Small is Beautiful : Near Minimal Evolutionary

Neurocontrollers Obtained With Self-Organizing

Compressed Encoding

Shlomy Boshy
School of Computer Science
Tel Aviv University
Tel-Aviv 69978, Israel
shlomy@post.tau.ac.il

Abstract

This paper presents a novel method for evolu-
tion of artificial autonomous agents. It is based
on adaptive, self-organizing compressed geno-
typic encoding (SOCE) of the phenotypic synap-
tic efficacies of the agent’s neurocontroller. The
SOCE encoding implements a parallel evolution-
ary search for neurocontroller solutions in an dy-
namically varying and reduced subspace of the
original one. The SOCE successfully maintains
the quality of solutions obtained by performing
search directly in the original space. The SOCE
method leads to the robust emergence of compact,
near minimal neurocontrollers even when starting
from initially large networks. This is very impor-
tant since in practical situations the network size
needed to solve the problem is unknown before-
hand. It hence may serve both to estimate the
network size needed to solve a given task, and to
delineate the relative importance of the neurons
composing the agent‘s controller network.

1. Introduction

Many Evolutionary Autonomous Agents (EAAs) use
neural networks to control their behavior. Such
neurocontrollers of EAAs performing complex tasks
can be evolved via genetic algorithms from a popu-
lation of genomes undergoing natural selection and
variation [see (J.A.Meyer and A.Guilliot, 1994)
(X.Yao, 1999) (A.Gulliot and J.A.Meyer, 2001)
(A.Gulliot and J.A.Meyer, 2000) for a review]. Much
of these EAA studies employ direct genotype-to-
phenotype encodings, where the magnitude of each
synapse is encoded by a specifically designated gene.
These direct encodings are problematic since they scale
quadratically with network size and are inadequate
for solving complex tasks. This problem has led to

Eytan Ruppin
School of Computer Science and
Sackler School of Medicine
Tel Aviv University
Tel-Aviv 69978, Israel
ruppin@post.tau.ac.il

considerable efforts for developing “indirect” encodings,
where the genome includes a developmental program for
specifying the controller neural network and its weights.
Addressing the inherent scaling limitations of direct
encodings, we adopt a different, new, approach. Instead
of utilizing a developmental program to compactly
encode all the network information, we present an
indirect encoding which adaptively maintains only
an approximate description of the network. The new
indirect encoding method introduced and studied here
generates compressed synaptic encodings. The method
can be used to obtain neurocontrollers containing a near
minimal number of neurons for any given task, which
are more amenable for an analysis of the structure and
activity.

The search for finding short, compact representations
of solutions to problems has its origins in Occam’s Ra-
zor and the Minimum Description Length (MDL) prin-
ciples. These principles suggest that among the viable
solutions to a problem, the simpler, shorter solutions
should be preferred. The rational is that there is a
much smaller number of simple solutions (i.e. hypothe-
ses) than elaborate ones, so if one finds a simple solution
it is more likely to be a correct one (e.g. with good gen-
eralization properties) than a more complex one. In the
same spirit, indirect encoding methods that narrow the
search to a simpler low dimensional space increase the
chance of finding a good solution for problems originally
embedded in a high dimensional search space. However,
while decreasing the search space, indirect encodings my
restrict the set of possible solutions and thereby may fail
to find good solutions. Devising indirect methods that
selectively decrease the search space while maintaining
a maximal set of good solutions is an important open
research problem.

The basic contribution of this paper is to present a
novel evolutionary process that maintains a “good” sub-
space in which the search is performed. Our indirect en-

coding method is based on adaptive compression. The
synaptic efficacies of each neuron are encoded in a lossy,
compressed manner, and an inverse decompression trans-
form is used to transcribe the genome into a function-
ing phenotype. Individual neurons may utilize differ-
ent encoding (compression) levels. The level of com-
pression may vary from containing no information to di-
rect specification of all the synaptic connection values.
These levels of compression are themselves encoded in
the genome and undergo evolution, adaptively varying
in a self-organized manner. We term this method Self-
Organizing Compressed Encoding (SOCE). Note that we
do not use a fitness function that ezplicitly encourages
shorter solutions, as done in the standard MDL ap-
proach. Compact solutions are obtained only because
they enable a more efficient evolutionary search, which
in turn leads to finding new compact solutions, in a re-
ciprocal manner. With this scheme, the length of the
genomic encodings of solutions to the problem in hand
is optimized in an implicit manner.

Having adaptive, compressed encodings yields agents
with compact genotypes but their phenotypes may re-
main unnecessary large. Exploiting a specific form of
genetic variation in our method leads to the emergence
of compact near-minimal phenotype mneurocontrollers.
Thus, our method leads to two important consequences:
simpler controller networks that are more amenable for
functional analysis, and an estimation of the complexity
of the problem in hand. That is, if starting from differ-
ent initial network sizes a good solution can be achieved
by SOCE with X neurons, this gives us an upper bound
on the number of neurons needed to solve the task. The
SOCE algorithm automatically finds compact networks
that solve the task, irrespective of the initial network
size. This is very important since in practical situations
the network size needed to solve the problem is unknown
beforehand.

Lossy compression methods usually rely on exploiting
regularities in the data encoded. Image compression,
for example, relies on the fact that neighboring points
in the image tend to have a similar level of brightness.
This mutual information between neighboring points can
be utilized to generate compact encodings. The task of
encoding controller networks of EAAs in general does
not offer such regularities, that may lend themselves for
lossy compression. The synaptic values W;; and Wy
projecting from neurons j and k£ on neuron i are un-
correlated to a first approximation. However, a simple
observation shows that a series of numbers designating
the weights of the input (or output) synapses which a
neuron receives may still be subject to lossy compres-
sion, as illustrated in Figure 1 and explained below. For
an uncorrelated series of synaptic random values the ex-
pected encoding level is about g, where P is the number
of synaptic inputs a neuron receives. The compression

levels obtained for EAA networks depend on a few fac-
tors, among them the sensitivity of neural processing to
the fidelity of synaptic values and, more importantly, on
the actual number of neurons that is really needed to
solve the task. We show that the SOCE algorithm can
be successfully used in EAA environments to attain high
compression levels and, more importantly, near minimal
neurocontrollers.

The rest of the paper is organized as follows: Sec-
tion 2 discusses previous work on indirect genetic encod-
ings. Section 3 describes the model, including the agent
and the EAA environment and the compressed encoding
method. Section 4 describes our experimental results,
and section 5 discussed their implications.

2. Indirect Encoding Methods

The work on developing indirect encodings has attracted
ample efforts, focusing on a few distinct avenues:

e Grammar Rewriting encodings — which employ
a set of rewriting rules that are encoded in the
genome. For example, in (H.Kitano, 1990), an
iterative decoding process uses rewriting rules
to create a matrix specifying the network archi-
tecture. Simple grammar rewriting encodings
typically generate restricted tree-like network
architectures, but utilizing graph grammars one
may develop more general recurrent networks

(F.Gruau, 1994),(J.Kodjabachian and J-A.Meyer, 1998).

Such encodings generate fairly compact genomes and
hence reduce the search space of possible solutions.
A variant, (B-T.Zhang and H.Muhlenbein, 1993)
enables the evolution of compact target networks by
including a complexity term in the fitness function.

e Developmental, Ontogenetic encodings -
where the genome expresses a program for
cell division and axonal migration that de-
termines the phenotypic neural architecture
[(R.K.Belew, 1993) (A.Cangelosi et al., 1994)
(S.Nolfi and D.Parisi, 1995)]. In these encodings the
objects undergoing development are localized on a
2-dimensional space, allowing for context-dependent
effects from neighboring neurons, and the develop-
mental program has a more biological flavor. Yet,
the genomes generated are less compact than those
generated by encoding graph grammars (scaling
linearly with network size) and do not strongly bias
toward the evolution of modular networks.

Other developmental encodings incorporate
more biologically motivated “regulatory” en-
codings, [(A.Cangelosi and J.L.Elman, 1995)

(P.Eggenberger, 1996)], where the identity of the
subset of genes active in each moment is determined
by a complex interaction with the “transcription

Figure 1: Encoding a series of 11 original numerical values (top) using 6 encoding parameters(below). To obtain a (possibly

gross) approximation of the original series of numbers using a point interpolation transform, we need to represent a point in

the compressed description only when the gradient of the line connecting the weight points switches direction. As long as

the line keeps going up or down, the interpolation can use two end points to determine intermediate values along the line

(the monotonic polygon between them can be approximated by a line). So, if the agent’s performance is not very sensitive to

perturbations of the synaptic values of some of its less important neurons, then a compression of this kind could approximate

phenotypes with an encoding level equal to the average number of “switching” points in the line connecting the original weight

values.

factors” it receives from the environment. These
models require extensive computational resources
and are still unable to evolve agents solving complex
tasks.

e (Compound encodings — recently, newly developed ge-
netic encodings that flexibly encode both the synap-
tic weights and their learning rules have been shown
to be superior to direct synaptic encodings, but
these results await further corroboration in a wider
set of EAA models [(D.Floreano and J.Urzelai, 2000)
(D.Floreano and J.Urzelai, 2001)].

In summary, the superiority of existing indirect en-
codings over direct ones has not yet been shown in a
convincing manner, due to the absence of convincing
examples of agents solving complex tasks with indirect
encodings that were otherwise unsolvable with direct
encodings(D.Floreano and J.Urzelai, 2001).

3. The Model

3.1 The EAA Environment

The agent and environment wused to study
our compression encoding method are as in
(R.Aharonov-Barki et al., 2001): Agents generated
via an evolutionary algorithm perform a navigating
and foraging task in a discrete arena. The arena is
surrounded by walls, and contains two kinds of re-
sources: "food”, which increases the agent’s fitness, and
”poison”, which decreases it. The food is concentrated
in a limited zone in the southwest corner of the arena
(see Figure 2). Each agent has to eat as much food as
possible and avoid poison to maximize its fitness. It has
to learn to distinguish between food and poison, and
how to speedily locate the food zone. 30 food items are
randomly placed in a 10*10 food zone inside the 30*30
arena. 250 poison items are placed in random locations
in the arena.

The agent contains a fully recurrent neural network

- - -

T Plestars

An outhne of the grid arena (southwest corner) and the agent's controlling net-
work. The agent is marked by a small arrow on the grid, whose direction indicates its
orientation. The curved lines indicate where in the arena each of the sensory inputs comes
from. Output neurons and inter-nearons are all fully connected to each other,

Figure 2: The Agent and the Environment. The agent has only local information and sensory input combination is needed to

perform the task (adopted from Aharonov-Barki,2001).

controller connected to its sensors and motors (Figure
2). It is the neural network controller which is geneti-
cally encoded and evolved, while the sensors and motors
are given and constant. In the simulation used here the
network had 5 input sensors and 10 internal recurrently
connected neurons, of which 4 are motor neurons.

The agent has very limited sensory information: Four
sensors sense the grid cell in which the agent is located
and the three grid cells ahead of it. These sensors sense
the difference between an empty cell, a cell with a re-
source and a wall, but do not distinguish between a food
and a poison item. The fifth sensor is a “smell” probe
which discriminates between food and poison just under
the agent, but gives a random reading if the agent does
not stand on a resource. The motor system allows the
agent to go forward, turn 90 degrees in each direction
and open its “mouth” in an attempt to eat. Eating is
performed only when stopping and having the agent’s
mouth open, thus consuming a whole time step.

The agent has only local information on the environ-
ment, making navigation a challenging task. It has no
information of its place coordinates or orientation on the
arena. It must combine sensory outputs to see a re-

source, move towards it, discriminate it as ”food” and
stop to eat it. An agent has a lifetime “epoch” of 150
steps, which it begins from a random location and ori-
entation.

A population of 100 agents is evaluated in each gener-
ation. Selection, mutation and crossover are performed
to create the next generation. Simulations were typically
run for 10,000 generations. Mutation rate is 0.02 for each
place in the genome. A mutation changes the encoding
parameter value by a random number between -0.6 and
0.6. Crossover rate is 0.04. The 10% most successful
agents do not undergo mutations and crossover.

3.2 Methods:The SOCE Algorithm

The genome of each agent is a compressed indirect en-
coding of the features of the developed phenotype, i.e.
the synaptic weights of the controller network. The evo-
lutionary process is governed by a standard genetic algo-
rithm, with a developmental stage occurring at the be-
ginning of every new generation, creating the controller
networks from the genomes by a decoding transform.
The controller recurrent neural network contains L;,, in-

put sensors (neurons) and N internal neurons (of which
Lyt provide output to the motors), i.e., L, * N + N * N
synapses.

The decoding transform works on the neuronal level.
Each neuron has a distinct compressed representation of
its synapses and utilizes a distinct compression level. Let
us look at the encoding for a given neuron: Denote by P
the number of weights the neuron receives, and by K the
number of its encoding parameters (its encoding level) .
Let G[I] be the value of the Ith place in the genome from
the beginning of this neuron’s encoding string. Let T} be
the indirect decoding transform with an encoding level
K. Let S[J] be the weight value of the input synapse .J
of the neuron (for simplicity we omit the subscripts that
denote that these are neuronal parameters).

The transform Tk takes the K encoding parameters
and uses them to generate P values by piece-wise linear
interpolation. The synaptic values S(5)(0 < j < P —
1) are obtained via an interpolation between the values
of the 2 “nearest” encoding parameters, with weights
proportional to the distance from each parameter (see
Figure 3). Note that some of these weights may be zero.

More formally, for 2 < K < P—1 the jth synapse value
is S(j) = G[Pleft]*Wleft+]\§[Pright]*wright where M = %
is the number of synapse values created from each two
“neighbor” generative encoding parameters Fo¢; = %
and Pright = Pregt + 1. Wiepe = (M - |J — Plegt * M|))
Wright = (M —|J — Prigne * M) are the weights given to
each encoding parameter according to the distance along
the interpolation line. The division sign denotes integer
division.

For K = 0 all incoming synapses of a neuron receive
a zero value. For K = 1 they all receive a fixed value of
the single genome place G[0]. For K = P we obtain a
direct encoding - each place G[i] in the genome encodes
a single, unique weight value S[j] in the controller neural
network.

The distinct encoding (compression) level K of each
neuron is also encoded in the genome. This enables
the agent to “choose” during the evolutionary process
to which neurons it should allocate a more detailed (but
hence longer) encoding and which should receive coarser
(possibly zero length) encodings. E.g., if all neurons
use encoding level K, the genetic algorithm performs its
search in a K-dimensional subspace instead of the orig-
inal P-dimensional search space. Allowing each neuron
to individually vary its encoding level allows the agent
to self organize its search space according to the environ-
ment in which it evolves, in an ongoing adaptive manner.

The decoding transform Tx : [-1,1]% — [-1,1)F
must obey certain properties to serve as an efficient
genotype-to-phenotype encoding;:

1. Topology Conservation - Phenotypes created from
similar genomes must be similar to each other in the
phenotypic space. If this requirement is not met, an

agent created from a slightly varied genome could
be very different in each generation resulting in an
erratic, almost random, evolutionary process. The
transform we present fulfills this required property
because of its local piecewise interpolation.

2. Completeness - The set of phenotypes that can be
created from a population of genomes should span,
at least in principle, extensive parts of the phenotype
space. This requirement assures that good solutions
are reachable. In the SOCE method this is achieved
via the self organization and individual encoding lev-
els that each neuron employs, compressing and span-
ning the search space in a dynamic manner. Most
phenotypes can be represented to a certain approxi-
mation, and our transform dynamically changes the
encoding level, reaching direct encoding in the limit,
when required.

Obviously, if K = 0 the corresponding neuron will
never transmit any information to other neurons be-
cause it receives zero, sub-threshold inputs. This is a
prime feature of the SOCE algorithm enabling its us-
age to find near minimal solutions to a task (minimal
by the number of neurons) starting from any sufficiently
large initial network sizes, and letting the self organiza-
tion process select a small number of important neurons
(i.e. with K > 0) to construct the agents’ controller
network. This property has practical importance since
in almost all tasks we have poor intuitive sense of the
magnitude of the network required to solve them. In
fact, the SOCE method can achieve very large compres-
sion/minimization levels if one chooses to start from ar-
bitrary large networks (see next section).

The minimization of the phenotypic networks from the
compact genomes obtained by SOCE is performed by let-
ting each neuron’s compression level K obtain values on
the interval [—inf,U] where U is some positive upper
bound (naturally one may choose U = N). With this
left-open interval bound non-important redundant neu-
rons will obtain K = 0 values with probability 1 due to
the random walk performed on these values during the
evolutionary process.

Note that the fitness function that governs the evo-
lutionary process is based on the agent’s performance
solely and does mot contain any explicit preference for
shorter genomes. Nothing explicitly prevents the agent
from always using a full direct encoding (K = P). Even
in simulation experiments where we have started from
an initial population of full direct encodings for all the
agents, the emerging successful agents employed com-
pact encodings. It is likely that decreasing the search
space enables the shorter genomes to find good solutions
faster, thus driving the population towards compact so-
lutions, both on the genotypic and phenotypic levels (see
below).

o.04

()

S{)

-0 T

Figure 3: An example of the SOCE genotype-to-phenotype Tk transform: The top figure shows the encoding parameters in

the genome, which are decompressed to form the synaptic weights shown in the bottom figure. For example, synapses S(4)
and S(6) receive their values directly from the corresponding encoding parameters G(3) and G(4), while S(5) is determined

by interpolating G(3) and G(4).

4. Results

The compressed encoding algorithm was tested by run-
ning evolutionary experiments in the environment of
(R.Aharonov-Barki et al., 2001) described in the Model
section. Figure 4a shows that the average performance
of direct and SOCE agents is about similar through-
out the simulation run but the SOCE encoding leads to
much smaller networks. The compressed encoded agents
were able to solve the navigating problem with a genome
length of about 33% of the direct encoding genome. The
average encoding level decreases throughout the evolu-
tion of a SOCE agent from initial levels of about 50% of
the direct encoding size to about 33% (initial encoding
levels of about 50% are obtained by the uniform selection
of encoding levels from distribution U[0,N] at generation
1). The SOCE agents also showed robustness: more than
90% of the runs produced good solutions to the problem,
about the same percentage as direct encodings achieve
in this task.

In order to see the importance of the dynamic modi-
fication of individual compression levels, we studied the
baseline, “null hypothesis”, case in which all the pop-
ulation has a fized compression level K. The agents
were able to solve the problem, but as K got smaller

the results became less and less robust: many runs did
not achieve working solutions and the average fitness
dropped . These results testify to the importance of the
dynamic, self-organizing nature of the SOCE encoding.

Using the compressed encoding algorithm with encod-
ing bounds [—inf, P] leads to the self-organized elim-
ination of many unimportant neurons with a bimodal
distribution of encoding levels (Figure 4b), and to near
minimal size networks. Bounding the synapses only from
the upper side leads to many zero information neurons
while the remaining neurons are free to select small en-
coding levels.

A concrete example of such a successful evolved agent
has a genome with only a third of the length of the direct
encoding, with the following main properties:

e Out of 4 motor (output) neurons, only 3 have non
vanishing encoding levels. The apparent elimination
of a motor neuron was initially surprising. However,
in this problem it turns out that a very good solution
can be based only on one-sided turns, so one turning
motor neuron can be eliminated.

e Out of the 6 internal neurons that are not con-
nected directly to the motors, only one had a non-
zero encoding level and remained viable in the fi-

03 e]
] y ol .
'E 0z ‘*)
w 018 !: a— SICE
01 L= et =R |
oS S R
1] e CRreeT
0 000 4000 GOOC 000 10000 1 EI0D e codad
Rt LS
it
! 6077
a=
1]
3%
n
Parcantags 25
D
a
a 1 2] 4]] T a4 E] id

Figure 4: (a) Fitness of direct versus compressed encoding,
plotted across generations of evolution. The means and SDs
of 20 experiments are shown. 0.3 denotes a normalized high
performance level due to the limited lifespan of the agent.(b)
Distribution of encoding levels in an evolved SOCE agent. A
bimodal distribution is created by the random walk dynam-
ics. This enables to create near minimal networks because
zero encoding level neurons do not effect the network and
can be removed

nal controller network. This resembles the find-
ings of a single, important “Command neuron” in
(R.Aharonov-Barki et al., 2001), which switches be-
tween two modes of behavior of navigation and for-
aging: searching for the food zone, an foraging while
inside the food zone. It is an example of how this
method can provide important clues to the analysis
of evolved agents.

Compressed encodings emerge even with bounded en-
coding levels dynamics (i.e. without phenotypic com-
pactness). Even when we used bound weight values in
the range [0, P] and started with direct encoding lev-
els (K = P) for all the population, the selection process
and the genetic operators generate a population in which
most of the neurons do not have a full encoding level.

Starting from initially much larger networks compos-
ing the initial population containing 30 and 50 neurons
we were able to show the SOCE algorithm is still able
to reach a near minimal network. The evolutionary pro-
cess reached high performance solutions with only 4 — 5
effective neurons (see Figure 5). The baseline network

s e T e e o o o]
P T R O & e T & e R & R
1 1 1 L 1 1 1

—
1

MNumber of viable neurons

— <’

9
SESESEEESEEFL 85888

Generations

\+mma\ netwark of 30 neurons -a-Initial nework of 50 netrons \

Figure 5: Number of viable neurons (with non zero encod-
ing levels) in the neurocontroller of SOCE agents, starting
from initial large networks of 30 and 50 neurons. The SOCE
algorithm leads to a near minimal network with only 4-5 ef-
fective neurons. In each generation, the agent with minimal
network size is shown. At the end of the runs, all agents

achieve normalized high performance levels, around 0.31.

discussed so far started with 10 neurons and the reached
similar minimal solutions of 4 effective neurons. Thus
the SOCE algorithm provides near minimal controller
networks, yielding an estimate of the number of neurons
needed to solve a given task by starting with large net-
works and sorting out the unimportant neurons.

The harder the problem the larger is its search space,
and the benefit gained from SOCE is expected to be
greater. To test this hypothesis we ran the SOCE on
an extended, more difficult task than our original one.
The agent now has a more complex behavior to complete
before gaining a food item reward: It has to remain for X
consecutive steps on the food item, afterwhich it should
close its mouth to ingest the food. The number of steps
X was incremented during the evolutionary run from 1
to 3 every 2500 generations of a 10000 generations run
(incremental evolution). In this problem the percentage
of successful runs reached by SOCE agents was much
greater that direct-encoded agents (30% as opposed to
10% out of 10 simulation runs). The time to recover
from each increase in the difficulty level of the problem,
adopt to the new task and regain high food intake and

0.5
0.5
0.4
=
L E R R
= 0.z A
o1
o T alic—T—aie— T T T T T T T T T T T T T T T
= = oo | oo | = = = oo | oo | o o oo oo | = = o ot | ot | = =
o) o] o) o
A G G G5 G G o AT S o o o o g0 o o g g g
=" generations
0.5
os
0.4 -
=
= 0.3
=
0.2 -
o1
o T T B T T T T T T T
= A900 sO000 s5100 5200 5300 5400 S500 s500 S700 s200 S900
generations
[0 =
s 4
o4 4
=
= 03
= oz A
o1 4
u} T T & T T T T T T T T T T
F400O FsOoo FEeoo Froo FEOoo F9oo s0o00 2100 2200 S300 s400 s2500 2500
generation=s
=3 —ai— SOCE encoded
agents
—#%— direct encoded
agents

Figure 6: Fitness of SOCE encoded and direct encoded agent when problem difficulty increases every 2500 generations.The
SOCE agents recover much faster than direct encoded agents in most cases. Awaiting X steps before food ingestion makes
the task more difficult for the agents because of the increased memory span they impose on solving the task successfully.

fitness levels, was much shorter for SOCE agents in most
cases, as can be seen in figure 6.

5. Discussion

The SOCE algorithm was shown to successfully solve
navigation and foraging problems, providing robust and
compact solutions. Via the SOCE, the agents select min-
imal encoding levels without any explicit fitness pres-
sure. The self-organizing dynamics of the SOCE method
allows them to adaptively focus the search in relevant
subspaces. This results in a reduction of genome size,
and consequently leads to minimization of network size.
This utilization of genotypic compression to obtain phe-
notypic completeness is the prime advantage of SOCE
from a practical standpoint. In the absence of prior
knowledge of the size of the controller network required
to solve the task, one can start from initially large net-
works which are reduced during the evolutionary process
to near-minimal size.

The SOCE algorithm can also be used as an analysis
method: The encoding level of each neuron is a good
clue for its importance and “input sensitivity”. More-
over, since the object of the analysis are near-minimal
size networks, the insights gained probably reflect more
the true, inherent nature of successful solutions to the
task in hand, than the specific idoisynoracies of one spe-
cific solution out of many possible non-minimal ones ob-
tained with standard, direct encodings. One cautionary
note, however, is in place: the encoding levels of the re-
maining, viable, neurons correlate but do not directly
correspond to these neurons “importance” in the net-
work. This is so because the compression/encoding level
permitted also reflects the fidelity of the neuron’s in-
put/output function, and not just the importance of the
information it transmits to other neurons in the network.

Future research should naturally add learning capa-
bilities into the genome. Learning rules can be encoded
using the SOCE method and used in the development
stage of the agent. The agent can decide what encod-

ing levels should be allocated to the data vs. the theory
(the synaptic weights versus the synaptic learning rules).
Combining data and theory using SOCE will give us a
comprehensive framework for finding a Minimal Descrip-
tion Length solution to a task with an efficient tradeoff
between data (saved synapse weights) and theory (learn-
ing or development rules).

The SOCE method utilizes a local encoding method
(piecewise interpolation) to obtain a topology conserving
genotype-to-phenotype mapping (see section 3). This,
however, has its drawbacks since global encodings can
compress the data more efficiently than local ones. Inter-
estingly. the SOCE method lends itself quite naturally to
incorporate a global encoding (e.g., a Fourier series rep-
resentation of the synaptic values in the network). This
may be accomplished by adding an additional global-
encoding layer which encodes the current, local encod-
ing parameters of the agent‘s genome. That is, evolution
proceeds in its “local phase” for a few thousand years
iterations with the present, local SOCE method. There-
after, successful agents are selected and evolved further
using a globally-encoded genomic representation. The
feasibility and efficiency of this global phase is an inter-
esting subject of future research.

In summary, we presented a mnew genotype-to-
phenotype encoding method based on adaptive, self-
organizing compression. This method provides efficient,
robust and compact (near minimal) solutions to EAA
tasks, starting from a population of inefficient and arbi-
trarily large network solutions. It thus provides a novel
and powerful way to efficienctly evolve EAA solutions
to non-trivial tasks, to estimate the complexity of these
tasks, and to grade the importance of neurons composing
the emerging neuroncontrollers.

References

A .Cangelosi, D.Parisi, and S.Nolfi (1994). Cell division
and migration in a ’genotype’ for neural networks.
Network(5),pages 497-515.

A.Cangelosi and J.L.Elman (1995). Gene reg-
ulation and biological development in neu-
ral networks:an exploratory model. Technical

report, CRL-UCSD, University of California at San

Diego,www. citeserr.nj.nec.com/context/15377/132530.

A.Gulliot and J.A.Meyer (2000). From sab94 to
sab2000:what’s new,animat? Proceedings of the
Sizth International Conference on Simulation of
Adaptive Behavior. MIT Press,Cambridge, MA.

A .Gulliot and J.A.Meyer (2001). The animat contri-
bution to cognitive systems research. Journal of
Cognitive Systems Research(2),pages 157-165.

B-T.Zhang and H.Muhlenbein (1993). Evolving opti-
mal neural networks using genetic algorithms with
occam’s razor. Complex Systems, 7, pages 199-220.

D.Floreano and J.Urzelai (2000). Evolutionary robots
with online self-organization and behavioral fitness.
Neural Networks(13),pages 431-443.

D.Floreano and J.Urzelai (2001). Neural morphogen-
esis, synaptic plasticity and evolution. Theory in
Biosciences.

F.Gruau (1994). Automatic definition of modular neu-
ral networks. Adaptive behavior, 3, pages 151-183.

H.Kitano (1990). Designing neural networks using
genetic algorithms with graph generation system.
Complex System, 4, pages 461-476.

J.AMeyer and A.Guilliot (1994). From sab90 to
sab94:four years of animat research. Proceed-
ings of the third international Conference on
Simulation of Adaptive Behavior.,ed D.Cliff and
P.Husbands and J.A.Meyer and S.K.Wilson MIT
Press,Cambridge, MA.

J.Kodjabachian and J-A.Meyer (1998). Evolution and
development of modular control architectures for 1-
d locompotion in six-legged animats. Connection
Science, 10, pages 211-25).

P.Eggenberger (1996). Cell interactions as a con-
trol tool of developmental processes for evolution-
ary robotics. Proceedings of the Forth Interna-
tional Conference on Simulation of Adaptive Be-
havior.,ed. P.Maes and M.Mataric and J-A.Meyer
and J.Pollack and H.Roitblat and S.Wilson MIT
Press,Cambridge, MA.

R.Aharonov-Barki, T.Beker, and E.Ruppin (2001).
Emergence of memory-driven command neurons
in evolved artificial agents. Neural Computa-
tion,13,pages 691-716.

R.K.Belew (1993). Interposing an ontogenetic
model between genetic algorithms and neural net-
works. Advances in Neural Information Process-
ing(NIPS5).,ed. J.Cowan Morgan Kaufmann,San
Mateo,CA.

S.Nolfi and D.Parisi (1995). Evolving artificial neu-
ral networks that develop in time. Advances in
Artificial Life:Lecture Notes in Artificial Intelli-
gence(929),pages 853-367.

X.Yao (1999). Evolving artificial neural networks. Pro-
ceedings of the IEEE,87(9).pages 1423-1447.

