Technical Report IDSTA-02-02 — 18 February 2002

OPTIMALITY OF UNIVERSAL BAYESIAN SEQUENCE
PREDICTION FOR GENERAL [LOSS AND ALPHABET

Marcus Hutter

IDSIA, Galleria 2, CH-6928 Manno-Lugano, Switzerland

marcus@idsia.ch http://www.idsia.ch/~marcus

Keywords
Bayesian sequence prediction; mixture distributions, Solomonoff induction; Kol-

mogorov complexity; learning; universal probability; tight loss and error bounds;
Pareto-optimality; games of chance; classification.

Abstract

The Bayesian framework is ideally suited for induction problems. The proba-
bility of observing z; at time ¢, given past observations z;...z; 1 can be computed
with Bayes’ rule if the true generating distribution p of the sequences zizsz3... is
known. The problem, however, is that in many cases one does not even have a rea-
sonable guess of the true distribution. In order to overcome this problem a universal
(or mixture) distribution ¢ is defined as a weighted sum or integral of distributions
VvEM, where M is any countable or continuous set of distributions including p. This
is a generalization of Solomonoff induction, in which M is the set of all enumerable
semi-measures. It is shown for several performance measures that using the univer-
sal £ as a prior is nearly as good as using the unknown true distribution x. In a
sense, this solves the problem of the unknown prior in a universal way. All results
are obtained for general finite alphabet. Convergence of ¢ to p in a conditional
mean squared sense and of £/ — 1 with x4 probability 1 is proven. The number of
additional errors F¢ made by the optimal universal prediction scheme based on ¢
minus the number of errors E,, of the optimal informed prediction scheme based on
w is proven to be bounded by O(y/E,,). The prediction framework is generalized to
arbitrary loss functions. A system is allowed to take an action yy, given zi...xy 1
and receives loss £y,,, if z; is the next symbol of the sequence. No assumptions on £
are necessary, besides boundedness. Optimal universal A¢ and optimal informed A,
prediction schemes are defined and the total loss of A¢ is bounded in terms of the
total loss of A, similar to the error bounds. We show that the bounds are tight and
that no other predictor can lead to smaller bounds. Furthermore, for various perfor-
mance measures we show Pareto-optimality of £ in the sense that there is no other
predictor which performs better or equal in all environments v € M and strictly bet-
ter in at least one. So, optimal predictors can (w.r.t. to most performance measures
in expectation) be based on the mixture £. Finally we give an Occam’s razor argu-
ment that Solomonoff’s choice w, ~2 K®) for the weights is optimal, where K (1)
is the length of the shortest program describing v. Furthermore, games of chance,
defined as a sequence of bets, observations, and rewards are studied. The average
profit achieved by the A¢ scheme rapidly converges to the best possible profit. The
time needed to reach the winning zone is proportional to the relative entropy of
and &. The prediction schemes presented here are compared to the weighted ma-
jority algorithm(s). Although the algorithms, the settings, and the proofs are quite
different the bounds of both schemes have a very similar structure. Extensions to
infinite alphabets, partial, delayed and probabilistic prediction, classification, and
more active systems are briefly discussed.
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1 Introduction

1.1 Induction

Many problems are of induction type in which statements about the future have to be
made, based on past observations. What is the probability of rain tomorrow, given the
weather observations of the last few days? Is the Dow Jones likely to rise tomorrow,
given the chart of the last years and possibly additional newspaper information? Can we
reasonably doubt that the sun will rise tomorrow? Indeed, one definition of science is to
predict the future, where, as an intermediate step, one tries to understand the past by
developing theories and, as a consequence of prediction, one tries to manipulate the future.
All induction problems may be studied in the Bayesian framework. The probability of
observing x; at time ¢, given the observations zi...r;_; can be computed with Bayes’
rule, if we know the true probability distribution, which generates the observed sequence
T1%2x3.... The problem is that in many cases we do not even have a reasonable guess of
the true distribution p. What is the true probability of weather sequences, stock charts,
or sunrises?

1.2 Universal Sequence Prediction

In order to overcome the problem of the unknown true distribution, one can define a
mixture distribution £ as w, weighted sum or integral over distributions v € M, where M
is any discrete or continuous (hypothesis) set including pu. M is assumed to be known
and to contain the true distribution, i.e. u€ M. Since the probability £ can be shown to
converge rapidly to the true probability p in a conditional sense, making decisions based
on £ is often nearly as good as the infeasible optimal decision based on the unknown
p [MF98]. Solomonoff [Sol64] had the idea to define a universal prior £ as a weighted
average over all (semi)computable probability distributions. Lower weights were assigned
to more complex distributions. He unified Epicurus’ principle of multiple explanations,
Occams’ razor [simplicity] principle and Bayes’ rule into an elegant formal theory. If the
environment possesses some effective structure at all, Solomonoff’s posterior “finds” this
structure, and allows for a good prediction. In a sense, this solves the induction problem
in a universal way, i.e. without making problem specific assumptions.

1.3 Contents

The main new contributions of this work are to

e generalize the convergence [Sol78, LVI7] of £ to p (Section 3),

e derive general error and loss bounds measuring the performance of £ relative to u
(Section 4), improving upon previous results [Hut0la, MF98],

e apply the results to games of chance (Section 5),
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e show that the error/loss bounds are tight and that Solomonoff’s universal prior is
optimal (Section 6),

e generalize the bound in [CB90] on the relative entropy between ¢ and p for contin-
uous i.i.d. probability classes M to the non-i.i.d. case (Section 7),

e compare the universal prediction scheme and its loss bounds to the weighted ma-
jority scheme and its loss bounds [Ces97] (Section 9).

Section 2 explains notation and defines the universal or mixture distribution & as the
w, weighted sum of probability distributions v of a set M, which includes the true dis-
tribution p. No structural assumptions are made on the v. & multiplicatively dominates
all v € M, and the relative entropy between p and £ is bounded by lnwljl. Convergence
of £ to p in a mean squared sense is shown in Theorem 2. Furthermore, an elemen-
tary proof of £/u— 1 (not based on semi-martingales) including the convergence rate
is given. The representation of the universal posterior distribution and the case u ¢ M
are briefly discussed. Various standard sets M of probability measures are discussed, in-
cluding computable, enumerable, cumulatively enumerable, approximable and finite-state
(semi)measures.

Section 3 is essentially a generalization of the deterministic error bounds found in
[HutOla] from binary alphabet to a general finite alphabet X. Theorem 3 bounds the
number of additional errors (E® — E®+) made by optimal universal predictor O¢, as com-
pared to optimal informed prediction scheme ©, by O(V E®+). The non-binary setting
cannot be reduced to the binary case! One might think of a binary coding of the symbols
x; € X in the sequence z12,.... But this makes it necessary to predict a block of bits z;,
before one receives the true block of bits x;, which differs from the bit by bit prediction
scheme considered in [Sol78, HutO1a).

Section 4 generalizes the prediction framework to the case where an action gy, €Y results
in a loss ¢, if z; is the next symbol of the sequence. Optimal universal A; and optimal
informed A, prediction schemes are defined for this case, and loss bounds similar to the
error bounds of the last section are proved. No assumptions on ¢ have to be made, besides
boundedness. For unit loss (0</,,,, <1) the loss bounds in Theorem 4 are essentially the
same as the error bounds of Theorem 3 with error replaced by loss, but the proofs are
much more involved. The bounds are compared to the loss bound obtained in [MF98].
Theorem 7 generalizes the bounds to non-unit and non-static loss functions. Convergence
of the instantaneous losses are also studied. Some popular loss functions, including the
absolute, square, logarithmic, and Hellinger loss are discussed.

Section 5 applies Theorem 7 to games of chance, defined as a sequence of bets, observa-
tions, and rewards. The average profit ;525 achieved by the A scheme rapidly converges
to the best possible average profit p* achieved by the A, scheme (2325 —phe=0(n"1/?)).
If there is a profitable scheme at all (p2+ >¢>0), asymptotically the universal A¢ scheme
will also become profitable. Theorem 8 bounds the time needed to reach the winning zone.
It is proportional to the relative entropy of x4 and £ with a factor depending on the profit
range and on pa«. An attempt is made to give an information theoretic interpretation of
the result.
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Section 6 discusses the quality of the universal predictor and the bounds. We show
that there are M and p € M and weights w, such that the derived error bounds are
tight. This shows that the error bounds cannot be improved in general. We also show
Pareto-optimality of £ in the sense that there is no other predictor which performs better
or equal in all environments v € M and strictly better in at least one. Optimal predictors
can always be based on a mixture distributions £&. This still leaves open how to choose
the weights. We give an Occam’s razor argument that Solomonoff’s choice w, =2 K®)
where K (v) is the length of the shortest program describing v is optimal.

Section 7 generalizes the setup to continuous probability classes M = {yy} consisting
of continuously parameterized distributions g with parameter # € IR. Under certain
smoothness and regularity conditions a bound for the relative entropy between u and &,
which is central for all presented results, can still be derived. The bound depends on the
Fisher information of ; and grows only logarithmically with n, the intuitive reason being
the necessity to describe § to an accuracy O(n~'/?).

Section 8 discusses further applications. Two ways of using the prediction schemes for
partial sequence prediction, where not every symbol needs to be predicted, are described.
Performing and predicting a sequence of independent experiments and online learning of
classification tasks are special cases.

Section 9 compares the universal prediction scheme studied here to the weighted ma-
jority (WM) algorithm(s) [LW89, Vov92, LW94, Ces97, HKW98, KW99]. WM combines
forecasts of experts e € £ to form its own prediction. The number of prediction errors of
WM are compared to the best expert in £. No assumption is made on the distribution of
the strings — the bounds are worst case bounds. Although the algorithms, the settings,
and the proofs are quite different, the WM bounds and the last bound of Theorem 4 have
the same structure.

Section 10 outlines possible extensions of the presented theory and results. They include
infinite alphabets, delayed and probabilistic prediction, active systems influencing the
environment, learning aspects, and a unification with WM.

Section 11 summarizes the results.

Appendices A-D contain some technical proofs.

1.4 Introductory References

There are good introductions and surveys of Solomonoff sequence prediction [LV92, LV97],
inductive inference in general [AS83, Sol97, MF98], reasoning under uncertainty [Grii98],
and competitive online statistics [Vov99], with interesting relations to this work. See
Section 9 for some more details. This paper is more or less self-contained. Exceptions are

Subsections 2.7 and 6.4 on Solomonoff mixtures, Section 7 on continuous classes M, and
Section 9 on WM.
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2 Setup and Convergence

2.1 Random sequences

We denote strings over a finite alphabet X by xyxs...x, with z; € X. We further use
the abbreviations x,.,, =T, 1.--Tm_12m and o, :=x1...2, 1. We use Greek letters for
probability distributions (or measures). Let p(z;...x,) be the probability that an (infinite)
sequence starts with z;...x,:

Z p(mlzn) = 17 Z p(xlzn) = p(l‘<n)a p(e) = 1? (1)

Q?l;nGXn Tn€X

where € is the empty string. We also need conditional probabilities derived from Bayes’
rule:

prre) = plaie)/plra), (2)

p(zy..xy) = plx1) plae|zy) oo p(@n|T1. @po1). (3)

The first equation states that the probability that a string x...x;_; is followed by x;
is equal to the probability that a string starts with xy...x; divided by the probability
that a string starts with x;...x;_;. For convenience we define p(x;|z<;) =0 if p(z)=0.
The second equation is the first, applied n times. Whereas p might be any probability
distribution, p denotes the true (unknown) generating distribution of the sequences. We
denote probabilities by P, expectations by E and further abbreviate

Bll= Y plelra)l). Bull =Y pew)l),  Ball= Y pea)l]

Tt€EX T1m EXT TcpeXt1

Probabilities P and expectations E are always w.r.t. the true distribution . E.,,=E_,E,
by Bayes’ rule and E[...] =E_[...] if the argument is independent of z;..,, and so on. We
abbreviate “with p-probability 17 by w.u.p.1. We say that z; converges to z, in mean sum
(im.s.) if 3°,E[(z;—2.)?] <o0o. One can show that convergence in mean sum implies
convergence with probability 1.! Actually it allows a much stronger conclusion; it gives
the “speed” of convergence in the sense that the expected number of times ¢ in which z;
deviates more than £ from z, is finitely bounded E[(z;— 2.)?]/=>.

In a more statistical language we have a sample space Q=X with elements w=wwows...€
2 being infinite sequences over the finite alphabet X'. The cylinder sets ', :={w:wy.,, =
T1.,} are events. We define the o-algebra F as the set generated from the cylinder sets by
countable union. A probability measure p is uniquely defined by giving its values u(Ty,, )
on the cylinder sets, which we abbreviate by p(z1.,). See [LVI7, Doo53] or any other
statistics book for a more thorough treatment.

Some expressions (like conditional or inverse probabilities) are undefined when p gets zero.
In this case one should restrict the analysis to the set of strings with non-zero p-probability.

!Convergence in the mean, i.e. E[(z;—24)?] 2y 0, only implies convergence in probability, which is
weaker than convergence with probability 1.
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If we define the critical set Z:={we€ X :3t: p(wi4) =0} =U21Usy, u(er)=0L 21, - Since
Z is a countable (for discrete alphabet) union of cylinder sets I'y,, of measure zero, Z
itself is measurable with p-measure zero. So all theorems proven with p-probability 1 on
Q\ Z still hold on Q with p-probability 1, since u(Z)=0. In critical situations, sums over
x have to be restricted to exclude Z. Some measures on {2, especially &, defined in the
next paragraph, deteriorate to semimeasures on Q\ Z. In order to keep the presentation
simple, we will usually simply ignore these subtleties and proceed as if p (and &) were
always non-zero. Only in critical cases we use >_' do indicate a sum restricted to Q\ Z
and exploit

E/..] = > 'u(ziee).] with g probability 1 (w.u.p.1). (4)

reX

2.2 Universal Prior Probability Distribution

Every inductive inference problem can be brought into the following form: Given a string
T, take a guess at its continuation x;. We will assume that the strings which have to be
continued are drawn from a probability? distribution ;. The maximal prior information
a prediction algorithm can possess is the exact knowledge of y, but in many cases (as for
the sunrise example) the true distribution is not known. Instead, the prediction is based
on a guess p of u. We expect that a predictor based on p performs well, if p is close
to p or converges, in a sense, to p. Let M :={uq,us,...} be a finite or countable set of
candidate probability distributions on strings. Results are generalized to continuous sets
M in Section 7. We define a weighted average on M

(1) = Z wy, - V(T1m), Z w, =1, w, > 0. (5)

vEM veEM

It is easy to see that £ is a probability distribution as the weights w, are positive and
normalized to 1 and the v € M are probabilities.> For finite M a possible choice for
the w is to give all v equal weight (w, = Wl\) We call £ universal relative to M, as it
multiplicatively dominates all distributions in M

E(r1m) > wy-v(zyy,) foral ve M. (6)

In the following, we assume that M is known and contains the true distribution, i.e.
we M. If M is chosen sufficiently large, then € M is not a serious constraint. Generic
classes, especially where M contains all computable probability distributions, are dis-
cussed in Subsection 2.7. Generalizations to the case where M does not contain p are
briefly discussed in Subsection 2.6. In the next Subsection we motivate and in Subsection
2.5 we show the important property of ¢ converging to the true distribution € M in a
sense and, hence, might being a useful substitute for the true, but in general, unknown
distribution .

2This includes deterministic environments, in which case the probability distribution p is 1 for some
sequence 1., and 0 for all others. We call probability distributions of this kind deterministic.

3The weight w, may be interpreted as the initial degree of belief in v and &(z;...z,,) as the degree
of belief in z;...z,. If the existence of true randomness is rejected on philosophical grounds one may
consider M containing only deterministic environments. ¢ still represents belief probabilities.
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2.3 Universal Posterior Probability Distribution

All prediction schemes in this work are based on the conditional probabilities p(x;|zy).
It is possible to express also the conditional probability &(x;|z-;) as a weighted average
over the conditional v(zy|x.;), but now with time dependent weights:

E(mylray) = Z wy(re)v(r]rr), wy(wy) = wy(x<t)w, wy,(e) :==w,. (7)
vem (ilra)

The denominator just ensures correct normalization Y,w,(z1,;) =1. By induction and
Bayes’ rule we see that w, (z.;)=w,v(x<)/&(x<;). Inserting this into 3, w, (x<¢)v(z|z<4)
using (5) gives (x¢|r~¢), which proves the equivalence of (5) and (7). The expressions (7)
can be used to give an intuitive, but non-rigorous, argument why &(z;|z;) converges to

v(xi|r<y): The weight w, of v in £ increases/decreases if v assigns a high/low probability
to the new symbol z;, given x.,. For a p-random sequence xiy, (i) > v(xy,) if v
(significantly) differs from pu. We expect the total weight for all v consistent with
to converges to 1, and all other weights converge to 0 for £ — oo. Therefore we expect
&(xy|z<4) to converge to u(xi|r<y) for p-random strings xq.y,.
Expressions (7) seem to be more suitable than (5) for studying convergence and loss
bounds of the universal predictor &, but it will turn out that (6) is all we need, with
the sole exception in the proof of Theorem 11. Probably (7) is useful when one tries to
understand the learning aspect in &.

2.4 Distance Measures between Probability Distributions

We need several distance measures between vectors y = (y;) and z=(z;) in general, and
probability distributions for which y; >0, z; >0, and > ,y; =>,z; =1 in particular, i =
{1,...,N}. The absolute distance a, the quadratic or Euclidian distance s, the Hellinger
distance h, and the relative entropy or Kullback-Leibler divergence d are defined as follows:

Z |yz z S(Y’ Z) = Z(yz - Zi)za (8)
by, z) = Z_(@ - V&), Ay, %) =Dl 7

The relative entropy is not a true distance measure, but for probability distributions, for
which it is defined, it is at least non-negative and zero if and only if y=z. All bounds we
prove in this work heavily rely on the following inequalities:

Lemma 1 (Entropy Inequalities) Let {y;} and {z;} be two probability distributions,
i.e. 4; >0, 2,20, and Y;y;=;z;=1and f be a conver and even (f(x)=f(—x)) function
with f(0) <0, then the following inequalities hold:

2Zf —z) < f( %Zyiln%), Z —Zz < Zyzln Yi

) ¢ 2

(a) i i
OIIEETIESNC) SRS SV < Suiln
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Proofs are given in Appendix A. Inequality (Lemma 1s) is a generalization of the binary
N =2 case used in [Sol78, HutOla, LV97]. If we insert

X = {17"'7N}7 N = |X|7 i:l‘ta Yi :/'L(l‘t|x<t)7 2q :g(l‘t|m<t) (9)

into (8) we get various instantaneous distances (at time t) between p and &. If we take the
expectation over -, and sum over t=1..n, (X} ;E][...]) we get various total distances
between p and &:

= iE<th(«T<t) (10)

t=1

St(x<t) = Z( «Tt|$<t («Tt|«T<t))2, Sy = ZE<t5t(«T<t) (11)

«T<t = Z‘M $t|$<t ($t|$<t)a

=1
2 n
he(t<y) = 2(\/ (@wilra) — Ve(mlra)) . Ho = S Bah(ze)  (12)
=1
Telz "
(roy) = Zu x|r<y) In ( tl7<t) D, = ZE<tdt(x<t) (13)
E(welrar)’ t=1
For D,, the following can be shown [Sol78, LV97]
n T|x
D, = Y Eodi(zs) = ZEUI rlra) (14)

t=1 (xt|$<t)

1% .fUt|.fU<t) //J(«len) -1
= E,n||—————< = E,,n———— < Inw, =:b
E H l‘t|l‘<t) ' g(xlzn) a g

In the first line we have inserted (13) and used Bayes’ rule p(x<;) pu(z|x<;)=p(z14). Due
to (1), we can further replace Eq.,; by E;., as the argument of the logarithm is independent
of £;41.,. The t sum can now be exchanged with the E;., expectation and transforms to a
product inside the logarithm. In the last equality we have used the second form of Bayes’
rule (3) for 4 and §. Using universality (6) of £, i.e. Inu(21:,)/€(21:0) <Inwy " for pe M
yields the final inequality in (14).

2.5 Convergence of £ to u

Theorem 2 (Convergence of £ to i) Let there be sequences x1x5... over a finite al-
phabet X drawn with probability p(x1.,) for the first n symbols. The universal conditional
probability &(x|x<;) of the next symbol x; given x-; is related to the true conditional
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probability p(x|x<,) in the following way:
. 2 —
i) ZE<tZ( ()T o) — (x;|x<t)) =5, <D, < lnwﬂ1 < 00

”) Z (M(xt|x<t) - (xt|x<t))2 = St(x<t) < dt(x<t) — 0 fO’f’t—> o0 w.u.p.]

o
1) E(xh|rer) — p(rhrey) =0 fort — oo w.p.p.1 (and i.m.s) for any x|
2

iv) ZE ( M—l) < H, < D, < hhw'! < 0o

I

—1 2.m.s and M
(| v <) (|2 <t)

v)

=1 wpup.p.1 fort— oo

'UZ) at(x<t) S th(x<t), An < 2nDn,

where d; and D, are the relative entropies (12), and w,, is the weight (5) of v in §.

Proof: Inequality (i7) follows from the definitions (11) and (13) and from the entropy
inequality (1s). From the definition and finiteness of Dy, (14), and from d;(x;) >0 one
sees that d;(z.4) —0 for t—o00 w.u.p.1. The inequality () follows from (ii) by taking the
E_; expectation and the .} ; sum. (7i7) is a direct consequence of (ii)/(i). The reason
for the astonishing property of a single (universal) function £ to converge to any pue€ M
lies in the fact that the sets of p-random sequences differ for different p. (iv) and (v) are
related (but incomparable) convergence results to (i) and (izi). To prove (iv) we use the
abbreviations y; = p(z|x <) and z,=&(x4|r ).

Et[(ﬁ ~1)] = Sutalra (\F 1)’ = VA VI < hlra) S e (15)

The first equality holds w.u.p.1 (4), the last two inequalities follow from (12) and (1h).
(iv) now follows by taking the E; expectation and the >_7 ; sum. (v) follows from (iv) by
the definition of convergence i.m.s., which implies convergence w.ju.p.1. In (vi), a; <+/2d;
immediately follows from inequality (la) and Definitions (10) and (13). A, <+/2nD,
follows from

Z <tla] < —ZE<t \V2dy] < EZ\/EQ 2d;] < \lﬁ > E4[2d)] = /2D,
= t=1

(16)
where we have used Jensen’s inequality for exchanging the averages (+3°1_; and E.;) with
the convex functions (,/7). O

SI»—‘
|||
§|'—‘

Since the conditional probabilities are the basis of all prediction algorithms considered in
this work, we expect a good prediction performance if we use £ as a guess of u. Perfor-
mance measures are defined in the following sections.
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The elementary proof for (v) given here does not rely on the semi-martingale convergence
Theorem [D0053, pp. 324-325] as the proof given in [LV97]. Furthermore, (iv) gives the
“speed” of convergence. Note the subtle difference between (ii7) and (v). If z1.. is a
p-random sequence, and z).. is any (possibly constant and not necessarily p-random)
sequence then p(z}|zoy)—E&(2)|x<) converges to zero, but no statement is possible for
E(zy|wey)/p(xh|x<r), since liminfu(z}|z<;) could be zero. On the other hand, if we stay
on the p-random sequence (.., =%1.00), (v) shows that &(z;|x<;)/u(x|r<r) — 1 (Whether
infyu(xy| <) tends to zero or not does not matter). Indeed, it is easy to give an example
where &(x}|z<)/p(z)|x <) diverges. If we choose
M={p1, 2}, p=p, mlra)=5"" and pa(llze)=5t""

the contribution of py to € causes & to fall off like py ~ ¢ 2, much slower than p~¢"3
causing the quotient to diverge:

1 (01n) = H(l - %t_?’) ¥ e, =0450... >0 = 0. is a g-random sequence,
=1

p2(01y) = H(l — %t_Q) Ty =0358...>0 = £(01p) — wic) + wycy =: ce > 0.
t=1

E(041) = wipn(1]0<¢)pa(0cs) + wopa(1[0<¢) p2(Oy) = Fwocat™?

£(041) Wl £(1104,) _, ween
£(0<1) 2¢¢ 11(10<) C¢

t — oo diverges.

= {(10«) =

Further interesting convergence results can be found in [Vov87].

2.6 The case where p¢g M

In the following we discuss two cases, where u ¢ M, but most parts of this work still
apply. Actually all theorems remain valid for p being a finite linear combination p(z1.,)=
> vertwl (1) of v's in LC M. Dominance &(21.,) > w,, - 4(%1.,) is still ensured with w),:=
minyeﬁ’;’—: > min,e w,. More generally, if p is an infinite linear combination, dominance
is still ensured if w, itself dominate v, in the sense that w, > aw, for some a >0 (then
w, > Q).

Another possibly interesting situation is when the true generating distribution u & M,
but a “nearby” distribution fi with weight w; is in M. If we measure the distance of [ to

p with the Kullback Leibler divergence D, (u||/1) ::meu(xlzn)ln% and assume that
it is bounded by a constant ¢, then '
D, = Ei,,In p(z1n) = E;,In @) +E;.,In 'If(xl:n) < In w;l + c.
f(xlzn) f(xlzn) ,U/(:Ul:n)

So Dnglnw;1 remains valid if we define w, :=w;-e™“.
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2.7 Probability Classes M

In the following we describe some well-known and some less known probability classes M.
This relates our setting to other works in this area, embeds it into the historical context,
illustrates the type of classes we have in mind, and discusses computational issues.

We get a rather wide class M if we include all computable probability distributions in
M. In this case, the assumption p€ M is very weak, as it only assumes that the strings
are drawn from any computable distribution; and all valid physical theories (and, hence,
all environments) are computable (in a probabilistic sense).

We will see that it is favorable to assign high weights w, to the v. Simplicity should be
favored over complexity, according to Occam’s razor. In our context this means that a
high weight should be assigned to simple v. The prefix Kolmogorov complexity K (v) is
a universal complexity measure [Kol65, ZL70, LV97]. It is defined as the length of the
shortest self-delimiting program (on a universal Turing machine) computing v(z1.,) given
T1.. If we define

w, = =27KW Q.= Z 2~ KW <1
veM

then, distributions which can be calculated by short programs, have high weights. The
relative entropy is bounded by the Kolmogorov complexity of p in this case (D, <
K(u)-1n2). Solomonoff’s universal semi-measure* is obtained if we take M to be the
(multi)set enumerated by a Turing machine which enumerates all enumerable semi-
measures [Sol64, Sol78, LV97|. In this case, Q (sometimes called the number of wisdom)
has interesting properties in itself [Cal98, Cha75, Cha91]. Recently, M has been further
enlarged to include all cumulatively enumerable semi-measures [Sch00, Sch02]. In the
enumerable and cumulatively enumerable cases, £ is not finitely computable, but can still
be approximated to arbitrary but not pre-specifiable precision. If we consider all approx-
imable (i.e. asymptotically computable) distributions, then the universal distribution &,
although still well defined, is not even approximable [Sch00]. An interesting and quickly
approximable distribution is the Speed prior S defined in [Sch00]. It is related to Levin
complexity and Levin search [Lev73, Lev84]|, but it is unclear for now, which distributions
are dominated by S. If one considers only finite-state automata instead of general Turing
machines, £ is related to the quickly computable, universal finite-state prediction scheme
of Feder et al. [FMG92], which itself is related to the famous Lempel-Ziv data compres-
sion algorithm. If one has extra knowledge on the source generating the sequence, one
might further reduce M and increase w. A detailed analysis of these and other specific
classes M will be given elsewhere. Note that £ € M in the enumerable and cumulatively
enumerable case, but £ Z M in the computable, approximable and finite-state case. If £ is
itself in M, it is called a universal element of M [LV97]. As we do not need this property
here, M may be any finite or countable set of distributions. In the following we consider
generic M and w. Continuous classes M are considered in Section 7.

4Normalization has to be treated differently in this case
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3 Error Bounds

3.1 Deterministic Predictors

We start with a very simple measure: making a wrong prediction counts as one error,
making a correct prediction counts as no error. In [Hut0la] error bounds have been proven
for the binary alphabet X ={0,1}. The following generalization to arbitrary alphabet
involves only minor additional complications, but serves as an introduction to the more
complicated model with arbitrary loss function. Let ©, be the optimal prediction scheme
when the strings are drawn from the probability distribution u, i.e. the probability of z;
given x, is pu(x|r<;), and g is known. ©, predicts (by definition) xt@“ when observing
2. The prediction is erroneous if the true t"* symbol is not x?“. The probability of this
event is 1—pu(zy"|x,). It is minimized if 2" maximizes p(zp"|z<;). More generally, let
©, be a prediction scheme predicting 2y = argmax,, p(xs|x<;) for some distribution p.
Every deterministic predictor can be interpreted as maximizing some distribution.

3.2 Total Expected Numbers of Errors

The p probability of making a wrong prediction for the t* symbol and the total p-expected

number of errors in the first n predictions of predictor ©, are

e?”(m<t) =1 u(:z:,?”|:1:<t) , E,?” = ZE<t6?”(x<t). (17)
=1

If p is known, ©,, is obviously the best prediction scheme in the sense of making the least
number of expected errors

EP» < EP forany O,, (18)
since
o) e . <) e
ey (2ar) = 1=p(x " |rey) = rr%%n(l—u(xt|x<t)) < 1—p(xy"|re) = e (wet)

for any p. Of special interest is the universal predictor ©¢. As £ converges to v the
prediction of ©, might converge to the prediction of the optimal ©,. Hence, ©; may not
make many more errors than ©, and, hence, any other predictor ©,. Note that x?” is
a discontinuous function of p and x,?& —>xf)“ cannot be proved from £ — p. Indeed, this
problem occurs in related prediction schemes, where the predictor has to be regularized
so that it is continuous [FMG92]. Fortunately this is not necessary here. We prove the
following error bound.

Theorem 3 (Error bound) Let there be sequences xixs... over a finite alphabet X
drawn with probability p(z1.,) for the first n symbols. The ©,-system predicts by defi-

.. ® ® .. . . ..
nition x; " € X from x<;, where x;° mazimizes p(x|r<;). Of is the universal prediction
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scheme based on the universal prior . ©, is the optimal informed prediction scheme.

The total j-expected number of prediction errors EY¢ and E®: of ©¢ and ©, as defined
in (17) are bounded in the following way

0 < E9% — E9% < \J2(EQ 4+ E®)S, < S, +\AES"S, + 52 < 25, + 2/ ES,

where S, <D, Slnwljl. Sy is the squared distance (11), Dy, is the relative entropy (14),
and w, is the weight (5) of p in €.

The first bound actually contains EY¢ on the r.h.s.; so it is not particularly useful, but this
is the major bound we will prove, the others follow easily. Furthermore it has a somewhat
nicer structure than the second bound. In Section 6 we show that the second bound is
optimal. The last bound, which we discuss in the following, has the same asymptotics as
the second bound.

First, we observe that the number of errors B¢ of the universal O¢ predictor is finite if the
number of errors F,e, of the informed ©, predictor is finite. This is especially the case
for deterministic p, as E9* =0 in this case®, i.e. O makes only a finite number of errors on
deterministic environments. This can be proven by elementary means. Assume x;z5... is
the sequence generated by 1 and ©¢ makes a wrong prediction x?§ #x. Since 5(x?§ |zy) >
&(z¢|z <), this implies &(z4]z<,) <3. Hence et =1 <—Iné(x¢|r<y)/In2=d;/In2. If O makes
a correct prediction ey ¢ =0<d,/In2 is obvious. Using (14) proves Est <Dy /In2<logyw;".
A combinatoric argument given in Section 6 shows that there are M and p € M with

NG >log,| M|. This shows that the upper bound B <log,| M| for uniform w is sharp.
From Theorem 3 we get the slightly weaker bound E?é <25,.<2D, < 21nw;1. For more
complicated probabilistic environments, where even the ideal informed system makes an
infinite number of errors, the theorem ensures that the error regret B — E9+ is only of

order y/ EY*. The regret is quantified in terms of the information content D,, of i (relative
to &), or the weight w,, of 12 in €. This ensures that the error densities E), /n of both systems
converge to each other. Actually, the theorem ensures more, namely that the quotient
converges to 1, and also gives the speed of convergence EnGE/E,(?“ =14+O0((ES»)~1?) —1
for E®» —co. Increasing the first occurrence of E9» in the theorem to E® and the second

to Fn¢ we get the bound E® > Ex¢—21/Ey%S,, which shows that no (causal) predictor ©
whatsoever makes significantly less errors than ©¢. In Section 6 we show that the second

bound for Ey* — E®: given in Theorem 3 can in general not be improved, i.e. for every
predictor © (and especially ©¢) there exist M and € M such that the upper bound is
achieved. See [HutOla] for some further discussion and bounds for binary alphabet.

3.3 Proof of Theorem 3

The first inequality in Theorem 3 has already been proven (18). For the second inequality,
let us start more modestly and try to find constants A >0 and B >0 that satisfy the linear

Remember that we named a probability distribution deterministic if it is 1 for exactly one sequence
and 0 for all others.
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inequality
E% — B9 < A(E®¢ + E°) + BS,. (19)

If we could show
e 5 (xor) — e S (xay) < Ale S (wer) + e (xt)] + Bsi(<r) (20)

for all t<n and all x;, (19) would follow immediately by summation and the definition
of E, and S,. With the abbreviations (9) and the abbreviations m =x;" and s =

the various error functions can then be expressed by e?g =1—ys, et@“ =1—y, and s; =
> (yi—2;)%. Inserting this into (20) we get

Ym—Ys < A= (ym+ys)] + B (yi — 2)>. (21)

=1

By definition of :z:,? * and :z:,? * we have y,, >1; and 2z, >2; for all i. We prove a sequence of
inequalities which show that

B Z(yz - Zi)2 + A[2_(ym+ys)] - (ym_ys) Z (22)

=1

is positive for suitable A >0 and B >0, which proves (21). For m=s (22) is obviously
positive. So we will assume m # s in the following. From the square we keep only
contributions from i=m and i=s.

. Z B[(ym_zm)z + (y5—25)2] + A[Q_(ym"_ys)] - (ym_ys) Z

By definition of y, z, M and s we have the constraints y,,+ys <1, 2, +2s <1, ¥, > ys >0
and z; >z, >0. From the latter two it is easy to see that the square terms (as a function
of z,, and z;) are minimized by 2, =z, = %(ym—i-ys)- Furthermore, we define x:=v,,—y,
and increase (y,,,+ys) to 1.

> IBr'+A—a2 > . (23)

(23) is quadratic in z and minimized by z*= %. Inserting x* gives

1
w2 A=z 20 for 2AB> 1 (24)
Inequality (19) therefore holds for any A >0, provided we insert B= ﬁ. Thus we might

minimize the r.h.s. of (19) w.r.t. A leading to the upper bound

Sn

E® — E® < \J2(ES + Eg")S,  for A?=_—_°""
< V2 ) 2(En + En)

(25)

which is the first bound in Theorem 3. For the second bound we have to prove

V(B 1 EOS, — 5, < \JAED*S, + 52 (26)
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If we square both sides of this expressions and simplify we just get (25). Hence, (25)
implies (26). The last inequality in Theorem 3 is a simple triangle inequality. This
completes the proof of Theorem 3 0.

Note that also the third bound implies the second one:

EO — B® < \2(ES+ESS, o (EX—E%) < 2AEO%+E™)S, <

& (B®%—E®—8§,)> < 4E%S, + 85> & E% —E% — S, < \JAES, + S2

where we only have used Ene > E®«. Nevertheless the bounds are not equal.

4 Loss Bounds

4.1 Unit Loss Function

A prediction is very often the basis for some decision. The decision results in an action,
which itself leads to some reward or loss. If the action itself can influence the environment
we enter the domain of acting agents which has been analyzed in the context of universal
probability in [HutOlb]. To stay in the framework of (passive) prediction we have to
assume that the action itself does not influence the environment. Let /,,,, € IR be the
received loss when taking action 1y, €)Y and z; € X is the t'* symbol of the sequence. We
demand ¢ to be normalized, i.e. 0</,,, <1. For instance, if we make a sequence of
weather forecasts X ={sunny, rainy} and base our decision, whether to take an umbrella
or wear sunglasses ) ={umbrella, sunglasses} on it, the action of taking the umbrella or
wearing sunglasses does not influence the future weather (ignoring the butterfly effect).
The losses might be

Loss sunny | rainy
umbrella 0.3 0.1
sunglasses | 0.0 1.0

Note the small loss assignment even when making the right decision to take an umbrella
when it rains because sun is still preferable to rain.

In many cases the prediction of z; can be identified or is already the action y;. The
forecast sunny can be identified with the action wear sunglasses, and rainy with take
umbrella. X =) in these cases. The error assignment of the previous subsection falls
into this class together with a special loss function. It assigns unit loss to an erroneous
prediction (€4,,, =1 for z;#y;) and no loss to a correct prediction (¢y,,, =0).

For convenience we name an action a prediction in the following, even if X #). The true
probability of the next symbol being x;, given x4, is pu(z;|z<4). The expected loss when
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predicting y; is E.f;,,. The goal is to minimize the expected loss. More generally we
define the A, prediction scheme

A .
o L arg min Z p($t|$<t)€:rtyt (27)
yteY

Tt

which minimizes the p-expected loss.® As the true distribution is p, the actual p-expected

loss when A, predicts the ¢ symbol and the total y-expected loss in the first n predictions
are
A A
L (xey) = Etgmy?” , LQP = ZE<tlt (). (28)
t=1

Let A be any (causal) prediction scheme (deterministic or probabilistic) with no constraint
at all, predicting any y* € Y with losses [* and L? similarly defined as (28). If p is known,
A, is obviously the best prediction scheme in the sense of achieving minimal expected loss

L < LY forany A (29)

since
Ay _ . __ A
L (rey) = Etgmyf“ = min Eilyy, < Eilyn =1 (1<)

for any A. The predictor A¢, based on the universal distribution ¢, is, again, of special
interest. Theorem 3 generalizes to arbitrary loss functions.

Theorem 4 (Unit loss bound) Let there be sequences xx;... over a finite alphabet X
drawn with probability ju(x1.,) for the first n symbols. A system taking action (or predict-
ing) y €Y given Ty receives 1088 ly,y, €10,1] if v, is the true t™ symbol of the sequence. The
A,-system (27) acts (or predicts) as to minimize the p-expected loss. A¢ is the universal
prediction scheme based on the universal prior £. A, is the optimal informed prediction

scheme. The total p-expected losses Lh¢ of A¢ and LA of A, as defined in (28) are
bounded in the following way

0 < L —LM < D, +\4Ly"D, + D2 < 2D, + 2\ L2" D,

where Dnglnw;1 is the relative entropy (14), and w, is the weight (5) of j in &.

The loss bounds have the same form as the error bounds when substituting S, < D,, in
Theorem 3, so most of the discussion of Theorem 3 also applies here. We were not able
to derive loss bounds in terms of S,, as in the error case, and indeed one can show that
substituting S,, for D,, in Theorem 4 gives an invalid bound. For convenience we collect
the most important consequences of Theorem 4 in the following corollary.

Sargmin,(-) is defined as the y which minimizes the argument. A tie is broken arbitrarily. If ) is

finite, then y;\ ? always exists. For infinite action space ) we assume that a minimizing yé\ 7€) exists.
This is for instance the case if J is compact and /., is continuous in y, or for Y =1V, if lim,_, ., exists
for all z and is larger or equal to £, for most y.
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Corollary 5 (Unit loss bound) Under the same conditions as in Theorem Jj the fol-
lowing relations hold.

i) 8¢ s finite < LAr is finite,
it) N < 2D, < 21nw;1 for deterministic p if Yo3yly, =0,
) Laf/LM = 1+ O((LM)"2) — 1 for LM — oo,

) Lat— LM = OKIL:),

Let A be any prediction scheme.

v) LM <L 1M (xe) < IMaw),

vi) LY > Ln® — 2y/LaD,,

vit) La$/Id < 14 0((LA)~172).

4.2 Loss Bound of Merhav & Feder

The first general loss bound with no structural assumptions on g and ¢ (except bound-
edness) has been derived in a survey paper by Merhav&Feder in [MF98, Sec.3.1.2]. They

showed that the regret L — L2 is bounded by l,,42v/2nD,, for £ €[0,0,,42]. Assuming
lmaz =1 (general {,,,, can be recovered by scaling) their bound reads (in our notation)

Lis — LA < A, < \/2nD,. (30)
In Subsection 4.5 we prove
Ag Ay
L (xer) =L (1) < a(vey) < y/2di(z<p)
Taking the the expectation E_; and the average %E?:l and using Jensen’s inequality for

the concave square root (similarly to (16)) or directly Theorem 2(vi) shows (30).

Bound (30) and our bound (Theorem 4) are in general incomparable. Since 2D, is finite
and L2 <n, bound (30) can be at best a factor v/2 and an additive constant better than
our bound. On the other hand, for large n and for L* <2 our bound is tighter. The
latter condition is satisfied if the best predictor A, suffers small instantaneous loss <% on
average. Significant improvement occurs if L2 does not grow linearly with n, but is for
instance finite (see Corollary (5), especially (7) and (ii)).

4.3 Example Loss Functions

The case X =Y with unit error assignment ¢, =1—0,, (d,, =1 for r=y and d,, =0 for
x#1y) has already been discussed and proven in Section 3.

Y = argmin}  p(wiw<t)(1 = 0ay,) = argmax p(wi|r<) = 7’
Tt
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In this case LY = E® is the total expected number of prediction errors. For X =
Y ={0,1}, like in the weather example above, A, is a threshold strategy with yle =

argminge(o,13{ 01ty +poloy} = 0/1 for py 2y, where v:= m and p; = p(i|r<y).
In the special error case {;, =1—0,,, the bit with the highest p probability is predicted

(v= %) In the following we consider some standard loss functions for binary outcome

X={0,1} and continuous action y in the unit interval Y=10,1]. The absolute loss is defined
as ny |lz—y|€]0,1]. The A, scheme predicts yr ? =argmingejo11{p1(1—y)+poy}=0/1 for
po Z p1. Since all predictions y lie in the subset {0,1}C[0,1] and |x y|=1-0,, for ye{0,1}
this case coincides with the binary error case above. The same holds for the a-loss |z —y|*
with 0<a<1. The u-expected loss is l?” =p(i|zr<y) for the i with p;> % For the quadratic
loss Ly, = (x—y)? € [0,1] the action/prediction y,” = argmin,ecpo.{p1(1—y)>+poy®} = p1
is proportional to the p-probability of z, =1 and [;” = E,(1— p(z;|z<;))%. For the a-loss
|z—y|* with a>1 we get yie = (14 */po/pr) ' For arbitrary finite alphabet X and vector-
valued predictions y the quadratic loss may be generalized to /,y, = %yTAxy+bfy+cm.

The Hellinger loss can be written for binary outcome in the form ¢,,=1—/|[1—z—y|€

[0,1] with ¥, = p2/(p2+p%) and [} = 1— (uopo+pap1)/\/pi+p?. The logarithmic loss
lyy=—In|l—2x—y| €]0,00] is unbounded. But since the corresponding action is yfp =m
the expected loss is [ = —Enp(z4|x<,). Hence lfg—lé\“ = h; and the total loss regret

— LA =D, glnwﬁjl is finitely bounded anyway and Theorem 4 is not needed. Con-

tinuous outcome spaces X are briefly discussed in Section 10.

4.4 Proof of Theorem 4

The first inequality in Theorem 4 has already been proven (29). For the second and last
inequality, we start, as in Theorem 3, by looking for constants A >0 and B >0, which
satisfy the linear inequality

LA < (A+1)LM +(B+1)D,. (31)
If we could show
li\g (xey) < A'l,ﬁ\“ (r<) + B'dy(zoy), A':=A+1, B':=B+1 (32)

for all t<n and all x;, (31) would follow immediately by summation and the definition
of L, and D,. With the abbreviations (9) and the abbreviations m=y," and s:yfg the
loss and entropy can then be expressed by lé\g =>iYilis, l?“ =% Yilim and dtzziyilng—i.
Inserting this into (32) we get

Z yzgzs S AI Z yzgzm + B, Z Yi ln - (33)

By definition (27) of y and y,¢ we have
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Actually, we need the first constraint only for j=s and the second for j=m. In Appendix
D we reduce the problem to the binary N =2 case, which we will consider in the following.
We take 3;_, instead of >2_; for convenience.

1 . 1 )

B'Y g% 4 S (Al —t) > 0 (35)
i=0 i =0

The cases l;, > (Vi and £;5 > {;, Vi contradict the first/second inequality (34). Hence

we can assume (g, > los and /1, < /{1,. The symmetric case {y,, < lys and fy,, > {1, is

proven analogously or can be reduced to the first case by renumbering the indices (04 1).

Using the abbreviations a:={y,, —los, b:=l15—Ll1m, C:=y1lim+Yolos, y=1y1 =1—1y and

z=z=1—2zy we can write (35) as

fy,2) == BlylmY+ (1—y)In =¥+ A'(1-y)a— yb+ Ac > 0 (36)

1—

for 26<(1—z)a and 0<a,b,c,y,z<1. The constraint (34) on y has been dropped since (36)
will turn out to be true for all y. Furthermore, we can assume that d:=A'(1—y)a—yb<0
since for d >0, f is trivially positive. Multiplying d with a constant >1 will decrease f.
Let us first consider the case z < % We multiply the d term by 1/b>1, i.e. replace it
with A'(1—y)%—y. From the constraint on z we known that § > *-. We can decrease f
further by replacing ¢ by %= and by dropping Ac. Hence, (36) is proven for zgé if we

can prove

Blyln?+ (1-y)lnt=]+ A'(1-y):= -y > 0 for z<L. (37)

In Appendix B we prove that it holds for B > %+1. The case 2 Z% is treated similarly.
We scale d with 1/a>1, i.e. replace it with A'(1—y)—y2. From the constraint on z we
know that gg 1;2'2 We decrease f further by replacing g by IZ;Z and by dropping Ac.
Hence (36) is proven for z> 1 if we can prove

BlylnY 4+ (1—y)lnt¥]+ A'(1—y) —y2 > 0 for 2>

z

3. (38)
In Appendix C we prove that it holds for B>+ +1. So in summary we proved that (31)
holds for B>+ +1. Inserting B=++1 into (31) and minimizing the r.h.s. w.r.t. A leads

to the last bound of Theorem 4 with A=1/D,/La*. Actually inequalities (37) and (38)
also hold for B> iA+%, which, by the same minimization argument, proves the slightly
tighter second bound in Theorem 4. Unfortunately, the current proof is very long and
complex, and involves some numerical or graphical analysis for determining intersection
properties of some higher order polynomials. This or a hopefully simplified proof will be
postponed. The cautious reader may check the inequalities (37) and (38) numerically for
B=1A++ 0.

4.5 Convergence of Instantaneous Losses

Since LQE — LA is not finitely bounded by Theorem 4 it cannot be used directly to conclude
lfg —ltA” — 0. Tt would follow from & — p by continuity if lfg and ltA” would be continuous
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. A . . - . Ae .
functions of £ and pu. [;* is a continuous piecewise linear concave function, but [, ¢ is an,
in general, discontinuous function of £ (and p). Fortunately it is continuous at the one

necessary point & =p. This allows to bound lfg — ™ in terms of E(my|r <) — plg|wo4).
Theorem 6 (Instantaneous Loss Bound) Under the same conditions as in Theorem
4 the following relations hold for the instantaneous losses lf“ (<) and ltA6 (<) at time t

of the informed and universal prediction schemes A, and Ag:

ZEG (r<) —lt (x<))? < 2D, < 21nw;1 < 0

t— 00
i) 0 < L @a) =" (3) < Y lE@ilra) — pladew)] < 2di@<) s 0.
A A y A t2og
i) 0 < (o) — M (aey) < 2di(wa) + 21 (wo) di(ze) wam O.

Proof: (ii) follows from

lz\g (<t) — lt (7<) Zyz is Zyigim < Z(yz — 2i)(lis — lim) <
< Z i — 2l [lis — lim| < Z lyi — 21| < 22% hl— = \/2di (7<)

To arrive at the first inequality we added Y,z;(¢;m —¢;s) which is positive due to (34).
|lis—Llim| <1 since £€[0,1]. The last inequality follows from Lemma la. d;— 0 has been
proven in Theorem 2(ii). (i) follows by inserting (ii) and using (14). (ii7) follows from

the proof of Theorem 4 by inserting B:%—i—l:\/lé\“/dt—i—l into (32). Convergence to zero

holds for x4 random sequences, i.e. with p probability 1, since ltA” <1 is bounded. The
A .
losses [, (x<;) itself need not to converge. O

Note, that the inequalities in (i7) and (i7i) hold for all individual sequences. The
sum/average is only taken over the current outcome wx;, but the history x., is fixed.
Bound (4¢) and (7i7) are in general incomparable, but for large ¢ and for <l (especially

2
if 1 —0) bound (iii) is tighter than bound (ii).

4.6 General Loss

There are only very few restrictions imposed on the loss ¢,,, in Theorem 4, namely that
it is static and in the unit interval [0,1]. If we look at the proof of Theorem 4, we see that
the time-independence has not been used at all. The proof is still valid for an individual
loss function E;tyt €[0,1] for each step t. The loss might even depend on the actual history
T <. The case of a loss Qtyt (r<;) bounded to a general interval [, maz] can be reduced

to the unit interval case by rescaling £. We introduce a scaled loss ¢’

E;‘tyt (‘T<t) - gmm

0 < " (1s):= i
A

TtYt

< 1, where la :="lpoz — lmin-
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The prediction scheme A; based on ¢ is identical to the original prediction scheme A,
based on £, since minarg in (27) is not affected by linear transformation of its argument.
From y;” =y2 it follows that 1, = (11" — lmin)/Ca and LN = (L —0,.:.) /s (D! =Dy,
since /¢ is not involved). Theorem 4 is valid for the primed quantities, since ¢ € [0,1].

Inserting L, A and rearranging terms we get

Theorem 7 (General loss bound) Let there be sequences x1xs... over a finite alphabet
X drawn with probability u(xy.,) for the first n symbols. A system taking action (or
predicting) y, € Y given v receives loss Uy, (T<) € [lmin,lmin+La] if ¢ is the true tth
symbol of the sequence. The A,-system (27) acts (or predicts) as to minimize the p-
expected loss. A¢ is the universal prediction scheme based on the universal prior §. A, is

the optimal informed prediction scheme. The total p-expected losses LY and LA of A¢
and A, as defined in (28) are bounded in the following way

0 < LM — LM < 0aD, + ALY —nlpin)laDy + (A D2

where Dnglnw;1 is the relative entropy (14), and w, is the weight (5) of j in &.

5 Application to Games of Chance

5.1 Introduction

Consider investing in the stock market. At time ¢ an amount of money s; is invested in
portfolio y;, where we have access to past knowledge z.; (e.g. charts). After our choice
of investment we receive new information x;, and the new portfolio value is ;. The best
we can expect is to have a probabilistic model p of the behaviour of the stock-market.
The goal is to maximize the net p-expected profit p; =r;—s;. Nobody knows p, but
the assumption of all traders is that there is a computable, profitable i they try to find
or approximate. From Theorem 2 we know that Solomonoff’s universal prior &(z;|z;)
converges to any computable p(z;|z;) with probability 1. If there is a computable,
asymptotically profitable trading scheme at all, the A scheme should also be profitable
in the long run. To get a practically useful, computable scheme we have to restrict M to
a finite set of computable distributions, e.g. with bounded Levin complexity Kt [LV97].
Although convergence of ¢ to u is pleasing, what we are really interested in is whether
A¢ is asymptotically profitable and how long it takes to become profitable. This will be
explored in the following.

5.2 Games of Chance

We use Theorem 7 to estimate the time needed to reach the winning threshold when
using A¢ in a game of chance. We assume a game (or a sequence of possibly correlated
games) which allows a sequence of bets and observations. In step ¢ we bet, depending
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on the history x.;, a certain amount of money s;, take some action y;, observe outcome
x¢, and receive reward r;. Our profit, which we want to maximize, is p, =7;—s;. The
loss, which we want to minimize, can be defined as the negative profit, ¢,,,, =—p;. The
probability of outcome z;, possibly depending on the history x4, is pu(z|z<). The total
p-expected profit when using scheme A, is P> =—L2¢. If we knew p, the optimal strategy
to maximize our expected profit is just A,. We assume P >0 (otherwise there is no
winning strategy at all, since P > P22 Vp). Often we are not in the favorable position
of knowing p, but we know (or assume) that pe€ M for some M, for instance that u is a
computable probability distribution. From Theorem 7 we see that the average profit per
round er\f = %Pﬁ\ ¢ of the universal A scheme converges to the average profit per round
phu = %PA\# of the optimal informed scheme, i.e. asymptotically we can make the same
money even without knowing p, by just using the universal A¢ scheme. Theorem 7 allows

us to lower bound the universal profit P

P,fg 2 PTIL\# - pADn - \/4(npma:v_P7é\#)pADn +p2AD727, (39)

where P, is the maximal profit per round and pa the profit range. The time needed for
A¢ to perform well can also be estimated. An interesting quantity is the expected number
of rounds needed to reach the winning zone. Using P* >0 one can show that the r.h.s.
of (39) is positive if, and only if

> 2pA (2pma:v —152“) .
(pn*)?

D, (40)

Theorem 8 (Time to Win) Let there be sequences x1xs... over a finite alphabet X
drawn with probability u(x1.,) for the first n symbols. In step t we make a bet, depend-
ing on the history x4, take some action y;, and observe outcome x;. Qur net profit is
D1 € [Pmaz —PAPmaz). The A,-system (27) acts as to mazimize the p-expected profit. Ple
is the total and p’r = %PHAP is the average expected profit of the first n rounds. For the
universal A¢ and for the optimal informed A, prediction scheme the following holds:

i) pﬁg = pM —O(n~Y2) — i« for n— o

2
i) no> (B by A PN >0 = Pt >0
Pn
where w, =e" is the weight (5) of p in &.

By dividing (39) by n and using D,, <b,, (14) we see that the leading order of P —phe s
bounded by \/4pAPmazb,/n, which proves (7). The condition in (iz) is actually a weakening
of (40). Pl is trivially positive for p,,i, >0, since in this wonderful case all profits are
positive. For negative py,;, the condition of (i) implies (40), since pa > Pmae, and (40)
implies positive (39), i.e. P >0, which proves (i7).

If a winning strategy A, with p}» > >0 exists, then A is asymptotically also a winning
strategy with the same average profit.
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5.3 Example

Let us consider a game with two dice, one with two black and four white faces, the other
with four black and two white faces. The dealer who repeatedly throws the dice uses one
or the other die according to some deterministic rule, which correlates the throws (e.g.
the first die could be used in round ¢ iff the ¢t digit of 7 is 7). We can bet on black or
white; the stake s is $3 in every round; our return r is $5 for every correct prediction.

The profit is p; =104, —s. The coloring of the dice and the selection strategy of the
dealer unambiguously determine p. p(z|zs) is % or % depending on which die has been
chosen. One should bet on the more probable outcome (y= %) If we knew g the expected
profit per round would be pis = phe = %r—s = %$ > 0. If we don’t know p we should
use Solomonoff’s universal prior with D,, <b, = K(u)-In2, where K(u) is the length of
the shortest program coding p (see Subsection 2.7). Then we know that betting on the
outcome with higher £ probability leads asymptotically to the same profit (Theorem 8(7))
and A¢ reaches the winning threshold no later than 74,5, =900In2- K (1) (Theorem 8(i7))
or sharper nyppesp =330In2- K () from (40), where ppa. =r—s=2% and pr =r=5% have

been used.

If the die selection strategy reflected in p is not too complicated, the A prediction system
reaches the winning zone after a few thousand rounds. The number of rounds is not really
small because the expected profit per round is one order of magnitude smaller than the
return. This leads to a constant of two orders of magnitude size in front of K (u). Stated
otherwise, it is due to the large stochastic noise, which makes it difficult to extract the
signal, i.e. the structure of the rule p (see next subsection). Furthermore, this is only
a bound for the turnaround value of #;,,.s,. The true expected turnaround ¢ might be
smaller. However, every game for which there exists a computable winning strategy with
Pnp>€>0, A¢ is guaranteed to get into the winning zone for some ¢~ K (p).

5.4 Information-theoretic Interpretation

We try to give an intuitive explanation of Theorem 8(i7). We know that &(x;|x<;) con-
verges to p(zi|r<y) for t —o0o. In a sense A¢ learns p from past data xz.,. The infor-
mation content in g relative to £ is In2- Dy, <b,-In2. One might think of a Shannon-
Fano prefix code of v € M of length [b,-In2!, which exists since the Kraft inequality
ZVZ_”’”'IHQ] <>, w, <1 is satisfied. b,-In2 bits have to be learned before A¢ can be as
good as A,. In the worst case, the only information conveyed by z; is in form of the
received profit p;. Remember that we always know the profit p; before the next cycle
starts.

Assume that the distribution of the profits in the interval [Dyin,Pmaz] is mainly due to noise,
and there is only a small informative signal of amplitude p2«. To reliably determine the
sign of a signal of amplitude p2+, disturbed by noise of amplitude pa, we have to resubmit
a bit O((pa/pi+)?) times (this reduces the standard deviation below the signal amplitude
pre). To learn pu, b,In2 bits have to be transmitted, which requires n > O((pa/p5*)?)-
b,In2 cycles. This expression coincides with the condition in (iz). Identifying the signal
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amplitude with p2+ is the weakest part of this consideration, as we have no argument
why this should be true. It may be interesting to make the analogy more rigorous, which
may also lead to a simpler proof of (i) not based on Theorems 4 and 7 with their rather
complex proofs.

6 Optimality Properties

6.1 Lower Error Bound

We want to show that there exists a class M of distributions such that any predictor ©
ignorant of the distribution p€ M from which the observed sequence is sampled must make
some minimal additional number of errors as compared to the best informed predictor

0,.

For deterministic environments a lower bound can easily be obtained by a combinatoric
argument. Consider a class M containing 2" binary sequences such that each prefix of
length n occurs exactly once. Assume any deterministic predictor © (not knowing the
sequence in advance), then for every prediction z© of © at times ¢ < n there exists a
sequence with opposite symbol z;=1—2z9. Hence, E > E® =n=log,| M| is a lower worst
case bound for every predictor O, (this includes O, of course). This shows that the upper
bound Eet <log,| M| for uniform w obtained in the discussion after Theorem 3 is sharp.
In the general probabilistic case we can show by a similar argument that the upper bound
of Theorem 3 is sharp.

Theorem 9 (Lower Error Bound) Let © be any deterministic predictor not knowing
from which distribution pu € M the observed sequence xyxs... is sampled from. © knows
(depends on) M and has at time t access to the previous outcomes x~;. Then there is for
every n an M and p €M and weights w, such that

€® — % = \[25,(z,) and E° —E® = S, +\/4E*S, + 52

where E© and E2» are the total expected number of errors of © and ©,, and s, and S,
are defined in (11). The equalities especially hold for the universal predictor Og.

Proof: The proof parallels and generalizes the deterministic case. Consider a class M
of 2™ distributions (over binary alphabet) indexed by a=ajy...a, € {0,1}". For each t we
want a distribution with posterior probability %(1 +¢) for z; =1 and one with posterior
probability 3(1—¢) for z;=1 independent of the past z., with 0<e<3. That is

+e) for ap=uy
€

1
1—¢) for a; # x4

N N~
—

pa(T1-n) = fig (T1) * oo+ fha, (Tn),  where g, (x4) = {

(
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We are not interested in predictions beyond time n but for completeness we may define
[te to assign probability 1 to x; =1 for all t>n. If = p,, the informed scheme ©, always

predicts the bit which has highest p-probability, i.e. yt@ Y=y
€] (C] n
— =l () =410 = EX=3(1-2)

Since E®* is the same for all a we seek to maximize E? for a given predictor © in the
following. Assume O predicts y° (possibly depending on the history z.;). Since we want
lower bounds we seek for a worst case u. A success y° =z, has lowest possible probability
s(l—g) if a,=1—y2.

= P =1y, (y°) = il+e) = E° = 2(1+¢).
So we have e?—e?” =¢ and E© — E9 =ne for the regrets. We need to eliminate n and ¢

in favor of s;, Sy, and E9». If we assume uniform weights w,, =27 for all u, we get

n

§(1m) = Zwuaﬂa(xlzn) = 27“1—[ Z fa (T4) = 2nf[11 = 27",

t=1a,€{0,1}

i.e. £ is an unbiased Bernoulli sequence (§(z¢|z<,)=1).

= si(r) = Z(%—uat(xt))Q = %52 and Sn:%62.

Tt

So we have € =4/2s; which proves the instantaneous regret formula e?—ef)“ =/2s4.

Inserting 6:1/%5’n into EO» and solving w.r.t. v/2n we get v/ 2n:\/5’n+\/4E7(?”—|—5n. So

we finally get
E® —E® = ng = \/85,V2n = S, +\/4E"S, + S2

which proves the total regret formula of Theorem 9. O

Since d;/s; =1+0(g?) we have D, /S, —1 for e —0. Hence the error bound of Theorem
3 with S, replaced by D,, is asymptotically tight for ES« /D, — oo (which implies € —0).
This shows that without restrictions on the loss function which exclude the error loss,
the loss bound in Theorem 4 can also not be improved. Furthermore, E® — E®» =ne =

ny/22 —/2nD,,, which shows that the bound (30) of Merhav&Feder is also tight.

An n independent set M leading to a good (but not tight) lower bound is M = {1,120}
with f115(1]2<;) = 34, with e, =min{3,,/Inw, ' /V/tlnt}. For w,, <w,, and n— oo one

e e 6
can show that E,°—FE, " Nﬁ\/En“lnwljll.

6.2 Pareto Optimality of ¢

In this subsection we want to establish a different kind of optimality property of £&. Let
F(u,p) be any of the performance measures of p relative to p considered in the previous
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sections (e.g. s;, or Dy, or Ly, ...). Tt is easy to find p more tailored towards u such that
F(p,p) <F(u,€). This improvement may be achieved by increasing w,,, but probably at the
expense of increasing F for other v, i.e. F(v,p)>F (v,£) for some v € M. Since we do not
know g in advance we may ask whether there exists a p with better or equal performance
for all v€ M and a strictly better performance for one v € M. This would clearly render
¢ suboptimal w.r.t. to F. We show that there is no such p for all performance measures
studied in this work.

Definition 10 (Pareto Optimality) Let F(u,p) be any performance measure of p rel-
ative to p. The universal prior £ is called Pareto-optimal w.r.t. F if there is no p with
F(v,p) <F,£) for all ve M and strict inequality for at least one v.

Theorem 11 (Pareto Optimality) The universal prior £ is Pareto-optimal w.r.t. the
instantaneous and total squared distances s, and S, (11), entropy distances d; and D,
(13), errors e; and E,, (17), and losses l; and L, (28).

Proof: We first proof Theorem 11 for the instantaneous expected loss ;. We need the
more general p expected instantaneous losses

A
ltp(x<t) = Zp(xt|x<t)£xtyg\ (41)
Tt
for a predictor A. We want to arrive at a contradiction by assuming that ¢ is not Pareto-
optimal, i.e. by assuming the existence of a predictor” A with I3 < lt,f for all ve M and
strict inequality for some v. Implicit to this assumption is the assumption that I3 and

[0 exist. I8 exists iff v(z|ry) exists iff v(zoy) >0 iff w,(z44)>0.
A A
= Y w(z)ly, < D wlza)ly = L& < Iy
v v

The two equalities follow from inserting (7) into (41). The strict inequality follows from the
assumption and w,(z;) >0. The last inequality follows from the fact that Ag minimizes
by definition (27) the &-expected loss (similarly to (29)). The contradiction [}y <Ij; proves
Pareto-optimality of & w.r.t. [;.

In the same way we can prove Pareto-optimality of & w.r.t. the total loss L, by defining
the p expected total losses

ZZP )l (<) ZZP T1:4) gy (42)

t=1 T<t t=1 T1:t

for a predictor A, and by assuming L2, < L) for all v and strict inequality for some v,
from which we get the contradiction Lng—zywyLﬁy <DL Wy n :ng SLQg with the help

TAccording to definition 10 we should look for a p, but for each deterministic predictor A there exists
a p with A=A,.
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of (5). The instantaneous and total expected errors e; and E,, can be considered as special
loss functions.

Pareto-optimality of £ w.r.t. s; (and hence S,) can be understood from geometrical insight.
A formal proof for s; goes as follows: With the abbreviations i = zy, y,; = v(zr<),
zi=&(zi|lr <), ri=p(xi|T<t), and w,=w, (1) >0 we ask for a vector r with 3;(y,;—r;)*<
> (Yyi—2;)? V. This implies

0 > Zwv[z Yvi— )2_Z(yui_zi)2] = Zwu[z_2yuiri+r?+2yuizi_Z?] =

= Y =2+ 22z — 2 = Y (ri—2)%

where we have used 3, w, =1 and ¥, w,y,; =2; (7). >;(ri—2;)> <0 implies r =z proving
unique Pareto-optimality of & w.r.t. s,. Similarly for d; the assumption Zzymlny‘”
X iYpilnt Yy implies

0> Zwy[Zymlnyw Yyi In ym] Zw,,Zymln— = Zzllnr—

Z

which implies r=z proving unique Pareto-optimality of £ w.r.t. d;. The proofs for S,, and
D,, are similar. O

We have proven that & is uniquely Pareto-optimal w.r.t. s;, Sy, d; and D,,. In the case of

e, En, l; and L, there are other p#£¢ with F(v,p) =F (v,£)Vv, but the actions/predictions
. . Ap AN e o . :

they invoke are unique (y, "=y, ) (if ties in argmax,, are broken in a consistent way),

and this is all what counts.

For all measures which are relevant from a decision theoretic point of view, i.e. for all loss
functions [, and L,, £ has the welcomed property of being Pareto-optimal, but & is not
Pareto-optimal w.r.t. to all thinkable performance measures.

Theorem 12 ((Non)Pareto-optimality) & is Pareto-optimal w.r.t.

e the a-norm ||-||a for a>1,
e positive linear combinations of a;-norms with all o; > 1,
e a power of F if Pareto-optimal w.r.t. F, i.e. esp. w.r.t. ||-||2.

€ is (in general) not Pareto-optimal w.r.t.

e the a-norm ||-||o for a<1,
e positive linear combinations of ||-||3 with all ;> 1.
e positive linear combinations of F; even if Pareto-optimal w.r.t. all F;.

Intuition on this problem can be gained by considering probability vectors x,y,z,ve A C
IR, where A is the 2d probability triangle, and z=wx+(1—w)y is a mixture of x and
y. Consider the sets My :={r:F(x,r) < F(x,z)} and analogously M. MxNM; is not
empty; it contains z. If MyN M, has an interior, then z is not Pareto-optimal. Visualize
the 1d boundaries of the 2d areas My and M, qualitatively for the various performance
measures JF. This gives some intuition of how to prove Pareto-optimality and to construct
counter-examples. A proof of Theorem 12 will be given elsewhere.
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6.3 Balanced Pareto Optimality of ¢

Pareto-optimality should be regarded as a necessary condition for a prediction scheme
aiming to be optimal. From a practical point of view a significant decrease of F for
many v may be desirable even if this causes a small increase of F for a few other v. The
impossibility of such a “balanced” improvement is a more demanding condition on ¢ than
pure Pareto-optimality. The next theorem shows that A, is also balanced-Pareto-optimal.
We only consider the performance measure L, and suppress the index n for convenience.

Theorem 13 (Balanced Pareto Optimality w.r.t. L)

A,,::Lé—Lf/\ﬁ, A::Zw,,A,, = A>0.
veEM

This implies the following: Assume A has larger loss than A¢ on environments L by a total
weighted amount of Ag: =Y ycpwrAx. Then A can have smaller loss on neH:=M\L, but
the improvement is bounded by Aqgy:= |2 cpwyAy| <Ar. Especially |A,| <w, 'maxyesAy.

This means that a weighted loss decrease Ay, by using A instead of A¢ is compensated by
an at least as large weighted increase A, on other environments. If the increase is small,
the decrease can also only be small. In the special case of only a single environment
with increased loss Ay, the decrease is bound by A, < Z—2|A,\|, i.e. an increase by an
amount A, can only cause a decrease by at most the same amount times a factor %3 A
increase can only cause a smaller decrease in simpler environments, but a scaled decrease
in more complex environments. Finally note that pure Pareto-optimality (11) follows
from balanced Pareto-optimality in the special case of no increase A, =0.

Proof: A>0 follows from A=}, w, [L,é— 1//\5] :L?—Lé}g >0, where we have used linearity

of L, in p and L?g gLQ. The remainder of Theorem 13 is obvious from 0< A=A, —-Ay
and by bounding the weighted average A, by its maximum.O

6.4 On the Optimal Choice of Weights

In the following we indicate the dependency of & on w explicitly by writing &,. We
have shown that the A¢, prediction schemes are (balanced) Pareto optimal, i.e. that no
prediction scheme A (whether based on a Bayes mix or not) can be uniformly better.
Least assumptions on the environment are made for M which are as large as possible.
In Subsection 2.7 we have discussed the set M of all enumerable semimeasures which we
regarded as sufficiently large from a computational point of view (see [Sch00] for even
larger sets, but which are still in the computational realm). Agreeing on this M still
leaves open the question of how to choose the weights (prior believes) w,, since every &,
with w, >0Vv is Pareto-optimal and leads asymptotically to optimal predictions.
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1

We have derived bounds for the mean squared sum S$2 <Inw,' and for the loss regret

g — LAy <21Inw; ' +24/Inw; LA All bounds monotonically decrease with increasing
w,. So it is desirable to assign high weights to all v€ M. Due to the (semi)probability con-
straint 3°,w, <1 one has to find a compromise.®In the following we will argue that in the
class of enumerable weight functions with short program there is an optimal compromise,
namely w, =2"X®) which gives Solomonoff’s prior.

Consider the class of enumerable weight function with short program, namely V:={v,:
M— R with 3,0, <1 and K(v)=0(1)}. Let w,:=2 X®) and v(y€V. Corollary 4.3.1
of [LV97, p255] says that K(x) <—log,P(x)+K(P)+O(1) for all z if P is an enumerable
discrete semimeasure. Identifying P with v and x with (the program index describing) v
we get

Inw,' <Inv,'+O(1).

This means that the bounds for &, depending on Inw, ! are at most O(1) larger than the
bounds for &, depending on Inv,!. So we lose at most an additive constant of order 1 in
the bounds when using &, instead of £,. In using Solomonoff’s prior &, we are on the safe
side, getting (within O(1)) best bounds for all environments.

Theorem 14 (Optimality of universal weights) Within the set V of enumerable
weight functions with short program, the universal weights w,=2"5") lead to the smallest
performance bounds within an additive (to lnw;l) constant in all enumerable environ-
ments.

Since the above justifies the use of Solomonoft’s prior and Solomonoff’s prior assigns
high probability to an environment if and only if it has low (Kolmogorov) complexity,
one may interpret the result as a justification of Occam’s razor’. But note that this
is more of a bootstrap argument, since we implicitly used Occam’s razor to justify the
restriction to enumerable semimeasures. We also considered only weight functions v with
low complexity K(v)=0(1). What did not enter as an assumption but came out as a
result is that the specific universal weights w, =2"%") are optimal.

6.5 Occam’s razor versus No Free Lunches

We do not regard Theorem 13 as a “No Free Lunch” (NFL) theorem [WM97]. Since most
environments are completely random, a small concession on the loss in each of these com-
pletely uninteresting environments provides enough margin A to yield distinguished per-
formance on the few non-random (interesting) environments. Indeed, we would interpret

8All results in this paper have been stated and proven for probability measures y, ¢ and w,, i.e.
Zzuf(wl:t) = Zzuu(ml;t) =3 ,w,=1. On the other hand, the class M considered here is the class of
all enumerable semimeasures and ), w, < 1. In general, each of the following 4 items could be semi (<)
or not (=): (&, pu, M, w,), where M is semi if some elements are semi. Six out of the 2! combinations
make sense. Convergence (2), the error bound (Theorem 3), the loss bound (4), as well as most other
statements hold for (<,=,<,<), but not for (<,<,<,<). Nevertheless, £ = u holds also for (<,<,<,<)
with maximal p semi-probability, i.e. fails with p semi-probability 0.

9The only if direction can be shown by a more easy and direct argument [Sch02].
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the NFL theorems for optimization and search in [WM97] as balanced Pareto-optimality
results. Interestingly, whereas for prediction only Bayes-mixes are Pareto-optimal, for
search and optimization every algorithm is Pareto-optimal. There is an ongoing battle
between believers in Occam’s razor and believers in “no free lunches” that cannot be dealt
with here [Sto01].

7 Continuous Probability Classes M

We have considered thus far countable probability classes M, which makes sense from
a computational point of view as emphasized in Subsection 2.7. On the other hand
in statistical parameter estimation one often has a continuous hypothesis class (e.g. a
Bernoulli(#) process with unknown 6€10,1]). Let

M = {uy:0€0C R

be a family of probability distributions parameterized by a d-dimensional continuous
parameter #. Let p = py, € M be the true generating distribution and 6, be in the
interior of the compact set ©. We may restrict M to a countable dense subset, like
{pe} with computable (or rational) . If 6, is itself a computable real (or rational) then
Theorem 7 applies. From a practical point of view the assumption of a computable 6, is
not so serious. It is more from a traditional analysis point of view that one would like
quantities and results depending smoothly on # and not in a weird fashion depending on
the computational complexity of §. For instance, the weight w(#) is often a continuous
probability density

E(x1m) = /@ 40 w(0)- (1), /@ dow®) =1, w@) > 0. (43)

The most important property of £ used in this work was &(x1.,) > w, -v(x1.,,) which has
been obtained from (5) by dropping the sum over v. The analogous construction here is
to restrict the integral over © to a small vicinity Ns of . For sufficiently smooth py and
w(#) we expect &(x1.,)2|Ns, |-w(0)- po(1.y), where |Ns | is the volume of Nj . This in
turn leads to Dy, SInw, ' +In| Ny, |, where w,:=w(f). N, should be the largest possible
region in which Inguy is approximately flat on average. The averaged instantaneous, mean,
and total curvature matrices of Iny are

Jir<) = E;Vy lnue(xt|x<t)VaT1nue(:rt|x<t)\9:90, n 1= %Jn (44)
Jn = ZE<tjt(x<t) - El:nVG lnﬂg(xl:n)vgln,U/G(xlzn)\Gzﬂo
t=1

They are the Fisher information of © and may be viewed as measures of the parametric
complexity of gy at § =60,. The last equality can be shown by using the fact that the
p-expected value of Ving-VT1ny coincides with —VV7Iny (since X is finite) and a similar
line of reasoning as in (14) for D,,.
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Theorem 15 (Continuous Entropy Bound) Let uy be twice continuously differen-
tiable at B € © C IR" and w(0) be continuous and positive at 0y. Furthermore we as-
sume that the inverse of the mean Fisher information matriz (7,)"" exists, is bounded for
n— 00, and is uniformly (in n) continuous at 0y. Then the relative Entropy D,, between

W= g, and & (defined in (43)) can be bounded by

D, = Elnln% < Inwg'+2In 2 + Lndet J, + o(1) = b,

where w,=w(0y) is the weight density (43) of p in & and o(1) tends to zero for n— oo.

For independent and identically distributed distributions pg(z1.,) = pe(z1)-...- o(xn) VO
this bound has been proven in [CB90, Theorem 2.3]. In this case JI°B%(fy) =7, = jn
independent of n. For stationary (k*-order) Markov processes 7, is also constant. The
proof generalizes to arbitrary g by replacing JI€P%l(4;) with 7, everywhere in their
proof. For the proof to go through, the vicinity Nj, :={6: |60 —60||;, <0,} of Oy must
contract to a point set {6y} for n — oo and 6, — 0. 7, is always positive semi-definite
as can be seen from the definition. The boundedness condition of 7' implies a strictly
positive lower bound independent of n on the Eigenvalues of 7, for all sufficiently large
n, which ensures N5 — {6y}. The uniform continuity of 7, ensures that the remainder
o(1) from the Taylor expansion of D, is independent of n. Note that twice continuous
differentiability of D,, at 6, [CB90, Condition 2| follows for finite X from twice continuous
differentiability of py. Under some additional technical conditions one can even prove
an equality D, =Inw,'+£In;% 4 Indet7,+o0(1) for the i.i.d. case [CB90, (1.4)], which is
probably also valid for general pu.

The lnw;1 part in the bound is the same as for countable M. The gln% can be understood
as follows: Consider 0 €[0,1) and restrict the continuous M to @ which are finite binary
fractions. Assign a weight w(f) ~ 27! to a @ with binary representation of length .
D, <[-In2 in this case. But what if # is not a finite binary fraction? A continuous
parameter can typically be estimated with accuracy O(n~'/?) after n observations. The
data do not allow to distinguish a @ from the true 6 if |§—6| < O(n~'/?). There is such a
with binary representation of length [=log,O(/n). Hence we expect D, <iInn+O(1) or
glnn+0(1) for a d-dimensional parameter space. In general, the O(1) term depends on
the parametric complexity of uy and is explicated by the third %lndetjn term in Theorem
15. See [CB90, p454] for an alternative explanation. Note that a uniform weight w(6) :‘%
does not lead to a uniform bound unlike the discrete case. A uniform bound is obtaine

for Bernando’s (or in the scalar case Jeffreys’) reference prior w(f) ~ y/detjoo(f) if 700

exists [Ris96].

So Theorems 2...7 are also applicable to the case of continuously parameterized probability

classes. Theorem 15 is also valid for a mixture of the discrete and continuous case & =
Yo dO w®(0) uy with 3, [dO w*(0)=1.
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8 Further Applications

8.1 Partial Sequence Prediction

There are (at least) two ways to treat partial sequence prediction. With this we mean
that not every symbol of the sequence need to be predicted, say given sequences of the
form 2 2;...2,2, we want to predict the z's only. The first way is to keep the A, prediction
schemes of the last sections mainly as they are, and use a time dependent loss function,
which assigns zero loss Ziy =0 at the z positions. Any dummy prediction y is then
consistent with (27). The losses for predicting = are generally non-zero. This solution
is satisfactory as long as the z's are drawn from a probability distribution. The second
(preferable) way does not rely on a probability distribution over the z. We replace all
distributions p(z1.,) (p= u, v, &) everywhere by distributions p(x1.,|21.,) conditioned on
21m- The z1, conditions cause nowhere problems as they can essentially be thought of
as fixed (or as oracles or spectators). So the bounds in Theorems 2...15 also hold in this
case for all individual 2’s.

8.2 Independent Experiments and Classification

A typical experimental situation is a sequence of independent (i.i.d) experiments, predic-
tions and observations. At time ¢ one arranges an experiment z; (or observes data z;),
then tries to make a prediction, and finally observes the true outcome ;. Often one has a
parameterized class of models (hypothesis space) pg(z¢]2;) and wants to infer the true 6 in
order to make improved predictions. This is a special case of partial sequence prediction,
where the hypothesis space M = {g(x1.n|21.0) = po(x1]21) - .. - pro(xn|2,) } consists of i.i.d.
distributions, but note that £ is not i.i.d. This is the same setting as for on-line learning
of classification tasks, where a z € Z should be classified as an z € X.

9 Comparison to Weighted Majority

There are two schools of universal sequence prediction: We considered expected per-
formance bounds for Bayesian prediction based on mixtures. The other approach are
weighted majority (WM) algorithms with worst case loss bounds in the spirit of Little-
stone, Warmuth, Vovk and others. The two schools usually do not refer to each other
much. We briefly describe WM and compare both approaches. For a more compre-
hensive comparison see [MF98|. In the following we focus on topics not covered in
[MF98]. WM was invented in [LW89, LW94] and [Vov92] and further developed in
[Ces97, HKWO98, KW99] and by others. Many variations known by many names (weighted
average, aggregating strategy, learning with expert advice, boosting, hedge algorithm, ...)
have meanwhile been invented. Early works in this direction are [Daw84, Ris89]. See
[Vov99] for a review and further references. We describe the setting and basic idea of



UNIVERSAL BAYESIAN SEQUENCE PREDICTION 35

WM for binary alphabet. Consider a finite binary sequence xxzs...x, € {0,1}" and a fi-
nite set £ of experts e € £ making predictions z§ in the unit interval [0,1] based on past
observations z1zs...z; 1. The loss of expert e in step t is defined as |z;—zf|. In the
case of binary predictions xf €{0,1}, |x;—x¢| coincides with our error measure (17). The
WM algorithm pg,, combines the predictions of all experts. It forms its own prediction'”
2} €[0,1] according to some weighted average of the expert’s predictions zf. There are
certain update rules for the weights depending on some parameter 3. Various bounds for
the total loss L,(x):=3>}, |zs—2%| of WM in terms of the total loss L. (x):=Y"1_; |x;—x}|
of the best expert € € £ have been proven. It is possible to fine tune 5 and to eliminate
the necessity of knowing n in advance. The first bound of this kind has been obtained in
[Ces97]:

L,(x) < L.(x)+28In|&|+4/L.(x)In|E]. (45)

The constants 2.8 and 4 have been improved in [AG00, YE01]. The last bound in Theorem
3 with D,, <In|M| for uniform weights and with L3+ increased to L2 reads

LA < LA 4+ 2In | M|+ 2y/LA In | M.

It has a quite similar structure as (45), although the algorithms, the settings, the proofs,
and the interpretation are quite different. Whereas WM performs well in any environ-
ment, but only relative to a given set of experts £, our A, predictor competes with the best
possible A, predictor (and hence with any other A predictor), but only in expectation and
for a given set of environments M. WM depends on the set of expert, A¢ depends on the
set of environments M. The basic pg, algorithm has been extended in different directions:
incorporation of different initial weights (|| ‘—>lnw%) [LW89, Vov92|, more general loss
functions [HKW98], continuous valued outcomes [HKW98], and multi-dimensional pre-
dictions [KW99] (but not yet for the absolute loss). The work of [Yam98] lies somewhat
in between WM and this work; “WM?” techniques are used to prove expected loss bounds
(but only for sequences of independent symbols/experiments and limited classes of loss
functions). Finally, note that the predictions of WM are continuous. This is appropriate
for weather forecasters which announce the probability of rain, but the decision to wear
sunglasses or to take an umbrella is binary, and the suffered loss depends on this binary
decision, and not on the probability estimate. It is possible to convert the continuous
prediction of WM into a probabilistic binary prediction by predicting 1 with probability
2} €1]0,1]. |z;—a¥| is then the probability of making an error. Note that the expectation
is taken over the probabilistic prediction, whereas for the deterministic A, algorithm the
expectation is taken over the environmental distribution p. The multi-dimensional case
[KW99] could then be interpreted as a (probabilistic) prediction of symbols over an alpha-
bet X={0,1}¢, but error bounds for the absolute loss have yet to be proven. In [FS97] the

regret is bounded by In|€|41/2L In|£| for arbitrary unit loss function and alphabet, where

L is an upper bound on L., which has to be known in advance. It would be interesting to
generalize WM and bound (45) to arbitrary alphabet and to general loss functions with
probabilistic interpretation.

'0The original WM version [LW89] had discrete prediction z7 € {0,1} with (necessarily) double as many
errors as the best expert and is only of historical interest any more.
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10 Outlook

In the following we discuss several directions in which the findings of this work may be
extended.

10.1 Infinite Alphabet

In many cases the basic prediction unit is not a letter, but a number (for inducing number
sequences), or a word (for completing sentences), or a real number or vector (for physical
measurements). The prediction may either be generalized to a block by block prediction
of symbols or, more suitably, the finite alphabet X could be generalized to countable
(numbers, words) or continuous (real or vector) alphabet. The presented Theorems are
independent of the size of X and hence should generalize to countably infinite alphabets
by appropriately taking the limit |X'| — oo and to continuous alphabets by a denseness
or separability argument. Since the proofs are also independent of the size of X we may
directly replace all finite sums over X by infinite sums or integrals and carefully check
the validity of each operation. We expect all Theorems to remain valid in full generality,
except for minor technical existence and convergence constraints.

An infinite prediction space ) was no problem at all as long as we assumed the existence
of yé\" €Y (27). In case yé\" €Y does not exist one may define yf” €)Y in a way to achieve
a loss at most e;=o0(¢ ') larger than the infimum loss. We expect a small finite correction
of the order of e =772 e, <00 in the loss bounds somehow.

10.2 Delayed & Probabilistic Prediction

The A, schemes and theorems may be generalized to delayed sequence prediction, where
the true symbol z; is given only in cycle t+d. A delayed feedback is common in many
practical problems. We expect bounds with D, replaced by d-D,. Further, the error
bounds for the probabilistic suboptimal £ scheme defined and analyzed in [HutOla] can
also be generalized to arbitrary alphabet.

10.3 More Active Systems

Prediction means guessing the future, but not influencing it. A small step in the direction
to more active systems was to allow the A system to act and to receive a loss (g,
depending on the action y; and the outcome x;. The probability u is still independent of
the action, and the loss function ¢! has to be known in advance. This ensures that the
greedy strategy (27) is optimal. The loss function may be generalized to depend not only
on the history x.;, but also on the historic actions y.; with g still independent of the
action. It would be interesting to know whether the scheme A and/or the loss bounds
generalize to this case. The full model of an acting agent influencing the environment has
been developed in [Hut01b], but loss bounds have yet to be proven.
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10.4 Miscellaneous

Another direction is to investigate the learning aspect of universal prediction. Many pre-
diction schemes explicitly learn and exploit a model of the environment. Learning and
exploitation are melted together in the framework of universal Bayesian prediction. A
separation of these two aspects in the spirit of hypothesis learning with MDL [VLO0O]
could lead to new insights. Also, the separation of noise from useful data, usually an
important issue [GTV01], did not play a role here. The attempt at an information the-
oretic interpretation of Theorem 8 may be made more rigorous in this or another way.
In the end, this may lead to a simpler proof of Theorem 8 and maybe even for the loss
bounds. A unified picture of the loss bounds obtained here and the loss bounds for
the weighted majority (WM) algorithm could also be fruitful. Yamanishi [Yam98] used
WM methods to prove expected loss bounds for Bayesian prediction, so maybe the proof
technique presented here could be used wvice versa to prove more general loss bounds for
WM. Maximum-likelihood predictors may also be studied. Finally, the system should be
applied to specific induction problems for specific M with computable &.

11 Summary

We compared universal predictions based on Bayes-mixtures £ to the infeasible informed
predictor based on the unknown true generating distribution p. We have shown that the
universal posterior £ converges to p and that £/p— 1. Our main focus was on a decision-
theoretic setting, where each prediction y, € X (or more generally action y; €)) results in a
loss g,y if z, is the true next symbol of the sequence. We have shown that the A, predictor
suffers only slightly more loss than the A, predictor. We have shown that the derived error
and loss bounds cannot be improved in general, i.e. without making extra assumptions
on ¢, u, M, or w,, and this is true for any p independent predictor. We have also shown
Pareto-optimality of £ in the sense that there is no other predictor which performs better
or equal in all environments v € M and strictly better in at least one. Optimal predictors
can (in most cases) be based on a mixture distributions . Finally we gave an Occam’s
razor argument that Solomonoff’s prior with weights w, =27%®) is optimal, where K (v) is
the Kolmogorov complexity of v. Of course, optimality always depends on the setup, the
assumptions, and the chosen criteria. For instance, the universal predictor was not always
Pareto-optimal, but at least for many popular, and for all decision theoretic performance
measures. Bayes predictors are also not necessarily optimal under worst case criteria
[CBLO1]. We also derived a bound for the relative entropy between & and p in the case
of a continuously parameterized family of environments, which allowed us to generalize
the loss bounds to continuous M. Furthermore, we discussed the duality between the
Bayes and worst case (WM) approaches and results, classification tasks, games of chances,
infinite alphabet, active systems influencing the environment, and others.

Acknowledgements [ want to thank Ray Solomonoff and Jiirgen Schmidhuber for
many valuable discussions and for encouraging me to generalize the error bounds obtained
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A Entropy Inequalities (Lemma 1)

' We show that

N i N N
y;In =) for y; >0, 2z >0, Zyi =1= Zzz (46)
Zi i1 i1

i=1 ?

for any convex and even (f(z)= f(—z)) function with f(0) <0. For f(z)=2? we get
inequality (Lemma 1s), for f(z)=|x| we get inequality (15). To prove (46) we partition
i€{1,.,N}=GYUG~, GTNG~ ={}, and define y*:= Yy, and z=:= > z. It is well

i€eGE i€eGE
known that the relative Entropy is positive, i.e.
szlﬂz>0 for p;>0, >0, Y p=1=)> q. (47)
i€eG* i€eGE i€eG*

Note that there are 4 probability distributions (p; and ¢; for i € G* and i € G7). For
i € GF, pii=vy;/y* and ¢;:= 2;/2* satisfy the conditions on p and ¢. Inserting this into
(47) and rearranging the terms we get

yt
Z ylln—Z > yﬂ:ln—i
ieGE o

If we sum over + and define y=y*=1—y~ and z=2"=1—2" we get

N

N +
Yi e Y Y -y 2
Z:yiln; > zi:y an—jE = yln;+(1—y)ln1_ > 2(y—=2) (48)

The last inequality is elementary and well known. For the special choice G*:={i:y;Z 2},
we can upper bound >, f(y; —z;) as follows B

@ ) ©
S i) @S sl LAY ieal) € A0S gl @

ieGE ieGE i€eGE ieGE

2= 2 pt—) L= £ sz umd) e

HWe will not explicate every subtlety and only sketch the proofs. Subtleties regarding y,2=0/1 have
been checked but will be passed over. Oln— :=0 even for z; =0. Positive means > 0. The probability
constraints in (46) on y and z apply to all appendlces z>0if y>0.
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(a) follows from the symmetry of f. (b) follows from the convexity'? of f and from f(0)<0.
(c) is true, since all y;—z; are positive/negative for i€ G* due to the special choice of G*.
(d) and (e) follow from the definition of y*) and ) (f) is obvious. (g) follows from
(48) and the monotonicity'® of \/~ and f for positive arguments. Inequality (46) follows
by summation of (49) over + and noting that f(y/ ) is independent of =+.

This proves (Lemma 1f). Inserting f(z)=2? yields (Lemma 1s), inserting f(z) = |z|
yields (Lemma la). (Lemma 1h) is proven differently. For arbitrary y >0 and z>0 we
define

f(y,z)::yln%—(\/ﬂ—\/g)2+z—y:2yg( z/y) with g(t):=—Int+¢t—12>0.

This shows f >0, and hence Y, f(y;,2;) >0, which implies

Sun T =SV VA 2 Y- Y a=1-1=0,

This proves (Lemma 1h). O
B Binary Loss Inequality for zgé (37)

With the definition

z

1 —
flg.2) == Byl 4 1=yl | + A (A —y)—— -y , 2<i  (50)

1
2

we show f(y,2) >0 for suitable A’=A+1 and B'=B+1. We do this by showing that f>0
at all extremal values and “at” boundaries. f— +oo for z—0, if we choose B'>0. For
the boundary z:% we lower bound the relative entropy by the sum over squares (Lemma
1s)
fly,3) 22B'(y—3)* + A(1—y) —y
_ A42B'+1

The r.h.s. is quadratic in y with minimum at y* ===, which implies

4AB — A% — 4
8(B+1)
Furthermore, for A>4 and B>1 we have f(y,3)>2(1—y)(3—2y) >0. Hence f(y,5)>0
for B> %+1, since for A>4 it implies B>1 and for A <4 it implies B> iA+%.

The extremal condition 0f/0z=0 (keeping y fixed) leads to
. B'(l1—z)+ A

=z :
B'(1—z)+ A’z

fly.3) > fly',3) > >0 for B>1A+1 A>0, (=B>1).

Yy =Y

PInserting y =0 and z=a+b in the convexity definition af(z)+(1—a)f(y) > f(az+(1—a)y) leads
to af(a+b)+(1—a)f(0) > f(a(a+b)). Inserting a= ;45 and a= GL_H) and adding both inequalities gives
f(a+b)+f(0)> f(a)+ f(b) for a,b>0. Using f(0) <0 we get f(>,x;)>>",f(z;) for z; >0 by induction.

BInserting b=y = —z and «a :% into the convexity definition and using the symmetry of f we get
f(b) > f(0). Inserting this into f(a+b)+f(0)> f(a)+ f(b) we get f(a+b)> f(a) which proves that f is
monotonically increasing for positive arguments (a,b>0).
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Inserting y* into the definition of f and, again, replacing the relative entropy by the sum
over squares (Lemma 1s), we get

fly'2) = 2By — 2 + A1 —y) 2 — ¢ = i g(2),
g(2) == 2B'A”z(1 —2) +[(A' —1)B'(1 — z) — A'|(B' + A'+%).
We have reduced the problem to showing g >0. If the bracket [...] is positive, then g is
positive. If the bracket is negative, we can decrease g by increasing *~ <1 in (B'+A't*;)
to 1. The resulting expression is now quadratic in z with minima at the boundary values
z=0and z= % It is therefore sufficient to check

g(0) > (AB—1)(A+B+2)>0 and g(3) > 3(AB—1)2A+B+3)>0

1
2

which is true for B> . In summary we have proved (50) for B>-++1 and A>0 O.

C Binary Loss Inequality for 2> (38)

With the definition

1 - 1-—
LA -y —y— , 221 (D)
-z

z

fly,z) := B yln%+(1—y)ln

we show f(y,z) >0 for suitable A’=A+1>1 and B'=B+1> 2 similarly to Appendix
B by proving that f >0 at all extremal values and “at” boundaries. f— +oo for z —1.
1

The boundary z =3 has already been checked in Appendix B. The extremal condition

0f/0z=0 (keeping y fixed) leads to
B'z

A - ey

Inserting y* into the definition of f and replacing the relative entropy by the sum over
squares (Lemma 1s), we get

fly2) =2 2By =22+ AL —y) -y = i g(2),

g(z) == [(A'=1)B'z— A" +2z(1 — 2)|(B'+1—1) + 2(1 — 2)*.

We have reduced the problem to showing g >0. Since (B'+1—1) >0 it is sufficient to
show that the bracket is positive. We solve [...] >0 w.r.t. B and get

1-22(1—-2) 1 1-=z2
> TP

B -
- z A z

For B > %—1—1 this is satisfied for all %g z<1. In summary we have proved (51) for
B>X+1and A>00.
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D General Loss Inequality (33)

We reduce
N
Blzyz ln + Alzyz im = Zyzgzs Z 0 (52)
=1
for Zf\;l szl Z 0, dZ = Eim — gis (53)

to the binary N =2 case. We do this by keeping y fixed and showing that f as a function
of z is positive at all extrema in the interior of the simplex A:={z:Y",z;=1,2z;>0} of the
domain of z and “at” all boundaries. First, the boundaries z; — 0 are safe as f— oo for
B'>0. Variation of f w.r.t. to z leads to a minimum at z=y. If }_,2;d; >0, we have

) = > yi(Alm—Cis) > > yillim—lis) = > zd; > 0.

In the first inequality we used A" > 1. If 3 ;2;d; <0, z=1y is outside the valid domain
due to the constraint (53) and the valid minima are attained at the boundary ANP,
P:={z:Y",2;d;=0}. We implement the constraints with the help of Lagrange multipliers
and extremize

L( ) _fYa +)‘Zzz+ﬂzzz

0L/0z; =0 leads to y; =y :=z;(A+pud;). Summing this equation over i we obtain A\=1.
1 is a function of y for which a formal expression might be given. If we eliminate y; in
favor of z;, we get

Z) = ZCZ'ZZ' s C; = (1 + Mdl)(Bl ln(l + Mdl) + Alfim — Ezs)

In principle p is a function of y but we can treat u directly as an independent variable,
since y has been eliminated.

The next step is to determine the extrema of the function f =73 ¢;z; for z€ ANP. For
clearness we state the line of reasoning for N =3. In this case A is a triangle. As f is
linear in z it assumes its extrema at the vertices of the triangle, where all z; =0 except
one. But we have to take into account a further constraint z € P. The plane P intersects
triangle A in a finite line (for ANP={} the only boundaries are z; —0 which have already
been treated). Again, as f is linear, it assumes its extrema at the ends of the line, i.e. at
edges of the triangle A on which all but two z; are zero. With a similar line of arguments
for N >3 we conclude that a necessary condition for a minimum of f at the boundary is
that at most two z; are non-zero. But this implies that all but two y; are zero. If we had
eliminated z in favor of y, we could not have made the analogous conclusion because y; =0
does not necessarily imply z; =0. We have effectively reduced the problem of showing
f(y*,z) >0 to the case N=2. We can go back one step further and prove (52) for N=2,
which implies f(y*,z) >0 for N=2. A proof of (52) for N =2 implies, by the arguments
given above, that it holds for all N. This is what we set out to show here 0.

The N =2 case is proven in the main text and in Appendices B and C .
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