Physica D, 1996. (to appear).

Co-evolving architectures for cellular machines

Moshe Sipper
Logic Systems Laboratory
Swiss Federal Institute of Technology
IN-Ecublens, CH-1015 Lausanne, Switzerland
e-mail: Moshe.Sipper@di.epfl.ch

Eytan Ruppin
Department of Computer Science
Tel Aviv University
Tel Aviv 69978, Israel
e-mail: ruppin@math.tau.ac.il

Abstract

Recent studies have shown that non-uniform cellular automata (CA),
where cellular rules need not necessarily be identical, can be co-evolved to
perform computational tasks. This paper extends these studies by gener-
alizing on a second aspect of CAs, namely their standard, homogeneous
connectivity. We study non-standard architectures, where each cell has a
small, identical number of connections, yet not necessarily from its most
immediate neighboring cells. We show that such architectures are compu-
tationally more efficient than standard architectures in solving global tasks,
and also provide the reasoning for this. It is shown that one can successfully
evolve non-standard architectures through a two-level evolutionary process,
in which the cellular rules evolve concomitantly with the cellular connec-
tions.

Specifically, studying the global density task, we identify the average cellular
distance as a prime architectural parameter determining cellular automata
performance. We carry out a quantitative analysis of this relationship, our
main results being: (1) Performance is linearly dependent on the average
cellular distance, with a high correlation coefficient. (2) High performance
architectures can be co-evolved, concomitantly with the rules, and (3) Low
connectivity cost can be obtained as well as high performance.

The evolutionary algorithm presented may have important applications to
designing economical connectivity architectures for distributed computing
systems.

1 Introduction

Cellular automata (CA) are dynamical systems in which space and time are discrete. They
consist of an array of cells, each of which can be in one of a finite number of possible states,
updated synchronously in discrete time steps according to a local, identical interaction rule.
The state of a cell is determined by the previous states of a surrounding neighborhood of
cells [Wolfram, 1984, Toffoli and Margolus, 1987].

CAs exhibit three notable features, namely massive parallelism, locality of cellular in-
teractions, and simplicity of basic components (cells). They perform computations in a
distributed fashion on a spatially extended grid; as such they differ from the standard ap-
proach to parallel computation in which a problem is split into independent sub-problems,
each solved by a different processor, later to be combined in order to yield the final solution.
CAs suggest a new approach in which complex behavior arises in a bottom-up manner from
non-linear, spatially extended, local interactions [Mitchell et al., 1994b)].

A major impediment preventing ubiquitous computing with cellular automata stems
from the difficulty of utilizing their complex behavior to perform useful computations. The
difficulty of designing CAs to have a specific behavior or perform a particular task has
limited their applications; automating the design process would greatly enhance the viability
of CAs [Mitchell et al., 1994b)].

Recent studies have shown that CAs can be evolved to perform non-trivial computational
tasks. One such task, which we study in detail in this paper, is that of density classification.
In this task the 2-state CA must decide whether or not the initial configuration contains
more than 50% 1s, where the term ‘configuration’ refers to an assignment of 1 states to
several cells, and Os otherwise. The desired behavior (i.e., the result of the computation) is
for the CA to relax to a fixed-point pattern of all 1s if the initial density of 1s exceeds 0.5,
and all Os otherwise (Figure 1).

The density task was studied by [Mitchell et al., 1993, Mitchell et al., 1994b, Das et
al., 1994], who demonstrated that high performance CA rules can be evolved using genetic
algorithms. We have investigated an extension of the CA model termed non-uniform cellular
automata, in which cellular rules need not be identical [Sipper, 1994, Sipper, 1995b, Sipper,
1995a). Employing this model we found that high performance can be attained for the
density task by means of co-evolution [Sipper, 1996]!. Non-uniform CAs have also been
investigated by [Vichniac et al., 1986, Hartman and Vichniac, 1986].

As noted by Mitchell et al., density is a global property and hence the task comprises a

non-trivial computation for a locally-connected CA. Since the 1s can be distributed through-

LA precise definition of the performance measure is given in Section 4.

(a) (b)

Figure 1: The density task: Operation of the GKL rule. CA is one-dimensional, uniform,
2-state, with connectivity radius r = 3. Grid size is N = 149. White squares represent cells
in state 0, black squares represent cells in state 1. The pattern of configurations is shown
through time (which increases down the page). (a) Initial density of 1s is 0.47. (b) Initial
density of 1s is 0.53. The CA relaxes in both cases to a fixed pattern of all Os or all 1s,
correctly classifying the initial configuration.

out the grid, propagation of information must occur over large distances (i.e., O(N)). The
computation involved corresponds to recognition of a non-regular language, since the min-
imum amount of memory required for the task is O(log N) using a serial scan algorithm
[Mitchell et al., 1993, Mitchell et al., 1994b, Mitchell et al., 1994a, Crutchfield and Mitchell,
1995, Das et al., 1994, Das et al., 1995, Packard, 1988]. Note that the density task cannot
be perfectly solved by a uniform, two-state CA, as recently proven by [Land and Belew,
1995]; however, no upper bound is currently available on the best possible imperfect per-
formance, attained to date by the Gacs-Kurdyumov-Levin (GKL) rule [Gacs et al., 1978,
Gonzaga de S& and Maes, 1992] (Figure 1).

Previous studies of the density task were conducted using locally-connected, one-dimensional
grids [Mitchell et al., 1994b, Sipper, 1996]. The task can be extended in a straightforward
manner to two-dimensional grids, an investigation of which we have carried out, using the
same number of local connections per cell as in the one-dimensional case. We found that

markedly higher performance is attained for the density task with two-dimensional grids

along with shorter computation times. This finding is intuitively understood by observing
that a two-dimensional, locally connected grid can be embedded in a one-dimensional grid
with local and distant connections. This can be achieved, for example, by aligning the rows
of the two-dimensional grid so as to form a one-dimensional array; the resulting embed-
ded one-dimensional grid has distant connections of order /N, where N is the grid size.
Since the density task is global it is likely that the observed superior performance of two-
dimensional grids arises from the existence of distant connections that enhance information
propagation across the grid.

Motivated by this observation concerning the effect of connection lengths on perfor-
mance, our primary goal in this paper is to quantitatively study the relationship between
performance and connectivity on a global task, in one-dimensional CAs. The main contri-
bution of this paper is identifying the average cellular distance (see next Section) as the
prime architectural parameter which linearly determines CA performance. We find that
high performance architectures can be co-evolved concomitantly with the rules, and that
it is possible to evolve such architectures that exhibit low connectivity cost as well as high
performance. This work extends our previous work on the co-evolution of non-uniform CAs
[Sipper, 1996] by studying evolving architectures. Our motivation stems from two primary
sources: (a) Finding more efficient CA architectures via evolution, (b) The co-evolution
of architectures offers a promising approach for solving a general wiring problem for a set
of distributed processors, subject to given constraints. The efficient solution of the den-
sity task by CAs with evolving architectures may have important applications to designing
efficient distributed computing networks.

In the next section we describe the CA architectures studied in this work. In Section 3 we
describe the cellular programming algorithm used to co-evolve non-uniform CAs. Section 4
discusses CA rule evolution with fixed architectures. In Section 5 we extend our evolutionary
algorithm such that the architecture evolves as well as the cellular rules. In Section 6
we study the evolution of low cost architectures. Our findings and their possible future

application to designing distributed computer networks are discussed in Section 7.

2 Architecture considerations

We use the term architecture to denote the connectivity pattern of CA cells. In the standard
one-dimensional model a cell is connected to r local neighbors on either side as well as to
itself, where r is referred to as the radius (thus each cell has 2r+1 neighbors). The model we
consider is that of non-uniform CAs with non-standard architectures, in which cells need not

necessarily contain the same rule nor be locally connected; however, as with the standard

CA model, each cell has a small, identical number of impinging connections. In what
follows the term neighbor refers to a directly connected cell. We shall employ the cellular
programming algorithm to evolve cellular rules for non-uniform CAs whose architectures
are fixed (yet non-standard) during the evolutionary run, or evolve concomitantly with the
rules; these are referred to as fixed or evolving architectures, respectively.

We consider one-dimensional, symmetrical architectures where each cell has four neigh-
bors, with connection lengths of a and b, as well as a self-connection. Spatially periodic
boundary conditions are used, resulting in a circular grid (Figure 2). This type of archi-
tecture belongs to the general class of circulant graphs [Buckley and Harary, 1990]: For a

given positive integer N, let ny,no,...,n; be a sequence of integers where
0<ni<ng<---<np<(N+1)/2

Then the circulant graph Cn(nq,ne,...,ng) is the graph on N nodes vy, vs,...,vy with
node v; connected to each node v, (mod v)- The values n; are referred to as connection
lengths. The distance between two cells on the circulant is the number of connections one
must traverse on the shortest path connecting them. The architectures studied here are

circulants Cy(a, b).

Figure 2: A Cg(2,3) circulant graph. Each node is connected to four neighbors, with
connection lengths of 2 and 3.

We surmise that attaining high performance on global tasks requires rapid information
propagation throughout the CA, and that the rate of information propagation across the
grid inversely depends on the average cellular distance (acd). Before proceeding to study
performance, let us examine how the acd of a Cy(a,b) architecture varies as a function of
(a,b). As shown in Figure 3, the acd landscape is extremely rugged (the algorithm used
to calculate the acd is described in Appendix A). This is due to the relationship between
a and b - if ged(a,b) # 1 the acd is markedly higher than when ged(a,b) = 1 (note that

the circulant graph Cy(ny,ng, ..., nk) is connected if and only if ged(nq, ng,...,ng, N) =1
[Boesch and Tindell, 1984]).

N=29

Figure 3: The ruggedness of the acd landscape is illustrated by plotting it as a function
of connection lengths (a,b) for grids of size N = 29. Each (a,b) pair entails a different
Ca9(a, b) architecture whose acd is represented as a point in the graph.

It is straightforward to show that every Cn (a, b) architecture is isomorphic to a Cy (1, d’)
architecture, for some d’, referred to as the equivalent d' (see Appendix A). Graph Cy(a,b)
is isomorphic to a graph Cy (1, d’) if and only if every pair of nodes linked via a connection of
length a in Cy(a,b) is linked via a connection of length 1 in Cy(1,d'), and every pair linked
via a connection of length b in Cy(a, b) is linked via a connection of length d' in Cx(1,d")2.
We may therefore study the performance of Cn(1,d) architectures, our conclusions being

applicable to the general Cy(a,b) case; this is important from a practical standpoint since

2This is not necessarily a one-to-one mapping; Cn(a,b) may map to Cnx(1,d}) and Cy(1,d5), however,
we select the minimum of d} and d5, thus obtaining a unique mapping.

the Cn(a,b) architecture space is extremely large. However, if one wishes to minimize
connectivity cost, defined as a + b, as well as to maximize performance, general Cx(a,b)
architectures must be considered; the equivalent d’ value of a Cy(a,b) architecture may
be large, resulting in a lower cost of Cy(a,b) as compared with the isomorphic Cx(1,d")
architecture (for example, the equivalent of Ci¢1(3,5) is Cio1(1,32)).

Figure 4 depicts the acd for Cn (1, d) architectures, N = 101. It is evident that the acd
varies considerably as a function of d; as d increases from d = 1 the acd declines and reaches
a minimum at d = O(v/N). This supports the notion put forward in Section 1 concerning

the advantage of two-dimensional grids.

20 |

acd(d)

10 -

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 b5l

Figure 4: Cy01(1,d): Average cellular distance (acd) as a function of d. acd is plotted for
d < N/2, as it is symmetric about d = N/2.

We concentrate on the following issues:
1. How strongly does the acd determine performance on global tasks?

2. Can high performance architectures be evolved, that is can “good” d or (a,b) values

be discovered through evolution?

3. Can high performance architectures be co-evolved, that exhibit low connectivity cost
as well?

3 The cellular programming algorithm

We study two-state, one-dimensional, non-uniform CAs, in which each cell may contain
a different rule. A cell’s rule table is encoded as a bit string, known as the “genome”,
containing the next-state bits for all possible neighborhood configurations; e.g., for CAs
with r = 2, the genome consists of 32 bits, where the bit at position 0 is the state to which
neighborhood configuration 00000 is mapped to and so on until bit 31 corresponding to
neighborhood configuration 11111. Rather than employ a population of evolving, uniform
CAs, as with genetic algorithm approaches, our algorithm involves a single, non-uniform
CA of size N, where cell rules are initialized at random. Initial configurations are generated
at random, uniformly distributed over densities in the range [0.0,1.0]. For each initial
configuration the CA is run for M time steps (in our simulations we used M = N so that
computation time is linear with grid size). Each cell’s fitness is accumulated over C' = 300
initial configurations, where a single run’s score is 1 if the cell is in the correct state after
M iterations and 0 otherwise. After every C' configurations evolution of rules occurs by
applying crossover and mutation. This evolutionary process is performed in a completely
local manner, where genetic operators are applied only between directly connected cells.
It is driven by nf;(c), the number of fitter neighbors of cell i after ¢ configurations. The
pseudo-code of our algorithm is delineated in Figure 5. In our simulations, the total number
of initial configurations per evolutionary run was in the range [50000, 500000]3.

Crossover between two rules is performed by selecting at random (with uniform prob-
ability) a single crossover point and creating a new rule by combining the first rule’s bit
string before the crossover point with the second rule’s bit string from this point onward.
Mutation is applied to the bit string of a rule with probability 0.001 per bit.

There are two main differences between our evolutionary algorithm and that used by
Mitchell et al.: (a) In their work, a standard genetic algorithm is used, employing a pop-
ulation of evolving, uniform CAs. All CAs are ranked according to fitness, with crossover
occurring between any two CA rules. Thus, while the CA runs in accordance with a local
rule, evolution proceeds in a global manner. In contrast, our algorithm proceeds locally
in the sense that each cell has access only to its locale, not only during the run but also
during the evolutionary phase, and no global fitness ranking is performed. (b) The standard
genetic algorithm involves a population of independent problem solutions; each CA is run
independently, after which genetic operators are applied to produce a new population. In

contrast, our CA co-evolves since each cell’s fitness depends upon its evolving neighbors.

8By comparison, Mitchell et al. employed a genetic algorithm with a population size of 100, which was
run for 100 generations; every generation each CA was run on 100 — 300 initial configurations, resulting in
a total of [10%,3 - 10°] configurations per evolutionary run.

for each cell 7 in CA do in parallel
initialize rule table of cell ¢
fi = 0 { fitness value }
end parallel for
¢ = 0 { initial configurations counter }
while not done do
generate a random initial configuration
run CA on initial configuration for M time steps
for each cell i do in parallel
if cell ¢ is in the correct final state then

fi=fi+1
end if
end parallel for
c=c+1

if ¢ mod C' = 0 then { evolve every C configurations}
for each cell : do in parallel
compute nf;(c) { number of fitter neighbors }
if nfi(c) = 0 then rule i is left unchanged
else if nf;(c) = 1 then replace rule i with the fitter neighboring rule,
followed by mutation
else if nf;(c) = 2 then replace rule 7 with the crossover of the two fitter
neighboring rules, followed by mutation
else if nf;(c) > 2 then replace rule i with the crossover of two randomly
chosen fitter neighboring rules, followed by mutation
end if
fi=0
end parallel for
end if
end while

Figure 5: Pseudo-code of the cellular programming algorithm.

4 Fixed architectures

In this section we study the effects of different architectures on performance, by applying the
cellular programming algorithm to the evolution of cellular rules using fixed, non-standard
architectures. We performed numerous evolutionary runs using Cn (1, d) architectures with
different values of d, recording the maximal performance attained during the run; per-
formance is defined as the average fitness of all grid cells over the last C' configurations,
normalized to the range [0.0,1.0]. Before proceeding, we point out that this is somewhat
different than the work of Mitchell et al., who defined three measures: (1) performance-
the number of correct classifications on a sample of initial configurations, randomly chosen
from a binomial distribution over initial densities, (2) performance fitness- the number of
correct classifications on a sample of C' initial configurations chosen from a uniform distri-
bution over densities in the range [0.0,1.0] (no partial credit is given for partially correct
final configurations), and (3) proportional fitness- the fraction of cell states correct at the
last iteration, averaged over (' initial configurations, uniformly distributed over densities in
the range [0.0,1.0] (partial credit is given). Our performance measure is analogous to the
latter measure, however, there is an important difference: as our evolutionary algorithm
is local, fitness values are computed for each individual cell; global fitness of the CA can
then be observed by averaging these values over the entire grid. As for the choice of initial
configurations, Mitchell et al. remarked that the binomial distribution is more difficult than
the uniform-over-densities one since the former results in configurations with a density in
the proximity of 0.5, thereby entailing harder correct classification. This distinction did not
prove essential in our studies since our focus is on the relationship between performance
and connectivity on a global task, toward which end we selected the uniform-over-densities
distribution as a benchmark measure by which to evolve CAs and compare their perfor-
mance. We shall, nonetheless, demonstrate that our CAs attain high performance even
when applying the binomial distribution.

Figure 6 depicts the results of our evolutionary runs, along with the acd graph. Markedly
higher performance is attained for values of d corresponding to low acd values and vice
versa. While performance behaves in a rugged, non-monotonic manner as a function of d,
it is linearly correlated with acd (with a correlation coefficient of 0.99, and a negligible p
value) as depicted in Figure 7.

How does the architecture influence performance when the CA is evolved to solve a
local task? To test this we introduced the short-lines task: given an initial configuration
consisting of five non-filled intervals of random length between 1 — 7, the CA must reach

a final configuration in which the intervals form continuous lines (Figure 8). In this final

10

N=101

0.98

/Ay s
i enny RaELT e

0.93

maximal performance

0.92

Short-lines; -+
acd: -----

0.89

Density; <— \

O
o—

0.88

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51

Figure 6: C101(1,d): Maximal evolved performance on the density and short-lines tasks as
a function of d. The graph represents the average results of 420 evolutionary runs; 21 d
values were tested for the density task and 7 for the short-lines task. For each such d value,
15 evolutionary runs were performed with 50, 000 initial configurations per run. Each graph
point represents the average value of the respective 15 runs; standard deviations of these
averages are in the range 0.003 —0.011. i.e., 3% — 11% of the performance range in question
(deviations were computed excluding the two extremal values).

configuration all cells within the confines of an interval should be in state 1, and all other cells
should be in state 0 (in our simulations, cells within an interval in the initial configuration
were set to state 1 with probability 0.3; cells outside an interval were set to 0). Figure 6
demonstrates that performance for this local task is maximal for minimal d, and decreases
as d increases.

These results demonstrate that performance is strongly dependent upon the architecture,
with higher performance attainable by using different architectures than that of the standard
CA model. We also observe that the global and local tasks studied have different efficient
architectures.

As each Cy(a,b) architecture is isomorphic to a Cx(1,d) one, and since performance
is correlated with acd in the Cy(1,d) case, it follows that the performance of general
Cn (a,b) architectures is also correlated with acd. It is interesting to note the ruggedness

of the equivalent d' landscape, depicted in Figure 9, representing the equivalent d’ value

11

N=101

0.98 F 9
097 | J
0.96 - J
0.95 1

Q

o

]

g 094 1

k)

g 093t 1

E

% 002t 1

£
091 | J
0.90 - J
0.89 o
0.88 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

4 5 6 7 8 9 10 11 12 13 14

average cellular distance

Figure 7: Cio1(1,d): Maximal performance on the density task as a function of average
cellular distance. The linear regression shown has a correlation coefficient of 0.99, with a p
value that is practically zero.

for each (a,b) pair. Table 1 presents the performance results of four C'y(a,b) architectures
on the density task: Cio1(3,5), Ci02(3,5), Ci01(3,6) and Cip2(3,6), demonstrating the
dependence on the acd. Since ged(3,5) = 1 whereas ged(3,6) # 1 (resulting in a lower
acd for architectures with the former connectivity), we find, as expected, that Cn(3,5)
exhibits significantly higher performance than Cy (3,6). Furthermore, since Cg2(3, 6) is not
a connected graph (see Section 2), this architecture displays even lower performance. The

operation of a co-evolved, C149(3,5) CA on the density task is demonstrated in Figure 10.

5 Evolving architectures

In the previous section we employed the cellular programming algorithm to evolve non-
uniform CAs with fixed Cy(a,b) or Cy(1,d) architectures. We concluded that judicious
selection of (a,b) or d can notably increase performance, which is highly correlated with the
average cellular distance. The question we now pose is whether a-priori specification of the
connectivity parameters is indeed necessary or can an efficient architecture co-evolve along

with the cellular rules. Moreover, can heterogeneous architectures, where each cell may have

12

Figure 8: The short-lines task: Operation of a co-evolved, non-uniform CA of size N = 149
with a standard architecture of connectivity radius r = 2 (Cha9(1,2)).

different d; or (a;,b;) connection lengths, achieve high performance? Below we denote by
Cn(1,d;) and Cy(a;,b;) heterogeneous architectures with one or two evolving connection
lengths per cell, respectively. Note that these are the cell’s input connections, on which
information is received; as connectivity is heterogeneous, input and output connections
may be different, the latter specified implicitly by the input connections of the neighboring
cells.

In order to evolve the architecture as well as the rules the algorithm presented in Sec-
tion 3 is modified; each cell maintains a “genome” consisting of two “chromosomes”. The
first, encoding the rule table, is identical to that delineated in Section 3. The second chro-
mosome encodes the cell’s connections as Gray code bit strings [Haykin, 1988]*. In what
follows we use grids of size N = 129; thus, the architecture chromosome contains 6 bits for
evolving C99(1, d;) architectures and 12 bits for Ci99(a;, b;) architectures. As an example of
the latter, if cell ¢’s architecture chromosome equals, say, 000110000100 then it is connected
to cells i £4 and ¢ = 7 (mod N), since 000110 and 000100 are the Gray encodings of the
decimal values 4 and 7, respectively.

The algorithm now proceeds as in Section 3; initial configurations are presented and

“A prime characteristic of the Gray code is the adjacency property, i.e., adjacent integers differ by a
single bit. This is desirable where genetic operators are concerned [Goldberg, 1989].

13

N=29

Figure 9: The ruggedness of the equivalent d’' landscape is illustrated by plotting it as a
function of (a,b), for Cag(a,b).

fitness scores of each cell are accumulated over C' configurations, after which evolution
occurs. As with the original algorithm, a cell has access only to its neighbors and applies
genetic operators to the genomes of the fitter ones. Each cell has four connections (in
addition to a self-connection), but these need not be identical for all cells, thereby entailing
heterogeneous connectivity. We have found that performance can be increased by using
slower evolutionary rates for connections than for rules. Thus, while rules evolve every
C = 300 configurations, connections evolve every C' = 1500 configurations. The two-
level dynamics engendered by the concomitant evolution of rules and connections markedly
increases the size of the space searched by evolution. Our results demonstrate that high
performance can be attained, nonetheless.

We performed several evolutionary runs using C'y (1, d;) architectures, two typical results

of which are depicted in Figure 11. We find it quite remarkable that the architectures

14

(a,b) | N acd equivalent | mean maximal
d performance
(3,5) | 101 5.08 32 0.96 (0.006)
(3,5) | 102 6.02 21 0.96 (0.005)
(3,6) | 101 13 2 0.88 (0.01)
(3,6) | 102 | not connected none 0.75 (0.07)

Table 1: Maximal evolved performance for Cn(a,b) on the density task. For each archi-
tecture, 15 evolutionary runs were performed with 50,000 initial configurations per run.
The average maximal performance attained on these runs is shown along with standard
deviations in parentheses (deviations were computed excluding the two extremal values).

evolved succeed in “selecting” connection lengths d; that coincide in most cases with minima
points of the acd graph, reflecting the strong correlation between performance and acd.
This, along with the high levels of performance attained, demonstrates that evolution has
succeeded in finding non-uniform CAs with efficient architectures, as well as rules. In fact,
the performance attained is higher than that of the fixed-architecture CAs of Section 4.
Figure 12 demonstrates the operation of a co-evolved, C129(1,d;) CA on the density task.
As noted in Section 4, Mitchell et al. discussed two possible choices of initial config-
urations, either uniformly distributed over densities in the range [0.0,1.0], or binomially
distributed over initial densities. As explained therein, this distinction did not prove essen-
tial in our studies and we concentrated on the former distribution; nonetheless, we find that
our evolved CAs attain high performance even when applying the binomial distribution.
Observing the results presented in Table 2, we note that performance exceeds that of pre-
viously evolved CAs, coupled with markedly shorter computation times (as demonstrated,
e.g., by Figure 12). It is important to note that this is achieved using only 5 connections
per cell, as compared to 7 used by the fixed, standard-architecture CAs. It is most likely
that our CAs could attain even better results using a higher number of connections per cell,

since this entails a notable reduction in acd.

6 Co-evolving low cost architectures

In the previous section we showed that high performance architectures can be co-evolved
using the cellular programming algorithm, thus obviating the need to specify in advance
the precise connectivity scheme. The mean d; value of evolved, Cia9(1,d;) architectures

was in the range [30,40] (e.g., Figure 11). It is natural to ask whether high performance

15

(a) (b)

Figure 10: The density task: Operation of a co-evolved, non-uniform, Ci49(3,5) CA. (a)
Initial density of 1s is 0.48. (b) Initial density of 1s is 0.51. Note that computation time, i.e.,
the number of time steps until convergence to the correct final pattern, is shorter than that
of the GKL rule. Furthermore, it can be qualitatively observed that the computational
“behavior” is different than GKL, as is to be expected due to the different connectivity
architecture.

architectures can be evolved, which are also of low connectivity cost per cell, defined as d;
for the Cn(1,d;) case and a; + b; for Cn(a;, b;).

In order to evolve low cost architectures we employ the cellular programming algorithm
of Section 5 with a modified cellular fitness value, f/, incorporating the performance of cell

1 as well as its connectivity cost:
fi = fi — ala; +b;) /N
for C'n (a4, b;) architectures and
fi = fi —ad;/N

for Cy(1,d;) ones, where f; denotes the original fitness value of cell i as defined in Section 3,
and « is a coefficient in the range [0.02,0.04]. The algorithm now proceeds as in Section 5,
with an added evolutionary “pressure” toward low cost architectures.

Figure 13 depicts the results of two typical evolutionary runs using Cx(1,d;) archi-

tectures. Comparing this figure with Figure 11, we note that low cost architectures are

16

N=129

30

25

15

I
o
N

S82U31INJ20 ‘0OU * poe

40 44 48 52 56 60 64

36

16 20 24 28

12

N=129

30

25

15

I
o
N

S82U31INJ20 ‘0OU ‘ poe

10 -

Figure 11: Evolving architectures. Results of two typical evolutionary runs using Cio9(1, d;).

Each figure depicts a histogram of the number of occurrences of evolved d; values for all

grid cells, overlaid on the acd graph. Performance in both cases is 0.98. Mean d; value is

31.5 for run (a), 30.8 for run (b).

17

RS U

(a) (b)

Figure 12: The density task: Operation of a co-evolved, non-uniform, Ciag9(1,d;) CA. (a)
Initial density of 1s is 0.496. (b) Initial density of 1s is 0.504. Note that computation time
is shorter than that of the fixed-architecture CA and markedly shorter than the GKL rule.

indeed evolved, exhibiting markedly lower connectivity cost, with only a slight degradation
in performance.

In Section 2 we observed that every Cx(a,b) architecture is isomorphic to a Cy(1,d’)
architecture, for some equivalent d’. We noted that general Cy(a, b) architectures come into
play when one wishes to minimize connectivity cost, as well as to maximize performance;
the equivalent d’ value of a Cy(a,b) architecture may be large, resulting in a lower cost
of Cx(a,b) as compared with the isomorphic Cy(1,d') architecture. These observations
motivated the evolution of general Cy(a;,b;) architectures, a typical result of which is
demonstrated in Figure 14; co-evolved, Cn(a;,b;) architectures surpass Cn(1,d;) ones in

that better performance is attainable with considerably lower connectivity cost.

7 Discussion

In this paper we have studied the relationship between performance and connectivity in

evolving, non-uniform CAs. Our main findings are:

18

30 E

20 | E

15 B

acd , no. occurrences

30 E

20 | E

acd , no. occurrences

10 - 1

Figure 13: Evolving low cost architectures. Results of two typical evolutionary runs using
Ci29(1,d;). Each figure depicts a histogram of the number of occurrences of evolved d;
values for all grid cells, overlaid on the acd graph. (a) Performance is 0.97, mean d; value
is 13.6. (b) Performance is 0.96, mean d; value is 9.

19

designation rule(s) architecture connections | Pjag 104 | T129,104
per cell
Co-evolved CA (1) | evolved, non-uniform | evolved, non-standard 5 0.791 17
Co-evolved CA (2) | evolved, non-uniform | evolved, non-standard 5 0.788 27
Co-evolved CA (3) | evolved, non-uniform | evolved, non-standard 5 0.781 12
®100 evolved, uniform fixed, standard 7 0.775 72
?11102 evolved, uniform fixed, standard 7 0.751 80
D17083 evolved, uniform fixed, standard 7 0.743 107
GKL designed, uniform fixed, standard 7 0.825 74

Table 2: A comparison of performance and computation times of the best CAs. Pygg 104 is
a measure introduced by Mitchell et al., representing the fraction of correct classifications
performed by the CA of size N = 129 over 10* initial configurations randomly chosen from
a binomial distribution over initial densities. 799 194 denotes the average computation time
over the 10% initial configurations, i.e., the average number of time steps until convergence
to the final pattern. The rules designated by ¢; are those reported by Mitchell et al. Co-
evolved CA (1) is fully specified in Appendix B.

1. The performance of fixed-architecture CAs solving global tasks depends strongly and
linearly on their average cellular distance. Compared with the standard Cx(1,2)
architecture, considerably higher performance can be attained at very low connectivity
values, by selecting a Cn (1, d) or Cy(a,b) architecture with a low acd value, such that
d,a,b < N.

2. High performance architectures can be co-evolved using the cellular programming
algorithm, thus obviating the need to specify in advance the precise connectivity
scheme. Furthermore, it is possible to evolve such architectures that exhibit low

connectivity cost as well as high performance.

We observed that the average cellular distance landscape is rugged and showed that the
performance landscape is qualitatively similar. This suggests an added benefit of evolving,
heterogeneous architectures over homogeneous, fixed ones: While the latter may get stuck
in a low performance local minimum, the evolving architectures, where each cell “selects”
its own connectivity, result in a melange of local minima, yielding in many cases higher
performance.

We have provided empirical evidence as to the added efficiency of Cn(1,v/N) architec-
tures in solving global tasks, suggesting that the density problem has a good embedding in
two dimensions. A theoretical result by [Boesch and Wang, 1985] states that the minimal
diameter of Cy(a,b) circulants is achieved with Cn(O(v/N),O(v/N)). This suggests that
the performance landscape has a global maximum at a,b = O(v/N) (but with a # b).

20

100 T T T T T T T T T T T T T T T

90 B

70 | E

50 | E

no. occurrences

40 - g

30 E

20 1

10 *‘

12 16 20 24 28 32 36 40 44 48 52 56 60 64
ai b

l

0 4

Figure 14: Evolving low cost architectures. Result of a typical evolutionary run using
Ci29(ai, b;). The figure depicts a histogram of the number of occurrences of evolved a; and
b; values for all grid cells. Performance is 0.97, mean a; + b; value is 6.1.

We note in passing that as it is physically possible to construct systems of (up to) three
dimensions, one can gain the equivalent of long-range connections gratuitously; by this we
mean that a physical realization of a locally-connected, 3-dimensional system implicitly
“contains” a remotely-connected system of lower dimensionality®. An interesting extension
of our work would be the evolution of architectures using such higher-dimensionality grids,
which may result in yet better performance coupled with reduced connectivity cost.

Using our algorithm to solve the density task offers a promising approach for solving a
general wiring problem for a set of distributed processors: In this problem one is given a
set of processors that should be connected to each other in a way that minimizes average
processor distance (i.e., the number of processors a message must traverse on its path
between two given processors). Problem constraints may include minimal and maximal
connection lengths, pre-specified neighbors for some or all cells, and the (possibly distinct)

number of impinging connections per processor. Using our algorithm to solve the density

5As noted, a two-dimensional, locally-connected system cf size N can be embedded in a one-dimensional
system with connections of length v/N. Similarly, a three-dimensional system can be embedded in a two-
dimensional system with connections of length N /3 and in a one-dimensional system with connections of
length N?%/3 and N/3,

21

task, where each processor is identified with a cell and connectivity constraints are applied
by holding the corresponding connections fixed, will enable the evolution of an efficient
wiring scheme for a given distributed computing network, by maximizing the efficiency of
global information propagation.

Our simulations have shown that the cellular programming algorithm may degenerate
connections. For example, some runs of the short-lines task with evolving Cn(1, d;) archi-
tectures ended up with most cells having d; = 0. This motivates the use of an algorithm
starting with a large number of connections per cell, that are reduced by evolution, thus
yielding increased performance and lower connectivity cost. Ultimately, we wish to attain
a system that can adapt to the problem’s inherent “landscape”.

Evolving, non-uniform CAs hold potential for studying phenomena of interest in areas
such as complex systems, artificial life and parallel computation. This work has shed light
on the importance of selecting efficient CA architectures, and demonstrated the feasibility

of their evolution.

Acknowledgments

We are grateful to Melanie Mitchell for her careful reading of this manuscript and her many
helpful suggestions. We thank Yossi Azar, Jason Lohn, and Hezy Yeshurun for helpful

discussions.

22

Appendix A: Computing acd and equivalent d’

Determining the diameter and average cellular distance of a general circulant is a difficult
problem [Buckley and Harary, 1990]. The minimum diameter has been determined for all
circulants on N nodes and two connection lengths [Boesch and Wang, 1985]. Our interest
is in the special case of C'y(a,b). We observe that by symmetry we need only consider the
paths from node 0 to each other node j, j = 1,..., N — 1 (provided such a path exists).
Thus, we express j as ax + by mod N, z,y € [-N, N] [Boesch and Tindell, 1984]. The
graphs depicted in Section 2 were computed by considering all possible (a,b) pairs. For
each such pair, minimum cellular distances from node 0 to all other nodes were computed
by considering all possible xz,y pairs. The average of these distances was then taken.

To find the isomorphic Cn(1,d’) architecture for a given Cy(a,b) we proceed as follows:
Consider the list of nodes in the Cy(a,b) graph: 0,1,..., N —1. Now rearrange this list such
that nodes originally a units apart are now adjacent (unless ged(a, N) > 1, in which case b
is taken). The equivalent d' is then the minimal number of unit connections to node b from
the head of the list (or a, if ged(a, N) > 1). For example, C7(2,3) nodes are rearranged in
the following order: 0,2,4,6,1,3,5, and the equivalent d' value is therefore d' = 2 (minimal

number of unit connections from node 0 to node 3).

23

Appendix B: Specification of co-evolved CA (1)

Co-evolved CA (1), whose performance measures are given in Table 2, is fully specified
below; as the architecture in question is non-uniform, Cio9(1,d;), this involves 129 rules
and d; values. The 32-bit rule string is shown as 8 hexadecimal digits, with neighborhood
configurations given in lexicographic order; the first (left-most) bit specifies the state to
which neighborhood 00000 is mapped to and so on until the last (right-most) bit specifying
the state to which neighborhood 11111 is mapped to. The 5 neighborhood bits represent
the values of cells i — d;,i — 1,4,7 + 1,7 + d; (mod N), respectively. Cell 0 is the left-most
grid cell.

Cell Rule d; | Cell Rule d; | Cell Rule d; | Cell Rule d;
135107FF 59 | 33 035117F7 56 66 135107F7 44 | 99 135107F7 59
135107FF 44 | 34 115107F7 56 67 135107F7 44 | 100 035117F7 40
135107F7 63 | 35 115107F7 8 68 135107F7 44 | 101 135117F7 8
035107FF 40 | 36 135107FF 8 69 135107F7 8 102 035117F7 40
035107FF 40 | 37 135107FF 56 70 035107F7 8 103 035107F7 40
035107F7 15 38 035107FF 56 71 035117FF 52 | 104 035107F7 56
035117F7 40 | 39 035107F7 48 72 035107FF 11 | 105 135107F7 56
035107F7 56 | 40 035107F7 8 73 035107FF 59 | 106 035105FF 56
135117F7 56 | 41 035107FF 44 | 74 035107FF 59 | 107 035117F7 56
035107F7 63 | 42 135107FF 59 75 035107F7 55 | 108 135117F7 56
035107F7 63 | 43 135107FF 43 76 035117FF 56 | 109 135117F7 56
035107F7 52 44 135107F7 63 77 035107FF 40 | 110 135107F7 56
035127FF 11 45 035107FF 59 78 035107F7 44 | 111 035107FF 56
035127FF 59 | 46 035117F7 43 79 135117F7 15 | 112 135107F7 56
135117F7 8 47 035107FF 43 80 035107F7 15 | 113 135107F7 56
035107F7 11 48 035107FF 40 81 035107F7 59 | 114 135107FF 52
135117F7 11 49 035117F7 56 82 135107F7 40 | 115 035107F7 43
035117F7 43 50 035105FF 56 83 035107F7 63 | 116 035107FF 43
135107FF 4 51 035107F7 56 84 035107F7 4 117 035107F7 43
035117FF 4 52 035107FF 63 85 035127FF 56 | 118 035107FF 56
035117F7 4 53 135107FF 52 86 135107F7 56 | 119 135107F7 56
035117F7 59 54 035105FF 4 87 135107F7 8 120 035107F7 40
135107F7 12 55 135107FF 56 88 035157F7 7 121 135107FF 8
135107F7 40 56 135107FF 56 89 035117F7 63 | 122 03510FFF 8
135107F7 59 57 035107F7 4 90 035107F7 40 | 123 035107FF 56
035107F7 55 58 035107FF 4 91 035107F7 56 | 124 135107F7 56
135107F7 40 59 135107FF 11 92 035107F7 56 | 125 035107F7 56
035107F7 56 | 60 135107F7 11 93 035107FF 4 126 035107FF 56
035107FF 56 | 61 035107F7 59 94 035117F7 56 | 127 035107F7 11
035107FF 56 | 62 035107FF 56 95 135107F7 12 | 128 135107FF 59
035107FF 39 | 63 135117F7 56 96 035107FF 56
035107F7 56 | 64 135117F7 48 97 035117FF 63
035117F7 48 | 65 035117F7 48 98 035107F7 59

QO W WHRN N DNDNDNDLDDDNDN DN DN = e s e e = s
R eSO DX TN E NN —m DO TN W —m oo ©XTDO WD —O

24

References

[Boesch and Tindell, 1984] F. T. Boesch and R. Tindell. Circulants and their connectivities.
Journal of Graph Theory, 8:487-499, 1984.

[Boesch and Wang, 1985] F. T. Boesch and J. -F. Wang. Reliable circulant networks
with minimum transmission delay. IEEE Transactions on Circuits and Systems, CAS-
32(12):1286-1291, December 1985.

[Buckley and Harary, 1990] F. Buckley and F. Harary. Distance in Graphs. Addison-
Wesley, Redwood City, CA, 1990.

[Crutchfield and Mitchell, 1995] J. P. Crutchfield and M. Mitchell. The evolution of emer-
gent computation. Proceedings of the National Academy of Sciences USA, 92(23), 1995.

[Das et al., 1994] R. Das, M. Mitchell, and J. P. Crutchfield. A genetic algorithm discovers
particle-based computation in cellular automata. In Y. Davidor, H. -P. Schwefel, and
R. Manner, editors, Parallel Problem Solving from Nature- PPSN III, volume 866 of
Lecture Notes in Computer Science, pages 344-353, Berlin, 1994. Springer-Verlag.

[Das et al., 1995] R. Das, J. P. Crutchfield, M. Mitchell, and J. E. Hanson. Evolving globally
synchronized cellular automata. In L. J. Eshelman, editor, Proceedings of the Sizth In-
ternational Conference on Genetic Algorithms, pages 336—343, San Francisco, CA, 1995.
Morgan Kaufmann.

[Gacs et al., 1978] P. Gacs, G. L. Kurdyumov, and L. A. Levin. One-dimensional uniform
arrays that wash out finite islands. Problemy Peredachi Informatsii, 14:92-98, 1978.

[Goldberg, 1989] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, 1989.

[Gonzaga de S& and Maes, 1992] P. Gonzaga de S& and C. Maes. The Gacs-Kurdyumov-
Levin automaton revisited. Journal of Statistical Physics, 67(3/4):507-522, 1992.

[Hartman and Vichniac, 1986] H. Hartman and G. Y. Vichniac. Inhomogeneous cellular
automata. In E. Bienenstock, F. Fogelman, and G. Weisbuch, editors, Disordered Systems
and Biological Organization, pages 53-57. Springer-Verlag, Berlin, 1986.

[Haykin, 1988] S. Haykin. Digital Communications. John Wiley and Sons, 1988.

[Land and Belew, 1995] M. Land and R. K. Belew. No perfect two-state cellular automata
for density classification exists. Physical Review Letters, 74(25):5148-5150, June 1995.

[Mitchell et al., 1993] M. Mitchell, P. T. Hraber, and J. P. Crutchfield. Revisiting the edge
of chaos: Evolving cellular automata to perform computations. Complex Systems, 7:89—
130, 1993.

25

[Mitchell et al., 1994a] M. Mitchell, J. P. Crutchfield, and P. T. Hraber. Dynamics,
computation, and the “edge of chaos”: A re-examination. In G. Cowan, D. Pines,

and D. Melzner, editors, Complexity: Metaphors, Models and Reality, pages 491-513.
Addison-Wesley, Reading, MA, 1994.

[Mitchell et al., 1994b] M. Mitchell, J. P. Crutchfield, and P. T. Hraber. Evolving cellular
automata to perform computations: Mechanisms and impediments. Physica D, 75:361—
391, 1994.

[Packard, 1988] N. H. Packard. Adaptation toward the edge of chaos. In J. A. S. Kelso,
A. J. Mandell, and M. F. Shlesinger, editors, Dynamic Patterns in Complex Systems,
pages 293-301. World Scientific, Singapore, 1988.

[Sipper, 1994] M. Sipper. Non-uniform cellular automata: Evolution in rule space and
formation of complex structures. In R. A. Brooks and P. Maes, editors, Artificial Life
IV, pages 394-399, Cambridge, Massachusetts, 1994. The MIT Press.

[Sipper, 1995a] M. Sipper. Quasi-uniform computation-universal cellular automata. In
F. Moran, A. Moreno, J. J. Merelo, and P. Chacén, editors, ECAL’95: Third Furopean
Conference on Artificial Life, volume 929 of Lecture Notes in Computer Science, pages
544-554, Berlin, 1995. Springer-Verlag.

[Sipper, 1995b] M. Sipper. Studying artificial life using a simple, general cellular model.
Artificial Life Journal, 2(1):1-35, 1995. The MIT Press, Cambridge, MA.

[Sipper, 1996] M. Sipper. Co-evolving non-uniform cellular automata to perform computa-
tions. Physica D, 92:193-208, 1996.

[Toffoli and Margolus, 1987] T. Toffoli and N. Margolus. Cellular Automata Machines. The
MIT Press, Cambridge, Massachusetts, 1987.

[Vichniac et al., 1986] G. Y. Vichniac, P. Tamayo, and H. Hartman. Annealed and
quenched inhomogeneous cellular automata. Journal of Statistical Physics, 45:875-883,
1986.

[Wolfram, 1984] S. Wolfram. Universality and complexity in cellular automata. Physica D,
10:1-35, 1984.

26

