
Physica D, 1996. (to appear).

Co-evolving architectures for cellular machines

Moshe Sipper

Logic Systems Laboratory

Swiss Federal Institute of Technology

IN-Ecublens, CH-1015 Lausanne, Switzerland

e-mail: Moshe.Sipper@di.ep
.ch

Eytan Ruppin

Department of Computer Science

Tel Aviv University

Tel Aviv 69978, Israel

e-mail: ruppin@math.tau.ac.il

Abstract

Recent studies have shown that non-uniform cellular automata (CA),

where cellular rules need not necessarily be identical, can be co-evolved to

perform computational tasks. This paper extends these studies by gener-

alizing on a second aspect of CAs, namely their standard, homogeneous

connectivity. We study non-standard architectures, where each cell has a

small, identical number of connections, yet not necessarily from its most

immediate neighboring cells. We show that such architectures are compu-

tationally more e�cient than standard architectures in solving global tasks,

and also provide the reasoning for this. It is shown that one can successfully

evolve non-standard architectures through a two-level evolutionary process,

in which the cellular rules evolve concomitantly with the cellular connec-

tions.

Speci�cally, studying the global density task, we identify the average cellular

distance as a prime architectural parameter determining cellular automata

performance. We carry out a quantitative analysis of this relationship, our

main results being: (1) Performance is linearly dependent on the average

cellular distance, with a high correlation coe�cient. (2) High performance

architectures can be co-evolved, concomitantly with the rules, and (3) Low

connectivity cost can be obtained as well as high performance.

The evolutionary algorithm presented may have important applications to

designing economical connectivity architectures for distributed computing

systems.

1

1 Introduction

Cellular automata (CA) are dynamical systems in which space and time are discrete. They

consist of an array of cells, each of which can be in one of a �nite number of possible states,

updated synchronously in discrete time steps according to a local, identical interaction rule.

The state of a cell is determined by the previous states of a surrounding neighborhood of

cells [Wolfram, 1984, To�oli and Margolus, 1987].

CAs exhibit three notable features, namely massive parallelism, locality of cellular in-

teractions, and simplicity of basic components (cells). They perform computations in a

distributed fashion on a spatially extended grid; as such they di�er from the standard ap-

proach to parallel computation in which a problem is split into independent sub-problems,

each solved by a di�erent processor, later to be combined in order to yield the �nal solution.

CAs suggest a new approach in which complex behavior arises in a bottom-up manner from

non-linear, spatially extended, local interactions [Mitchell et al., 1994b].

A major impediment preventing ubiquitous computing with cellular automata stems

from the di�culty of utilizing their complex behavior to perform useful computations. The

di�culty of designing CAs to have a speci�c behavior or perform a particular task has

limited their applications; automating the design process would greatly enhance the viability

of CAs [Mitchell et al., 1994b].

Recent studies have shown that CAs can be evolved to perform non-trivial computational

tasks. One such task, which we study in detail in this paper, is that of density classi�cation.

In this task the 2-state CA must decide whether or not the initial con�guration contains

more than 50% 1s, where the term `con�guration' refers to an assignment of 1 states to

several cells, and 0s otherwise. The desired behavior (i.e., the result of the computation) is

for the CA to relax to a �xed-point pattern of all 1s if the initial density of 1s exceeds 0:5,

and all 0s otherwise (Figure 1).

The density task was studied by [Mitchell et al., 1993, Mitchell et al., 1994b, Das et

al., 1994], who demonstrated that high performance CA rules can be evolved using genetic

algorithms. We have investigated an extension of the CA model termed non-uniform cellular

automata, in which cellular rules need not be identical [Sipper, 1994, Sipper, 1995b, Sipper,

1995a]. Employing this model we found that high performance can be attained for the

density task by means of co-evolution [Sipper, 1996]1. Non-uniform CAs have also been

investigated by [Vichniac et al., 1986, Hartman and Vichniac, 1986].

As noted by Mitchell et al., density is a global property and hence the task comprises a

non-trivial computation for a locally-connected CA. Since the 1s can be distributed through-

1A precise de�nition of the performance measure is given in Section 4.

2

(a) (b)

Figure 1: The density task: Operation of the GKL rule. CA is one-dimensional, uniform,

2-state, with connectivity radius r = 3. Grid size is N = 149. White squares represent cells

in state 0, black squares represent cells in state 1. The pattern of con�gurations is shown

through time (which increases down the page). (a) Initial density of 1s is 0:47. (b) Initial

density of 1s is 0:53. The CA relaxes in both cases to a �xed pattern of all 0s or all 1s,

correctly classifying the initial con�guration.

out the grid, propagation of information must occur over large distances (i.e., O(N)). The

computation involved corresponds to recognition of a non-regular language, since the min-

imum amount of memory required for the task is O(logN) using a serial scan algorithm

[Mitchell et al., 1993, Mitchell et al., 1994b, Mitchell et al., 1994a, Crutch�eld and Mitchell,

1995, Das et al., 1994, Das et al., 1995, Packard, 1988]. Note that the density task cannot

be perfectly solved by a uniform, two-state CA, as recently proven by [Land and Belew,

1995]; however, no upper bound is currently available on the best possible imperfect per-

formance, attained to date by the Gacs-Kurdyumov-Levin (GKL) rule [Gacs et al., 1978,

Gonzaga de S�a and Maes, 1992] (Figure 1).

Previous studies of the density task were conducted using locally-connected, one-dimensional

grids [Mitchell et al., 1994b, Sipper, 1996]. The task can be extended in a straightforward

manner to two-dimensional grids, an investigation of which we have carried out, using the

same number of local connections per cell as in the one-dimensional case. We found that

markedly higher performance is attained for the density task with two-dimensional grids

3

along with shorter computation times. This �nding is intuitively understood by observing

that a two-dimensional, locally connected grid can be embedded in a one-dimensional grid

with local and distant connections. This can be achieved, for example, by aligning the rows

of the two-dimensional grid so as to form a one-dimensional array; the resulting embed-

ded one-dimensional grid has distant connections of order
p
N , where N is the grid size.

Since the density task is global it is likely that the observed superior performance of two-

dimensional grids arises from the existence of distant connections that enhance information

propagation across the grid.

Motivated by this observation concerning the e�ect of connection lengths on perfor-

mance, our primary goal in this paper is to quantitatively study the relationship between

performance and connectivity on a global task, in one-dimensional CAs. The main contri-

bution of this paper is identifying the average cellular distance (see next Section) as the

prime architectural parameter which linearly determines CA performance. We �nd that

high performance architectures can be co-evolved concomitantly with the rules, and that

it is possible to evolve such architectures that exhibit low connectivity cost as well as high

performance. This work extends our previous work on the co-evolution of non-uniform CAs

[Sipper, 1996] by studying evolving architectures. Our motivation stems from two primary

sources: (a) Finding more e�cient CA architectures via evolution, (b) The co-evolution

of architectures o�ers a promising approach for solving a general wiring problem for a set

of distributed processors, subject to given constraints. The e�cient solution of the den-

sity task by CAs with evolving architectures may have important applications to designing

e�cient distributed computing networks.

In the next section we describe the CA architectures studied in this work. In Section 3 we

describe the cellular programming algorithm used to co-evolve non-uniform CAs. Section 4

discusses CA rule evolution with �xed architectures. In Section 5 we extend our evolutionary

algorithm such that the architecture evolves as well as the cellular rules. In Section 6

we study the evolution of low cost architectures. Our �ndings and their possible future

application to designing distributed computer networks are discussed in Section 7.

2 Architecture considerations

We use the term architecture to denote the connectivity pattern of CA cells. In the standard

one-dimensional model a cell is connected to r local neighbors on either side as well as to

itself, where r is referred to as the radius (thus each cell has 2r+1 neighbors). The model we

consider is that of non-uniform CAs with non-standard architectures, in which cells need not

necessarily contain the same rule nor be locally connected; however, as with the standard

4

CA model, each cell has a small, identical number of impinging connections. In what

follows the term neighbor refers to a directly connected cell. We shall employ the cellular

programming algorithm to evolve cellular rules for non-uniform CAs whose architectures

are �xed (yet non-standard) during the evolutionary run, or evolve concomitantly with the

rules; these are referred to as �xed or evolving architectures, respectively.

We consider one-dimensional, symmetrical architectures where each cell has four neigh-

bors, with connection lengths of a and b, as well as a self-connection. Spatially periodic

boundary conditions are used, resulting in a circular grid (Figure 2). This type of archi-

tecture belongs to the general class of circulant graphs [Buckley and Harary, 1990]: For a

given positive integer N , let n1; n2; : : : ; nk be a sequence of integers where

0 < n1 < n2 < � � � < nk < (N + 1)=2:

Then the circulant graph CN (n1; n2; : : : ; nk) is the graph on N nodes v1; v2; : : : ; vN with

node vi connected to each node vi�nj (mod N). The values nj are referred to as connection

lengths. The distance between two cells on the circulant is the number of connections one

must traverse on the shortest path connecting them. The architectures studied here are

circulants CN (a; b).

Figure 2: A C8(2; 3) circulant graph. Each node is connected to four neighbors, with

connection lengths of 2 and 3.

We surmise that attaining high performance on global tasks requires rapid information

propagation throughout the CA, and that the rate of information propagation across the

grid inversely depends on the average cellular distance (acd). Before proceeding to study

performance, let us examine how the acd of a CN (a; b) architecture varies as a function of

(a; b). As shown in Figure 3, the acd landscape is extremely rugged (the algorithm used

to calculate the acd is described in Appendix A). This is due to the relationship between

a and b - if gcd(a; b) 6= 1 the acd is markedly higher than when gcd(a; b) = 1 (note that

5

the circulant graph CN (n1; n2; : : : ; nk) is connected if and only if gcd(n1; n2; : : : ; nk; N) = 1

[Boesch and Tindell, 1984]).

0
5

10
15

20
25

30

0

5

10

15

20

25

30
2

4

6

8

N=29

a
b

ac

d(
a,

b)

Figure 3: The ruggedness of the acd landscape is illustrated by plotting it as a function

of connection lengths (a; b) for grids of size N = 29. Each (a; b) pair entails a di�erent

C29(a; b) architecture whose acd is represented as a point in the graph.

It is straightforward to show that every CN (a; b) architecture is isomorphic to a CN (1; d
0)

architecture, for some d0, referred to as the equivalent d
0 (see Appendix A). Graph CN (a; b)

is isomorphic to a graph CN (1; d
0) if and only if every pair of nodes linked via a connection of

length a in CN (a; b) is linked via a connection of length 1 in CN (1; d
0), and every pair linked

via a connection of length b in CN (a; b) is linked via a connection of length d
0 in CN (1; d

0)2.

We may therefore study the performance of CN (1; d) architectures, our conclusions being

applicable to the general CN (a; b) case; this is important from a practical standpoint since

2This is not necessarily a one-to-one mapping; CN (a; b) may map to CN(1; d0

1) and CN (1; d0

2), however,
we select the minimum of d0

1 and d0

2, thus obtaining a unique mapping.

6

the CN (a; b) architecture space is extremely large. However, if one wishes to minimize

connectivity cost, de�ned as a + b, as well as to maximize performance, general CN (a; b)

architectures must be considered; the equivalent d
0 value of a CN (a; b) architecture may

be large, resulting in a lower cost of CN (a; b) as compared with the isomorphic CN (1; d
0)

architecture (for example, the equivalent of C101(3; 5) is C101(1; 32)).

Figure 4 depicts the acd for CN (1; d) architectures, N = 101. It is evident that the acd

varies considerably as a function of d; as d increases from d = 1 the acd declines and reaches

a minimum at d = O(
p
N). This supports the notion put forward in Section 1 concerning

the advantage of two-dimensional grids.

5

10

15

20

25

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51

ac
d(

d)

d

N=101

Figure 4: C101(1; d): Average cellular distance (acd) as a function of d. acd is plotted for

d � N=2, as it is symmetric about d = N=2.

We concentrate on the following issues:

1. How strongly does the acd determine performance on global tasks?

2. Can high performance architectures be evolved, that is can \good" d or (a; b) values

be discovered through evolution?

3. Can high performance architectures be co-evolved, that exhibit low connectivity cost

as well?

7

3 The cellular programming algorithm

We study two-state, one-dimensional, non-uniform CAs, in which each cell may contain

a di�erent rule. A cell's rule table is encoded as a bit string, known as the \genome",

containing the next-state bits for all possible neighborhood con�gurations; e.g., for CAs

with r = 2, the genome consists of 32 bits, where the bit at position 0 is the state to which

neighborhood con�guration 00000 is mapped to and so on until bit 31 corresponding to

neighborhood con�guration 11111. Rather than employ a population of evolving, uniform

CAs, as with genetic algorithm approaches, our algorithm involves a single, non-uniform

CA of size N , where cell rules are initialized at random. Initial con�gurations are generated

at random, uniformly distributed over densities in the range [0:0; 1:0]. For each initial

con�guration the CA is run for M time steps (in our simulations we used M = N so that

computation time is linear with grid size). Each cell's �tness is accumulated over C = 300

initial con�gurations, where a single run's score is 1 if the cell is in the correct state after

M iterations and 0 otherwise. After every C con�gurations evolution of rules occurs by

applying crossover and mutation. This evolutionary process is performed in a completely

local manner, where genetic operators are applied only between directly connected cells.

It is driven by nfi(c), the number of �tter neighbors of cell i after c con�gurations. The

pseudo-code of our algorithm is delineated in Figure 5. In our simulations, the total number

of initial con�gurations per evolutionary run was in the range [50000; 500000]3 .

Crossover between two rules is performed by selecting at random (with uniform prob-

ability) a single crossover point and creating a new rule by combining the �rst rule's bit

string before the crossover point with the second rule's bit string from this point onward.

Mutation is applied to the bit string of a rule with probability 0:001 per bit.

There are two main di�erences between our evolutionary algorithm and that used by

Mitchell et al.: (a) In their work, a standard genetic algorithm is used, employing a pop-

ulation of evolving, uniform CAs. All CAs are ranked according to �tness, with crossover

occurring between any two CA rules. Thus, while the CA runs in accordance with a local

rule, evolution proceeds in a global manner. In contrast, our algorithm proceeds locally

in the sense that each cell has access only to its locale, not only during the run but also

during the evolutionary phase, and no global �tness ranking is performed. (b) The standard

genetic algorithm involves a population of independent problem solutions; each CA is run

independently, after which genetic operators are applied to produce a new population. In

contrast, our CA co-evolves since each cell's �tness depends upon its evolving neighbors.

3By comparison, Mitchell et al. employed a genetic algorithm with a population size of 100, which was
run for 100 generations; every generation each CA was run on 100 � 300 initial con�gurations, resulting in

a total of [106; 3 � 106] con�gurations per evolutionary run.

8

for each cell i in CA do in parallel

initialize rule table of cell i

fi = 0 f �tness value g
end parallel for

c = 0 f initial con�gurations counter g
while not done do

generate a random initial con�guration

run CA on initial con�guration for M time steps

for each cell i do in parallel

if cell i is in the correct �nal state then

fi = fi + 1

end if

end parallel for

c = c+ 1

if c mod C = 0 then f evolve every C con�gurationsg
for each cell i do in parallel

compute nfi(c) f number of �tter neighbors g
if nfi(c) = 0 then rule i is left unchanged

else if nfi(c) = 1 then replace rule i with the �tter neighboring rule,

followed by mutation

else if nfi(c) = 2 then replace rule i with the crossover of the two �tter

neighboring rules, followed by mutation

else if nfi(c) > 2 then replace rule i with the crossover of two randomly

chosen �tter neighboring rules, followed by mutation

end if

fi = 0

end parallel for

end if

end while

Figure 5: Pseudo-code of the cellular programming algorithm.

9

4 Fixed architectures

In this section we study the e�ects of di�erent architectures on performance, by applying the

cellular programming algorithm to the evolution of cellular rules using �xed, non-standard

architectures. We performed numerous evolutionary runs using CN (1; d) architectures with

di�erent values of d, recording the maximal performance attained during the run; per-

formance is de�ned as the average �tness of all grid cells over the last C con�gurations,

normalized to the range [0:0; 1:0]. Before proceeding, we point out that this is somewhat

di�erent than the work of Mitchell et al., who de�ned three measures: (1) performance-

the number of correct classi�cations on a sample of initial con�gurations, randomly chosen

from a binomial distribution over initial densities, (2) performance �tness- the number of

correct classi�cations on a sample of C initial con�gurations chosen from a uniform distri-

bution over densities in the range [0:0; 1:0] (no partial credit is given for partially correct

�nal con�gurations), and (3) proportional �tness- the fraction of cell states correct at the

last iteration, averaged over C initial con�gurations, uniformly distributed over densities in

the range [0:0; 1:0] (partial credit is given). Our performance measure is analogous to the

latter measure, however, there is an important di�erence: as our evolutionary algorithm

is local, �tness values are computed for each individual cell; global �tness of the CA can

then be observed by averaging these values over the entire grid. As for the choice of initial

con�gurations, Mitchell et al. remarked that the binomial distribution is more di�cult than

the uniform-over-densities one since the former results in con�gurations with a density in

the proximity of 0:5, thereby entailing harder correct classi�cation. This distinction did not

prove essential in our studies since our focus is on the relationship between performance

and connectivity on a global task, toward which end we selected the uniform-over-densities

distribution as a benchmark measure by which to evolve CAs and compare their perfor-

mance. We shall, nonetheless, demonstrate that our CAs attain high performance even

when applying the binomial distribution.

Figure 6 depicts the results of our evolutionary runs, along with the acd graph. Markedly

higher performance is attained for values of d corresponding to low acd values and vice

versa. While performance behaves in a rugged, non-monotonic manner as a function of d,

it is linearly correlated with acd (with a correlation coe�cient of 0:99, and a negligible p

value) as depicted in Figure 7.

How does the architecture in
uence performance when the CA is evolved to solve a

local task? To test this we introduced the short-lines task: given an initial con�guration

consisting of �ve non-�lled intervals of random length between 1 � 7, the CA must reach

a �nal con�guration in which the intervals form continuous lines (Figure 8). In this �nal

10

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51

m
ax

im
al

 p
er

fo
rm

an
ce

d

N=101

Density
Short-lines

acd

Figure 6: C101(1; d): Maximal evolved performance on the density and short-lines tasks as

a function of d. The graph represents the average results of 420 evolutionary runs; 21 d

values were tested for the density task and 7 for the short-lines task. For each such d value,

15 evolutionary runs were performed with 50; 000 initial con�gurations per run. Each graph

point represents the average value of the respective 15 runs; standard deviations of these

averages are in the range 0:003�0:011. i.e., 3%�11% of the performance range in question

(deviations were computed excluding the two extremal values).

con�guration all cells within the con�nes of an interval should be in state 1, and all other cells

should be in state 0 (in our simulations, cells within an interval in the initial con�guration

were set to state 1 with probability 0:3; cells outside an interval were set to 0). Figure 6

demonstrates that performance for this local task is maximal for minimal d, and decreases

as d increases.

These results demonstrate that performance is strongly dependent upon the architecture,

with higher performance attainable by using di�erent architectures than that of the standard

CA model. We also observe that the global and local tasks studied have di�erent e�cient

architectures.

As each CN (a; b) architecture is isomorphic to a CN (1; d) one, and since performance

is correlated with acd in the CN (1; d) case, it follows that the performance of general

CN (a; b) architectures is also correlated with acd. It is interesting to note the ruggedness

of the equivalent d
0 landscape, depicted in Figure 9, representing the equivalent d0 value

11

4 5 6 7 8 9 10 11 12 13 14
average cellular distance

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

m
ax

im
al

 p
er

fo
rm

an
ce

N=101

Figure 7: C101(1; d): Maximal performance on the density task as a function of average

cellular distance. The linear regression shown has a correlation coe�cient of 0:99, with a p

value that is practically zero.

for each (a; b) pair. Table 1 presents the performance results of four CN (a; b) architectures

on the density task: C101(3; 5), C102(3; 5), C101(3; 6) and C102(3; 6), demonstrating the

dependence on the acd. Since gcd(3; 5) = 1 whereas gcd(3; 6) 6= 1 (resulting in a lower

acd for architectures with the former connectivity), we �nd, as expected, that CN (3; 5)

exhibits signi�cantly higher performance than CN (3; 6). Furthermore, since C102(3; 6) is not

a connected graph (see Section 2), this architecture displays even lower performance. The

operation of a co-evolved, C149(3; 5) CA on the density task is demonstrated in Figure 10.

5 Evolving architectures

In the previous section we employed the cellular programming algorithm to evolve non-

uniform CAs with �xed CN (a; b) or CN (1; d) architectures. We concluded that judicious

selection of (a; b) or d can notably increase performance, which is highly correlated with the

average cellular distance. The question we now pose is whether a-priori speci�cation of the

connectivity parameters is indeed necessary or can an e�cient architecture co-evolve along

with the cellular rules. Moreover, can heterogeneous architectures, where each cell may have

12

Figure 8: The short-lines task: Operation of a co-evolved, non-uniform CA of size N = 149

with a standard architecture of connectivity radius r = 2 (C149(1; 2)).

di�erent di or (ai,bi) connection lengths, achieve high performance? Below we denote by

CN (1; di) and CN (ai; bi) heterogeneous architectures with one or two evolving connection

lengths per cell, respectively. Note that these are the cell's input connections, on which

information is received; as connectivity is heterogeneous, input and output connections

may be di�erent, the latter speci�ed implicitly by the input connections of the neighboring

cells.

In order to evolve the architecture as well as the rules the algorithm presented in Sec-

tion 3 is modi�ed; each cell maintains a \genome" consisting of two \chromosomes". The

�rst, encoding the rule table, is identical to that delineated in Section 3. The second chro-

mosome encodes the cell's connections as Gray code bit strings [Haykin, 1988]4. In what

follows we use grids of size N = 129; thus, the architecture chromosome contains 6 bits for

evolving C129(1; di) architectures and 12 bits for C129(ai; bi) architectures. As an example of

the latter, if cell i's architecture chromosome equals, say, 000110000100 then it is connected

to cells i � 4 and i � 7 (mod N), since 000110 and 000100 are the Gray encodings of the

decimal values 4 and 7, respectively.

The algorithm now proceeds as in Section 3; initial con�gurations are presented and

4A prime characteristic of the Gray code is the adjacency property, i.e., adjacent integers di�er by a
single bit. This is desirable where genetic operators are concerned [Goldberg, 1989].

13

0
5

10
15

20
25

30

0

5

10

15

20

25

30
0

5

10

15

N=29

a
b

 d
’(a

,b
)

Figure 9: The ruggedness of the equivalent d
0 landscape is illustrated by plotting it as a

function of (a; b), for C29(a; b).

�tness scores of each cell are accumulated over C con�gurations, after which evolution

occurs. As with the original algorithm, a cell has access only to its neighbors and applies

genetic operators to the genomes of the �tter ones. Each cell has four connections (in

addition to a self-connection), but these need not be identical for all cells, thereby entailing

heterogeneous connectivity. We have found that performance can be increased by using

slower evolutionary rates for connections than for rules. Thus, while rules evolve every

C = 300 con�gurations, connections evolve every C
0 = 1500 con�gurations. The two-

level dynamics engendered by the concomitant evolution of rules and connections markedly

increases the size of the space searched by evolution. Our results demonstrate that high

performance can be attained, nonetheless.

We performed several evolutionary runs using CN (1; di) architectures, two typical results

of which are depicted in Figure 11. We �nd it quite remarkable that the architectures

14

(a; b) N acd equivalent mean maximal

d
0 performance

(3; 5) 101 5:98 32 0:96 (0:006)

(3; 5) 102 6:02 21 0:96 (0:005)

(3; 6) 101 13 2 0:88 (0:01)

(3; 6) 102 not connected none 0:75 (0:07)

Table 1: Maximal evolved performance for CN (a; b) on the density task. For each archi-

tecture, 15 evolutionary runs were performed with 50; 000 initial con�gurations per run.

The average maximal performance attained on these runs is shown along with standard

deviations in parentheses (deviations were computed excluding the two extremal values).

evolved succeed in \selecting" connection lengths di that coincide in most cases with minima

points of the acd graph, re
ecting the strong correlation between performance and acd.

This, along with the high levels of performance attained, demonstrates that evolution has

succeeded in �nding non-uniform CAs with e�cient architectures, as well as rules. In fact,

the performance attained is higher than that of the �xed-architecture CAs of Section 4.

Figure 12 demonstrates the operation of a co-evolved, C129(1; di) CA on the density task.

As noted in Section 4, Mitchell et al. discussed two possible choices of initial con�g-

urations, either uniformly distributed over densities in the range [0:0; 1:0], or binomially

distributed over initial densities. As explained therein, this distinction did not prove essen-

tial in our studies and we concentrated on the former distribution; nonetheless, we �nd that

our evolved CAs attain high performance even when applying the binomial distribution.

Observing the results presented in Table 2, we note that performance exceeds that of pre-

viously evolved CAs, coupled with markedly shorter computation times (as demonstrated,

e.g., by Figure 12). It is important to note that this is achieved using only 5 connections

per cell, as compared to 7 used by the �xed, standard-architecture CAs. It is most likely

that our CAs could attain even better results using a higher number of connections per cell,

since this entails a notable reduction in acd.

6 Co-evolving low cost architectures

In the previous section we showed that high performance architectures can be co-evolved

using the cellular programming algorithm, thus obviating the need to specify in advance

the precise connectivity scheme. The mean di value of evolved, C129(1; di) architectures

was in the range [30; 40] (e.g., Figure 11). It is natural to ask whether high performance

15

(a) (b)

Figure 10: The density task: Operation of a co-evolved, non-uniform, C149(3; 5) CA. (a)

Initial density of 1s is 0:48. (b) Initial density of 1s is 0:51. Note that computation time, i.e.,

the number of time steps until convergence to the correct �nal pattern, is shorter than that

of the GKL rule. Furthermore, it can be qualitatively observed that the computational

\behavior" is di�erent than GKL, as is to be expected due to the di�erent connectivity

architecture.

architectures can be evolved, which are also of low connectivity cost per cell, de�ned as di

for the CN (1; di) case and ai + bi for CN (ai; bi).

In order to evolve low cost architectures we employ the cellular programming algorithm

of Section 5 with a modi�ed cellular �tness value, f 0i , incorporating the performance of cell

i as well as its connectivity cost:

f
0

i = fi � �(ai + bi)=N

for CN (ai; bi) architectures and

f
0

i = fi � �di=N

for CN (1; di) ones, where fi denotes the original �tness value of cell i as de�ned in Section 3,

and � is a coe�cient in the range [0:02; 0:04]. The algorithm now proceeds as in Section 5,

with an added evolutionary \pressure" toward low cost architectures.

Figure 13 depicts the results of two typical evolutionary runs using CN (1; di) archi-

tectures. Comparing this �gure with Figure 11, we note that low cost architectures are

16

0

5

10

15

20

25

30

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

ac
d

, n
o.

 o
cc

ur
re

nc
es

d_i

N=129

(a)

0

5

10

15

20

25

30

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

ac
d

, n
o.

 o
cc

ur
re

nc
es

d_i

N=129

(b)

Figure 11: Evolving architectures. Results of two typical evolutionary runs using C129(1; di).

Each �gure depicts a histogram of the number of occurrences of evolved di values for all

grid cells, overlaid on the acd graph. Performance in both cases is 0:98. Mean di value is

31:5 for run (a), 30:8 for run (b).

17

(a) (b)

Figure 12: The density task: Operation of a co-evolved, non-uniform, C129(1; di) CA. (a)

Initial density of 1s is 0:496. (b) Initial density of 1s is 0:504. Note that computation time

is shorter than that of the �xed-architecture CA and markedly shorter than the GKL rule.

indeed evolved, exhibiting markedly lower connectivity cost, with only a slight degradation

in performance.

In Section 2 we observed that every CN (a; b) architecture is isomorphic to a CN (1; d
0)

architecture, for some equivalent d0. We noted that general CN (a; b) architectures come into

play when one wishes to minimize connectivity cost, as well as to maximize performance;

the equivalent d0 value of a CN (a; b) architecture may be large, resulting in a lower cost

of CN (a; b) as compared with the isomorphic CN (1; d
0) architecture. These observations

motivated the evolution of general CN (ai; bi) architectures, a typical result of which is

demonstrated in Figure 14; co-evolved, CN (ai; bi) architectures surpass CN (1; di) ones in

that better performance is attainable with considerably lower connectivity cost.

7 Discussion

In this paper we have studied the relationship between performance and connectivity in

evolving, non-uniform CAs. Our main �ndings are:

18

0

5

10

15

20

25

30

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

ac
d

, n
o.

 o
cc

ur
re

nc
es

d_i

N=129

(a)

0

5

10

15

20

25

30

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

ac
d

, n
o.

 o
cc

ur
re

nc
es

d_i

N=129

(b)

Figure 13: Evolving low cost architectures. Results of two typical evolutionary runs using

C129(1; di). Each �gure depicts a histogram of the number of occurrences of evolved di

values for all grid cells, overlaid on the acd graph. (a) Performance is 0:97, mean di value

is 13:6. (b) Performance is 0:96, mean di value is 9.

19

designation rule(s) architecture connections P129;104 T129;104
per cell

Co-evolved CA (1) evolved, non-uniform evolved, non-standard 5 0:791 17

Co-evolved CA (2) evolved, non-uniform evolved, non-standard 5 0:788 27

Co-evolved CA (3) evolved, non-uniform evolved, non-standard 5 0:781 12

�100 evolved, uniform �xed, standard 7 0:775 72

�11102 evolved, uniform �xed, standard 7 0:751 80

�17083 evolved, uniform �xed, standard 7 0:743 107

GKL designed, uniform �xed, standard 7 0:825 74

Table 2: A comparison of performance and computation times of the best CAs. P129;104 is

a measure introduced by Mitchell et al., representing the fraction of correct classi�cations

performed by the CA of size N = 129 over 104 initial con�gurations randomly chosen from

a binomial distribution over initial densities. T129;104 denotes the average computation time

over the 104 initial con�gurations, i.e., the average number of time steps until convergence

to the �nal pattern. The rules designated by �i are those reported by Mitchell et al. Co-

evolved CA (1) is fully speci�ed in Appendix B.

1. The performance of �xed-architecture CAs solving global tasks depends strongly and

linearly on their average cellular distance. Compared with the standard CN (1; 2)

architecture, considerably higher performance can be attained at very low connectivity

values, by selecting a CN (1; d) or CN (a; b) architecture with a low acd value, such that

d; a; b� N .

2. High performance architectures can be co-evolved using the cellular programming

algorithm, thus obviating the need to specify in advance the precise connectivity

scheme. Furthermore, it is possible to evolve such architectures that exhibit low

connectivity cost as well as high performance.

We observed that the average cellular distance landscape is rugged and showed that the

performance landscape is qualitatively similar. This suggests an added bene�t of evolving,

heterogeneous architectures over homogeneous, �xed ones: While the latter may get stuck

in a low performance local minimum, the evolving architectures, where each cell \selects"

its own connectivity, result in a melange of local minima, yielding in many cases higher

performance.

We have provided empirical evidence as to the added e�ciency of CN (1;
p
N) architec-

tures in solving global tasks, suggesting that the density problem has a good embedding in

two dimensions. A theoretical result by [Boesch and Wang, 1985] states that the minimal

diameter of CN (a; b) circulants is achieved with CN (O(
p
N); O(

p
N)). This suggests that

the performance landscape has a global maximum at a; b = O(
p
N) (but with a 6= b).

20

0

10

20

30

40

50

60

70

80

90

100

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

no
. o

cc
ur

re
nc

es

a_i , b_i

N=129

Figure 14: Evolving low cost architectures. Result of a typical evolutionary run using

C129(ai; bi). The �gure depicts a histogram of the number of occurrences of evolved ai and

bi values for all grid cells. Performance is 0:97, mean ai + bi value is 6:1.

We note in passing that as it is physically possible to construct systems of (up to) three

dimensions, one can gain the equivalent of long-range connections gratuitously; by this we

mean that a physical realization of a locally-connected, 3-dimensional system implicitly

\contains" a remotely-connected system of lower dimensionality5. An interesting extension

of our work would be the evolution of architectures using such higher-dimensionality grids,

which may result in yet better performance coupled with reduced connectivity cost.

Using our algorithm to solve the density task o�ers a promising approach for solving a

general wiring problem for a set of distributed processors: In this problem one is given a

set of processors that should be connected to each other in a way that minimizes average

processor distance (i.e., the number of processors a message must traverse on its path

between two given processors). Problem constraints may include minimal and maximal

connection lengths, pre-speci�ed neighbors for some or all cells, and the (possibly distinct)

number of impinging connections per processor. Using our algorithm to solve the density

5As noted, a two-dimensional, locally-connected system cf size N can be embedded in a one-dimensional
system with connections of length

p
N . Similarly, a three-dimensional system can be embedded in a two-

dimensional system with connections of length N1=3, and in a one-dimensional system with connections of
length N2=3 and N1=3.

21

task, where each processor is identi�ed with a cell and connectivity constraints are applied

by holding the corresponding connections �xed, will enable the evolution of an e�cient

wiring scheme for a given distributed computing network, by maximizing the e�ciency of

global information propagation.

Our simulations have shown that the cellular programming algorithm may degenerate

connections. For example, some runs of the short-lines task with evolving CN (1; di) archi-

tectures ended up with most cells having di = 0. This motivates the use of an algorithm

starting with a large number of connections per cell, that are reduced by evolution, thus

yielding increased performance and lower connectivity cost. Ultimately, we wish to attain

a system that can adapt to the problem's inherent \landscape".

Evolving, non-uniform CAs hold potential for studying phenomena of interest in areas

such as complex systems, arti�cial life and parallel computation. This work has shed light

on the importance of selecting e�cient CA architectures, and demonstrated the feasibility

of their evolution.

Acknowledgments

We are grateful to Melanie Mitchell for her careful reading of this manuscript and her many

helpful suggestions. We thank Yossi Azar, Jason Lohn, and Hezy Yeshurun for helpful

discussions.

22

Appendix A: Computing acd and equivalent d
0

Determining the diameter and average cellular distance of a general circulant is a di�cult

problem [Buckley and Harary, 1990]. The minimum diameter has been determined for all

circulants on N nodes and two connection lengths [Boesch and Wang, 1985]. Our interest

is in the special case of CN (a; b). We observe that by symmetry we need only consider the

paths from node 0 to each other node j, j = 1; : : : ; N � 1 (provided such a path exists).

Thus, we express j as ax + by mod N , x; y 2 [�N;N] [Boesch and Tindell, 1984]. The

graphs depicted in Section 2 were computed by considering all possible (a; b) pairs. For

each such pair, minimum cellular distances from node 0 to all other nodes were computed

by considering all possible x; y pairs. The average of these distances was then taken.

To �nd the isomorphic CN (1; d
0) architecture for a given CN (a; b) we proceed as follows:

Consider the list of nodes in the CN (a; b) graph: 0; 1; : : : ; N�1. Now rearrange this list such

that nodes originally a units apart are now adjacent (unless gcd(a;N) > 1, in which case b

is taken). The equivalent d0 is then the minimal number of unit connections to node b from

the head of the list (or a, if gcd(a;N) > 1). For example, C7(2; 3) nodes are rearranged in

the following order: 0; 2; 4; 6; 1; 3; 5, and the equivalent d0 value is therefore d0 = 2 (minimal

number of unit connections from node 0 to node 3).

23

Appendix B: Speci�cation of co-evolved CA (1)

Co-evolved CA (1), whose performance measures are given in Table 2, is fully speci�ed

below; as the architecture in question is non-uniform, C129(1; di), this involves 129 rules

and di values. The 32-bit rule string is shown as 8 hexadecimal digits, with neighborhood

con�gurations given in lexicographic order; the �rst (left-most) bit speci�es the state to

which neighborhood 00000 is mapped to and so on until the last (right-most) bit specifying

the state to which neighborhood 11111 is mapped to. The 5 neighborhood bits represent

the values of cells i � di; i � 1; i; i + 1; i + di (mod N), respectively. Cell 0 is the left-most

grid cell.

Cell Rule di Cell Rule di Cell Rule di Cell Rule di

0 135107FF 59 33 035117F7 56 66 135107F7 44 99 135107F7 59
1 135107FF 44 34 115107F7 56 67 135107F7 44 100 035117F7 40
2 135107F7 63 35 115107F7 8 68 135107F7 44 101 135117F7 8

3 035107FF 40 36 135107FF 8 69 135107F7 8 102 035117F7 40
4 035107FF 40 37 135107FF 56 70 035107F7 8 103 035107F7 40
5 035107F7 15 38 035107FF 56 71 035117FF 52 104 035107F7 56

6 035117F7 40 39 035107F7 48 72 035107FF 11 105 135107F7 56
7 035107F7 56 40 035107F7 8 73 035107FF 59 106 035105FF 56
8 135117F7 56 41 035107FF 44 74 035107FF 59 107 035117F7 56

9 035107F7 63 42 135107FF 59 75 035107F7 55 108 135117F7 56
10 035107F7 63 43 135107FF 43 76 035117FF 56 109 135117F7 56
11 035107F7 52 44 135107F7 63 77 035107FF 40 110 135107F7 56

12 035127FF 11 45 035107FF 59 78 035107F7 44 111 035107FF 56
13 035127FF 59 46 035117F7 43 79 135117F7 15 112 135107F7 56
14 135117F7 8 47 035107FF 43 80 035107F7 15 113 135107F7 56

15 035107F7 11 48 035107FF 40 81 035107F7 59 114 135107FF 52
16 135117F7 11 49 035117F7 56 82 135107F7 40 115 035107F7 43
17 035117F7 43 50 035105FF 56 83 035107F7 63 116 035107FF 43

18 135107FF 4 51 035107F7 56 84 035107F7 4 117 035107F7 43
19 035117FF 4 52 035107FF 63 85 035127FF 56 118 035107FF 56
20 035117F7 4 53 135107FF 52 86 135107F7 56 119 135107F7 56

21 035117F7 59 54 035105FF 4 87 135107F7 8 120 035107F7 40
22 135107F7 12 55 135107FF 56 88 035157F7 7 121 135107FF 8
23 135107F7 40 56 135107FF 56 89 035117F7 63 122 03510FFF 8
24 135107F7 59 57 035107F7 4 90 035107F7 40 123 035107FF 56

25 035107F7 55 58 035107FF 4 91 035107F7 56 124 135107F7 56
26 135107F7 40 59 135107FF 11 92 035107F7 56 125 035107F7 56
27 035107F7 56 60 135107F7 11 93 035107FF 4 126 035107FF 56

28 035107FF 56 61 035107F7 59 94 035117F7 56 127 035107F7 11
29 035107FF 56 62 035107FF 56 95 135107F7 12 128 135107FF 59
30 035107FF 39 63 135117F7 56 96 035107FF 56

31 035107F7 56 64 135117F7 48 97 035117FF 63
32 035117F7 48 65 035117F7 48 98 035107F7 59

24

References

[Boesch and Tindell, 1984] F. T. Boesch and R. Tindell. Circulants and their connectivities.

Journal of Graph Theory, 8:487{499, 1984.

[Boesch and Wang, 1985] F. T. Boesch and J. -F. Wang. Reliable circulant networks

with minimum transmission delay. IEEE Transactions on Circuits and Systems, CAS-

32(12):1286{1291, December 1985.

[Buckley and Harary, 1990] F. Buckley and F. Harary. Distance in Graphs. Addison-

Wesley, Redwood City, CA, 1990.

[Crutch�eld and Mitchell, 1995] J. P. Crutch�eld and M. Mitchell. The evolution of emer-

gent computation. Proceedings of the National Academy of Sciences USA, 92(23), 1995.

[Das et al., 1994] R. Das, M. Mitchell, and J. P. Crutch�eld. A genetic algorithm discovers

particle-based computation in cellular automata. In Y. Davidor, H. -P. Schwefel, and

R. M�anner, editors, Parallel Problem Solving from Nature- PPSN III, volume 866 of

Lecture Notes in Computer Science, pages 344{353, Berlin, 1994. Springer-Verlag.

[Das et al., 1995] R. Das, J. P. Crutch�eld, M. Mitchell, and J. E. Hanson. Evolving globally

synchronized cellular automata. In L. J. Eshelman, editor, Proceedings of the Sixth In-

ternational Conference on Genetic Algorithms, pages 336{343, San Francisco, CA, 1995.

Morgan Kaufmann.

[Gacs et al., 1978] P. Gacs, G. L. Kurdyumov, and L. A. Levin. One-dimensional uniform

arrays that wash out �nite islands. Problemy Peredachi Informatsii, 14:92{98, 1978.

[Goldberg, 1989] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley, 1989.

[Gonzaga de S�a and Maes, 1992] P. Gonzaga de S�a and C. Maes. The Gacs-Kurdyumov-

Levin automaton revisited. Journal of Statistical Physics, 67(3/4):507{522, 1992.

[Hartman and Vichniac, 1986] H. Hartman and G. Y. Vichniac. Inhomogeneous cellular

automata. In E. Bienenstock, F. Fogelman, and G. Weisbuch, editors, Disordered Systems

and Biological Organization, pages 53{57. Springer-Verlag, Berlin, 1986.

[Haykin, 1988] S. Haykin. Digital Communications. John Wiley and Sons, 1988.

[Land and Belew, 1995] M. Land and R. K. Belew. No perfect two-state cellular automata

for density classi�cation exists. Physical Review Letters, 74(25):5148{5150, June 1995.

[Mitchell et al., 1993] M. Mitchell, P. T. Hraber, and J. P. Crutch�eld. Revisiting the edge

of chaos: Evolving cellular automata to perform computations. Complex Systems, 7:89{

130, 1993.

25

[Mitchell et al., 1994a] M. Mitchell, J. P. Crutch�eld, and P. T. Hraber. Dynamics,

computation, and the \edge of chaos": A re-examination. In G. Cowan, D. Pines,

and D. Melzner, editors, Complexity: Metaphors, Models and Reality, pages 491{513.

Addison-Wesley, Reading, MA, 1994.

[Mitchell et al., 1994b] M. Mitchell, J. P. Crutch�eld, and P. T. Hraber. Evolving cellular

automata to perform computations: Mechanisms and impediments. Physica D, 75:361{

391, 1994.

[Packard, 1988] N. H. Packard. Adaptation toward the edge of chaos. In J. A. S. Kelso,

A. J. Mandell, and M. F. Shlesinger, editors, Dynamic Patterns in Complex Systems,

pages 293{301. World Scienti�c, Singapore, 1988.

[Sipper, 1994] M. Sipper. Non-uniform cellular automata: Evolution in rule space and

formation of complex structures. In R. A. Brooks and P. Maes, editors, Arti�cial Life

IV, pages 394{399, Cambridge, Massachusetts, 1994. The MIT Press.

[Sipper, 1995a] M. Sipper. Quasi-uniform computation-universal cellular automata. In

F. Mor�an, A. Moreno, J. J. Merelo, and P. Chac�on, editors, ECAL'95: Third European

Conference on Arti�cial Life, volume 929 of Lecture Notes in Computer Science, pages

544{554, Berlin, 1995. Springer-Verlag.

[Sipper, 1995b] M. Sipper. Studying arti�cial life using a simple, general cellular model.

Arti�cial Life Journal, 2(1):1{35, 1995. The MIT Press, Cambridge, MA.

[Sipper, 1996] M. Sipper. Co-evolving non-uniform cellular automata to perform computa-

tions. Physica D, 92:193{208, 1996.

[To�oli and Margolus, 1987] T. To�oli and N. Margolus. Cellular Automata Machines. The

MIT Press, Cambridge, Massachusetts, 1987.

[Vichniac et al., 1986] G. Y. Vichniac, P. Tamayo, and H. Hartman. Annealed and

quenched inhomogeneous cellular automata. Journal of Statistical Physics, 45:875{883,

1986.

[Wolfram, 1984] S. Wolfram. Universality and complexity in cellular automata. Physica D,

10:1{35, 1984.

26

