
Small is Beautiful : Near Minimal Evolutionary

Neurocontrollers Obtained With Self-Organizing

Compressed Encoding

Shlomy Boshy Eytan Ruppin

School of Computer Science

Tel Aviv University

Tel-Aviv 69978,Israel

shlomy@post.tau.ac.il

School of Computer Science and

Sackler School of Medicine

Tel Aviv University

Tel-Aviv 69978,Israel

ruppin@post.tau.ac.il

Abstract

This paper presents a novel method for evolu-

tion of arti�cial autonomous agents. It is based

on adaptive, self-organizing compressed geno-

typic encoding (SOCE) of the phenotypic synap-

tic eÆcacies of the agent's neurocontroller. The

SOCE encoding implements a parallel evolution-

ary search for neurocontroller solutions in an dy-

namically varying and reduced subspace of the

original one. The SOCE successfully maintains

the quality of solutions obtained by performing

search directly in the original space. The SOCE

method leads to the robust emergence of compact,

near minimal neurocontrollers even when starting

from initially large networks. This is very impor-

tant since in practical situations the network size

needed to solve the problem is unknown before-

hand. It hence may serve both to estimate the

network size needed to solve a given task, and to

delineate the relative importance of the neurons

composing the agent`s controller network.

1. Introduction

Many Evolutionary Autonomous Agents (EAAs) use

neural networks to control their behavior. Such

neurocontrollers of EAAs performing complex tasks

can be evolved via genetic algorithms from a popu-

lation of genomes undergoing natural selection and

variation [see (J.A.Meyer and A.Guilliot, 1994)

(X.Yao, 1999) (A.Gulliot and J.A.Meyer, 2001)

(A.Gulliot and J.A.Meyer, 2000) for a review]. Much

of these EAA studies employ direct genotype-to-

phenotype encodings, where the magnitude of each

synapse is encoded by a speci�cally designated gene.

These direct encodings are problematic since they scale

quadratically with network size and are inadequate

for solving complex tasks. This problem has led to

considerable e�orts for developing \indirect" encodings,

where the genome includes a developmental program for

specifying the controller neural network and its weights.

Addressing the inherent scaling limitations of direct

encodings, we adopt a di�erent, new, approach. Instead

of utilizing a developmental program to compactly

encode all the network information, we present an

indirect encoding which adaptively maintains only

an approximate description of the network. The new

indirect encoding method introduced and studied here

generates compressed synaptic encodings. The method

can be used to obtain neurocontrollers containing a near

minimal number of neurons for any given task, which

are more amenable for an analysis of the structure and

activity.

The search for �nding short, compact representations

of solutions to problems has its origins in Occam's Ra-

zor and the Minimum Description Length (MDL) prin-

ciples. These principles suggest that among the viable

solutions to a problem, the simpler, shorter solutions

should be preferred. The rational is that there is a

much smaller number of simple solutions (i.e. hypothe-

ses) than elaborate ones, so if one �nds a simple solution

it is more likely to be a correct one (e.g. with good gen-

eralization properties) than a more complex one. In the

same spirit, indirect encoding methods that narrow the

search to a simpler low dimensional space increase the

chance of �nding a good solution for problems originally

embedded in a high dimensional search space. However,

while decreasing the search space, indirect encodings my

restrict the set of possible solutions and thereby may fail

to �nd good solutions. Devising indirect methods that

selectively decrease the search space while maintaining

a maximal set of good solutions is an important open

research problem.

The basic contribution of this paper is to present a

novel evolutionary process that maintains a \good" sub-

space in which the search is performed. Our indirect en-

coding method is based on adaptive compression. The

synaptic eÆcacies of each neuron are encoded in a lossy,

compressed manner, and an inverse decompression trans-

form is used to transcribe the genome into a function-

ing phenotype. Individual neurons may utilize di�er-

ent encoding (compression) levels. The level of com-

pression may vary from containing no information to di-

rect speci�cation of all the synaptic connection values.

These levels of compression are themselves encoded in

the genome and undergo evolution, adaptively varying

in a self-organized manner. We term this method Self-

Organizing Compressed Encoding (SOCE). Note that we

do not use a �tness function that explicitly encourages

shorter solutions, as done in the standard MDL ap-

proach. Compact solutions are obtained only because

they enable a more eÆcient evolutionary search, which

in turn leads to �nding new compact solutions, in a re-

ciprocal manner. With this scheme, the length of the

genomic encodings of solutions to the problem in hand

is optimized in an implicit manner.

Having adaptive, compressed encodings yields agents

with compact genotypes but their phenotypes may re-

main unnecessary large. Exploiting a speci�c form of

genetic variation in our method leads to the emergence

of compact near-minimal phenotype neurocontrollers.

Thus, our method leads to two important consequences:

simpler controller networks that are more amenable for

functional analysis, and an estimation of the complexity

of the problem in hand. That is, if starting from di�er-

ent initial network sizes a good solution can be achieved

by SOCE with X neurons, this gives us an upper bound

on the number of neurons needed to solve the task. The

SOCE algorithm automatically �nds compact networks

that solve the task, irrespective of the initial network

size. This is very important since in practical situations

the network size needed to solve the problem is unknown

beforehand.

Lossy compression methods usually rely on exploiting

regularities in the data encoded. Image compression,

for example, relies on the fact that neighboring points

in the image tend to have a similar level of brightness.

This mutual information between neighboring points can

be utilized to generate compact encodings. The task of

encoding controller networks of EAAs in general does

not o�er such regularities, that may lend themselves for

lossy compression. The synaptic values Wij and Wik

projecting from neurons j and k on neuron i are un-

correlated to a �rst approximation. However, a simple

observation shows that a series of numbers designating

the weights of the input (or output) synapses which a

neuron receives may still be subject to lossy compres-

sion, as illustrated in Figure 1 and explained below. For

an uncorrelated series of synaptic random values the ex-

pected encoding level is about P
2
, where P is the number

of synaptic inputs a neuron receives. The compression

levels obtained for EAA networks depend on a few fac-

tors, among them the sensitivity of neural processing to

the �delity of synaptic values and, more importantly, on

the actual number of neurons that is really needed to

solve the task. We show that the SOCE algorithm can

be successfully used in EAA environments to attain high

compression levels and, more importantly, near minimal

neurocontrollers.

The rest of the paper is organized as follows: Sec-

tion 2 discusses previous work on indirect genetic encod-

ings. Section 3 describes the model, including the agent

and the EAA environment and the compressed encoding

method. Section 4 describes our experimental results,

and section 5 discussed their implications.

2. Indirect Encoding Methods

The work on developing indirect encodings has attracted

ample e�orts, focusing on a few distinct avenues:

� Grammar Rewriting encodings { which employ

a set of rewriting rules that are encoded in the

genome. For example, in (H.Kitano, 1990), an

iterative decoding process uses rewriting rules

to create a matrix specifying the network archi-

tecture. Simple grammar rewriting encodings

typically generate restricted tree-like network

architectures, but utilizing graph grammars one

may develop more general recurrent networks

(F.Gruau, 1994),(J.Kodjabachian and J-A.Meyer, 1998).

Such encodings generate fairly compact genomes and

hence reduce the search space of possible solutions.

A variant, (B-T.Zhang and H.Muhlenbein, 1993)

enables the evolution of compact target networks by

including a complexity term in the �tness function.

� Developmental, Ontogenetic encodings {

where the genome expresses a program for

cell division and axonal migration that de-

termines the phenotypic neural architecture

[(R.K.Belew, 1993) (A.Cangelosi et al., 1994)

(S.Nol� and D.Parisi, 1995)]. In these encodings the

objects undergoing development are localized on a

2-dimensional space, allowing for context-dependent

e�ects from neighboring neurons, and the develop-

mental program has a more biological
avor. Yet,

the genomes generated are less compact than those

generated by encoding graph grammars (scaling

linearly with network size) and do not strongly bias

toward the evolution of modular networks.

Other developmental encodings incorporate

more biologically motivated \regulatory" en-

codings, [(A.Cangelosi and J.L.Elman, 1995)

(P.Eggenberger, 1996)], where the identity of the

subset of genes active in each moment is determined

by a complex interaction with the \transcription

Figure 1: Encoding a series of 11 original numerical values (top) using 6 encoding parameters(below). To obtain a (possibly

gross) approximation of the original series of numbers using a point interpolation transform, we need to represent a point in

the compressed description only when the gradient of the line connecting the weight points switches direction. As long as

the line keeps going up or down, the interpolation can use two end points to determine intermediate values along the line

(the monotonic polygon between them can be approximated by a line). So, if the agent's performance is not very sensitive to

perturbations of the synaptic values of some of its less important neurons, then a compression of this kind could approximate

phenotypes with an encoding level equal to the average number of \switching" points in the line connecting the original weight

values.

factors" it receives from the environment. These

models require extensive computational resources

and are still unable to evolve agents solving complex

tasks.

� Compound encodings { recently, newly developed ge-

netic encodings that
exibly encode both the synap-

tic weights and their learning rules have been shown

to be superior to direct synaptic encodings, but

these results await further corroboration in a wider

set of EAA models [(D.Floreano and J.Urzelai, 2000)

(D.Floreano and J.Urzelai, 2001)].

In summary, the superiority of existing indirect en-

codings over direct ones has not yet been shown in a

convincing manner, due to the absence of convincing

examples of agents solving complex tasks with indirect

encodings that were otherwise unsolvable with direct

encodings(D.Floreano and J.Urzelai, 2001).

3. The Model

3.1 The EAA Environment

The agent and environment used to study

our compression encoding method are as in

(R.Aharonov-Barki et al., 2001): Agents generated

via an evolutionary algorithm perform a navigating

and foraging task in a discrete arena. The arena is

surrounded by walls, and contains two kinds of re-

sources: "food", which increases the agent's �tness, and

"poison", which decreases it. The food is concentrated

in a limited zone in the southwest corner of the arena

(see Figure 2). Each agent has to eat as much food as

possible and avoid poison to maximize its �tness. It has

to learn to distinguish between food and poison, and

how to speedily locate the food zone. 30 food items are

randomly placed in a 10*10 food zone inside the 30*30

arena. 250 poison items are placed in random locations

in the arena.

The agent contains a fully recurrent neural network

Figure 2: The Agent and the Environment. The agent has only local information and sensory input combination is needed to

perform the task (adopted from Aharonov-Barki,2001).

controller connected to its sensors and motors (Figure

2). It is the neural network controller which is geneti-

cally encoded and evolved, while the sensors and motors

are given and constant. In the simulation used here the

network had 5 input sensors and 10 internal recurrently

connected neurons, of which 4 are motor neurons.

The agent has very limited sensory information: Four

sensors sense the grid cell in which the agent is located

and the three grid cells ahead of it. These sensors sense

the di�erence between an empty cell, a cell with a re-

source and a wall, but do not distinguish between a food

and a poison item. The �fth sensor is a \smell" probe

which discriminates between food and poison just under

the agent, but gives a random reading if the agent does

not stand on a resource. The motor system allows the

agent to go forward, turn 90 degrees in each direction

and open its \mouth" in an attempt to eat. Eating is

performed only when stopping and having the agent's

mouth open, thus consuming a whole time step.

The agent has only local information on the environ-

ment, making navigation a challenging task. It has no

information of its place coordinates or orientation on the

arena. It must combine sensory outputs to see a re-

source, move towards it, discriminate it as "food" and

stop to eat it. An agent has a lifetime \epoch" of 150

steps, which it begins from a random location and ori-

entation.

A population of 100 agents is evaluated in each gener-

ation. Selection, mutation and crossover are performed

to create the next generation. Simulations were typically

run for 10,000 generations. Mutation rate is 0:02 for each

place in the genome. A mutation changes the encoding

parameter value by a random number between -0.6 and

0.6. Crossover rate is 0.04. The 10% most successful

agents do not undergo mutations and crossover.

3.2 Methods:The SOCE Algorithm

The genome of each agent is a compressed indirect en-

coding of the features of the developed phenotype, i.e.

the synaptic weights of the controller network. The evo-

lutionary process is governed by a standard genetic algo-

rithm, with a developmental stage occurring at the be-

ginning of every new generation, creating the controller

networks from the genomes by a decoding transform.

The controller recurrent neural network contains Lin in-

put sensors (neurons) and N internal neurons (of which

Lout provide output to the motors), i.e., Lin �N+N �N

synapses.

The decoding transform works on the neuronal level.

Each neuron has a distinct compressed representation of

its synapses and utilizes a distinct compression level. Let

us look at the encoding for a given neuron: Denote by P

the number of weights the neuron receives, and by K the

number of its encoding parameters (its encoding level) .

Let G[I] be the value of the Ith place in the genome from

the beginning of this neuron's encoding string. Let Tk be

the indirect decoding transform with an encoding level

K. Let S[J] be the weight value of the input synapse J

of the neuron (for simplicity we omit the subscripts that

denote that these are neuronal parameters).

The transform TK takes the K encoding parameters

and uses them to generate P values by piece-wise linear

interpolation. The synaptic values S(j)(0 � j � P �

1) are obtained via an interpolation between the values

of the 2 \nearest" encoding parameters, with weights

proportional to the distance from each parameter (see

Figure 3). Note that some of these weights may be zero.

More formally, for 2 � K � P�1 the jth synapse value

is S(j) =
G[Pleft]�Wleft+G[Pright]�Wright

M
where M = P

K

is the number of synapse values created from each two

\neighbor" generative encoding parameters Pleft =
J
M

and Pright = Pleft + 1. Wleft = (M � jJ � Pleft �M j) ,

Wright = (M �jJ�Pright �M j) are the weights given to

each encoding parameter according to the distance along

the interpolation line. The division sign denotes integer

division.

For K = 0 all incoming synapses of a neuron receive

a zero value. For K = 1 they all receive a �xed value of

the single genome place G[0]. For K = P we obtain a

direct encoding - each place G[i] in the genome encodes

a single, unique weight value S[j] in the controller neural

network.

The distinct encoding (compression) level K of each

neuron is also encoded in the genome. This enables

the agent to \choose" during the evolutionary process

to which neurons it should allocate a more detailed (but

hence longer) encoding and which should receive coarser

(possibly zero length) encodings. E.g., if all neurons

use encoding level K, the genetic algorithm performs its

search in a K-dimensional subspace instead of the orig-

inal P -dimensional search space. Allowing each neuron

to individually vary its encoding level allows the agent

to self organize its search space according to the environ-

ment in which it evolves, in an ongoing adaptive manner.

The decoding transform TK : [�1; 1]K ! [�1; 1]P

must obey certain properties to serve as an eÆcient

genotype-to-phenotype encoding:

1. Topology Conservation - Phenotypes created from

similar genomes must be similar to each other in the

phenotypic space. If this requirement is not met, an

agent created from a slightly varied genome could

be very di�erent in each generation resulting in an

erratic, almost random, evolutionary process. The

transform we present ful�lls this required property

because of its local piecewise interpolation.

2. Completeness - The set of phenotypes that can be

created from a population of genomes should span,

at least in principle, extensive parts of the phenotype

space. This requirement assures that good solutions

are reachable. In the SOCE method this is achieved

via the self organization and individual encoding lev-

els that each neuron employs, compressing and span-

ning the search space in a dynamic manner. Most

phenotypes can be represented to a certain approxi-

mation, and our transform dynamically changes the

encoding level, reaching direct encoding in the limit,

when required.

Obviously, if K = 0 the corresponding neuron will

never transmit any information to other neurons be-

cause it receives zero, sub-threshold inputs. This is a

prime feature of the SOCE algorithm enabling its us-

age to �nd near minimal solutions to a task (minimal

by the number of neurons) starting from any suÆciently

large initial network sizes, and letting the self organiza-

tion process select a small number of important neurons

(i.e. with K > 0) to construct the agents' controller

network. This property has practical importance since

in almost all tasks we have poor intuitive sense of the

magnitude of the network required to solve them. In

fact, the SOCE method can achieve very large compres-

sion/minimization levels if one chooses to start from ar-

bitrary large networks (see next section).

The minimization of the phenotypic networks from the

compact genomes obtained by SOCE is performed by let-

ting each neuron's compression level K obtain values on

the interval [� inf; U] where U is some positive upper

bound (naturally one may choose U = N). With this

left-open interval bound non-important redundant neu-

rons will obtain K = 0 values with probability 1 due to

the random walk performed on these values during the

evolutionary process.

Note that the �tness function that governs the evo-

lutionary process is based on the agent's performance

solely and does not contain any explicit preference for

shorter genomes. Nothing explicitly prevents the agent

from always using a full direct encoding (K = P). Even

in simulation experiments where we have started from

an initial population of full direct encodings for all the

agents, the emerging successful agents employed com-

pact encodings. It is likely that decreasing the search

space enables the shorter genomes to �nd good solutions

faster, thus driving the population towards compact so-

lutions, both on the genotypic and phenotypic levels (see

below).

Figure 3: An example of the SOCE genotype-to-phenotype TK transform: The top �gure shows the encoding parameters in

the genome, which are decompressed to form the synaptic weights shown in the bottom �gure. For example, synapses S(4)

and S(6) receive their values directly from the corresponding encoding parameters G(3) and G(4), while S(5) is determined

by interpolating G(3) and G(4).

4. Results

The compressed encoding algorithm was tested by run-

ning evolutionary experiments in the environment of

(R.Aharonov-Barki et al., 2001) described in the Model

section. Figure 4a shows that the average performance

of direct and SOCE agents is about similar through-

out the simulation run but the SOCE encoding leads to

much smaller networks. The compressed encoded agents

were able to solve the navigating problem with a genome

length of about 33% of the direct encoding genome. The

average encoding level decreases throughout the evolu-

tion of a SOCE agent from initial levels of about 50% of

the direct encoding size to about 33% (initial encoding

levels of about 50% are obtained by the uniform selection

of encoding levels from distribution U[0,N] at generation

1). The SOCE agents also showed robustness: more than

90% of the runs produced good solutions to the problem,

about the same percentage as direct encodings achieve

in this task.

In order to see the importance of the dynamic modi-

�cation of individual compression levels, we studied the

baseline, \null hypothesis", case in which all the pop-

ulation has a �xed compression level K. The agents

were able to solve the problem, but as K got smaller

the results became less and less robust: many runs did

not achieve working solutions and the average �tness

dropped . These results testify to the importance of the

dynamic, self-organizing nature of the SOCE encoding.

Using the compressed encoding algorithm with encod-

ing bounds [� inf ; P] leads to the self-organized elim-

ination of many unimportant neurons with a bimodal

distribution of encoding levels (Figure 4b), and to near

minimal size networks. Bounding the synapses only from

the upper side leads to many zero information neurons

while the remaining neurons are free to select small en-

coding levels.

A concrete example of such a successful evolved agent

has a genome with only a third of the length of the direct

encoding, with the following main properties:

� Out of 4 motor (output) neurons, only 3 have non

vanishing encoding levels. The apparent elimination

of a motor neuron was initially surprising. However,

in this problem it turns out that a very good solution

can be based only on one-sided turns, so one turning

motor neuron can be eliminated.

� Out of the 6 internal neurons that are not con-

nected directly to the motors, only one had a non-

zero encoding level and remained viable in the �-

Figure 4: (a) Fitness of direct versus compressed encoding,

plotted across generations of evolution. The means and SDs

of 20 experiments are shown. 0.3 denotes a normalized high

performance level due to the limited lifespan of the agent.(b)

Distribution of encoding levels in an evolved SOCE agent. A

bimodal distribution is created by the random walk dynam-

ics. This enables to create near minimal networks because

zero encoding level neurons do not e�ect the network and

can be removed

nal controller network. This resembles the �nd-

ings of a single, important \Command neuron" in

(R.Aharonov-Barki et al., 2001), which switches be-

tween two modes of behavior of navigation and for-

aging: searching for the food zone, an foraging while

inside the food zone. It is an example of how this

method can provide important clues to the analysis

of evolved agents.

Compressed encodings emerge even with bounded en-

coding levels dynamics (i.e. without phenotypic com-

pactness). Even when we used bound weight values in

the range [0; P] and started with direct encoding lev-

els (K = P) for all the population, the selection process

and the genetic operators generate a population in which

most of the neurons do not have a full encoding level.

Starting from initially much larger networks compos-

ing the initial population containing 30 and 50 neurons

we were able to show the SOCE algorithm is still able

to reach a near minimal network. The evolutionary pro-

cess reached high performance solutions with only 4� 5

e�ective neurons (see Figure 5). The baseline network

Figure 5: Number of viable neurons (with non zero encod-

ing levels) in the neurocontroller of SOCE agents, starting

from initial large networks of 30 and 50 neurons. The SOCE

algorithm leads to a near minimal network with only 4-5 ef-

fective neurons. In each generation, the agent with minimal

network size is shown. At the end of the runs, all agents

achieve normalized high performance levels, around 0.31.

discussed so far started with 10 neurons and the reached

similar minimal solutions of 4 e�ective neurons. Thus

the SOCE algorithm provides near minimal controller

networks, yielding an estimate of the number of neurons

needed to solve a given task by starting with large net-

works and sorting out the unimportant neurons.

The harder the problem the larger is its search space,

and the bene�t gained from SOCE is expected to be

greater. To test this hypothesis we ran the SOCE on

an extended, more diÆcult task than our original one.

The agent now has a more complex behavior to complete

before gaining a food item reward: It has to remain forX

consecutive steps on the food item, afterwhich it should

close its mouth to ingest the food. The number of steps

X was incremented during the evolutionary run from 1

to 3 every 2500 generations of a 10000 generations run

(incremental evolution). In this problem the percentage

of successful runs reached by SOCE agents was much

greater that direct-encoded agents (30% as opposed to

10% out of 10 simulation runs). The time to recover

from each increase in the diÆculty level of the problem,

adopt to the new task and regain high food intake and

Figure 6: Fitness of SOCE encoded and direct encoded agent when problem diÆculty increases every 2500 generations.The

SOCE agents recover much faster than direct encoded agents in most cases. Awaiting X steps before food ingestion makes

the task more diÆcult for the agents because of the increased memory span they impose on solving the task successfully.

�tness levels, was much shorter for SOCE agents in most

cases, as can be seen in �gure 6.

5. Discussion

The SOCE algorithm was shown to successfully solve

navigation and foraging problems, providing robust and

compact solutions. Via the SOCE, the agents select min-

imal encoding levels without any explicit �tness pres-

sure. The self-organizing dynamics of the SOCE method

allows them to adaptively focus the search in relevant

subspaces. This results in a reduction of genome size,

and consequently leads to minimization of network size.

This utilization of genotypic compression to obtain phe-

notypic completeness is the prime advantage of SOCE

from a practical standpoint. In the absence of prior

knowledge of the size of the controller network required

to solve the task, one can start from initially large net-

works which are reduced during the evolutionary process

to near-minimal size.

The SOCE algorithm can also be used as an analysis

method: The encoding level of each neuron is a good

clue for its importance and \input sensitivity". More-

over, since the object of the analysis are near-minimal

size networks, the insights gained probably re
ect more

the true, inherent nature of successful solutions to the

task in hand, than the speci�c idoisynoracies of one spe-

ci�c solution out of many possible non-minimal ones ob-

tained with standard, direct encodings. One cautionary

note, however, is in place: the encoding levels of the re-

maining, viable, neurons correlate but do not directly

correspond to these neurons \importance" in the net-

work. This is so because the compression/encoding level

permitted also re
ects the �delity of the neuron's in-

put/output function, and not just the importance of the

information it transmits to other neurons in the network.

Future research should naturally add learning capa-

bilities into the genome. Learning rules can be encoded

using the SOCE method and used in the development

stage of the agent. The agent can decide what encod-

ing levels should be allocated to the data vs. the theory

(the synaptic weights versus the synaptic learning rules).

Combining data and theory using SOCE will give us a

comprehensive framework for �nding a Minimal Descrip-

tion Length solution to a task with an eÆcient tradeo�

between data (saved synapse weights) and theory (learn-

ing or development rules).

The SOCE method utilizes a local encoding method

(piecewise interpolation) to obtain a topology conserving

genotype-to-phenotype mapping (see section 3). This,

however, has its drawbacks since global encodings can

compress the data more eÆciently than local ones. Inter-

estingly. the SOCEmethod lends itself quite naturally to

incorporate a global encoding (e.g., a Fourier series rep-

resentation of the synaptic values in the network). This

may be accomplished by adding an additional global-

encoding layer which encodes the current, local encod-

ing parameters of the agent`s genome. That is, evolution

proceeds in its \local phase" for a few thousand years

iterations with the present, local SOCE method. There-

after, successful agents are selected and evolved further

using a globally-encoded genomic representation. The

feasibility and eÆciency of this global phase is an inter-

esting subject of future research.

In summary, we presented a new genotype-to-

phenotype encoding method based on adaptive, self-

organizing compression. This method provides eÆcient,

robust and compact (near minimal) solutions to EAA

tasks, starting from a population of ineÆcient and arbi-

trarily large network solutions. It thus provides a novel

and powerful way to eÆcienctly evolve EAA solutions

to non-trivial tasks, to estimate the complexity of these

tasks, and to grade the importance of neurons composing

the emerging neuroncontrollers.

References

A.Cangelosi, D.Parisi, and S.Nol� (1994). Cell division

and migration in a 'genotype' for neural networks.

Network(5),pages 497-515.

A.Cangelosi and J.L.Elman (1995). Gene reg-

ulation and biological development in neu-

ral networks:an exploratory model. Technical

report,CRL-UCSD,University of California at San

Diego,www.citeserr.nj.nec.com/context/15377/132530.

A.Gulliot and J.A.Meyer (2000). From sab94 to

sab2000:what's new,animat? Proceedings of the

Sixth International Conference on Simulation of

Adaptive Behavior. MIT Press,Cambridge,MA.

A.Gulliot and J.A.Meyer (2001). The animat contri-

bution to cognitive systems research. Journal of

Cognitive Systems Research(2),pages 157-165.

B-T.Zhang and H.Muhlenbein (1993). Evolving opti-

mal neural networks using genetic algorithms with

occam's razor. Complex Systems, 7, pages 199-220.

D.Floreano and J.Urzelai (2000). Evolutionary robots

with online self-organization and behavioral �tness.

Neural Networks(13),pages 431-443.

D.Floreano and J.Urzelai (2001). Neural morphogen-

esis, synaptic plasticity and evolution. Theory in

Biosciences.

F.Gruau (1994). Automatic de�nition of modular neu-

ral networks. Adaptive behavior, 3, pages 151-183.

H.Kitano (1990). Designing neural networks using

genetic algorithms with graph generation system.

Complex System, 4, pages 461-476.

J.A.Meyer and A.Guilliot (1994). From sab90 to

sab94:four years of animat research. Proceed-

ings of the third international Conference on

Simulation of Adaptive Behavior.,ed D.Cli� and

P.Husbands and J.A.Meyer and S.K.Wilson MIT

Press,Cambridge,MA.

J.Kodjabachian and J-A.Meyer (1998). Evolution and

development of modular control architectures for 1-

d locompotion in six-legged animats. Connection

Science, 10, pages 211-254.

P.Eggenberger (1996). Cell interactions as a con-

trol tool of developmental processes for evolution-

ary robotics. Proceedings of the Forth Interna-

tional Conference on Simulation of Adaptive Be-

havior.,ed. P.Maes and M.Mataric and J-A.Meyer

and J.Pollack and H.Roitblat and S.Wilson MIT

Press,Cambridge,MA.

R.Aharonov-Barki, T.Beker, and E.Ruppin (2001).

Emergence of memory-driven command neurons

in evolved arti�cial agents. Neural Computa-

tion,13,pages 691-716.

R.K.Belew (1993). Interposing an ontogenetic

model between genetic algorithms and neural net-

works. Advances in Neural Information Process-

ing(NIPS5).,ed. J.Cowan Morgan Kaufmann,San

Mateo,CA.

S.Nol� and D.Parisi (1995). Evolving arti�cial neu-

ral networks that develop in time. Advances in

Arti�cial Life:Lecture Notes in Arti�cial Intelli-

gence(929),pages 353-367.

X.Yao (1999). Evolving arti�cial neural networks. Pro-

ceedings of the IEEE,87(9).pages 1423-1447.

