges to 1, and also gives the speed of convergence E
��
n =E��

n =1+O((E��
n )�1=2)�!1

for E��
n !1. Increasing the �rst occurrence of E��

n in the theorem to E�
n and the second

to E
��
n we get the bound E�

n �E��
n �2

q
E

��
n Sn, which shows that no (causal) predictor �

whatsoever makes signi�cantly less errors than ��. In Section 6 we show that the second

bound for E
��
n �E��

n given in Theorem 3 can in general not be improved, i.e. for every

predictor � (and especially ��) there exist M and �2M such that the upper bound is

achieved. See [Hut01a] for some further discussion and bounds for binary alphabet.

3.3 Proof of Theorem 3

The �rst inequality in Theorem 3 has already been proven (18). For the second inequality,

let us start more modestly and try to �nd constants A>0 and B>0 that satisfy the linear

5
Remember that we named a probability distribution deterministic if it is 1 for exactly one sequence

and 0 for all others.
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inequality

E��
n � E��

n � A(E��
n + E��

n ) +BSn: (19)

If we could show

e
��

t (x<t)� e
��

t (x<t) � A[e
��

t (x<t) + e
��

t (x<t)] +Bst(x<t) (20)

for all t�n and all x<t, (19) would follow immediately by summation and the de�nition

of En and Sn. With the abbreviations (9) and the abbreviations m= x
��

t and s= x
��

t

the various error functions can then be expressed by e
��

t =1�ys, e��

t =1�ym and st=P
i(yi�zi)2. Inserting this into (20) we get

ym�ys � A[2�(ym+ys)] +B
NX
i=1

(yi � zi)
2: (21)

By de�nition of x
��

t and x
��

t we have ym�yi and zs�zi for all i. We prove a sequence of

inequalities which show that

B
NX
i=1

(yi � zi)
2 + A[2�(ym+ys)]� (ym�ys) � ::: (22)

is positive for suitable A� 0 and B� 0, which proves (21). For m= s (22) is obviously

positive. So we will assume m 6= s in the following. From the square we keep only

contributions from i=m and i=s.

::: � B[(ym�zm)2 + (ys�zs)2] + A[2�(ym+ys)]� (ym�ys) � :::

By de�nition of y, z, M and s we have the constraints ym+ys�1, zm+zs�1, ym�ys�0

and zs�zm�0. From the latter two it is easy to see that the square terms (as a function

of zm and zs) are minimized by zm= zs=
1
2
(ym+ys). Furthermore, we de�ne x :=ym�ys

and increase (ym+ys) to 1.

::: � 1
2
Bx2 + A� x � ::: (23)

(23) is quadratic in x and minimized by x�= 1
B
. Inserting x� gives

::: � A� 1

2B
� 0 for 2AB � 1: (24)

Inequality (19) therefore holds for any A>0, provided we insert B= 1
2A
. Thus we might

minimize the r.h.s. of (19) w.r.t. A leading to the upper bound

E��
n � E��

n �
q
2(E

��
n + E

��
n )Sn for A2 =

Sn

2(E
��
n + E

��
n )

(25)

which is the �rst bound in Theorem 3. For the second bound we have to prove

q
2(E

��
n +E

��
n )Sn � Sn �

q
4E

��
n Sn + S2

n (26)
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If we square both sides of this expressions and simplify we just get (25). Hence, (25)

implies (26). The last inequality in Theorem 3 is a simple triangle inequality. This

completes the proof of Theorem 3 ut.
Note that also the third bound implies the second one:

E��
n � E��

n �
q
2(E

��
n +E

��
n )Sn , (E��

n �E��

n )2 � 2(E��
n +E��

n )Sn ,

, (E��
n �E��

n �Sn)2 � 4E��

n Sn + S2
n , E��

n � E��

n � Sn �
q
4E

��
n Sn + S2

n

where we only have used E
��
n �E��

n . Nevertheless the bounds are not equal.

4 Loss Bounds

4.1 Unit Loss Function

A prediction is very often the basis for some decision. The decision results in an action,

which itself leads to some reward or loss. If the action itself can in
uence the environment

we enter the domain of acting agents which has been analyzed in the context of universal

probability in [Hut01b]. To stay in the framework of (passive) prediction we have to

assume that the action itself does not in
uence the environment. Let `xtyt 2 IR be the

received loss when taking action yt2Y and xt2X is the tth symbol of the sequence. We

demand ` to be normalized, i.e. 0� `xtyt � 1. For instance, if we make a sequence of

weather forecasts X =fsunny, rainyg and base our decision, whether to take an umbrella

or wear sunglasses Y=fumbrella, sunglassesg on it, the action of taking the umbrella or

wearing sunglasses does not in
uence the future weather (ignoring the butter
y e�ect).

The losses might be

Loss sunny rainy

umbrella 0.3 0.1

sunglasses 0.0 1.0

Note the small loss assignment even when making the right decision to take an umbrella

when it rains because sun is still preferable to rain.

In many cases the prediction of xt can be identi�ed or is already the action yt. The

forecast sunny can be identi�ed with the action wear sunglasses, and rainy with take

umbrella. X �Y in these cases. The error assignment of the previous subsection falls

into this class together with a special loss function. It assigns unit loss to an erroneous

prediction (`xtyt=1 for xt 6=yt) and no loss to a correct prediction (`xtxt=0).

For convenience we name an action a prediction in the following, even if X 6=Y. The true
probability of the next symbol being xt, given x<t, is �(xtjx<t). The expected loss when
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predicting yt is Et`xtyt. The goal is to minimize the expected loss. More generally we

de�ne the �� prediction scheme

y
��
t := argmin

yt2Y

X
xt

�(xtjx<t)`xtyt (27)

which minimizes the �-expected loss.6 As the true distribution is �, the actual �-expected

loss when �� predicts the t
th symbol and the total �-expected loss in the �rst n predictions

are

l
��
t (x<t) := Et`xty

��
t

; L��
n :=

nX
t=1

E<tl
��
t (x<t): (28)

Let � be any (causal) prediction scheme (deterministic or probabilistic) with no constraint

at all, predicting any y�t 2Y with losses l�t and L�
n similarly de�ned as (28). If � is known,

�� is obviously the best prediction scheme in the sense of achieving minimal expected loss

L��
n � L�

n for any � (29)

since

l
��
t (x<t) = Et`xty

��
t

= min
yt

Et`xtyt � Et`xty�t = l�t (x<t)

for any �. The predictor ��, based on the universal distribution �, is, again, of special

interest. Theorem 3 generalizes to arbitrary loss functions.

Theorem 4 (Unit loss bound) Let there be sequences x1x2::: over a �nite alphabet X
drawn with probability �(x1:n) for the �rst n symbols. A system taking action (or predict-

ing) yt2Y given x<t receives loss `xtyt2[0;1] if xt is the true tth symbol of the sequence. The

��-system (27) acts (or predicts) as to minimize the �-expected loss. �� is the universal

prediction scheme based on the universal prior �. �� is the optimal informed prediction

scheme. The total �-expected losses L
��
n of �� and L��

n of �� as de�ned in (28) are

bounded in the following way

0 � L��
n � L��

n � Dn +

q
4L

��
n Dn +D2

n � 2Dn + 2

q
L
��
n Dn

where Dn� lnw�1
� is the relative entropy (14), and w� is the weight (5) of � in �.

The loss bounds have the same form as the error bounds when substituting Sn� Dn in

Theorem 3, so most of the discussion of Theorem 3 also applies here. We were not able

to derive loss bounds in terms of Sn as in the error case, and indeed one can show that

substituting Sn for Dn in Theorem 4 gives an invalid bound. For convenience we collect

the most important consequences of Theorem 4 in the following corollary.

6
argminy(�) is de�ned as the y which minimizes the argument. A tie is broken arbitrarily. If Y is

�nite, then y
��

t always exists. For in�nite action space Y we assume that a minimizing y
��

t 2Y exists.

This is for instance the case if Y is compact and `xy is continuous in y, or for Y=IN , if limy!1`xy exists

for all x and is larger or equal to `xy for most y.
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Corollary 5 (Unit loss bound) Under the same conditions as in Theorem 4 the fol-

lowing relations hold.

i) L
��
1 is �nite () L��

1
is �nite,

ii) L
��
1 � 2D1 � 2 lnw�1

� for deterministic � if 8x9y`xy = 0;

iii) L
��
n =L��

n = 1 +O((L��
n )�1=2) �! 1 for L��

n !1;

iv) L
��
n � L��

n = O(

q
L
��
n );

Let � be any prediction scheme.

v) L��
n � L�

n ; l
��
t (x<t) � l�t (x<t);

vi) L�
n � L

��
n � 2

q
L
��
n Dn;

vii) L
��
n =L�

n � 1 +O((L�
n)
�1=2):

4.2 Loss Bound of Merhav & Feder

The �rst general loss bound with no structural assumptions on � and ` (except bound-

edness) has been derived in a survey paper by Merhav&Feder in [MF98, Sec.3.1.2]. They

showed that the regret L
��
n �L��

n is bounded by `max

p
2nDn for `2 [0;`max]. Assuming

`max=1 (general `max can be recovered by scaling) their bound reads (in our notation)

L��
n � L��

n � An �
q
2nDn: (30)

In Subsection 4.5 we prove

l
��
t (x<t)� l

��
t (x<t) � at(x<t) �

q
2dt(x<t)

Taking the the expectation E<t and the average 1
n

Pn
t=1 and using Jensen's inequality for

the concave square root (similarly to (16)) or directly Theorem 2(vi) shows (30).

Bound (30) and our bound (Theorem 4) are in general incomparable. Since 2D1 is �nite

and L��
n �n, bound (30) can be at best a factor

p
2 and an additive constant better than

our bound. On the other hand, for large n and for L��
n < n

2
our bound is tighter. The

latter condition is satis�ed if the best predictor �� su�ers small instantaneous loss < 1
2
on

average. Signi�cant improvement occurs if L��
n does not grow linearly with n, but is for

instance �nite (see Corollary (5), especially (i) and (ii)).

4.3 Example Loss Functions

The case X �Y with unit error assignment `xy=1�Æxy (Æxy=1 for x=y and Æxy=0 for

x 6=y) has already been discussed and proven in Section 3.

y
��
t = argmin

yt

X
xt

�(xtjx<t)(1� Æxtyt) = argmax
xt

�(xtjx<t) = x
��

t
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In this case L��
n � E��

n is the total expected number of prediction errors. For X =

Y = f0;1g, like in the weather example above, �� is a threshold strategy with y
��
t =

argminy2f0;1gf�1`1y+�0`0yg= 0=1 for �1
>
< 
, where 
 := `01�`00

`01�`00+`10�`11
and �i = �(ijx<t).

In the special error case `xy=1�Æxy, the bit with the highest � probability is predicted

(
 = 1
2
). In the following we consider some standard loss functions for binary outcome

X=f0;1g and continuous action y in the unit interval Y=[0;1]. The absolute loss is de�ned

as `xy= jx�yj2 [0;1]. The �� scheme predicts y
��
t =argminy2[0;1]f�1(1�y)+�0yg=0=1 for

�0
>
< �1. Since all predictions y lie in the subset f0;1g�[0;1] and jx�yj=1�Æxy for y2f0;1g

this case coincides with the binary error case above. The same holds for the �-loss jx�yj�
with 0<��1. The �-expected loss is l

��
t =�(ijx<t) for the i with �i>

1
2
. For the quadratic

loss `xy = (x�y)2 2 [0;1] the action/prediction y
��
t = argminy2[0;1]f�1(1�y)2+�0y

2g= �1

is proportional to the �-probability of xt=1 and l
��
t =Et(1��(xtjx<t))2. For the �-loss

jx�yj� with �>1 we get y
��
t =(1+ ��1

p
�0=�1)�1. For arbitrary �nite alphabet X and vector-

valued predictions y the quadratic loss may be generalized to `xy=
1
2
yTAxy+b

T
xy+cx.

The Hellinger loss can be written for binary outcome in the form `xy=1�
q
j1�x�yj2

[0;1] with y
��
t = �21=(�

2
0+�21) and l

��
t = 1�(�0�0+�1�1)=

q
�20+�21. The logarithmic loss

`xy=�lnj1�x�yj 2 [0;1] is unbounded. But since the corresponding action is y
��
t =�1

the expected loss is l
��
t =�Etln�(xtjx<t). Hence l

��
t �l��t = ht and the total loss regret

L
��
n �L��

n =Dn� lnw�1
� is �nitely bounded anyway and Theorem 4 is not needed. Con-

tinuous outcome spaces X are brie
y discussed in Section 10.

4.4 Proof of Theorem 4

The �rst inequality in Theorem 4 has already been proven (29). For the second and last

inequality, we start, as in Theorem 3, by looking for constants A> 0 and B > 0, which

satisfy the linear inequality

L��
n � (A+ 1)L��

n + (B + 1)Dn: (31)

If we could show

l
��
t (x<t) � A0l

��
t (x<t) +B0dt(x<t); A0 := A + 1; B0 := B + 1 (32)

for all t�n and all x<t, (31) would follow immediately by summation and the de�nition

of Ln and Dn. With the abbreviations (9) and the abbreviations m=y
��
t and s=y

��
t the

loss and entropy can then be expressed by l
��
t =

P
iyi`is, l

��
t =

P
iyi`im and dt=

P
iyiln

yi
zi
.

Inserting this into (32) we get

NX
i=1

yi`is � A0

NX
i=1

yi`im +B0

NX
i=1

yi ln
yi

zi
(33)

By de�nition (27) of y
��
t and y

��
t we haveX

i

yi`im�
X
i

yi`ij and
X
i

zi`is�
X
i

zi`ij for all j: (34)
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Actually, we need the �rst constraint only for j=s and the second for j=m. In Appendix

D we reduce the problem to the binary N=2 case, which we will consider in the following.

We take
P1

i=0 instead of
P2

i=1 for convenience.

B0

1X
i=0

yi ln
yi

zi
+

1X
i=0

yi(A
0`im�`is)

?� 0 (35)

The cases `im > `is8i and `is > `im8i contradict the �rst/second inequality (34). Hence

we can assume `0m � `0s and `1m � `1s. The symmetric case `0m � `0s and `1m � `1s is

proven analogously or can be reduced to the �rst case by renumbering the indices (0$1).

Using the abbreviations a := `0m�`0s, b := `1s�`1m, c := y1`1m+y0`0s, y= y1=1�y0 and
z=z1=1�z0 we can write (35) as

f(y; z) := B0[y ln y

z
+ (1�y) ln 1�y

1�z
] + A0(1�y)a� yb+ Ac

?� 0 (36)

for zb�(1�z)a and 0�a;b;c;y;z�1. The constraint (34) on y has been dropped since (36)

will turn out to be true for all y. Furthermore, we can assume that d :=A0(1�y)a�yb�0

since for d>0, f is trivially positive. Multiplying d with a constant �1 will decrease f .

Let us �rst consider the case z� 1
2
. We multiply the d term by 1=b� 1, i.e. replace it

with A0(1�y)a
b
�y. From the constraint on z we known that a

b
� z

1�z
. We can decrease f

further by replacing a

b
by z

1�z
and by dropping Ac. Hence, (36) is proven for z� 1

2
if we

can prove

B0[y ln y

z
+ (1�y) ln 1�y

1�z
] + A0(1�y) z

1�z
� y

?� 0 for z � 1
2
: (37)

In Appendix B we prove that it holds for B� 1
A
+1. The case z� 1

2
is treated similarly.

We scale d with 1=a�1, i.e. replace it with A0(1�y)�y b

a
. From the constraint on z we

know that b
a
� 1�z

z
. We decrease f further by replacing b

a
by 1�z

z
and by dropping Ac.

Hence (36) is proven for z� 1
2
if we can prove

B0[y ln y

z
+ (1�y) ln 1�y

1�z
] + A0(1�y)� y 1�z

z

?� 0 for z � 1
2
: (38)

In Appendix C we prove that it holds for B� 1
A
+1. So in summary we proved that (31)

holds for B� 1
A
+1. Inserting B= 1

A
+1 into (31) and minimizing the r.h.s. w.r.t. A leads

to the last bound of Theorem 4 with A=
q
Dn=L

��
n . Actually inequalities (37) and (38)

also hold for B� 1
4
A+ 1

A
, which, by the same minimization argument, proves the slightly

tighter second bound in Theorem 4. Unfortunately, the current proof is very long and

complex, and involves some numerical or graphical analysis for determining intersection

properties of some higher order polynomials. This or a hopefully simpli�ed proof will be

postponed. The cautious reader may check the inequalities (37) and (38) numerically for

B= 1
4
A+ 1

A
ut.

4.5 Convergence of Instantaneous Losses

Since L
��
n �L��

n is not �nitely bounded by Theorem 4 it cannot be used directly to conclude

l
��
t �l��t !0. It would follow from �!� by continuity if l

��
t and l

��
t would be continuous
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functions of � and �. l
��
t is a continuous piecewise linear concave function, but l

��
t is an,

in general, discontinuous function of � (and �). Fortunately it is continuous at the one

necessary point �=�. This allows to bound l
��
t �l��t in terms of �(xtjx<t)��(xtjx<t).

Theorem 6 (Instantaneous Loss Bound) Under the same conditions as in Theorem

4 the following relations hold for the instantaneous losses l
��
t (x<t) and l

��
t (x<t) at time t

of the informed and universal prediction schemes �� and ��:

i)
nX
t=1

E<t(l
��
t (x<t)� l

��
t (x<t))

2 � 2Dn � 2 lnw�1
� < 1

ii) 0 � l
��
t (x<t)� l

��
t (x<t) �

X
xt

j�(xtjx<t)� �(xtjx<t)j �
q
2dt(x<t)

t!1�!
w:�:p:1 0:

iii) 0 � l
��
t (x<t)� l

��
t (x<t) � 2dt(x<t) + 2

q
l
��
t (x<t) dt(x<t)

t!1�!
w:�:p:1 0:

Proof: (ii) follows from

l
��
t (x<t)� l

��
t (x<t) �

X
i

yi`is �
X
i

yi`im � X
i

(yi � zi)(`is � `im) �

� X
i

jyi � zij�j`is � `imj �
X
i

jyi � zij �
s
2
X
i

yi ln
yi

zi
�

q
2dt(x<t)

To arrive at the �rst inequality we added
P

izi(`im�`is) which is positive due to (34).

j`is�`imj�1 since `2 [0;1]. The last inequality follows from Lemma 1a. dt!0 has been

proven in Theorem 2(ii). (i) follows by inserting (ii) and using (14). (iii) follows from

the proof of Theorem 4 by inserting B= 1
A
+1=

q
l
��
t =dt+1 into (32). Convergence to zero

holds for � random sequences, i.e. with � probability 1, since l
��
t � 1 is bounded. The

losses l
��
t (x<t) itself need not to converge. ut

Note, that the inequalities in (ii) and (iii) hold for all individual sequences. The

sum/average is only taken over the current outcome xt, but the history x<t is �xed.

Bound (ii) and (iii) are in general incomparable, but for large t and for l
��
t < 1

2
(especially

if l
��
t !0) bound (iii) is tighter than bound (ii).

4.6 General Loss

There are only very few restrictions imposed on the loss `xtyt in Theorem 4, namely that

it is static and in the unit interval [0;1]. If we look at the proof of Theorem 4, we see that

the time-independence has not been used at all. The proof is still valid for an individual

loss function `txtyt2 [0;1] for each step t. The loss might even depend on the actual history

x<t. The case of a loss `
t
xtyt

(x<t) bounded to a general interval [`min;`max] can be reduced

to the unit interval case by rescaling `. We introduce a scaled loss `0

0 � `0
t

xtyt
(x<t) :=

`txtyt(x<t)� `min

`�
� 1; where `� := `max � `min:
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The prediction scheme �0� based on `0 is identical to the original prediction scheme ��

based on `, since minarg in (27) is not a�ected by linear transformation of its argument.

From y
�0�
t =y

��
t it follows that l

0��
t =(l

��
t �`min)=`� and L

0��
n =(L��

n �`min)=`� (D0

n�Dn,

since ` is not involved). Theorem 4 is valid for the primed quantities, since `0 2 [0;1].

Inserting L0n��=� and rearranging terms we get

Theorem 7 (General loss bound) Let there be sequences x1x2::: over a �nite alphabet

X drawn with probability �(x1:n) for the �rst n symbols. A system taking action (or

predicting) yt 2 Y given x<t receives loss `txtyt(x<t)2 [`min;`min+`�] if xt is the true tth

symbol of the sequence. The ��-system (27) acts (or predicts) as to minimize the �-

expected loss. �� is the universal prediction scheme based on the universal prior �. �� is

the optimal informed prediction scheme. The total �-expected losses L
��
n and L��

n of ��

and �� as de�ned in (28) are bounded in the following way

0 � L��
n � L��

n � `�Dn +
q
4(L

��
n �n`min)`�Dn + `2�D

2
n

where Dn� lnw�1
� is the relative entropy (14), and w� is the weight (5) of � in �.

5 Application to Games of Chance

5.1 Introduction

Consider investing in the stock market. At time t an amount of money st is invested in

portfolio yt, where we have access to past knowledge x<t (e.g. charts). After our choice

of investment we receive new information xt, and the new portfolio value is rt. The best

we can expect is to have a probabilistic model � of the behaviour of the stock-market.

The goal is to maximize the net �-expected pro�t pt = rt�st. Nobody knows �, but

the assumption of all traders is that there is a computable, pro�table � they try to �nd

or approximate. From Theorem 2 we know that Solomono�'s universal prior �(xtjx<t)
converges to any computable �(xtjx<t) with probability 1. If there is a computable,

asymptotically pro�table trading scheme at all, the �� scheme should also be pro�table

in the long run. To get a practically useful, computable scheme we have to restrictM to

a �nite set of computable distributions, e.g. with bounded Levin complexity Kt [LV97].

Although convergence of � to � is pleasing, what we are really interested in is whether

�� is asymptotically pro�table and how long it takes to become pro�table. This will be

explored in the following.

5.2 Games of Chance

We use Theorem 7 to estimate the time needed to reach the winning threshold when

using �� in a game of chance. We assume a game (or a sequence of possibly correlated

games) which allows a sequence of bets and observations. In step t we bet, depending
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on the history x<t, a certain amount of money st, take some action yt, observe outcome

xt, and receive reward rt. Our pro�t, which we want to maximize, is pt = rt�st. The

loss, which we want to minimize, can be de�ned as the negative pro�t, `xtyt =�pt. The
probability of outcome xt, possibly depending on the history x<t, is �(xtjx<t). The total
�-expected pro�t when using scheme �� is P

��
n =�L��

n . If we knew �, the optimal strategy

to maximize our expected pro�t is just ��. We assume P��
n > 0 (otherwise there is no

winning strategy at all, since P��
n �P��

n 8�). Often we are not in the favorable position

of knowing �, but we know (or assume) that �2M for some M, for instance that � is a

computable probability distribution. From Theorem 7 we see that the average pro�t per

round �p
��
n := 1

n
P

��
n of the universal �� scheme converges to the average pro�t per round

�p��n := 1
n
P��
n of the optimal informed scheme, i.e. asymptotically we can make the same

money even without knowing �, by just using the universal �� scheme. Theorem 7 allows

us to lower bound the universal pro�t P
��
n

P��
n � P��

n � p�Dn �
q
4(npmax�P��

n )p�Dn + p2�D
2
n (39)

where pmax is the maximal pro�t per round and p� the pro�t range. The time needed for

�� to perform well can also be estimated. An interesting quantity is the expected number

of rounds needed to reach the winning zone. Using P��
n >0 one can show that the r.h.s.

of (39) is positive if, and only if

n >
2p�(2pmax��p��n )

(�p
��
n )2

�Dn: (40)

Theorem 8 (Time to Win) Let there be sequences x1x2::: over a �nite alphabet X
drawn with probability �(x1:n) for the �rst n symbols. In step t we make a bet, depend-

ing on the history x<t, take some action yt, and observe outcome xt. Our net pro�t is

pt2 [pmax�p�;pmax]. The ��-system (27) acts as to maximize the �-expected pro�t. P��
n

is the total and �p��n = 1
n
P��
n is the average expected pro�t of the �rst n rounds. For the

universal �� and for the optimal informed �� prediction scheme the following holds:

i) �p
��
n = �p��n �O(n�1=2) �! �p��n for n!1

ii) n >
�
2p�

�p
��
n

�2 �b� ^ �p��n > 0 =) �p
��
n > 0

where w�=e�b� is the weight (5) of � in �.

By dividing (39) by n and using Dn�b� (14) we see that the leading order of �p
��
n ��p��n is

bounded by
q
4p�pmaxb�=n, which proves (i). The condition in (ii) is actually a weakening

of (40). P
��
n is trivially positive for pmin> 0, since in this wonderful case all pro�ts are

positive. For negative pmin the condition of (ii) implies (40), since p�>pmax, and (40)

implies positive (39), i.e. P
��
n >0, which proves (ii).

If a winning strategy �� with �p��n >">0 exists, then �� is asymptotically also a winning

strategy with the same average pro�t.
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5.3 Example

Let us consider a game with two dice, one with two black and four white faces, the other

with four black and two white faces. The dealer who repeatedly throws the dice uses one

or the other die according to some deterministic rule, which correlates the throws (e.g.

the �rst die could be used in round t i� the tth digit of � is 7). We can bet on black or

white; the stake s is $3 in every round; our return r is $5 for every correct prediction.

The pro�t is pt = rÆxtyt�s. The coloring of the dice and the selection strategy of the

dealer unambiguously determine �. �(xtjx<t) is 1
3
or 2

3
depending on which die has been

chosen. One should bet on the more probable outcome (
= 1
2
). If we knew � the expected

pro�t per round would be �p��n = p��n = 2
3
r�s = 1

3
$> 0. If we don't know � we should

use Solomono�'s universal prior with Dn� b� =K(�)�ln2, where K(�) is the length of

the shortest program coding � (see Subsection 2.7). Then we know that betting on the

outcome with higher � probability leads asymptotically to the same pro�t (Theorem 8(i))

and �� reaches the winning threshold no later than nthresh=900ln2�K(�) (Theorem 8(ii))

or sharper nthresh=330ln2�K(�) from (40), where pmax= r�s=2$ and p�= r=5$ have

been used.

If the die selection strategy re
ected in � is not too complicated, the �� prediction system

reaches the winning zone after a few thousand rounds. The number of rounds is not really

small because the expected pro�t per round is one order of magnitude smaller than the

return. This leads to a constant of two orders of magnitude size in front of K(�). Stated

otherwise, it is due to the large stochastic noise, which makes it diÆcult to extract the

signal, i.e. the structure of the rule � (see next subsection). Furthermore, this is only

a bound for the turnaround value of tthresh. The true expected turnaround t might be

smaller. However, every game for which there exists a computable winning strategy with

�pn�>">0, �� is guaranteed to get into the winning zone for some t�K(�).

5.4 Information-theoretic Interpretation

We try to give an intuitive explanation of Theorem 8(ii). We know that �(xtjx<t) con-
verges to �(xtjx<t) for t!1. In a sense �� learns � from past data x<t. The infor-

mation content in � relative to � is ln2�D1 � b� �ln2. One might think of a Shannon-

Fano pre�x code of � 2M of length db� � ln2e, which exists since the Kraft inequalityP
�2

�
db� �ln2

e �P�w� � 1 is satis�ed. b� �ln2 bits have to be learned before �� can be as

good as ��. In the worst case, the only information conveyed by xt is in form of the

received pro�t pt. Remember that we always know the pro�t pt before the next cycle

starts.

Assume that the distribution of the pro�ts in the interval [pmin;pmax] is mainly due to noise,

and there is only a small informative signal of amplitude �p��n . To reliably determine the

sign of a signal of amplitude �p��n , disturbed by noise of amplitude p�, we have to resubmit

a bit O((p�=�p
��
n )2) times (this reduces the standard deviation below the signal amplitude

�p��n ). To learn �, b�ln2 bits have to be transmitted, which requires n�O((p�=�p
��
n )2)�

b�ln2 cycles. This expression coincides with the condition in (ii). Identifying the signal
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amplitude with �p��n is the weakest part of this consideration, as we have no argument

why this should be true. It may be interesting to make the analogy more rigorous, which

may also lead to a simpler proof of (ii) not based on Theorems 4 and 7 with their rather

complex proofs.

6 Optimality Properties

6.1 Lower Error Bound

We want to show that there exists a class M of distributions such that any predictor �

ignorant of the distribution �2M from which the observed sequence is sampled must make

some minimal additional number of errors as compared to the best informed predictor

��.

For deterministic environments a lower bound can easily be obtained by a combinatoric

argument. Consider a class M containing 2n binary sequences such that each pre�x of

length n occurs exactly once. Assume any deterministic predictor � (not knowing the

sequence in advance), then for every prediction x�t of � at times t� n there exists a

sequence with opposite symbol xt=1�x�t . Hence, E�
1
�E�

n =n=log2jMj is a lower worst
case bound for every predictor �, (this includes ��, of course). This shows that the upper

bound E
��
1 � log2jMj for uniform w obtained in the discussion after Theorem 3 is sharp.

In the general probabilistic case we can show by a similar argument that the upper bound

of Theorem 3 is sharp.

Theorem 9 (Lower Error Bound) Let � be any deterministic predictor not knowing

from which distribution �2M the observed sequence x1x2::: is sampled from. � knows

(depends on) M and has at time t access to the previous outcomes x<t. Then there is for

every n an M and �2M and weights w� such that

e�n � e��

n =
q
2st(x<t) and E�

n � E��

n = Sn +
q
4E

��
n Sn + S2

n

where E�
n and E��

n are the total expected number of errors of � and ��, and st and Sn
are de�ned in (11). The equalities especially hold for the universal predictor ��.

Proof: The proof parallels and generalizes the deterministic case. Consider a class M
of 2n distributions (over binary alphabet) indexed by a�a1:::an2f0;1gn. For each t we

want a distribution with posterior probability 1
2
(1+") for xt=1 and one with posterior

probability 1
2
(1�") for xt=1 independent of the past x<t with 0<"� 1

2
. That is

�a(x1:::xn) = �a1(x1) � ::: � �an(xn); where �at(xt) =

(
1
2
(1 + ") for at = xt

1
2
(1� ") for at 6= xt
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We are not interested in predictions beyond time n but for completeness we may de�ne

�a to assign probability 1 to xt=1 for all t>n. If �=�a, the informed scheme �� always

predicts the bit which has highest �-probability, i.e. y
��

t =at

=) e
��

t = 1� �at(y
��

t ) = 1
2
(1� ") =) E��

n = n

2
(1� "):

Since E��
n is the same for all a we seek to maximize E�

n for a given predictor � in the

following. Assume � predicts y�t (possibly depending on the history x<t). Since we want

lower bounds we seek for a worst case �. A success y�t =xt has lowest possible probability
1
2
(1�") if at=1�y�t .

=) e�t = 1� �at(y
�
t ) =

1
2
(1 + ") =) E�

n = n
2
(1 + "):

So we have e�t �e��

t =" and E�
n �E��

n =n" for the regrets. We need to eliminate n and "

in favor of st, Sn, and E��
n . If we assume uniform weights w�a=2�n for all �a we get

�(x1:n) =
X
a

w�a�a(x1:n) = 2�n
nY
t=1

X
at2f0;1g

�at(xt) = 2�n
nY
t=1

1 = 2�n;

i.e. � is an unbiased Bernoulli sequence (�(xtjx<t)= 1
2
).

=) st(x<t) =
X
xt

(1
2
� �at(xt))

2 = 1
2
"2 and Sn =

n
2
"2:

So we have " =
p
2st which proves the instantaneous regret formula e�t �e

��

t =
p
2st.

Inserting "=
q

2
n
Sn into E��

n and solving w.r.t.
p
2n we get

p
2n=

p
Sn+

q
4E

��
n +Sn. So

we �nally get

E�
n � E��

n = n" =
q
Sn
p
2n = Sn +

q
4E

��
n Sn + S2

n

which proves the total regret formula of Theorem 9. ut
Since dt=st=1+O("2) we have Dn=Sn!1 for "!0. Hence the error bound of Theorem

3 with Sn replaced by Dn is asymptotically tight for E��
n =Dn!1 (which implies "!0).

This shows that without restrictions on the loss function which exclude the error loss,

the loss bound in Theorem 4 can also not be improved. Furthermore, E�
n �E��

n =n"=

n
q

2Sn
n
!p

2nDn, which shows that the bound (30) of Merhav&Feder is also tight.

An n independent set M leading to a good (but not tight) lower bound is M=f�1;�2g
with �1=2(1jx<t)= 1

2
�"t with "t=minf1

2
;
q
lnw�1

�1
=
p
tlntg. For w�1�w�2 and n!1 one

can show that E
��
n �E��1

n � 1
lnn

q
E

��
n lnw�1

�1
.

6.2 Pareto Optimality of �

In this subsection we want to establish a di�erent kind of optimality property of �. Let

F(�;�) be any of the performance measures of � relative to � considered in the previous
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sections (e.g. st, or Dn, or Ln, ...). It is easy to �nd � more tailored towards � such that

F(�;�)<F(�;�). This improvement may be achieved by increasingw�, but probably at the

expense of increasing F for other �, i.e. F(�;�)>F(�;�) for some �2M. Since we do not

know � in advance we may ask whether there exists a � with better or equal performance

for all �2M and a strictly better performance for one �2M. This would clearly render

� suboptimal w.r.t. to F . We show that there is no such � for all performance measures

studied in this work.

De�nition 10 (Pareto Optimality) Let F(�;�) be any performance measure of � rel-

ative to �. The universal prior � is called Pareto-optimal w.r.t. F if there is no � with

F(�;�)�F(�;�) for all �2M and strict inequality for at least one �.

Theorem 11 (Pareto Optimality) The universal prior � is Pareto-optimal w.r.t. the

instantaneous and total squared distances st and Sn (11), entropy distances dt and Dn

(13), errors et and En (17), and losses lt and Ln (28).

Proof: We �rst proof Theorem 11 for the instantaneous expected loss lt. We need the

more general � expected instantaneous losses

l�t�(x<t) :=
X
xt

�(xtjx<t)`xty�t (41)

for a predictor �. We want to arrive at a contradiction by assuming that � is not Pareto-

optimal, i.e. by assuming the existence of a predictor7 � with l�t�� l
��
t� for all � 2M and

strict inequality for some �. Implicit to this assumption is the assumption that l�t� and

l
��
t� exist. l�t� exists i� �(xtjx<t) exists i� �(x<t)>0 i� w�(x<t)>0.

l�t� =
X
�

w�(x<t)l
�
t� <

X
�

w�(x<t)l
��
t� = l

��
t� � l�t�

The two equalities follow from inserting (7) into (41). The strict inequality follows from the

assumption and w�(x<t)>0. The last inequality follows from the fact that �� minimizes

by de�nition (27) the �-expected loss (similarly to (29)). The contradiction l�t�<l�t� proves

Pareto-optimality of � w.r.t. lt.

In the same way we can prove Pareto-optimality of � w.r.t. the total loss Ln by de�ning

the � expected total losses

L�
n� :=

nX
t=1

X
x<t

�(x<t)l
�
t�(x<t) =

nX
t=1

X
x1:t

�(x1:t)`xty�t (42)

for a predictor �, and by assuming L�
n� �L

��
n� for all � and strict inequality for some �,

from which we get the contradiction L�
n�=

P
�w�L

�
n�<

P
�w�L

��
n�=L

��
n��L�

n� with the help

7
According to de�nition 10 we should look for a �, but for each deterministic predictor � there exists

a � with �=��.
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of (5). The instantaneous and total expected errors et and En can be considered as special

loss functions.

Pareto-optimality of � w.r.t. st (and hence Sn) can be understood from geometrical insight.

A formal proof for st goes as follows: With the abbreviations i = xt, y�i = �(xtjx<t),
zi=�(xtjx<t), ri=�(xtjx<t), and w�=w�(x<t)�0 we ask for a vector r with Pi(y�i�ri)2�P

i(y�i�zi)2 8�. This implies

0 � X
�

w�

hX
i

(y�i�ri)2 �
X
i

(y�i�zi)2
i
=

X
�

w�

hX
i

�2y�iri + r2i + 2y�izi � z2i

i
=

=
X
i

�2ziri + r2i + 2zizi � z2i =
X
i

(ri�zi)2;

where we have used
P

�w�=1 and
P

�w�y�i=zi (7).
P

i(ri�zi)2�0 implies r=z proving

unique Pareto-optimality of � w.r.t. st. Similarly for dt the assumption
P

iy�iln
y�i
ri
�P

iy�iln
y�i
zi
8� implies

0 � X
�

w�

hX
i

y�i ln
y�i

ri
� y�i ln

y�i

zi

i
=

X
�

w�

X
i

y�i ln
zi

ri
=

X
i

zi ln
zi

ri

which implies r=z proving unique Pareto-optimality of � w.r.t. dt. The proofs for Sn and

Dn are similar. ut
We have proven that � is uniquely Pareto-optimal w.r.t. st, Sn, dt and Dn. In the case of

et, En, lt and Ln there are other � 6=� with F(�;�)=F(�;�)8�, but the actions/predictions
they invoke are unique (y

��
t = y

��
t ) (if ties in argmaxyt are broken in a consistent way),

and this is all what counts.

For all measures which are relevant from a decision theoretic point of view, i.e. for all loss

functions lt and Ln, � has the welcomed property of being Pareto-optimal, but � is not

Pareto-optimal w.r.t. to all thinkable performance measures.

Theorem 12 ((Non)Pareto-optimality) � is Pareto-optimal w.r.t.

� the �-norm jj�jj� for ��1,

� positive linear combinations of �i-norms with all �i�1,

� a power of F if Pareto-optimal w.r.t. F , i.e. esp. w.r.t. jj�jj��.
� is (in general) not Pareto-optimal w.r.t.

� the �-norm jj�jj� for �<1,

� positive linear combinations of jj�jj�i�i with all �i�1.

� positive linear combinations of Fi even if Pareto-optimal w.r.t. all Fi.

Intuition on this problem can be gained by considering probability vectors x;y;z;v2��
IR3, where � is the 2d probability triangle, and z=wx+(1�w)y is a mixture of x and

y. Consider the sets Mx := fr :F(x;r)�F(x;z)g and analogously My. Mx\My is not

empty; it contains z. If Mx\My has an interior, then z is not Pareto-optimal. Visualize

the 1d boundaries of the 2d areas Mx and My qualitatively for the various performance

measures F . This gives some intuition of how to prove Pareto-optimality and to construct

counter-examples. A proof of Theorem 12 will be given elsewhere.
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6.3 Balanced Pareto Optimality of �

Pareto-optimality should be regarded as a necessary condition for a prediction scheme

aiming to be optimal. From a practical point of view a signi�cant decrease of F for

many � may be desirable even if this causes a small increase of F for a few other �. The

impossibility of such a \balanced" improvement is a more demanding condition on � than

pure Pareto-optimality. The next theorem shows that �� is also balanced-Pareto-optimal.

We only consider the performance measure Ln and suppress the index n for convenience.

Theorem 13 (Balanced Pareto Optimality w.r.t. L)

�� := L
~�
� � L��

� ; � :=
X
�2M

w��� ) � � 0:

This implies the following: Assume ~� has larger loss than �� on environments L by a total

weighted amount of �L :=
P

�2Lw���. Then
~� can have smaller loss on �2H:=MnL, but

the improvement is bounded by �H :=jP�2Hw���j��L. Especially j��j�w�1
� max�2L��.

This means that a weighted loss decrease �H by using ~� instead of �� is compensated by

an at least as large weighted increase �L on other environments. If the increase is small,

the decrease can also only be small. In the special case of only a single environment

with increased loss ��, the decrease is bound by �� � w�

w�
j��j, i.e. an increase by an

amount �� can only cause a decrease by at most the same amount times a factor w�

w�
. A

increase can only cause a smaller decrease in simpler environments, but a scaled decrease

in more complex environments. Finally note that pure Pareto-optimality (11) follows

from balanced Pareto-optimality in the special case of no increase �L�0.

Proof: ��0 follows from �=
P

�w�[L
~�
��L��

� ]=L
~�
� �L��

� �0, where we have used linearity
of L� in � and L

��
� �L�

� . The remainder of Theorem 13 is obvious from 0��=�L��H

and by bounding the weighted average �� by its maximum.ut

6.4 On the Optimal Choice of Weights

In the following we indicate the dependency of � on w explicitly by writing �w. We

have shown that the ��w prediction schemes are (balanced) Pareto optimal, i.e. that no

prediction scheme � (whether based on a Bayes mix or not) can be uniformly better.

Least assumptions on the environment are made for M which are as large as possible.

In Subsection 2.7 we have discussed the set M of all enumerable semimeasures which we

regarded as suÆciently large from a computational point of view (see [Sch00] for even

larger sets, but which are still in the computational realm). Agreeing on this M still

leaves open the question of how to choose the weights (prior believes) w�, since every �w
with w�>08� is Pareto-optimal and leads asymptotically to optimal predictions.
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We have derived bounds for the mean squared sum S�w
n� � lnw�1

� and for the loss regret

L
��w
n� �L��

n� � 2 lnw�1
� +2

q
lnw�1

� L��
n� . All bounds monotonically decrease with increasing

w�. So it is desirable to assign high weights to all �2M. Due to the (semi)probability con-

straint
P

�w��1 one has to �nd a compromise.8In the following we will argue that in the

class of enumerable weight functions with short program there is an optimal compromise,

namely w�=2�K(�) which gives Solomono�'s prior.

Consider the class of enumerable weight function with short program, namely V :=fv(:) :
M!IR+ with

P
�v��1 and K(�)=O(1)g. Let w� :=2�K(�) and v(�)2V. Corollary 4.3.1

of [LV97, p255] says that K(x)��log2P (x)+K(P )+O(1) for all x if P is an enumerable

discrete semimeasure. Identifying P with v and x with (the program index describing) �

we get

lnw�1
� � ln v�1� +O(1):

This means that the bounds for �w depending on lnw�1
� are at most O(1) larger than the

bounds for �v depending on lnv�1� . So we lose at most an additive constant of order 1 in

the bounds when using �w instead of �v. In using Solomono�'s prior �w we are on the safe

side, getting (within O(1)) best bounds for all environments.

Theorem 14 (Optimality of universal weights) Within the set V of enumerable

weight functions with short program, the universal weights w�=2�K(�)
lead to the smallest

performance bounds within an additive (to lnw�1
� ) constant in all enumerable environ-

ments.

Since the above justi�es the use of Solomono�'s prior and Solomono�'s prior assigns

high probability to an environment if and only if it has low (Kolmogorov) complexity,

one may interpret the result as a justi�cation of Occam's razor9. But note that this

is more of a bootstrap argument, since we implicitly used Occam's razor to justify the

restriction to enumerable semimeasures. We also considered only weight functions v with

low complexity K(v) =O(1). What did not enter as an assumption but came out as a

result is that the speci�c universal weights w�=2�K(�) are optimal.

6.5 Occam's razor versus No Free Lunches

We do not regard Theorem 13 as a \No Free Lunch" (NFL) theorem [WM97]. Since most

environments are completely random, a small concession on the loss in each of these com-

pletely uninteresting environments provides enough margin �H to yield distinguished per-

formance on the few non-random (interesting) environments. Indeed, we would interpret

8
All results in this paper have been stated and proven for probability measures �, � and w� , i.e.P

x1:t
�(x1:t)=

P
x1:t

�(x1:t)=
P

�
w� =1. On the other hand, the class M considered here is the class of

all enumerable semimeasures and
P

�
w�<1. In general, each of the following 4 items could be semi (<)

or not (=): (�, �, M, w�), where M is semi if some elements are semi. Six out of the 2
4
combinations

make sense. Convergence (2), the error bound (Theorem 3), the loss bound (4), as well as most other

statements hold for (<;=;<;<), but not for (<;<;<;<). Nevertheless, �!� holds also for (<;<;<;<)

with maximal � semi-probability, i.e. fails with � semi-probability 0.
9
The only if direction can be shown by a more easy and direct argument [Sch02].
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the NFL theorems for optimization and search in [WM97] as balanced Pareto-optimality

results. Interestingly, whereas for prediction only Bayes-mixes are Pareto-optimal, for

search and optimization every algorithm is Pareto-optimal. There is an ongoing battle

between believers in Occam's razor and believers in \no free lunches" that cannot be dealt

with here [Sto01].

7 Continuous Probability Classes M

We have considered thus far countable probability classes M, which makes sense from

a computational point of view as emphasized in Subsection 2.7. On the other hand

in statistical parameter estimation one often has a continuous hypothesis class (e.g. a

Bernoulli(�) process with unknown �2 [0;1]). Let

M := f�� : � 2 � � IRdg

be a family of probability distributions parameterized by a d-dimensional continuous

parameter �. Let � � ��0 2M be the true generating distribution and �0 be in the

interior of the compact set �. We may restrict M to a countable dense subset, like

f��g with computable (or rational) �. If �0 is itself a computable real (or rational) then

Theorem 7 applies. From a practical point of view the assumption of a computable �0 is

not so serious. It is more from a traditional analysis point of view that one would like

quantities and results depending smoothly on � and not in a weird fashion depending on

the computational complexity of �. For instance, the weight w(�) is often a continuous

probability density

�(x1:n) :=

Z
�
d� w(�)���(x1:n);

Z
�
d� w(�) = 1; w(�) � 0: (43)

The most important property of � used in this work was �(x1:n)�w� ��(x1:n) which has

been obtained from (5) by dropping the sum over �. The analogous construction here is

to restrict the integral over � to a small vicinity NÆ of �. For suÆciently smooth �� and

w(�) we expect �(x1:n)>�jNÆnj�w(�)���(x1:n), where jNÆn j is the volume of NÆn . This in

turn leads to Dn
<�lnw�1

� +lnjNÆn j�1, where w� :=w(�0). NÆn should be the largest possible

region in which ln�� is approximately 
at on average. The averaged instantaneous, mean,

and total curvature matrices of ln� are

jt(x<t) := Etr� ln��(xtjx<t)rT
� ln��(xtjx<t)j�=�0; �|n := 1

n
Jn (44)

Jn :=
nX
t=1

E<tjt(x<t) = E1:nr� ln��(x1:n)rT
� ln��(x1:n)j�=�0

They are the Fisher information of � and may be viewed as measures of the parametric

complexity of �� at � = �0. The last equality can be shown by using the fact that the

�-expected value of rln��rT ln� coincides with �rrT ln� (since X is �nite) and a similar

line of reasoning as in (14) for Dn.
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Theorem 15 (Continuous Entropy Bound) Let �� be twice continuously di�eren-

tiable at �0 2 �� IRd
and w(�) be continuous and positive at �0. Furthermore we as-

sume that the inverse of the mean Fisher information matrix (�|n)
�1

exists, is bounded for

n!1, and is uniformly (in n) continuous at �0. Then the relative Entropy Dn between

����0 and � (de�ned in (43)) can be bounded by

Dn := E1:n ln
�(x1:n)

�(x1:n)
� lnw�1

� + d

2
ln n

2�
+ 1

2
ln det �|n + o(1) =: b�

where w��w(�0) is the weight density (43) of � in � and o(1) tends to zero for n!1.

For independent and identically distributed distributions ��(x1:n) = ��(x1)�:::���(xn) 8�
this bound has been proven in [CB90, Theorem 2.3]. In this case J [CB90](�0)� �|n� jn
independent of n. For stationary (kth-order) Markov processes �|n is also constant. The

proof generalizes to arbitrary �� by replacing J [CB90](�0) with �|n everywhere in their

proof. For the proof to go through, the vicinity NÆn := f� : jj���0jj�|n � Æng of �0 must

contract to a point set f�0g for n!1 and Æn! 0. �|n is always positive semi-de�nite

as can be seen from the de�nition. The boundedness condition of �|�1n implies a strictly

positive lower bound independent of n on the Eigenvalues of �|n for all suÆciently large

n, which ensures NÆn!f�0g. The uniform continuity of �|n ensures that the remainder

o(1) from the Taylor expansion of Dn is independent of n. Note that twice continuous

di�erentiability of Dn at �0 [CB90, Condition 2] follows for �nite X from twice continuous

di�erentiability of ��. Under some additional technical conditions one can even prove

an equality Dn=lnw�1
� + d

2
ln n

2�e
+ 1

2
lndet�|n+o(1) for the i.i.d. case [CB90, (1.4)], which is

probably also valid for general �.

The lnw�1
� part in the bound is the same as for countableM. The d

2
ln n

2�
can be understood

as follows: Consider �2 [0;1) and restrict the continuous M to � which are �nite binary

fractions. Assign a weight w(�) � 2�l to a � with binary representation of length l.

Dn
<�l � ln2 in this case. But what if � is not a �nite binary fraction? A continuous

parameter can typically be estimated with accuracy O(n�1=2) after n observations. The

data do not allow to distinguish a ~� from the true � if j~���j<O(n�1=2). There is such a ~�

with binary representation of length l=log2O(
p
n). Hence we expect Dn

<� 1
2
lnn+O(1) or

d

2
lnn+O(1) for a d-dimensional parameter space. In general, the O(1) term depends on

the parametric complexity of �� and is explicated by the third 1
2
lndet�|n term in Theorem

15. See [CB90, p454] for an alternative explanation. Note that a uniform weight w(�)= 1
j�j

does not lead to a uniform bound unlike the discrete case. A uniform bound is obtained

for Bernando's (or in the scalar case Je�reys') reference prior w(�)�
q
det�|1(�) if |1

exists [Ris96].

So Theorems 2...7 are also applicable to the case of continuously parameterized probability

classes. Theorem 15 is also valid for a mixture of the discrete and continuous case �=P
a

R
d� wa(�)�a� with

P
a

R
d� wa(�)=1.
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8 Further Applications

8.1 Partial Sequence Prediction

There are (at least) two ways to treat partial sequence prediction. With this we mean

that not every symbol of the sequence need to be predicted, say given sequences of the

form z1x1:::znxn we want to predict the x
0s only. The �rst way is to keep the �� prediction

schemes of the last sections mainly as they are, and use a time dependent loss function,

which assigns zero loss `tzy � 0 at the z positions. Any dummy prediction y is then

consistent with (27). The losses for predicting x are generally non-zero. This solution

is satisfactory as long as the z0s are drawn from a probability distribution. The second

(preferable) way does not rely on a probability distribution over the z. We replace all

distributions �(x1:n) (�= �, �, �) everywhere by distributions �(x1:njz1:n) conditioned on

z1:n. The z1:n conditions cause nowhere problems as they can essentially be thought of

as �xed (or as oracles or spectators). So the bounds in Theorems 2...15 also hold in this

case for all individual z's.

8.2 Independent Experiments and Classi�cation

A typical experimental situation is a sequence of independent (i.i.d) experiments, predic-

tions and observations. At time t one arranges an experiment zt (or observes data zt),

then tries to make a prediction, and �nally observes the true outcome xt. Often one has a

parameterized class of models (hypothesis space) ��(xtjzt) and wants to infer the true � in
order to make improved predictions. This is a special case of partial sequence prediction,

where the hypothesis space M=f��(x1:njz1:n)=��(x1jz1)�:::���(xnjzn)g consists of i.i.d.
distributions, but note that � is not i.i.d. This is the same setting as for on-line learning

of classi�cation tasks, where a z2Z should be classi�ed as an x2X .

9 Comparison to Weighted Majority

There are two schools of universal sequence prediction: We considered expected per-

formance bounds for Bayesian prediction based on mixtures. The other approach are

weighted majority (WM) algorithms with worst case loss bounds in the spirit of Little-

stone, Warmuth, Vovk and others. The two schools usually do not refer to each other

much. We brie
y describe WM and compare both approaches. For a more compre-

hensive comparison see [MF98]. In the following we focus on topics not covered in

[MF98]. WM was invented in [LW89, LW94] and [Vov92] and further developed in

[Ces97, HKW98, KW99] and by others. Many variations known by many names (weighted

average, aggregating strategy, learning with expert advice, boosting, hedge algorithm, ...)

have meanwhile been invented. Early works in this direction are [Daw84, Ris89]. See

[Vov99] for a review and further references. We describe the setting and basic idea of
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WM for binary alphabet. Consider a �nite binary sequence x1x2:::xn 2f0;1gn and a �-

nite set E of experts e2E making predictions xet in the unit interval [0;1] based on past

observations x1x2:::xt�1. The loss of expert e in step t is de�ned as jxt�xet j. In the

case of binary predictions xet 2f0;1g, jxt�xet j coincides with our error measure (17). The

WM algorithm p�n combines the predictions of all experts. It forms its own prediction10

x
p
t 2 [0;1] according to some weighted average of the expert's predictions xet . There are

certain update rules for the weights depending on some parameter �. Various bounds for

the total loss Lp(x) :=
Pn

t=1jxt�xpt j of WM in terms of the total loss L"(x) :=
Pn

t=1jxt�x"t j
of the best expert "2E have been proven. It is possible to �ne tune � and to eliminate

the necessity of knowing n in advance. The �rst bound of this kind has been obtained in

[Ces97]:

Lp(x) � L"(x) + 2:8 ln jEj+ 4
q
L"(x) ln jEj: (45)

The constants 2.8 and 4 have been improved in [AG00, YE01]. The last bound in Theorem

3 with Dn� lnjMj for uniform weights and with L��
n increased to L�

n reads

L��
n � L�

n + 2 ln jMj+ 2
q
L�
n ln jMj:

It has a quite similar structure as (45), although the algorithms, the settings, the proofs,

and the interpretation are quite di�erent. Whereas WM performs well in any environ-

ment, but only relative to a given set of experts E , our �� predictor competes with the best

possible �� predictor (and hence with any other � predictor), but only in expectation and

for a given set of environmentsM. WM depends on the set of expert, �� depends on the

set of environmentsM. The basic p�n algorithm has been extended in di�erent directions:

incorporation of di�erent initial weights (jEj ,! ln 1
w�
) [LW89, Vov92], more general loss

functions [HKW98], continuous valued outcomes [HKW98], and multi-dimensional pre-

dictions [KW99] (but not yet for the absolute loss). The work of [Yam98] lies somewhat

in between WM and this work; \WM" techniques are used to prove expected loss bounds

(but only for sequences of independent symbols/experiments and limited classes of loss

functions). Finally, note that the predictions of WM are continuous. This is appropriate

for weather forecasters which announce the probability of rain, but the decision to wear

sunglasses or to take an umbrella is binary, and the su�ered loss depends on this binary

decision, and not on the probability estimate. It is possible to convert the continuous

prediction of WM into a probabilistic binary prediction by predicting 1 with probability

xpt 2 [0;1]. jxt�xpt j is then the probability of making an error. Note that the expectation

is taken over the probabilistic prediction, whereas for the deterministic �� algorithm the

expectation is taken over the environmental distribution �. The multi-dimensional case

[KW99] could then be interpreted as a (probabilistic) prediction of symbols over an alpha-

bet X=f0;1gd, but error bounds for the absolute loss have yet to be proven. In [FS97] the
regret is bounded by lnjEj+

q
2~L lnjEj for arbitrary unit loss function and alphabet, where

~L is an upper bound on L", which has to be known in advance. It would be interesting to

generalize WM and bound (45) to arbitrary alphabet and to general loss functions with

probabilistic interpretation.

10
The original WM version [LW89] had discrete prediction x

p
t 2f0;1g with (necessarily) double as many

errors as the best expert and is only of historical interest any more.
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10 Outlook

In the following we discuss several directions in which the �ndings of this work may be

extended.

10.1 In�nite Alphabet

In many cases the basic prediction unit is not a letter, but a number (for inducing number

sequences), or a word (for completing sentences), or a real number or vector (for physical

measurements). The prediction may either be generalized to a block by block prediction

of symbols or, more suitably, the �nite alphabet X could be generalized to countable

(numbers, words) or continuous (real or vector) alphabet. The presented Theorems are

independent of the size of X and hence should generalize to countably in�nite alphabets

by appropriately taking the limit jX j!1 and to continuous alphabets by a denseness

or separability argument. Since the proofs are also independent of the size of X we may

directly replace all �nite sums over X by in�nite sums or integrals and carefully check

the validity of each operation. We expect all Theorems to remain valid in full generality,

except for minor technical existence and convergence constraints.

An in�nite prediction space Y was no problem at all as long as we assumed the existence

of y
��
t 2Y (27). In case y

��
t 2Y does not exist one may de�ne y

��
t 2Y in a way to achieve

a loss at most "t=o(t�1) larger than the in�mum loss. We expect a small �nite correction

of the order of "=
P
1

t=1"t<1 in the loss bounds somehow.

10.2 Delayed & Probabilistic Prediction

The �� schemes and theorems may be generalized to delayed sequence prediction, where

the true symbol xt is given only in cycle t+d. A delayed feedback is common in many

practical problems. We expect bounds with Dn replaced by d �Dn. Further, the error

bounds for the probabilistic suboptimal � scheme de�ned and analyzed in [Hut01a] can

also be generalized to arbitrary alphabet.

10.3 More Active Systems

Prediction means guessing the future, but not in
uencing it. A small step in the direction

to more active systems was to allow the � system to act and to receive a loss `xtyt
depending on the action yt and the outcome xt. The probability � is still independent of

the action, and the loss function `t has to be known in advance. This ensures that the

greedy strategy (27) is optimal. The loss function may be generalized to depend not only

on the history x<t, but also on the historic actions y<t with � still independent of the

action. It would be interesting to know whether the scheme � and/or the loss bounds

generalize to this case. The full model of an acting agent in
uencing the environment has

been developed in [Hut01b], but loss bounds have yet to be proven.
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10.4 Miscellaneous

Another direction is to investigate the learning aspect of universal prediction. Many pre-

diction schemes explicitly learn and exploit a model of the environment. Learning and

exploitation are melted together in the framework of universal Bayesian prediction. A

separation of these two aspects in the spirit of hypothesis learning with MDL [VL00]

could lead to new insights. Also, the separation of noise from useful data, usually an

important issue [GTV01], did not play a role here. The attempt at an information the-

oretic interpretation of Theorem 8 may be made more rigorous in this or another way.

In the end, this may lead to a simpler proof of Theorem 8 and maybe even for the loss

bounds. A uni�ed picture of the loss bounds obtained here and the loss bounds for

the weighted majority (WM) algorithm could also be fruitful. Yamanishi [Yam98] used

WM methods to prove expected loss bounds for Bayesian prediction, so maybe the proof

technique presented here could be used vice versa to prove more general loss bounds for

WM. Maximum-likelihood predictors may also be studied. Finally, the system should be

applied to speci�c induction problems for speci�c M with computable �.

11 Summary

We compared universal predictions based on Bayes-mixtures � to the infeasible informed

predictor based on the unknown true generating distribution �. We have shown that the

universal posterior � converges to � and that �=�!1. Our main focus was on a decision-

theoretic setting, where each prediction yt2X (or more generally action yt2Y) results in a
loss `xtyt if xt is the true next symbol of the sequence. We have shown that the �� predictor

su�ers only slightly more loss than the �� predictor. We have shown that the derived error

and loss bounds cannot be improved in general, i.e. without making extra assumptions

on `, �, M, or w�, and this is true for any � independent predictor. We have also shown

Pareto-optimality of � in the sense that there is no other predictor which performs better

or equal in all environments �2M and strictly better in at least one. Optimal predictors

can (in most cases) be based on a mixture distributions �. Finally we gave an Occam's

razor argument that Solomono�'s prior with weights w�=2�K(�) is optimal, where K(�) is

the Kolmogorov complexity of �. Of course, optimality always depends on the setup, the

assumptions, and the chosen criteria. For instance, the universal predictor was not always

Pareto-optimal, but at least for many popular, and for all decision theoretic performance

measures. Bayes predictors are also not necessarily optimal under worst case criteria

[CBL01]. We also derived a bound for the relative entropy between � and � in the case

of a continuously parameterized family of environments, which allowed us to generalize

the loss bounds to continuous M. Furthermore, we discussed the duality between the

Bayes and worst case (WM) approaches and results, classi�cation tasks, games of chances,

in�nite alphabet, active systems in
uencing the environment, and others.
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A Entropy Inequalities (Lemma 1)

11We show that

1

2

NX
i=1

f(yi�zi) � f(

vuut1

2

NX
i=1

yi ln
yi

zi
) for yi � 0; zi � 0;

NX
i=1

yi = 1 =
NX
i=1

zi: (46)

for any convex and even (f(x) = f(�x)) function with f(0)� 0. For f(x) = x2 we get

inequality (Lemma 1s), for f(x)= jxj we get inequality (15). To prove (46) we partition

i2f1;:::;Ng=G+[G�, G+\G�=fg, and de�ne y� :=
X
i2G�

yi and z� :=
X
i2G�

zi. It is well

known that the relative Entropy is positive, i.e.

X
i2G�

pi ln
pi

qi
� 0 for pi � 0; qi � 0;

X
i2G�

pi = 1 =
X
i2G�

qi: (47)

Note that there are 4 probability distributions (pi and qi for i 2G+ and i 2G�). For

i2G�, pi := yi=y
� and qi := zi=z

� satisfy the conditions on p and q. Inserting this into

(47) and rearranging the terms we get

X
i2G�

yi ln
yi

zi
� y� ln

y�

z�
:

If we sum over � and de�ne y�y+=1�y� and z�z+=1�z� we get

NX
i=1

yi ln
yi

zi
� X

�

y� ln
y�

z�
= y ln

y

z
+ (1�y) ln 1�y

1�z � 2(y�z)2 (48)

The last inequality is elementary and well known. For the special choice G� :=fi :yi >
�
zig,

we can upper bound
P

if(yi�zi) as follows
X
i2G�

f(yi�zi) (a)
=

X
i2G�

f(jyi�zij)
(b)

� f(
X
i2G�

jyi�zij) (c)
= f(j X

i2G�

yi�zij) (d)
=

(d)
= f(jy��z�j) (e)

= f(jy � zj) (f)
= f(

q
(y � z)2)

(g)

� f(

vuut1

2

NX
i=1

yi ln
yi

zi
) (49)

11
We will not explicate every subtlety and only sketch the proofs. Subtleties regarding y;z=0=1 have

been checked but will be passed over. 0ln
0

zi
:= 0 even for zi=0. Positive means � 0. The probability

constraints in (46) on y and z apply to all appendices. z>0 if y>0.
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(a) follows from the symmetry of f . (b) follows from the convexity12 of f and from f(0)�0.
(c) is true, since all yi�zi are positive/negative for i2G� due to the special choice of G�.

(d) and (e) follow from the de�nition of y(�) and z(�), (f) is obvious. (g) follows from

(48) and the monotonicity13 of
p

and f for positive arguments. Inequality (46) follows

by summation of (49) over � and noting that f(
p

) is independent of �.
This proves (Lemma 1f). Inserting f(x) = x2 yields (Lemma 1s), inserting f(x) = jxj
yields (Lemma 1a). (Lemma 1h) is proven di�erently. For arbitrary y� 0 and z� 0 we

de�ne

f(y; z) := y ln
y

z
� (
p
y �pz)2 + z � y = 2yg(

q
z=y) with g(t) := � ln t + t� 1 � 0:

This shows f�0, and hence
P

if(yi;zi)�0, which implies

X
i

yi ln
yi

zi
�X

i

(
p
yi �

p
zi)

2 �X
i

yi �
X
i

zi = 1� 1 = 0:

This proves (Lemma 1h). ut

B Binary Loss Inequality for z� 1
2
(37)

With the de�nition

f(y; z) := B0 �
�
y ln

y

z
+ (1� y) ln

1� y

1� z

�
+ A0 �(1� y)

z

1� z
� y ; z � 1

2
(50)

we show f(y;z)�0 for suitable A0�A+1 and B0�B+1. We do this by showing that f�0
at all extremal values and \at" boundaries. f!+1 for z!0, if we choose B0>0. For

the boundary z= 1
2
we lower bound the relative entropy by the sum over squares (Lemma

1s)

f(y; 1
2
) � 2B0(y � 1

2
)2 + A0(1� y)� y

The r.h.s. is quadratic in y with minimum at y�= A0+2B0+1
4B0

, which implies

f(y; 1
2
) � f(y�; 1

2
) � 4AB � A2 � 4

8(B + 1)
� 0 for B � 1

4
A+ 1

A
; A > 0; () B � 1):

Furthermore, for A�4 and B�1 we have f(y;1
2
)�2(1�y)(3�2y)�0. Hence f(y;1

2
)�0

for B� 1
A
+1, since for A�4 it implies B�1 and for A�4 it implies B� 1

4
A+ 1

A
.

The extremal condition @f=@z=0 (keeping y �xed) leads to

y = y� := z � B
0(1�z) + A0

B0(1�z) + A0z
:

12
Inserting y=0 and x= a+b in the convexity de�nition �f(x)+(1��)f(y)� f(�x+(1��)y) leads

to �f(a+b)+(1��)f(0)�f(�(a+b)). Inserting �=
a

a+b
and �=

b
a+b

and adding both inequalities gives

f(a+b)+f(0)�f(a)+f(b) for a;b�0. Using f(0)�0 we get f(
P

i
xi)�

P
i
f(xi) for xi�0 by induction.

13
Inserting b= y=�x and �=

1

2
into the convexity de�nition and using the symmetry of f we get

f(b)�f(0). Inserting this into f(a+b)+f(0)�f(a)+f(b) we get f(a+b)�f(a) which proves that f is

monotonically increasing for positive arguments (a;b�0).
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Inserting y� into the de�nition of f and, again, replacing the relative entropy by the sum

over squares (Lemma 1s), we get

f(y�; z) � 2B0(y� � z)2 + A0(1� y�) z
1�z

� y� = z(1�z)

[B0(1�z)+A0z]2
�g(z);

g(z) := 2B0A02z(1� z) + [(A0 � 1)B0(1� z)� A0](B0 + A0 z

1�z
):

We have reduced the problem to showing g� 0. If the bracket [:::] is positive, then g is

positive. If the bracket is negative, we can decrease g by increasing z
1�z
�1 in (B0+A0 z

1�z
)

to 1. The resulting expression is now quadratic in z with minima at the boundary values

z=0 and z= 1
2
. It is therefore suÆcient to check

g(0) � (AB � 1)(A+B + 2) � 0 and g(1
2
) � 1

2
(AB � 1)(2A+B + 3) � 0

which is true for B� 1
A
. In summary we have proved (50) for B� 1

A
+1 and A>0 ut.

C Binary Loss Inequality for z� 1
2
(38)

With the de�nition

f(y; z) := B0 �
�
y ln

y

z
+ (1� y) ln

1� y

1� z

�
+ A0 �(1� y)� y

1� z

z
; z � 1

2
(51)

we show f(y;z)� 0 for suitable A0�A+1> 1 and B0�B+1> 2 similarly to Appendix

B by proving that f �0 at all extremal values and \at" boundaries. f!+1 for z!1.

The boundary z= 1
2
has already been checked in Appendix B. The extremal condition

@f=@z=0 (keeping y �xed) leads to

y = y� := z � B0z

(B0 + 1)z � 1
:

Inserting y� into the de�nition of f and replacing the relative entropy by the sum over

squares (Lemma 1s), we get

f(y�; z) � 2B0(y� � z)2 + A0(1� y�)� y� 1�z
z

= z(1�z)

[(B0+1)z�1]2
�g(z);

g(z) := [(A0 � 1)B0z � A0 + 2z(1� z)](B0+1� 1
z
) + 2(1� z)2:

We have reduced the problem to showing g� 0. Since (B0+1� 1
z
)� 0 it is suÆcient to

show that the bracket is positive. We solve [:::]�0 w.r.t. B and get

B � 1� 2z(1� z)

z
� 1
A
+
1� z

z
:

For B � 1
A
+1 this is satis�ed for all 1

2
� z � 1. In summary we have proved (51) for

B� 1
A
+1 and A>0 ut.
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D General Loss Inequality (33)

We reduce

f(y; z) := B0

NX
i=1

yi ln
yi

zi
+ A0

NX
i=1

yi`im�
NX
i=1

yi`is � 0 (52)

for
PN

i=1 zidi � 0; di := `im � `is (53)

to the binary N=2 case. We do this by keeping y �xed and showing that f as a function

of z is positive at all extrema in the interior of the simplex �:=fz :Pizi=1;zi�0g of the
domain of z and \at" all boundaries. First, the boundaries zi!0 are safe as f!1 for

B0>0. Variation of f w.r.t. to z leads to a minimum at z=y. If
P

izidi�0, we have

f(y;y) =
X
i

yi(A
0`im�`is) �

X
i

yi(`im�`is) =
X
i

zidi � 0:

In the �rst inequality we used A0 > 1. If
P

izidi < 0, z= y is outside the valid domain

due to the constraint (53) and the valid minima are attained at the boundary �\P ,
P :=fz :Pizidi=0g. We implement the constraints with the help of Lagrange multipliers

and extremize

L(y; z) := f(y; z) + �
X

zi + �
X

zidi:

@L=@zi=0 leads to yi=y�i := zi(�+�di). Summing this equation over i we obtain �=1.

� is a function of y for which a formal expression might be given. If we eliminate yi in

favor of zi, we get

f(y�; z) =
X
i

cizi ; ci := (1 + �di)(B
0 ln(1 + �di) + A0`im � `is):

In principle � is a function of y but we can treat � directly as an independent variable,

since y has been eliminated.

The next step is to determine the extrema of the function f =
P
cizi for z2�\P . For

clearness we state the line of reasoning for N =3. In this case � is a triangle. As f is

linear in z it assumes its extrema at the vertices of the triangle, where all zi=0 except

one. But we have to take into account a further constraint z2P . The plane P intersects

triangle � in a �nite line (for �\P=fg the only boundaries are zi!0 which have already

been treated). Again, as f is linear, it assumes its extrema at the ends of the line, i.e. at

edges of the triangle � on which all but two zi are zero. With a similar line of arguments

for N>3 we conclude that a necessary condition for a minimum of f at the boundary is

that at most two zi are non-zero. But this implies that all but two yi are zero. If we had

eliminated z in favor of y, we could not have made the analogous conclusion because yi=0

does not necessarily imply zi = 0. We have e�ectively reduced the problem of showing

f(y�;z)�0 to the case N=2. We can go back one step further and prove (52) for N=2,

which implies f(y�;z)�0 for N =2. A proof of (52) for N =2 implies, by the arguments

given above, that it holds for all N . This is what we set out to show here ut.
The N=2 case is proven in the main text and in Appendices B and C .
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