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This thesis focuses on the problem of “autonomous agents”. It is assumed that

such agents want to be in a desired state which can be assessed by the agent

itself when it observes the consequences of its own actions. Therefore the feedback

from the motor output via the environment to the sensor input is an essential

component of such a system. As a consequence an agent is defined in this thesis

as a self-referential system which operates within a closed sensor-motor-sensor

feedback loop.

The generic situation is that the agent is always prone to unpredictable distur-

bances which arrive from the outside, i.e. from its environment. These distur-

bances cause a deviation from the desired state (for example the organism is

attacked unexpectedly or the temperature in the environment changes, . . . ). The

simplest mechanism for managing such disturbances in an organism is to employ

a reflex loop which essentially establishes reactive behaviour. Reflex loops are di-

rectly related to closed loop feedback controllers. Thus, they are robust and they

do not need a built-in model of the control situation.

However, reflexes have one main disadvantage, namely that they always occur “too

late”; i.e., only after a (for example, unpleasant) reflex eliciting sensor event has

occurred. This defines an objective problem for the organism. This thesis pro-

vides a solution to this problem which is called Isotropic Sequence Order (ISO-)

learning. The problem is solved by correlating the primary reflex and a predictive

sensor input: the result is that the system learns the temporal relation between

the primary reflex and the earlier sensor input and creates a new predictive reflex.

This (new) predictive reflex does not have the disadvantage of the primary reflex,

namely of always being too late. As a consequence the agent is able to maintain

its desired input-state all the time. In terms of engineering this means that ISO



learning solves the inverse controller problem for the reflex, which is mathemati-

cally proven in this thesis. Summarising, this means that the organism starts as

a reactive system and learning turns the system into a pro-active system.

It will be demonstrated by a real robot experiment that ISO learning can suc-

cessfully learn to solve the classical obstacle avoidance task without external in-

tervention (like rewards). In this experiment the robot has to correlate a reflex

(retraction after collision) with signals of range finders (turn before the collision).

After successful learning the robot generates a turning reaction before it bumps

into an obstacle. Additionally it will be shown that the learning goal of “reflex

avoidance” can also, paradoxically, be used to solve an attraction task.
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Chapter 1

Introduction

1.1 Introductory remarks

The philosophical background of this thesis is constructivism (Maturana and

Varela, 1980) and the social theory by Luhmann (1995). The aim of this chap-

ter is to introduce these two theories and make the reader familiar with often

non-intuitive consequences.

Constructivism is only the underlying paradigm. The actual focus in this thesis

is on autonomous agents which will be introduced in section 1.2. In the sec-

tions 1.3–1.5 autonomous agents will be discussed in the light of constructivism

and Luhmann’s system theory.

After having introduced the underlying paradigm and the agent itself section 1.7

will state the central question of this thesis: “How can a reactive agent turn itself

into a proactive agent?”. Consequently, first reactive behaviour will be introduced,

then proactive behaviour. Finally it will be suggested how learning could achieve

this.

1.2 Autonomous Agents

Organisms act in their environment. Action shall be understood by any alteration

of the environment in a passive or active way. This alteration can be observed by

an external observer or by the organism itself. This thesis emphasises the point

1
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of view that the organism is the observer of its own actions. In other words the

organism’s own perspective is radically employed.

Self observation of its own actions has a certain purpose. Usually the purpose

is to determine if actions have changed the environment in the right way (from

the organism’s perspective). Specifically the organism acts in the environment in

order to achieve a desired state. When I touch a hot surface and pull my hand

away I have done this in order to reestablish the desired state, namely not to feel

pain (any more). In order to achieve this state an appropriate motor reaction

has been issued which is suitable to change the relation of the organism to its

environment in a desired way. Summarising, the organism has formed together

with the environment a closed loop.

The example of a the hot surface made it clear that an organism wants to get

into a desired state, namely, in the example, that no pain is felt. A state from

the organism’s perspective can only be measured at its inputs and never at its

outputs. Therefore it can be stated:

Organisms control their inputs and not their outputs (von Glasersfeld,

1996)1.

The above example (hot surface) features a simple reflex and illustrates its inherent

disadvantage: it always occurs too late. The hot surface first has to be touched

and only then the hand can be pulled back. This poses an objective disadvantage

of any feedback loop and therefore an objective problem in a very generic way. A

solution to this can be found if another sensor event can be found which would

predict the trigger of the unpleasant stimulus “pain”2 For example, if we are

able use heat radiation as a predictor for the trigger of the reflex we can issue

an earlier reaction which prevents the trigger of the reflex. Thus, learning the

temporal sequence of a predictive sensor event and the sensor input “pain” can

eliminate the disadvantage.

1An external observer would precisely judge this the other way round. An observer would
judge that the organism controls its outputs in a way that a specific output state has to be
reached. However, only the external observer can see the things like that. If, for example, the
action of the organism never feeds back to any sensor input it can not be of any interest to the
organism. Therefore a reaction can only be of any interest to the organism when it feeds back
to it. This a fundamental difference which will be found throughout this work.

2It must be stressed that “pain” means nothing other than the label of an input. In a more
strict sense it should be labelled as “reflex input”. Therefore labels which involves interpretations
of sensor signals are written in curly braces in this thesis.
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Summarising, there are two aspects which are important for this work. The first

aspect is that the organism is observing itself. Only the self-observation of the

organism shall be of interest here which leads to a self-referential description of

the organism which is known as constructivism (Maturana and Varela, 1980). This

paradigm shall be used as a basis in this work. The other aspect is the objective

disadvantage of feedback loops. It will be shown that learning of the temporal

sequence of sensor events can be used to generate new sensor-motor loops which

do not have the disadvantage of the original late reacting sensor motor loops.

This leads to the field of temporal sequence learning. Thus, this thesis deals

with temporal sequence learning in the framework of self-reference and more in

general with constructivism. The goal of this work is to develop a self-referential

description of temporal sequence learning.

The following paragraphs introduce some aspects of constructivism and sequence

learning in more detail which are important to this thesis.

Figure 1.1: Observer-problems: the solid lines show observable aspects and
the dotted lines show aspects which can not be observed. H transfers a sensor-
signal to a motor-reaction. P is the property of the environment and transfers

a motor-reaction into a sensor-stimulus.

1.3 Observer-problems

This paragraph introduces problems which arise when organisms are observed

(Luhmann et al., 1990, pp.7–11). The observer has no access to the internal

processes of the organism (see Fig. 1.1). Therefore the only observable aspect of

the organism is its behaviour (see Fig. 1.1a, solid lines).



Chapter 1 Introduction 4

However, the observer assumes that stimulating the organism’s sensors has a par-

tial causal effect on the organism’s motor reactions. For example, when I talk to

another person I expect that that person will respond to me. The person perceives

my sentence and will probably respond with a behaviour — usually with a sen-

tence. However, there is usually no observable direct relation between a stimulus

and a response when an organism is observed. There are at least two reasons

which makes it difficult for an observer to establish a causal relationship between

a stimulus and a response. First, because of internal (or hidden) processes in the

organism it becomes difficult to formulate a causal relationship between stimulus

and response. An individual ontogenesis of every organism makes it even more

difficult to establish causal relations since it becomes more and more difficult to

generalise from one organism to another. This is probably the case in nearly all ev-

eryday situations where the behaviour of a person is no longer directly explainable

by observing another person. Every person has his/her personal history and every

person has an extremely complex nervous system. In order to compensate for the

lack of knowledge about the observable causality we use terms like “the person

has made up his/her mind” or it has “free will” and so on. Second, as already

mentioned, the problem for any observer is that it can only observe behaviour.

The sensors of an organism can be identified but not their actual operation. One

can observe that another person has ears but for such an observer it is not trivial

if the auditory information is actually used by the person or not. If the auditory

information has an effect on the other person is usually concluded from the per-

son’s behaviour. A person enjoying a daydream is usually not very aware what

is happening in his/her surroundings. Speaking to a person enjoying a daydream

usually leads to no reaction. From that lack of reaction it can be concluded that

the person is not using the auditory stimulus. However, there might be other rea-

sons (the person is deaf, ignorant, . . . ). Thus, observers are doomed to interpret

behaviour. This is a very generic observer problem and it cannot be solved as long

as the internal processes are hidden inside the organism.

All the above observer-problems have arisen by observing the organism as an

input/output- or stimulus/response-system. So far it has not been explicitly men-

tioned that the organism lives in an environment. For the organism itself the

environment has the important aspect of providing feedback from the motor out-

puts to the sensor inputs. This is usually called a closed sensor motor loop and

the task of identifying this loop leads to another observer-problem: Imagine an

observer has the task of finding the sensor-motor feedback loops by watching the

organism’s behaviour (see Fig. 1.1b). As mentioned before the observer can only
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observe the behaviour of the organism. However, to identify the feedback loops

the observer has to identify those sensor-inputs which are able to close the sensor-

motor loop. This is a very hard task and it is not very probable that the observer

will identify the right feedback in the environment. It is more probable that the

observer will identify only those loops which contain the observer him-/herself (see

Fig. 1.1b). However, the organism might use (exclusively) feedbacks which do not

contain the observer (see P in Fig. 1.1b). Imagine a teacher who is teaching a

class. The students are surprisingly silent and seem be listening. The teacher

interprets this silence as his/her personal success of teaching because he/she can

impress the students with his/her charisma. Translated into the current vocabu-

lary used in this thesis the teacher thinks that his/her feedback loops include the

students. However, the students are not even listening and are silently playing

an exciting card-game under the table which rather integrates the other mates in

their feedbacks and not the teacher3. Thus, for an observer (here the teacher)

it is extremely difficult to identify the right feedback loops since the observer is

tempted to integrate him-/herself into the feedback loop of the organism being

observed. The organism can use completely different sensor-motor loops which do

not contain the observer at all.

However, there is no need to place the observer in the environment of an organism.

The organism can be its own observer. In this thesis this shall be the point of

view which leads to the next section.

1.4 Self-reference

From now on the organism’s perspective shall be emphasised and not the perspec-

tive of an external observer. This leads to another interpretation of the feedback

loop through the environment. From the organism’s point of view only actions

which feed back to the organism can be of any interest (see Fig. 1.2). Any other

action which disappears in the environment can not be of any interest to the

organism (von Glasersfeld, 1996) (such actions could only be of interest for an

observer)4. From this philosophical point of view it is understandable that the

organism is only working in self-contact with the environment. The role of the

3That is probably the reason why pedagogics loves constructivism and Luhmann’s system-
theory. Students often fool the teacher and there is usually not the linear information transmis-
sion from teacher to student and back. This usually remains the dream of the teacher.

4In this thesis all evolutionary processes are explicitly excluded. The starting point shall be
ontogenesis of an individual.
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Figure 1.2: The organism as an observer: H transfers a sensor-signal to a
motor-reaction. P is the property of the environment and transfers a motor-
reaction into a sensor-stimulus. The organism as an observer is only interested
in those aspects of it own behaviour which feed back to its sensor-inputs (a).

Any behaviour which never feeds back can not be of any interest (b).

environment from the organism’s point of view is (only) to provide a (maybe poor

or noisy) feedback. Therefore it can be stated that the operations of an organism

are self-referential operations.

As a consequence the control-paradigm of this thesis will be that of a closed

loop system opposed to input/output- or stimulus/response paradigms. Self-

referentiality is only possible if the organism’s perspective is employed and the

organism is placed in an environment which provides feedback. Any formulation

below must start with closed loops and resulting learning-rules must be treated in

this framework.

Closed loops can be stable or unstable. At this point Maturana’s principle is

employed that states that feedback loops have to “work” (Maturana and Varela,

1980)5. This means nothing other than that they have to be stable and have

to fulfill a certain function for the organism (von Uexküll, 1926). Stability and

functionality of a feedback loop are judged by the organism itself and not by

its environment. In the above example of the school the students are convinced

that their autopoiesis works perfectly fine. However, the teacher probably has

another opinion about the card game under the table (and will soon disturb this

autopoiesis).

The observer-problem of identifying the right feedback loop can now be discussed

from the organism’s perspective. The observer has the problem that he/she will

5This is a direct result of Maturana’s definition of autopoiesis (which implies self-maintenance
and internal stability) and it will be used especially at the end of the thesis in the section
“embodiment”.
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often identify the wrong feedback loops. The organism itself cannot develop ar-

bitrary feedback or make errors because in the worst case the organism could

even die. In a milder condition the organism would realise that the feedback does

not “work” properly and would adjust it accordingly. Therefore, finally for the

organism the feedback is always sufficiently adjusted to its situation6.

Interpreting the organism as a closed loop system leads to a self-referential descrip-

tion. Motor reactions cause sensor-changes and the sensor-changes cause motor-

reactions and so on. However, the closed loop itself shall not be sufficient for a

strict definition of self-reference like Luhmann (1984, pp.57) has defined it. Luh-

mann demands that there are no conversions between different qualities. Thus

the description must be purely mathematical without the need for labelling any

quantity (like 1meter, firing rate, . . . ). However, the environment does consist

of different qualities like light, pressure and other physical quantities. The goal

is now to find a description which does not need any transformation from one

modality into another. This problem can be solved if the organism’s point of view

is taken.

Von Uexküll (1926) and von Foerster (1960) argue that at the sensor surfaces of an

organism all sensorial qualities are eliminated and converted to neuronal signals.

The same applies to the motor output but only the other way round. The sensor-

motor loop now enables us to describe the organism in a self-referential way by

only using its neuronal activities. Since the motor output feeds back to the sensor

surfaces motor signals lead again to sensor signals. As a consequence an organism

can be described as a self-referential system which means that neuronal activity

leads to neuronal activity and so on (Ashby, 1956; von Foerster, 1985).

The elimination of all modalities leads to a description which only transforms

quantities into other quantities. This is nothing more than a pure mathematical

description. In such a description a signal is simply transformed into another

signal. In addition the mathematical description must be able to deal with the

recursivity of a closed loop. Control theory or signal theory which originated

in electrical engineering is an appropriate tool since it offers a well developed

mathematical toolbox to explore closed loop systems (Stewart, 1960; Sollecito and

Reque, 1981; McGillem and Cooper, 1984; D’Azzo, 1988; Terrien, 1992; Nise, 1992;

Palm, 2000). These methods shall be used throughout this thesis.

6This is one of the basic assumptions in a constructivist therapy. The patient him/herself
never has problems generated by him/herself. The problems are always social but never personal.
They only become personal because of feedback from the environment (Watzlawick, 1990).
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At this point one should keep in mind that the feedback principle has to be seen

in very general terms because the organism can change by learning and this might

lead to acquisition of additional loops which first have not been taken into account

by the organism. Additionally it might happen that the organism no longer uses a

certain feedback since it becomes inactive. However, in general only actions which

feed back to the sensor surfaces can be of any interest to the organism and this

principle will be called action-feedback.

1.5 System-levels

In the previous section the perspective of the organism lead to a self-referential

description of the organism by neuronal signals. It is obvious that there exist

other self-referential systems which employ other system-levels. Specifically the

self-referential system of behaviour shall be introduced here as another system-

level to demonstrate its fundamental difference from the self-referential neuronal

system.

It has been pointed out above that for an external observer only behaviour is

observable. Consequently one can concentrate only on behaviour and can take

behaviour as a basis for a self-referential system: Behaviour triggers behaviour and

so forth. Such a system is called an action-system and anything else is omitted

(Parsons, 1951). If one analysed a dialogue in the context of the behavioural (or

action-) system one would describe how many reactions are possible following a

specific action. Therefore the analysis of social systems leads to the analysis of the

behavioural repertoire (including language). For example, one could analyse and

monitor the discussion of a subject in a group. A measure could be the complexity

of the discussion measured by the number of the different ways to react.

This example demonstrates that in a behavioural system any attribution towards

neuronal or internal states is completely omitted and that the quantitative de-

scription is only taken from the observable behaviour. For example, it cannot

be said that a person becomes annoyed because of the action of another person.

Being annoyed is an internal state and can only be concluded from the observed

actions. Therefore in the context of the system-theory one would not say that the

person is angry but rather that he/she looks annoyed (which is observable). This

leaves the question open if the person is “really” annoyed or not. Only the facial

expression counts and the reaction to this facial expression.
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In the above example it became clear the concentration on one self-referential

system avoids the observer-problem. The observer always has the problem of

finding out if a person is “really” annoyed or not. In everyday life we usually

attribute features or states “into” the other’s brain, for example if somebody is

“angry” or “nasty”. The aim of this thesis is not to question if these metaphors

are wrong, right or “really represented” in the brain. This question is simply

avoided by using the context of constructivism, namely that these metaphors are

still simply explanations of behaviour (by behaviour, often language). Thus, the

observer-problem is avoided by using a self-referential system which consists only of

behaviour. Behaviour triggers only behaviour. Any attribution towards internal

states is not permitted. The above mentioned observer-problems are solved by

concentrating only on behaviour and leaving out the guesswork about internal

processes (for example, if the person is lazy, greedy, nasty, evil, good, . . . )7.

In the previous section the observer-problems have been solved by concentrating

on the self-referential system of behaviour. However, the observer-problems can

also be solved by starting from the other epistemological direction, namely by

radically employing the organism’s perspective. This leads then to a self-referential

description which operates only with signals (behaviours do not make any sense

here).

The advantage of the self-referential description is that one has to concentrate

on one aspect and all other aspects of life can be left out (Luhmann, 1984). By

choosing one level of self-reference (either neuronal signals or behaviour) all other

underlying mechanisms are left out. For example, if one chooses the self-referential

level of (electrical) neural activity, the chemistry of the cells is ignored. The same

applies to the system-level of neural activity: If one concentrates on neural activity

anything else can be ignored (for example, behaviour). Thus, one has to decide

which level of self-referentiality is taken into account. A mixture of different levels

is not allowed.

This separation of the self-referential levels is the basis for Luhmann’s system-

theory. This thesis will mainly use the self-referential level of neuronal signals.

The behavioural level will only play a role in the discussion when robot-robot

interactions are discussed.

Thus, Luhmann’s system-theory tackles the observer-problem by separating the

7This implies a very basic rule in a constructivist therapy. What is analysed is the behaviour
of a person towards other persons, for example in a family. The success of the therapy is measured
if the behaviour of a patient is regarded as compatible to the social surroundings (Watzlawick,
1990).
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self-referential system-levels of neuronal signals and behaviour and makes it pos-

sible to concentrate on one aspect of life and to leave out all other aspects.

1.6 Other organisms

That the environment is seen only as a feedback does not neglect other organisms

in the environment. In the simplest case there are two organisms: ego and alter

(Luhmann, 1984) where it is assumed that ego is observing alter. When ego is

observing alter it is only interpreted as a special aspect of ego’s environment or

feedback. This distinction is very important since the goals of alter are also defined

internally and therefore not observable by ego. However for ego the external and

observable behaviour of alter is only relevant and not the achievement of the

internal goals of alter. Thus, the justification that the other organisms are just

part of the environment arises from the fact that only the behaviour of alter is

observable and not its internal goals.

1.7 From reactive behaviour to proactive

behaviour

After having introduced the general concepts of constructivism implementations

of self-referential systems shall now be explored. This section will start with a

reactive system which only acts after a disturbance has happened. This apparent

disadvantage can be eliminated if the agent turns itself into a proactive system

which anticipates the trigger of the unwanted reaction. This anticipation has to be

learned by the agent itself and therefore learning rules will be presented which have

the potential to solve this task. Thus, this section will elaborate how a reactive

agent can turn itself into a proactive system.

1.7.1 Reactive behaviour

The simplest form of self-reference in an autonomous agent is a simple reflex.

Simple animals rely on reflexes, for example for walking or for finding food but the

reflex is also a behaviour which is found in humans. For example, this behaviour
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can be seen when somebody touches a hot surface and then he/she pulls their

hand away.

However, the reflex behaviour can be applied to more complex situations if the

basic property of a reflex loop is taken into account, namely, that it can only react

after a certain sensor event has happened. In other words: a reflex is always too

late. Keeping this in mind the reflex behaviour can be generalised to situations

where one first has a problem and then pulls him/herself out. For example, a

person can change his/her life-style after a heart-attack or can do so before when

the he/she becomes aware of an unhealthy life-style. Thus, it is the well known

distinction between reactive and proactive behaviour.

Von Uexküll (1926) has already pointed out that an organism is only interested in

specific aspects of its environment, namely those aspects which form a closed reflex

loop or an action-feedback. Loops define which action can change the organism’s

sensor inputs in a desired way. Therefore from the organism’s point of view the

feedback loops have the important property of defining what is the actual “world”

for the organism.

This leads to another important aspect of any feedback loop. A feedback loop has

a desired state. Thus, the important aspect of the feedback loop is that it defines

a desired state and therefore the goal is to keep this desired state all the time. In

the case of the feedback loop it is simply not possible to keep the desired state all

the time since the feedback loop only can react when the organism has left the

desired state.

All these aspects regarding reflex loops are related to the field of control theory.

In the field of control theory a reflex loop is represented by a fixed feedback

loop (Ashby, 1956; McGillem and Cooper, 1984; D’Azzo, 1988; Nise, 1992; Palm,

2000). Feedback loops try to maintain a desired state by comparing the actual

input-value(s) with a predefined state and adjusting the output so that the desired

state is optimally maintained.

1.7.2 Contingency

In control theory noise only plays an implicit role in the sense that it disturbs the

control loops. It is the power of classical feedback-control (like PID-controllers)

that it works without knowing the explicit origins of the disturbances (Phillips,
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2000). However, this thesis will take the noise from the environment explicitly

into account.

Noise originating from the environment is seen from the organism’s point of view

as unexpected events which here shall be called “contingency”. Practically this is

introduced by a disturbance in the environment which shall be called “D” from

now on. This disturbance is again described from the organism’s point of view:

although there are an infinite number of disturbances in the world, only those

disturbances can be of any interest to the organism which actually disturb the

feedback loop(s). Since the feedback loop(s) is(are) described in terms of neuronal

signals the disturbance can also be described by the organism’s internal neuronal

signals.

As pointed out above, the feedback loop has the inherent disadvantage that it is

always too late. Including a disturbance this can be formulated more precisely:

Any feedback loop (or reflex) has the inherent disadvantage that the organism

can not predict when a disturbance D will actually happen. As a consequence any

organism which relies only on feedback-mechanisms has to cope with unpredictable

events from the environment and has to live with the disadvantage that its desired

state(s) can not be maintained all the time.

1.7.3 Anticipation

The inherent delay of any reflex behaviour poses an objective problem which has

to be solved. This can be achieved if the organism can turn the contingency of D

into certainty. This is the case if the organism is able to predict the disturbance

D and generate an appropriate motor reaction before the disturbance reaches the

organism. Again the reflex is the starting-point: The reflex itself can not prevent

the sensor event “pain” occurring since it can react only after it has occurred. Only

if the organism is able to learn the relation between the “pain” and, for example,

the sensation of heat radiation (which precedes it) can it avoid the painful stimulus

by generating an anticipatory motor reaction. As heat radiation and pain follow

in a sequence, learning has the task of learning this temporal sequence to generate

an earlier motor reaction.
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1.7.4 Temporal sequence learning in a closed loop

The previous paragraph elaborated on the fact that a feedback loop is always

too late and that it is therefore not able to maintain a desired state continuously.

Thus, the task is to find a learning algorithm which is able to predict the unwanted

reflex-reaction and which issues a reaction so that the organism’s input will then

always be in its desired state.

Learning-algorithms taken from the class of temporal sequence learning are obvi-

ously candidates which could eliminate the disadvantage of the feedback- or reflex

loop. Temporal sequence learning enables the organism to build up anticipatory

structures, to predict looming disturbances and to generate suitable motor reac-

tions to prevent them. Thus, it is necessary to concentrate on the different learning

paradigms of sequence learning which are offered in computational neuroscience

and biology to decide if one can be used in the closed loop paradigm presented

here. A learning algorithm is needed that is able to learn sequences of events and

is able to generate appropriate motor reactions.

Learning of sequences has a long tradition in psychology which began with Paw-

low’s classical conditioning-experiments (Pavlov, 1927). In the classical experi-

ment by Pavlov a dog learns the temporal relation between the food (late event)

and the bell (earlier event). A learning-rule which has been inspired by Pavlov’s

experiments in the field of computational neuroscience is the so called temporal

difference learning-rule (TD-learning) which plays a dominant role in many theo-

retical studies (Sutton, 1988; Montague et al., 1993; Dayan et al., 2000; Haruno

et al., 2001; Schultz and Suri, 2001). Here the “later event” is represented by a

designated reward- (or punishment-) signal to which the prediction of the learner is

explicitly compared. Thus, the reward-signal represents an explicitly defined eval-

uative feedback for the learning. Learning (weight-change) stops when prediction

(the output of TD-learning) and reward match. Obviously the learning scheme by

Sutton and Barto is a evaluative learning scheme which needs an external teacher

in form of a reward signal.

In the context of constructivism observer-problems arise when an external reward

is introduced. First, a reward can only be defined by an observer. However,

as pointed out previously, the observer is not aware of the goals hidden in the

organism. Therefore it is not probable that the observer gives rewards which

are beneficial to the organism. It is much more probable that the observer gives

rewards which are beneficial for the observer him/herself. Even if the observer
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is of the opinion that he/she gives the rewards for the benefit of the organism it

is not clear for the observer if the rewards have been “really” beneficial for the

organism and therefore have been rewards at all.

To test if an organism has benefited from a reward the observer can only try to

interpret which behaviours most resemble the experience of a reward. Alterna-

tively the observer can use his/her own introspection to conclude what has been

a reward. All these observations stay on the level of behaviour. TD-learning,

however, needs a signal which represents a reward. The mapping of the internal

(reward-) signal to a behaviour (which looks like a reward) is not permitted in

constructivism as it leads to observer-problems (see above). Therefore this thesis

can not use a learning rule which relies on teacher-like evaluation.

A learning rule is needed which is non-evaluative in the sense that it does not

need a reward signal. This leads to another class of learning rules which are called

unsupervised learning rules. Amongst these is one learning rule which is of special

interest in this context since it learns temporal sequences and is biologically re-

lated. New results from neurophysiological experiments suggest that the temporal

timing of neuronal signals is crucial to synaptic learning and therefore to synap-

tic weight change: if the presynaptic activity precedes the postsynaptic activity

then the synaptic weight is increased and if the timing is reversed it is decreased.

This rule is called spike timing dependent synaptic plasticity (STDP) or simply

“temporal Hebb” since it is a special form of classical associative Hebbian learn-

ing (Markram et al., 1997; Zhang et al., 1998; Bi and Poo, 2001). While standard

Hebbian learning (Hebb, 1967) only develops associations between events which

occur at the same time temporal Hebb learns associations between sequences of

events. The learning rule operates unsupervised and, thus, seems to be good for

explaining autonomous behaviour of an organism since it leads to self-organising

(or autonomous) behaviour.

This thesis will use the main features of spike timing dependent plasticity, namely

that the weight changes depend on the temporal order of pre- and post-synaptic

activity and that learning is correlation-based. The neuronal activity itself is

represented by analogue signals which can be interpreted as the firing rate of a

neuron.

At first glance it seems to be the wrong way to develop a learning rule in the context

of rate-codes if the timing of spikes is crucial for learning behaviour. However,

rate codes also make it is possible to develop learning rules which analyse the

timing of pre- and postsynaptic activity. Rate codes have the advantage that
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the mathematical framework of signal- and control theory can be used. The link

between rate-codes and spike-timing dependent plasticity has been established by

Roberts (1999) and also by Xie and Seung (2000). They have proven that one

can use a rate-code if the learning rule contains the derivative of postsynaptic

firing-rates. All rules which operate with rate codes and employ a derivative of

the postsynaptic activity are called differential Hebbian learning rules since they

use the change of the firing rate at the output of the neuron. Differential Hebbian

learning can also be divided into supervised and un-supervised learning rules. The

above mentioned TD-learning employs also the derivative in its learning rule and

therefore belongs to the class of supervised differential Hebbian learning. However,

there is a group of differential Hebbian learning rules which operate un-supervised

(Sutton and Barto, 1981; Klopf, 1986; Kosco, 1986). These rules are candidates

which can be used in the context of constructivism (and this thesis) since they do

not use any reward-signal. Additionally these rules operate with analogue signals

and can be treated by signal- or control-theory.

However, none of the above mentioned learning rules are designed for the closed

loop case. Rather they are designed for the open-loop case and can only be eval-

uated by an external observer. The important difference between the open-loop

case and the closed loop case is the learning goal. In the open-loop condition the

output has to meet a certain condition. In the closed loop case the input has to

meet a certain condition (“desired state”).

The closed loop condition can be illustrated by the example which describes the

task of avoiding a hot surface. The desired state or condition is defined at the

sensor-inputs of the organism: the “pain”-sensor should always be silent. The

organism is interested in the result of the action rather than in the action itself8.

It is clear that a motor-reaction is issued but the motor-action is issued for the

purpose that the “pain” is no longer felt. In the case of the hot surface it could

be a reversal of the motion towards the hot surface or it could be something more

sophisticated, for example throwing a cover over it. Therefore usually there is more

than one possible reaction which ends the stimulation of the sensor-input “pain”9.

8Even if the organism is interested in the action itself (unity feedback) it can evaluate it only
at its inputs.

The same applies to a technical system, for example, central heating. The heater is switched
on to get a desired room-temperature. The output of the heater (heat-flow) itself is irrelevant.
The only relevant factor is that the heater is able to control the room temperature.

9Recent results from classical eye-blink experiments show that conditioned responses and the
unconditioned responses are not similar (personal communication with Mikael Djurfeldt of KTH
in Stockholm). The rabbits employ a certain form of “laziness” in their conditioned response.
From the moment the CS (sound) is felt they close their eyes slowly until the moment the US
(air-puff) arrives. Thus, the response is quite similar to the responses which are generated by
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This example shows that the result of an action is evaluated by the organism and

not the action itself.

Learning simply continues from that point of view and also determines its success

at the input of the organism. If learning is able to silence the “pain”-sensor all the

time it has been successful and learning has fulfilled its task. In the case of the

hot surface learning leads to the effect that the motor reaction (namely pulling the

hand away) is issued already at the moment when the predicting stimulus (heat-

radiation) is felt. Therefore a learning rule is needed which issues an (motor-)

action and evaluates the result at the organism’s (input-) sensors.

In contrast to the above closed loop case, the goal of the open loop case is usually

defined by the learned reaction or at the output. From the moment the learned

reaction has a similar strength the goal has been reached (Rescorla and Wagner,

1972). For example, in Pavlov’s experiment the goal has been reached the moment

the amount of saliva caused by the bell and the food is the same. If the amount

caused by the bell has reached the same amount caused by the food then learning

has reached its goal.

Summarising, in the closed loop condition the learning goal is not defined at the

(motor-) output, it is rather defined as a specific input-condition (desired state).

The observer in this case is the organism itself and the organism observes if a

motor-reaction has caused a certain desired effect which is measured at the sensor-

surfaces of the organism or in other words: at its inputs. This makes clear that it

is not the reaction itself (like its strength) that is important to the organism but

the result and the result is measured at the input as a deviation from the desired

state. Therefore closed loop systems control their inputs and not their outputs

(von Glasersfeld, 1996).

All the unsupervised learning rules which have already been mentioned use the

open-loop paradigm and therefore control their output and not their input. Thus,

an un-supervised (or drive-reinforcement-) learning rule is needed which controls

its input and not its output. Such a learning rule will be presented in this work

and will be called isotropic sequence order learning or ISO learning.

ISO learning which will be discussed later on. Without going deeper into the subject of air-puff
experiments there seems to be evidence that they can be interpreted in both the open-loop-
paradigm and in the closed loop paradigm.
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1.7.5 The reflex as the boundary condition

The outstanding feature of an un-supervised learning rule, namely that it is self-

organising is also its curse: Self-organisation always has the inherent danger that

the results become arbitrary and therefore useless to the organism. The standard

solution of the theory of neural networks is that so called “boundary conditions”

are introduced which reduce the degrees of freedom, so that the network becomes

constricted within sensible boundaries. A good example of the application of

boundary conditions in classical Hebbian learning is the development of orienta-

tion columns in the primary visual cortex of the cat (Miller, 1996a). With the help

of boundary conditions it is possible, for example, to tune the size of the orien-

tation columns. The same applies to Linsker’s info-max network (Linsker, 1988).

There the boundary conditions tune the shapes of the receptive fields. However,

these boundary conditions actually only camouflage the experimenter outside the

organism who actively interferes preventing the network from becoming arbitrary.

Thus, it seems to be that purely unsupervised learning is not applicable and it is

clear that some form of reference must exist.

In the autonomous organism of this thesis the solution of preventing its behaviour

from becoming arbitrary is the reflex. The reflex is fixed and pre-wired and it

can be seen as the “genetic” basis which guides learning. The reflex automatically

defines an internal learning goal for the organism which originates from the above

stated fact that the reflex always occurs too late. Or more generally: reactive be-

haviour is always too late and therefore it has to be predicted. Every sensor signal

which arrives earlier than the reflex-inducing signal is beneficial to the organism

in the sense of being able to predict the unwanted reflex. Any sensor signal on the

other hand which comes later is useless.

It is important to mention that the above definition of the learning goal includes

only neuronal signals and is therefore absolutely free of any external attribution.

The learning behaviour directly originates from the inherent properties of the

feedback loops. These properties originate from the causality of time. Therefore

the whole learning process can be described in relating neuronal activity with

neuronal activity and there is no need to attribute learning goals from outside

into the organism like rewards or other evaluations.
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1.8 Structure of the following chapters

This thesis discusses an organism in its environment. Thus, there is an organism

with sensors and motor-outputs and there is the surrounding environment which

closes the loop by providing feedback from the motor-output to the sensors of the

organism. The overall structure of the thesis is guided by the observation that

the organism is embedded in an environment. Therefore, first only the organism

is described and then the organism within its environment is described. However,

this division has been done for the purpose of structuring but it does not imply

that an organism without environment makes any sense. Even the chapters which

focus only on the organism develop an organism which always operates in a closed

loop established by the environment.

More specifically chapter 2 will develop the internal structure of the organism

while omitting its environment. How the sensor signals are transformed into motor

reactions will be presented in section 2.2. As pointed out in the introduction the

internal structure of the organism can be changed by a temporal sequence learning

what is called ISO learning (section 2.3. Its linear structure allows an analytical

treatment of some of its main characteristics (section 2.4). More complex aspects

will be addressed by simulations (section 2.5). Thus, chapter 2 will present all

aspects of the organism and ISO learning which do not necessarily need the closed

loop.

After chapter 2 has treated all aspects of ISO learning which does not need an

environment chapter 3 will derive results which need an environment. By embed-

ding the organism in an environment a closed loop situation will be established.

This closed loop situation will initially only be established by a simple reflex. The

properties of the reflex will be presented in section 3.2. Particularly the lateness

of the reflex-reaction will define the goal of the following section, namely to re-

place the reflex with a faster anticipatory (re)action (section 3.3). It will be shown

analytically by applying methods from control theory and perturbation analysis

that such a closed loop system creates — by means of ISO learning — a “forward

model” of the reflex.

Chapter 4 will support the theoretical findings by a real robot experiment (avoid-

ance case, section 4.2) and by a computer simulation (attraction case, section 4.3).

The aim of this chapter is to show the robustness of ISO learning. In addition,

to demonstrate that it is possible to establish both an avoidance behaviour and

an attraction behaviour out of the same learning rule only be changing the initial
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reflex.

The discussion is again guided by the organism and its environment. In chap-

ter 5 only ISO learning is discussed without the surrounding environment. This

discussion starts with technical aspects (section 5.2) and then discusses links to

neurophysiology (section 5.3). However, the emphasis lies on animal learning (sec-

tion 5.4) and its mathematical models (section 5.4.5).

Chapter 6 will discuss ISO learning in the context of closed loop learning. The first

part of the chapter is mainly devoted to applications in the field of engineering

(section 6.2). The second part will discuss indirect consequences of the closed loop

paradigm (section 6.3). In particular, observer problems will be discussed. Finally

robotics will be discussed as the “natural” closed loop application.



Chapter 2

The Organism

2.1 Introduction

In the last chapter an organism has been introduced which first acts reactively

and then, after learning, is able to act pro-actively. To achive this a learning rule

has been proposed which performs sequence learning and measures its success at

its inputs. The aim of this chapter is to formalise the demands of the last chapter

so that in conclusion a mathematical description is at hand.

The arguments of the preceding chapter can be summarised as follows:

• The organism transfers sensor inputs into motor reactions.

• Initially there must be a strong (or maybe fixed) connection between a spe-

cific sensor input and the motor output in order to establish a reflex reaction.

• The learning rule must be non-evaluative and allow for learning the temporal

correlation between the reflex reaction and other predicting sensor inputs.

This temporal correlation should be used to generate an earlier motor reac-

tion to override the reflex.

• The learning goal shall be determined at the inputs of the learning circuit.

Learning shall stop if all reflex-inputs have been eliminated.

Using these properties it is now possible to formulate a mathematical framework

for the organism.

20
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The following sections will then proceed as follows: first the organism will be

mathematically formalised (section 2.2). The resulting equations will define the

organism’s reactions to sensor-events. Second, a learning rule will be introduced

which is able to learn sequences of events and which evaluates its success at its

inputs (section 2.3). Third, analytical results will be obtained which show the

organism’s ability to learn sequences of events (section 2.4) and which will prove

that learning determines its success at the input (section 2.4.2). Fourth, simu-

lations will support the analytical findings and will also provide results for cases

which are not analytically treatable (section 2.5).

Figure 2.1: The basic circuit in the time domain.

2.2 The organism

A system of N +1 linear filters h(t) is considered receiving inputs x and producing

outputs u. The filters connect with corresponding weights ρk to one output unit

v(t) (Fig. 2.1).

All input lines of the algorithm presented here are mathematically equivalent.

However, h0 (and the corresponding input x0) will be used to denote the one unit

which will later represent the reflex pathway. The output v is then given as:

v(t) = ρ0u0(t) +
N∑

k=1

ρkuk(t) (2.1)

In general, the system which is considered shall operate in continuous time (e.g.

with neuronal rate codes) and it shall be able to handle continuous input functions

x(t) of arbitrary shape.

The transfer function h shall be that of a bandpass which transforms a δ-pulse
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input into a damped oscillation (Fig. 2.2a) and is specified by:

h(t) =
1

b
eat sin(bt) ↔ (2.2)

H(s) =
1

(s + p)(s + p∗)
(2.3)

where p∗ represents the complex conjugate of the pole p = a+ib. It is important to

note that such a bandpass filter is only stable if its pole-pair is located on the left

complex half-plane, otherwise an amplified oscillation is obtained. H(s) represents

the Laplace-notation. In general low-case letters are used for the time-domain and

upper-case letters are used for the corresponding Laplace-transform.

Real and imaginary parts of the poles are given by

a = Re(p) = −πf/Q (2.4)

b = Im(p) =
√

(2πf)2 − a2 (2.5)

where f is the frequency of the oscillation. The damping characteristic of the

resonator is reflected by Q > 0.5. Small values of Q lead to a strong damping.

The use of resonators (band-pass filters) is motivated by biology because oscillatory

neuronal responses (Traub, 1999) and band-pass filtered response characteristics

(at virtually all sensory front-ends, cell-membranes and ion-channels like NMDA)

are very prevalent in neuronal systems (Shepherd, 1990). Several examples for the

utilisation of such bandpass filtered responses provide Grossberg and Schmajuk

(1989) with their spectral timing model which has been used in different applica-

tions (Grossberg, 1995; Grossberg and Merrill, 1996).

Thus, the main idea is to use a neuron which gets bandpass filtered sensor signals

at its inputs and generates a motor output. Later, one of these band-passes (h0)

has the special task to provide the input for a reflex like reaction. The other

bandpass filtered sensor signals are candidates for generating an earlier motor

reaction through learning.

2.3 The learning rule

Learning (weight change) takes place according to a Hebb-like rule:

d

dt
ρj(t) = µuj(t)v

′(t) µ � 1 (2.6)
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where the weight change depends on the correlation between uj and the derivative

of v. All weights can change (also ρ0). The constant µ is adjusted such that all

weight changes occur on a much longer time scale (i.e., very slowly) as compared

to the decay of the responses u. Thereby the system operates in the steady state

condition.

2.4 Analytical findings

2.4.1 Timing dependence of weight change

In this section the question will be addressed how the timing between the input

signals influences the weight change.

To perform analytical calculations two restrictions will be introduced, which will

now be used often throughout the theoretical parts of this thesis. They will be

waived later:

i) Only two resonators are considered, thus, N = 1.

ii) Accordingly the analytical derivation has to deal with only two input functions

x0, x1 defined as (delayed) δ-pulses:

x0(t) = δ(t− T ), T ≥ 0 (2.7)

x1(t) = δ(t) (2.8)

The first restriction is necessary because the analytical treatment of the case N > 1

is very intricate and largely impossible.

Concerning the second restriction it must be noted that the theory of signal de-

composition allows composing any causal input function from δ-pulses. Thus, the

second constraint is not really a restriction.

The delay T assures a well-defined causal relation between both inputs, where x0

(the later of the two) is the timing reference (the reflex input). Especially the

section on the robot implementation will show that the algorithm (with N > 1) is

very robust with respect to variations in T .
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In general as an initial condition will be used:

ρ0 = 1 (2.9)

ρ1 = 0 (2.10)

For the analytical treatment only the weight change at ρ1 will be considered. (In

fact, a little later it will be shown that the algorithm normally operates always in

a domain where ρ0 changes very little.)

Because steady-state is assumed, the product in the learning rule (Eq. 2.6) can be

rewritten as a correlation integral between input and output:

ρ1 → ρ1 + ∆ρ1 (2.11)

∆ρ1(T ) = µ

∫ ∞

0

u1(T + τ)v′(τ)dτ (2.12)

Similar to other approaches (Oja, 1982) the weight change is computed for the ini-

tial development of the weights as soon as learning starts, because this is indicative

of the continuation of the learning. Since the weight-change happens on a much

slower time-scale than the resonator-responses it can be assumed that Eq. 2.10

not only holds for t = 0 but also for t > 0 during the first correlation between

u1 and v′. The duration of the correlation is determined by the wavelengths of

the resonators and their damping factors and is roughly tresponse = Q/f . The res-

onator with the longest temporal response to a delta pulse should be taken as the

duration the correlation takes place. This time shall be called tcorr. Therefore the

assumption:

ρ1(t) = 0 for t < tcorr (2.13)

is introduced which reflects the condition during the first pairing of two delta

pulses. Assuming that the weight ρ1 stays zero means that the postsynaptic con-

tribution only originates from the input x0. Therefore it is possible to replace v′

in Eq. 2.12 directly by u′0 and Eq. 2.12 turns into:

ρ1(T )t<tcorr = µ

∫ ∞

0

u1(T + τ)u′0(τ)dτ (2.14)

Thus, Eq. 2.14 calculates the change of the weight ρ1 under the condition that ρ1

stays zero.

In simple cases (e.g., for h0 = h1) this integral can be solved directly. A general

solution, which can also be extended to cover more than two inputs, requires to
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apply the Laplace-transform using the notational convention: x(t) ↔ X(s), for a

transformation pair of functions in the time and the Laplace domain.

The linearity of the integral Eq. 2.14 allows for an analytical solution, which is

possible with the help of Plancherel’s theorem (see the Appendix A for this rather

little known theorem). Applying it together with the shift theorem x(t − t0) →
X(s)e−t0s to Eq. 2.14 gives:

∆ρ1 = µ
1

2π

∫ +∞

−∞
H1(−iω)

[
iωe−TiωH0(iω)

]
dω (2.15)

= µ
1

2π

∫ +∞

−∞
H1(iω)

[
−iωeTiωH0(−iω)

]
dω (2.16)

Note that symmetry of Plancherel’s theorem is broken because of the exponential

term. Equation 2.15 represents a Fourier transform and Eq. 2.16 an inverse Fourier

transform. Note, that these two Equations can be interpreted in these two different

ways. This does not mean that in this case the Fourier transform is equal to its

inverse. In fact Eq. 2.15 and Eq. 2.16 calculate Fourier transforms and inverse

transforms from different functions as the signs swap in the transfer functions H0

and H1 when these two equations are compared.

Both integrals can be evaluated with the method of residuals. Eq. 2.16, however,

offers the advantage that the right complex half plane can be neglected, because it

leads to contributions for negative time (i.e. t < 0) only (McGillem and Cooper,

1984; Stewart, 1960). Thus, of the four residuals (poles) for H1 and H0 only those

of H1 need to be considered because those of H0 have flipped their sign in Eq. 2.16

and appear now on the right complex half-plane. We get as the final result:

ρ1(T )t=0 = µ b1M cos(b1T )+(a1P+2a0|p1|2) sin(b1T )
b1(P+2a1a0+2b1b0)(P+2a1a0−2b1b0)

e−Ta1 T ≥ 0 (2.17)

ρ1(T )t=0 = µ b0M cos(b0T )+(a0P+2a1|p0|2) sin(b0T )
b0(P+2a0a1+2b0b1)(P+2a0a1−2b0b1)

e−Ta1 T < 0 (2.18)

where M = |p1|2−|p0|2 and P = |p1|2 + |p0|2. If identical resonators H0 = H1 = H

are assumed, this leads to:

∆ρ1(T )t=0 = µ
1

4ab
sin(bT )e−aT (2.19)

which is identical to the impulse response of the resonator itself apart from a

different scaling factor.
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Figure 2.2: Input functions and the initial weight change for t = 0 according
to Eqs. 2.17 and Eqs. 2.18. (a) shows the inputs x, the impulse responses u for a
choice of two different resonators h and the derivative of the output v′. (b) shows
the initial weight change ρ1(T )t=0 for H1 = H0, Q = 1, f = 0.01 (arbitrary
units) and (c) for resonators with different frequencies f0 = 0.01, f1 = 0.02 but
with the same Q = 1. The solid lines in (b) and (c) represent the analytical
solutions derived from Eqs. 2.17/2.18 and the dotted lines simulation results
resulting from the numerical integration of Eq. 2.12 with the same parameters
for f and Q. For that purpose the two filters H0 and H1 get two different inputs
x1(t) = δ(t) and x0(t) = δ(t−T ). This pulse-sequence was repeated every 2000
time steps. After 400000 time steps the weight ρ was measured and plotted
against the temporal difference T . The learning rate was set to µ = 0.001.
(d) Schematic explanation of the mutual weight change at a strong (A) and a
weak synapse (B) with two subsequent delta pulses at the inputs x1 and x0 (for

further explanations see text).

The corresponding weight change curves are plotted in Fig. 2.2b,c. The curves

show that synaptic weights are strengthened if the presynaptic signal arrives be-

fore the postsynaptic signal and vice versa. The biological relevance of the learning

curves becomes especially clear in the case H0 = H1. This learning curve with

identical resonators is similar to the curves obtained in neuro-physiological exper-

iments exploring spike timing dependent synaptic plasticity (STDP or “temporal

Hebb”) (Markram et al., 1997; Bi and Poo, 1998; Zhang et al., 1998; Abbott and

Nelson, 2000). Furthermore in this case (Fig. 2.2b) it is seen that the location of
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the maximum of the learning curve Topt falls in the interval:

λ

2π
< Topt <

λ

4
,

1

2
< Q < ∞ (2.20)

where λ = 1/f is the wave-length of the resonator.

The isotropic setup of the algorithm in principle also leads to weight changes at ρ0.

It is, however, evident that the change in ρ0 is (very) small when the contribution

from the other inputs ρk, k ≥ 1 is small. This is most easily seen when considering

Fig. 2.2d which shows a situation which arises after some learning by using the

standard initial conditions. The size of the synapses depicts the momentarily

existing weight values. The input sequence is such that a weight increase arises at

synapse B from the influence of input line A onto line B (+T in learning curve),

whereas weight decrease occurs at synapse A because of the inverse causal (−T )

influence of input line B onto line A. The degree of change is depicted by the plus

and minus signs, showing that the decrease of A is smaller than the increase of

B. For two similar inputs a simple rule of thumb is that the weight-change ∆ρ

roughly follows the weight value of the other input scaled by the learning rate µ,

while the sign of the change depends on the temporal sequence of events:

∆ρlate input ≈ µ ρearly input (2.21)

∆ρearly input ≈ −µ ρlate input (2.22)

As a result the strong input roughly maintains its strength while the contributions

from the other inputs are small. This is the typical case when learning is guided

by a strong reflex and the organism has the task to build up predictive pathways

which should be weaker but more precise to prevent the disturbance.

The above obtained analytical results can be extended to cover the most general

system structure as represented in Fig. 2.1 with N > 1. Equation 2.1 turns into:

V (s) =
N∑

k=0

ρkUk(s) (2.23)

keeping it in the Laplace-domain, because then it can directly obtained:

∆ρj(T ) = µ
1

2π

∫ +∞

−∞
−iωV (−iω)Uj(iω)dω, (2.24)

which is the general form of Eq. 2.12 in the Laplace domain. It should be noted
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that for all ∆ρj this integral can still be evaluated analytically in the same way as

in the special case with two resonators discussed above. In the following equations

the index j is used for the input weights and k is used for the summation of the

output-signal v.

2.4.2 Weight change when x0 becomes zero

This section focuses on the weight development when the reference input (reflex)

becomes silent (x0 = 0) at some point during learning. This is motivated by the

cases discussed in the introduction, where the goal of learning is to avoid (late,

painful, damaging) reflex reactions. Thus, setting x0 = 0 corresponds to the

condition when the reflex has successfully been avoided. Note, that the circuit is

left with just one (active) input (x1) asking if its synaptic weight ρ1 will continue

to change.

The same restrictions (i–ii, p. 23) as above are used. Starting with equation 2.24

equation 2.23 is inserted into it. x0 = 0 ↔ X0 = 0 is set and the weight change

becomes:

∆ρj = µ
1

2π

N∑
k=1

ρk

∫ +∞

−∞
−iωHk(−iω)Hj(iω)dω (2.25)

For N = 1 this results to:

∆ρ1 = µ
1

2π
ρ1

∫ +∞

−∞
−iωH1(−iω)H1(iω)dω (2.26)

= −µ
i

2π
ρ1

∫ +∞

−∞
ω|H1(iω)|2dω (2.27)

H1(iω)H1(−iω) = |H(iω)|2 is valid since transfer functions can always expressed as

products of complex conjugate pole-pairs. Multiplying H1(iω) with H1(−iω) leads

to products of a complex number with its conjugate counterpart which renders the

absolute value squared.

Since all transfer functions are symmetrical in relation to the real axis the fre-

quency response |H(iω)|2 is also symmetrical which leads to symmetrical responses

in Eq. 2.27 at |H1(iω)|2. Due to ω in Eq. 2.27 the entire integral becomes anti-

symmetrical and thus zero1. Thus, the weight ρ1 stabilises if only x1 is active.

1In a practical application (e.g., digital IIR filter) this is only true if the frequency responses



Chapter 2 The Organism 29

This result can be summarised in a rather intuitive way: With N = 1 and x0 = 0

there is an input signal only at x1. The weight change in that case is a correlation

of a damped sine wave with its derivative which is a damped cosine wave. The

correlation of a sine with a cosine is always zero.

In this thesis there will be no attempt to calculate the behaviour of the weights

for N > 1, which is very tedious if not impossible. Instead simulation results will

be shown for this later. However, the above argument can be extended by the

Fourier theorem of wave decomposition to more inputs, because each sine wave

from a resonator is multiplied by its cosine counterpart. Thus, also for N > 1 zero

correlation is expected and a stop of the weight development as soon as there is

no input (x0).

2.5 Simulations

This section will perform simulations with the neuronal circuit of Fig. 2.1. The

simulations have the purpose to validate the theoretical results from the last section

and to explore the more complex situations (especially N > 1) which are not

analytically tractable.

Simulations were performed under Linux using C++. Resonators were imple-

mented as time-discrete IIR filters in the z-domain. The impulse-invariant trans-

formation from the s-plane to the z-plane was used and the coefficients for the

filters were calculated according to McGillem and Cooper (1984). Normalised

time-steps were employed which result in normalised filter-frequencies in the range

f = [0 . . . 0.5]. In all applications frequencies less or equal to fmax = 0.1 were

used to avoid sampling-artifacts.

2.5.1 One filter in the predictive pathway: N=1

As before, the simplest case N = 1 is explored: one resonator in the reflex pathway

x0 and one resonator in the predictive pathway x1 using the same restrictions as

above (i-ii on page 23).

of the input X1 and the transfer function H1 vanish for high frequencies to avoid that the integral
becomes ill defined (∞−∞). In other words: the transfer functions must contain a low-pass
term. This reflects the aspect that the time course of the input functions must be predictable
(Kalman filter-model, see Kalman 1960).
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Figure 2.3: Simulation results with a circuit with two inputs, hence N = 1
(see Fig. 2.1). Input pulse sequences were repeated every 100 time-steps, the
first starting at zero. Both resonators had values of Q0,1 = 1 and f0,1 = 0.1.
The other parameters were µ = 0.01 and T = 2. a) Result for time step 0, b)

for time step 900.

2.5.1.1 Signal shape

Fig. 2.3a shows for time step 0 the δ-pulses at x0,1 and the responses u0 and u1 from

the resonators H0 and H1, respectively. Before learning the output v is identical

to the signal u0 because the weights were set to ρ0 = 1 and ρ1 = 0. The actual

weight change of ρ1 is caused by repeated pairing of the δ-pulses at x0 and x1. The

result after 9 pairings is depicted in Fig. 2.3b. The comparison between Fig. 2.3a

and Fig. 2.3b shows that the onset of the output v has shifted towards the earlier

event x1. Before learning it was identical to the resonator response u0 in the reflex

pathway. After learning the output is a superposition of both signals u0,1 which

leads to an onset which occurs together with the early onset of u1. Thus, the

circuit is able to “detect” the δ-pulse at x1 as a predictor of the δ-pulse x0.

2.5.1.2 Learning curve

Using the same setup the interval T can be varied. The change of ρ1 as a function

of T for the initial learning step (i.e., for t = 0 after one correlation) is considered.

This was simulated using identical resonators H0 = H1 but also with different

resonators H0 6= H1. The results are shown together with the analytical findings

in Fig. 2.2b,c having used the same parameters in both the simulation and the

analytical calculation. Thus, the analytically calculated weight change curves are

reproduced by the simulation results.
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Figure 2.4: Simulated development of the weight ρ1 for the case of two inputs
(N = 1). Parameters were f0,1 = 0.01 and Q0,1 = 1. The inputs are triggered
at a temporal difference of T = 15: x0 = δ(t−T ) and x1 = δ(t). The pairing of
the delta pulses is repeated every 2000 time steps. The learning rate is set to

µ = 0.001 in (a) and to µ = 0.01 in (b).

2.5.1.3 Weight stabilisation for x0 = 0 :

The analytical results (Eq. 2.26) predict that ρ1 should stabilise as soon as x0 = 0.

This, however, also requires that the learning rate µ is zero, which in reality

cannot be ultimately achieved. The following simulation results show the effect of

the learning rate on the development of the weights and compare the analytically

obtained result with those obtained for more realistic situations. The simulation

to test this was performed the following way: first the two resonators are triggered

with paired δ-pulses. Then the input x0 was switched off (i.e.: x0 = 0) at t =

400, 000 and only the input x1 was still active.

Fig. 2.4 shows the weight development of ρ1 over time for two different learning

rates µ. With a low learning rate the weight ρ1 approximately becomes constant

when the input x0 is switched off (see Fig 2.4a) whereas with a higher learning

rate the weight continues to grow. With learning-rates too high the weight change

during one correlation of two damped resonator responses must be taken into

account in the correlation itself. Therefore, for example, Eq. 2.27 becomes a

differential equation of ρ1 which predicts an exponential growth of ρ1. Therefore

the learning-rate has to be adjusted in a way that the change of the weight during

one correlation of two damped sine waves can be neglected.

Weight stabilisation is very desirable during learning (when the “desired state has

been reached”) but so is a high learning rate. These conflicting demands therefore

lead to a trade-off, which needs to be taken care of in practical applications and
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the right learning rate can be determined by the simulation shown here.

Figure 2.5: Simulated development of the weights ρ0 and ρ1 for the case of
two inputs (N = 1). Parameters were f0,1 = 0.01 and Q0,1 = 1. The inputs are
triggered at a temporal difference of T = 15: x0 = δ(t− T ) and x1 = δ(t). The
pairing of the delta pulses is repeated every 2000 time steps. The learning rate

is set to µ = 0.0001 in (a) and to µ = 0.001 in (b).

2.5.1.4 Development of ρ0:

In all cases discussed so far both weights were allowed to change, while it has

been claimed ρ0 remains stable. An easy intuition why this basically holds can be

gained by using the “rule of thumb” defined above (Eq. 2.21,2.22). From this it is

clear that the change of ρ0 remains tiny for a prolonged time in the setup because

ρ1 equals zero at the beginning and µ is very small. Fig 2.5 shows the results

from very long simulations with variable ρ0. With a low learning rate (a) it can

be seen that ρ0 starts to change by more than 1% only after about 50000 learning

steps (i.e. 25 pairings, and ρ1 = 0, ρ0 = 1 as the usual initial conditions). Even

after 107 learning steps (i.e. 5000 pairings) the change of ρ0 still can be neglected

whereas ρ1 has changed from zero to 0.5.

However, in some cases a strong decrease to ρ0 = 0 is acceptable or even desirable

if ρ0 is the reflex-input and is no longer needed. Weight change should stop in this

case at the moment when ρ0 = 0. It makes sense to force the weight ρ0 to zero

after the condition ρ0 = 0 has been reached by learning. A reversal of the sign

of ρ0 is not the desired behaviour since it would make the reflex via ρ0 senseless.

Therefore a more mild condition is to prevent ρ0 from changing its sign. This

would give ρ0 the chance to grow again if the timing at the inputs is reversed and

the reflex is needed again. From the moment ρ0 has arrived at zero and kept at
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zero the output is only driven by the input x1 via ρ1. The paragraph which tested

the condition x0 = 0 provides the answer how the weight ρ1 behaves in the case

ρ0 = 0. From Eq. 2.27 it has been concluded that the weight ρ1 does not change

if the only contribution to the output v comes via ρ1. Therefore the weight ρ1

stabilises if ρ0 is kept at zero or is not allowed to change its signs.

With a higher learning rate µ the system begins to oscillate and the weights are no

longer stable (b). This oscillation can also be explained by the findings from the

paragraph where the condition x0 = 0 has been tested. In this paragraph only ρ1

was allowed to change and the high learning rate lead to a differential equation of

first order of ρ1 (see Eq. 2.27). Here, both ρ0 and ρ1 are variable which leads to two

coupled differential equations (see Eq. 2.24). Due to the coupling of the first-order

differential equations means that they are able to generate oscillatory behaviour.

However, this is not a desirable feature as the weights grow endlessly. As in the

case above the learning rate has to be chosen in such a way that oscillation does

not occur or that the wavelength of the oscillation is longer than the lifetime of

the organism.

If there are more than two inputs N > 1 then the condition arises that after ρ0 has

been eliminated the other weights are freely floating and they have approximately

the same strength. In Fig. 2.5 this is the case when ρ0 = ρ1 after 1/3 of the time

course. Since ISO learning does not rely on the past the moment ρ0 = ρ1 can be

taken as a starting point. Having two equal strong weights leads to a competition

between them where the weights associated with early signals grow and the weights

with later signals will get weaker. This leads at the end to the situation that the

earliest signal will have the strongest weight and the latest signal will have the

weakest or the weight will get the opposite sign.

Summarising, it can be seen that the reflex pathway will stay strong for a long time

during learning so that the other weights have a chance to grow. This guarantees

that during learning the reflex pathway is still functioning and only later it will

be eliminated. However, this elimination would only happen if the reflex pathway

would still be triggered. In the condition of “reflex avoidance” the reflex pathway

will never be triggered again and therefore learning stops although there is a non-

zero weight. This, on the other hand, always guarantees a fall-back to the reflex

as a last resort.

Furthermore, in conditions where it is life threatening to unlearn the reflex it is

obviously advantageous to force the weight ρ0 to a fixed value to insure that the

reflex can always be used in an emergency.
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Figure 2.6: Multiple filters (N = 10) in the predictive pathway: Filter re-
sponses (a), the neuronal circuit (b) and its output during learning and after
learning (c). The neuronal circuit (b) consists of a filter bank where the filter
frequencies are set to fk = 5f0

k ; k ≥ 1 and f0 = 0.01. The learning rate was set
to µ = 0.0005 and Q = 1. The filter bank gets two different inputs x0(t) = δ(t)
(reflex-pathway) and x1(t) = δ(t− T ) (predictive pathway), T = 10. The delta
pulses are repeated every 2000 time steps. After the 400, 000 time steps x0

is set to zero. The contribution of the signals ukρk to the output v triggered
by x1(t) is called HV and is marked by the shaded box in (b). The weighted
resonator responses ρkuk after learning are shown in (a). The output signals
during learning (time step 390000) and after learning (after time step 400000)

are shown in (c).

2.5.2 More than one filter in the predictive pathway

The setup with only one resonator (N = 1) in the predictive pathway has the

disadvantage that there is only one specific temporal interval Topt where learning

(weight change) has the maximal rate. The use of an array of resonators with

different frequencies in the predictive pathway removes this disadvantage (see inset

in Fig. 2.6). The system should now be able to learn more than only one time
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interval properly. In this section an array of 10 resonators in the predictive pathway

will be used. This array is triggered with the same δ-pulse (x1 = δ(t)). The reflex

pathway was triggered by a delayed δ-pulse (x0 = δ(t − T ); T = 10). The initial

condition for learning was set to ρ0 = 1; ρk = 0; k ≥ 1 as before.

2.5.2.1 Signal shape

Fig. 2.6 shows the resonator responses uk scaled with their momentarily existing

weights ρk (top) at time t = 390, 000 during learning. The scaled response of u0

(a, dashed line) is still the biggest at this time. The diagram also shows the output

signal v and its derivative during the learning process (also t = 390, 000, bottom).

Additionally, the output signal is shown which is generated when silencing the

input x0 (c, dotted line, bottom, t = 400, 000).

The output v is a superposition of all resonator outputs. It can be seen that it

has a first and a second maximum (marked with 1 and 2 in Fig. 2.6). The second

maximum is due to the resonator response from the reflex pathway u0 and vanishes

when the input x0 is switched off (see dotted curve in c).

The first maximum is generated by superposition of the responses ρkuk, k > 0 (i.e.

all except u0). In general this superposition process will always try to generate

the first maximum as close as possible to x0. This can be understood by the ongo-

ing amplification of an initially existing asymmetry in the system in the following

way. At the first learning step the derivative of v is zero before x0 and then follows

the shape of the v′-curve as shown in the diagram. Thus, there is one resonator

response whose shape matches the v′-curve best (best positive correlation). Obvi-

ously, it is that particular resonator which has its maximum at (or closest to) the

maximum of the v′-curve (second cusp, first is still zero). For this resonator the

highest correlation result is obtained (Eq. 2.12) and, thus, the strongest weight-

growth occurs at the beginning of learning. The other weights grow less strongly

and their growth rate is approximately (inversely) related to the distance of their

resonator maximum from x0. This results in a distribution of weight values which

follows the shape outlined by the y-position of the resonator maxima as shown in

the top panel by the dots on the curves. Thus, superposition of these weighted

responses leads to a maximum of v at x0. This line of argumentation continues to

hold also for the following learning steps, because the theoretical results suggest

that the contribution of the correlation of the first part of the v′-curve (first cusp)

with the uk, k > 0, which would correspond to homo-synaptic learning, is zero in
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all cases (see Eq. 2.25-2.27) thereby not affecting the weight change. Thus weight

change continues to follow the distribution of the maximum in Fig. 2.6a. The

resonator with the lowest frequency (fl) determines the longest delay Tmax = 1
fl

which can be learned. Equivalently the shortest delay is Tmin = 1
fh

where fh is the

resonator with the highest frequency. Within the range [Tmin, Tmax] any T causes

an output with a maximum which always coincides with the location of x0, pro-

vided there are enough resonators to allow for a sufficiently accurate superposition

process.

Figure 2.7: Weight changes ρj dependent of the temporal distance T with a
filter bank of resonators (N = 15) set up as in Fig. 2.6b. The filter frequencies
are set to fk = 5f0

k ; k ≥ 1 with f0 = 0.01 and Q = 1. The learning rate was
set to µ = 0.0001 and Q = 1. The case f0 = fk is marked with a thick line
and reproduces the curve in Fig.2.2b. The filter bank gets two different inputs
x1(t) = δ(t) (predictive pathway) and x0(t) = δ(t − T ) (reflex pathway). The
delta pulses are repeated every 2000 time steps. After the 400, 000th time step
the weight ρj was measured and plotted against to the temporal difference T .

Only every second curve is plotted.

2.5.2.2 Learning curve

As in the case of only two resonators; the dependence of the weight change on the

temporal distance T can be explored. Now, however, there have to be monitored N

changeable weights. For this experiment the same standard setup has been chosen

using paired δ-pulses with a temporal delay of T , but now with 15 resonators

(N = 15) in the predictive pathway. Their frequencies are chosen such that 10
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resonators have a frequency which is higher and 5 resonators one which is lower

than f0 (see Fig. 2.7). Every second weight change curve is shown in Fig. 2.7 for

t = 0 where T was varied from −150 to 150. Every curve in this diagram represents

one weight ρk of a specific resonator hk as a function of T . The curve plotted with

the thick line belongs to the resonator hk which has the same frequency as the

resonator h0, hence fk = f0. The other weight change curves belong to resonators

in the predictive pathway which have different frequencies compared to f0. It can

be seen that every weight change curve has a specific T where weight change is

maximal or (in support of the argument used to explain the first maximum in

Fig. 2.6). Or the other way round: for specific values of T and large N there

exists always one particular resonator which shows maximum weight change.

Another interesting result is that the weight change curve with fk = f0 is identical

to the weight change curve with only one resonator (see Fig. 2.7). The fact that

both weight change curves are the same is due to the linearity of ISO learning.

In summary, in an array of different resonators every resonator is only responsible

for a specific and limited range of temporal intervals so that such an array is able

to cover a wide range of different temporal intervals. The weight change curves

for the different weights give precise information on which resonator yields the

maximum contribution to the output signal.

Figure 2.8: Weight change of multiple resonators N = 10 in dependence of
the learning rate. The neuronal circuit (see Fig. 2.6b) consists of a filter bank
where the filter frequencies are set to fk = 0.1

k ; k ≥ 1 where the index k is
also used as a label for the different curves in this figure (Q = 1 in both cases).
The filter bank gets two different inputs x1(t) = δ(t) (predictive pathway) and
x0(t) = δ(t − T ) (reflex pathway) with T = 10. The delta pulses are repeated
every 2000th time step. After 400, 000 time steps x0 was set to zero. The

learning rate was set to µ = 0.0001 in (a) and to µ = 0.001 in (b).
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2.5.2.3 Weight stabilisation for x0 = 0 :

The next question that arises is if the weights also stabilise in a multi-resonator

setup if the reflex pathway x0 becomes zero (see Fig. 2.8). The same setup as

before was used for the simulation (N = 10 and paired δ-pulses with T = 10).

The test was performed in the same way as above by setting x0 to zero at time

t = 400, 000. Fig. 2.8 shows that the weights stabilise in the limit of µ → 0. Thus,

again the crucial parameter for an approximate weight stabilisation is the learning

rate µ, which is too high in Fig. 2.8b.

Because of the complexity of the mathematics in a setup with filter-banks, it is not

possible to give robust analytical arguments for weight stabilisation in the multi-

resonator case. However, the argument from the case with one resonator (N = 1)

can be used here, namely that the individual resonator responses (sine-waves) are

orthogonal to the derivative of the output (cosine wave) as soon as x0 = 0, (see

dashed curve in Fig. 2.7) leading to zero value of the correlation integral. The

experimental findings in Fig. 2.8 support this notion. Thus, also in the multi-

resonator case the desired property of weight stabilisation for x0 = 0 is obtained

in the limit of µ → 0.

2.6 Summary

In this chapter the internal structure of the organism has been presented. First,

the relation between the sensor inputs and the motor output was introduced: in

a first processing stage all sensor inputs are bandpass filtered. In a second stage

these bandpass filtered signals create a weighted sum which directly represents

the motor output. All inputs are treated equally. However the input which is

associated with the reflex should have initially a strong weight.

Learning takes place according to Eq. 2.3. A weight is changed by correlating

the corresponding filtered sensor signal by the derivative of the motor output.

This learning guarantees that sequence learning takes place. Sensor inputs which

precede the output signal will strengthen their corresponding weights and sensor

inputs which lag behind will weaken their corresponding weights.

Every bandpass is tuned to a specific temporal delay. This is a disadvantage in

situations where the temporal delay is not known a priori. To learn unknown

temporal delays different resonators have to be combined. This leads to the ap-
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plication of filter-banks. One sensor signal is fed into a filter bank with different

frequencies so that every filter covers a certain temporal delay.

Weight stabilisation is an important property as it marks the success of learning. It

has been proven that if only one input is triggered all weights stabilise. Simulations

have shown that this analytical finding can be generalised: weight-stabilisation is

also possible if more than one input is triggered, for example in a filter-bank. The

weights stabilise if all active inputs are triggered synchronously.

Thus, it has been shown that it is possible to establish an organism and a learning

rule which meets all the requirements introduced at the beginning of this chapter.



Chapter 3

The Organism in its Environment

3.1 Introduction

In the preceding chapter only the organism has been described while its environ-

ment has been ignored. In this chapter the environment will be introduced which

provides the feedback from the organism’s motor output to its sensors. Thus, a

closed loop will be formed. As in the previous chapter, the aim is to arrive at

a mathematical description of the closed loop condition, obtain analytical results

and support them by simulations.

As pointed out in section 1.7 the simplest closed loop control is reactive control.

It is robust and needs only limited information about the environment. However,

reactive control has a disadvantage in that it is always too late. The solution is

pro-active control which anticipates the trigger of the reactive control loop. ISO

learning seems to be a candidate which turns a reactive system into a proactive

system. Therefore the central problem in this chapter is whether or not ISO

learning is able to eliminate the disadvantage of reactive control, namely of always

being too late.

The following sections will show that ISO learning is able to turn a reactive sys-

tem into a proactive system. Consequently, the first section starts with a formal

reactive system (section 3.2). On top of this reactive system ISO learning will

be introduced (section 3.3). This enables the organism to overcome its reactive

behaviour and replace it with proactive behaviour. This will be shown analytically

and also by computer simulations.

40
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Figure 3.1: Fixed reflex loop: the organism transfers a sensor event X0 into a
motor response V with the help of the transfer function H0. The environment
turns the motor response V again into a sensor event X0 with the help of the
transfer function P0. In the environment there exists the disturbance D which
adds its signal at ⊕ to the reflex loop. b) Signals of the reflex loop in the time
domain when a disturbance d 6= 0 occurs. The desired state is x0 := 0. The
disturbance d is filtered by P0 and appears at x0 and is then transferred into a

compensation signal at v which eliminates the disturbance.

3.2 Reflex loop behaviour

Every closed loop control situation with negative feedback has a so called desired

state and the goal of the control mechanism is to maintain (or reach) this state as

precisely and fast as possible. In the model presented in this thesis it is assumed

that the desired state of the reflex feedback loop is unchanging and defined by the

properties of the reflex loop, namely that the reflex has to be eliminated. Therefore

it is defined as X0 = 0 (e.g., “no collision should be felt”). First the system is

discussed without learning. Fig. 3.1a shows the situation of a learner embedded

into a very simple but generic (i.e., unspecified) environment which has a transfer

function P0. This learner is able to react to an input only by means of a reflex.

Consider the case of obstacle avoidance. If an obstacle is encountered (disturbance

D) and felt by collision-sensors (X0) the unconditioned retraction reflex performs

an avoidance reaction (scheduled by the transfer function H0) trying to re-establish

the desired state (X0 = 0).

A possible set of signals (in the time-domain) which can occur in such a system
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is shown in Fig. 3.1b. First the disturbance signal d deviates from zero, then

the input x0 senses this change x0 6= 0 and only finally the motor output v can

generate a reaction to restore the desired state x0 = 0. Thus, there is always a

reaction-delay in such a system.

Figure 3.2: Schematic diagram of the augmented closed loop feedback mech-
anism which now contains a secondary loop representing temporal sequence
learning. a) H0 and P0 form the inner feedback loop already shown in Fig. 3.1.
The new aspect is the input-line S1 which gets its signal via transfer function
P1 from the disturbance D. The inner feedback loop receives a delayed version
(τ) of the disturbance D. The adaptive controller HV has the task to use the
signal x1, which is earlier than and, thus, “predicts” the disturbance D at S0,
to generate an appropriate reaction at v to prevent a change at x0. b) Shows
a schematic timing diagram for the situation after successful learning when a
disturbance has occurred. The output v sharply coincides with the disturbance

D and prevents a major change at the input x0.

3.3 Augmenting the reflex by temporal sequence

learning

In this section it will be shown that the ISO learning algorithm can approximate

the inverse controller of the reflex. Fig. 3.2 shows how the same disturbance D

elicits a sequence of sensor events: first it enters the outer loop arriving at X1
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filtered by the environment (P1), while it arrives at X0 after a delay T (filtered

by P0). The goal of ISO learning is to generate a transfer function Hv which

compensates for the disturbance. The inner structure of Hv given by the ISO

learning setup which is depicted by Fig. 2.6b. The environmental transfer function

P01 closes the outer loop.

3.3.1 Necessary Condition

The reflex loop defines the goal of the feed-forward controller, namely that there

should always be zero input at X0. Thus, first it must be shown what shape the

transfer function of the predictive pathway Hv (see Figs. 2.6b and 3.2) takes with

the assumption that X0 = 0 holds. This is the necessary condition, which needs

to be obeyed to obtain an appropriate Hv. It generally applies regardless of the

learning algorithm used.

In the following the function argument s will be omitted where possible. The

inputs can be written:

X0 = P0[V + De−sT ] (3.1)

as the reflex pathway and

X1 =
P1D + X0H0P01P1

1− P1P01HV

(3.2)

HV =
N∑

k=1

ρkHk (3.3)

as the predictive pathway (see Fig. 3.2). Eliminating X1 and V results to:

X0 = e−sT D + HV
P1D + X0H0P01P1

1− P1P01HV

(3.4)

Solving for X0 = 0 leads to:

HV =
N∑

k=1

ρkHk (3.5)

= − P−1
1 e−sT

1− P01e−sT
(3.6)

The transfer function HV is the overall transfer function of the predictive pathway.

Eq. 3.5 demands that the weights ρk should be adjusted in such a way that Eq. 3.6

is obtained at the end of learning.
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Eq. 3.6 requires interpreting. First, the numerator is discussed, keeping in mind

that the learning goal is to achieve X0 = 0. This requires compensating the

disturbance D. The disturbance, however, enters the organism only after having

been filtered by the environmental transfer function P1. Thus, compensation of

D requires to undo this filtering by the term P−1
1 . The term P−1

1 is the inverse

transfer function of the environment (hence “inverse controller”). The second term

e−sT in Eq. 3.6 compensates the delay between the signal in X1 and that at X0,

when the disturbance actually enters the inner feedback loop.

Now the relevance of the denominator has to be discussed showing that it can

be generally ignored. Transfer functions are fully described by their poles and

zeroes. Poles very strongly affect the behaviour of a system, while zeroes are

phase-factors, which do not alter its general transfer characteristic (Stewart, 1960;

Blinchikoff, 1976; McGillem and Cooper, 1984; Terrien, 1992; Palm, 2000). As a

consequence, following methods from control theory, any transfer function may be

reduced to only those terms which contain poles or zero-crossing by neglecting all

other components (Sollecito and Reque, 1981; Nise, 1992).

Thus, Eq. 3.6 can be rewritten as:

HV = −P−1
1 e−sT 1

1− P01e−sT
(3.7)

and analyse if the second term produces additional poles for HV . This would

happen if 1 − P01e
−sT = 0 holds, which is equivalent to P01 = esT . The term

esT , however, is meaningless; it represents a “time-inverted delay”. It is, thus, an

entity which violates causality.

As a result, there are no additional poles for HV and in the following it is allowed to

set P01 = 0 without loss of generality, thereby only neglecting possible changes in

phase relationships. Thus the behaviour of HV is apart from phase-terms entirely

determined by:1

HV = P−1
1 e−sT (3.8)

The last equation represents the necessary condition for the learning and the next

1The reader who is less familiar with control theory may find it useful to think about P01

also in a different way. P01 represents how the environmental transfer of the reaction of the
system will influence the sensor X1. Many times this influence is plainly zero from the beginning
(or the connecting path can be decoupled by an appropriate system design). For example for
a predictively acting, external (!) temperature sensor X1 the change of the temperature of the
environment due to the heating of a room is totally insignificant.
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two sections will ask the question if ISO learning is sufficient to achieve this.

3.3.2 Solutions in the steady state case X0=0

Here it is shown that for one resonator there already exists a solution which ap-

proximates Eq. 3.8 to the second order. Results for a forth order approximation

have been numerically obtained, showing that the approximation continues to im-

prove.

Thus, first the discussion is limited to the case of only two resonators H0 and H1,

i.e. N = 1. The case with more resonators will be re-introduced at the end of this

section. It will be specified which parameters the resonator H1 in the outer loop

has to satisfy the learning goal. At first P1 = 1 is set, looking at the case when

the environment does not alter the shape of the disturbance (but see below).

Considering Eq. 3.8 and Eq. 3.3

−e−sT = ρ1H1 (3.9)

The resonator H1 has two parameters f1 = 1/T1 and Q1 and together with its

weight ρ1 there are three parameters which solve this equation and have to be

determined.

The left hand side of Eq. 3.9 can now be developed into a Taylor series:

− 1

esT
=

−1

1 + sT + 1
2
s2T 2 + . . .

≈ −2T−2

2T−2 + 2sT−1 + s2
(3.10)

and the right hand side of Eq. 3.9 has to be explicitly written out according to

Eqs. 2.2–2.5:

ρ1H1(s) =
ρ1

(s + p)(s + p∗)
=

ρ1

pp∗︸︷︷︸
(2πf1)2

+s (p + p∗)︸ ︷︷ ︸
−2πf

Q1

+s2
(3.11)

The coefficients of Eq. 3.10 can now be compared with Eq. 3.11 and the resulting

parameters are:

ρ1 = −2
1

T 2
, f1 = ± 1

π
√

2

1

T
, Q1 =

√
1

2
(3.12)
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This result shows that for all T there exists a resonator H1 with a weight ρ1, which

approximates e−sT to the second order.

The result for the resonator-frequency f1 can be interpreted in the context of the

simulations done in section 2.5.2. Remember that X0 = 0 was set and hence

V = X1H1. If a δ-pulse at X1 is considered, the impulse response of the resonator

h1(t) at the output is:

v(t) = ρ1
1

b1

sin(b1t)e
−a1t = ρ1T sin

(
t

T

)
e−

t
T (3.13)

This function has its maximum at t
(2)
max = Tatan(1). The notation t(2) refers

to the second order approximation. One can assume that this is approximately

equal to t
(2)
max ≈ T (see below). This, however, would be indicative of a response

maximum which occurs at the moment where the input x0 is to be expected. The

reader is referred to section 2.5.2 where this type of behaviour has indeed been

observed in the simulations (Fig. 2.6). In these simulations it has been found that

during learning the output has always its first maximum at the location where

x0 occurs (or would have occurred). This shows that the experimentally observed

convergence behaviour of the algorithms leads to a function Hv which has similar

properties to that obtained from the second order Taylor approximation.

The relation t
(2)
max ≈ T could be confirmed because the same Taylor-approximation

has been performed with N = 2 (leading to a fourth order Taylor approximation).

The resulting set of equations has been solved numerically (with the commercial

package “Derive”) and the solution leads to t
(4)
max = 0.978T . This suggests that

t
(∞)
max = T is correct in the limit of N →∞.

For all practical purposes N needs to be found in trying to resolve the tradeoff

between the actually needed precision for t
(∞)
max → T and hardware/software en-

gineering constraints (costs). The robot experiment below will demonstrate that

in a real world application already few resonators (N = 10) suffice to obtain the

desired behaviour after learning.

Now more complex transfer functions for P1 have to be considered. Up to this

point P1 has been set to 1 which means that the disturbance reaches the input X1

un-altered which is in general not the case. Because of specific sensor-properties

and properties in the environment the disturbance reaches the input X1 in a filtered

form. All these changes can be subsumed from the organism’s point of view by the

function P1 (and the same applies to P0). The behaviour of ISO learning with such

complex input-functions can be derived if one recalls that a Taylor-approximation
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of Eq. 3.9 has been used and matched with the sum of resonators to obtain the

coefficients. This, however, allows us to conclude that any transfer function P1 of

the shape:

P1 =
(s + z0)(s + z∗0) . . . (s + zn)(s + z∗n)

(s + p0)(s + p∗0) . . . (s + pm)(s + p∗m)
(3.14)

can still (together with the delay term −e−sT ) be approximated by a sum of

resonators, because this sum continues to take the shape of a broken rational

function similar to that in Eq. 3.14 above2. Such a shape of P1, however, covers

all generic combinations of high- and low-pass characteristics. Hence it represents

a standard passive transfer function. In addition, it can normally be assumed

that the environment does not actively interfere with signal transmission in such

a system and it can therefore – with great likelihood – be represented by Eq. 3.14.

A more intuitive explanation that the function P1 does not change the overall

behaviour of the learning circuit comes from the simulation results in section 2.5.2,

especially Fig. 2.6. In this simulation of the multi resonator condition a maximum

was achieved at the moment when the event x0 was triggered or would have been

triggered. This maximum was due to the strong derivative at the output when

event x0 occurs. Thus, the maximum will always be established as a there is a

strong derivative and resonator-responses which can be correlated with this strong

derivative.

Consider the case that P1 6= 1. In that case all resonators of the predictive

pathway get a filtered version of the disturbance D: X1 = DP1. Consequently

the resonator responses will differ from the case P1 = 1. However, the learning

rule will still correlate the resonator responses uk with the output’s derivative v′.

As a consequence the resonator responses with the highest correlation with the

derivative will give the strongest contribution to the output. Since the derivative

is strongest at the moment x0 is triggered the output still gets a maximum at

the moment x0 is triggered. Thus, it can be concluded that even with functions

P1 6= 1 the output compensates the disturbance D and that the results generalise

to more complex P1.

Therefore, it can be argued that an appropriate approximation of the complete

Eq. 3.8 will be found in almost all situations. The robot application which will be

shown below supports this notion experimentally.

2Note that it is even possible to approximate zero crossings of Eq. 3.14 since it is a sum of
resonator responses. If the overall transfer function of a sum of resonators (H1 + H2 + . . .) is
calculated this leads automatically also to zero crossings which can be used to identify them with
the zero crossings in Eq. 3.14. Thus, the approximation continues to hold including also phase
terms.
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3.3.3 Convergence Properties (sufficient condition)

The last section has shown that it is possible to construct approximate solutions

of Eq. 3.8 using resonators so that X0(s) → 0. This section addresses the question

if the learning rule will actually converge onto such a solution.

Conventional techniques used to derive a learning rule by calculating the partial

derivatives of the weights and finding the minimum fail in our case, because ISO

learning is linear. As a consequence the derivatives are constant and a minimum

cannot be found. An approach, which leads to success, however, is to apply

perturbation theory instead.

The starting point of such an analysis is that a set of weights ρk, k > 0 has

been found which solves Eq. 3.8. It is known that the development of the weights

follows Eq.2.23. Now the system is perturbed by substituting ρj in Eq.2.23 with

ρj + δρj = ρ̃j. To assure stability it must be proven that the perturbation is

counteracted by the weight change. Thus Eq.2.23 must be solved hoping to find:

∆ρj ∼ −δρj (3.15)

This must even hold for strong changes δρj so that convergence is guaranteed.

Therefore any approximation (like a Taylor series in δρj) is not permitted.

The signals U and V have to be defined. The signal U is easy as it is simply the

filtered input X.

Uj = XjHj =

{
X0H0 for j = 0

X1Hj for j > 0
(3.16)

V is more complicated. The definition (Eq. 2.1) provides:

V = ρ0X0H0 + X1

N∑
k=1

ρkHk (3.17)

and from above it is known (Eq. 3.1):

X0 = P0[V + De−sT ] (3.18)
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Thus for V this results in:

V = ρ0P0[V + De−sT ]H0 + X1

N∑
k=1

ρkHk (3.19)

= ρ0P0H0V + ρ0P0H0De−sT + X1

N∑
k=1

ρkHk (3.20)

yielding:

V =
ρ0P0H0De−sT + X1

∑N
k=1 ρkHk

1− ρ0P0H0

(3.21)

Substituting ρj → ρj + δρj leads to:

Ṽ =
ρ0P0H0De−sT + X1

∑N
k=1 ρkHk + X1

∑N
k=1 δρkHk

1− ρ0P0H0

(3.22)

= V +
X1

∑N
k=1 δρkHk

1− ρ0P0H0

(3.23)

Then calculating the weight change using Eq. 2.23:

∆ρ̃j =
µ

2π

∫ ∞

−∞
−iω

[
V − +

X−
1

∑N
k=1 δρkH

−
k

1− ρ0P
−
0 H−

0

]
X+

1 H+
j dω (3.24)

where the abbreviations + and − for the function arguments +iω and −iω have

been introduced. The first part of this integral describes the equilibrium state

condition and can be dropped, thus:

∆ρj =
µ

2π

N∑
k=1

δρk

∫ ∞

−∞
−iω

|X1|2H−
k

1− ρ0P
−
0 H−

0

H+
j dω (3.25)

where for X1 it has been made use of the fact that for transfer functions in general

it can be written: X+X− = |X|2 where the superscripts + and − for the function

arguments +iω and −iω has been used. This result is still general in the sense that

Eq. 3.25 does not necessarily deal with resonator functions. So at this moment

it is still possible to make some reasonable assumptions about the set of Hk. To

avoid correlational effects between resonators with different parameters (k 6= j)



Chapter 3 The Organism in its Environment 50

orthogonality is assumed, given by3:

0 =

∫ ∞

−∞
−iω

|X1|2H+
j H−

k

1− ρ0P
−
0 H−

0

dω for k 6= j (3.26)

This condition can be used to simplify Eq. 3.25 which leads to:

∆ρj =
µ

2π
δρj

∫ ∞

−∞
|X+

1 |2|H+
j |2

−iω

1− ρ0P
−
0 H−

0

dω (3.27)

To prove that the integral in the last equation will be negative (assuring con-

vergence) the inner (reflex) loop (which is determined by ρ0H0P0) needs to be

considered. Note, that this loop must at least be stable otherwise the system

would not be functional to begin with. Now, there is a theoretical result from the

literature (Sollecito and Reque, 1981) which supports the notion that the inte-

gral in question is negative as long as the stability of ρ0H0P0 is guaranteed. This

argument shall be discussed more concretely.

By the use of Plancherel’s theorem (Stewart, 1960) the integral in Eq. 3.27 is

transferred into the time-domain:

∆ρj = µδρj

∫ ∞

0

ax∗h(t)f
′(t)dt (3.28)

where ax∗h(t) is the autocorrelation function of x1(t) ∗ hj(t) which is the inverse

transform of |X+
1 H+

j |2 (∗ denotes a convolution). Note that the remaining term in

Eq. 3.27: −iω
1−ρ0P−0 H−0

contains the derivative operator −iω in the numerator. Thus,

f ′(t) in Eq. 3.28 is the temporal derivative of the impulse response of the inverse

transform of 1
1−ρ0P−0 H−0

.

At that point it must be asked what is the most general condition for the reflex

loop (defined by ρ0H0P0) to be stable. For a concrete stability analysis knowledge

of P0 would be required, which can normally not be obtained. It can, however,

in general be assumed that P0 being an environmental transfer function should

again behave passively and follow Eq. 3.14. Furthermore it is known that the

environment delays the transmission from the motor output to the sensor input.

Thus, P0 must be dominated by a low-pass characteristic as a low pass smears out

a sharp step response and therefore delays the transmission. As a consequence

3This orthogonality-assumption will be waived later and is used here to make the mathematics
treatable. In the simulations later on it will be shown that the real resonators are not orthogonal
to each other but the non-diagonal elements do not change the general result. Therefore the non
diagonal elements are simply set to zero.
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it can be stated that the fraction 1
1−ρ0P0H0

is dominated by the characteristic of

a (non-standard) high-pass as the inverse of a low-pass becomes a high-pass. It

follows that its derivative has a very high negative value for t = 0 (ideally = −∞)

and vanishes soon thereafter. The autocorrelation a is positive around t = 0.

Thus, the integral in question will remain negative as long as the duration of the

disturbance D remains short. As an important special case this especially holds

with a delta-pulse as a disturbance at t = 0, corresponding to x1(t) = δ(t).

Thus, for an orthogonal set of Hk, ISO learning will converge if P0 is dominated by

a low-pass characteristic and if the disturbance D has a short duration in relation

to the reaction-time of the feedback loop.

Finally, it has to be proven, that Eq. 3.27 is zero in the equilibrium state case

where the feedback loop is no longer needed. This leads to 0 = X0 = ρ0H0P0 and

the denominator becomes one. The weight change results in:

∆ρj =
µ

2π
δρj

∫ ∞

−∞
−iω|X+

1 |2|H+
j |2dω (3.29)

This integral is anti-symmetrical and thus zero as required. In the open-loop con-

dition there had been an equivalent result. There the synaptic weights stabilised as

soon as explicitly X0 = 0 was set (compare Eq. 2.27). In the closed loop condition

used here this is obtained in a natural way as the result of implicitly eliminating

the reflex during the learning process.

3.3.4 Matching the theoretical convergence properties to

the practical approach

3.3.4.1 Unity feedback loop

As stated above, in a real application, the reflex loop has to be stable. The above

section simply demanded that the reflex loop has to be stable without explicitly

specifying a reflex loop. An explicit definition has been avoided since the above

derivations should be as general as possible. This section now introduces a specific

feedback loop with real resonators. An analytical derivation is no longer possible

but numerical simulations are performed with this concrete example. This example

shall be kept as simple as possible without eliminating the important property

of a reflex loop: the basic (critical) property is its delay characteristic. This

property underlies the conceptual necessity for temporal sequence learning and it
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was the essential property of the above mathematical treatments. The specific

characteristics of some of the transfer functions, on the other hand, are secondary

and can, therefore, be simplified.

Thus, the so-called unity feedback loop assumption is introduced to capture this

property. It is defined by:

ρ0 ∈ ]− 1, 0[ (3.30)

H0 = 1 (3.31)

P0 = e−sτ (3.32)

The reflex loop is, thus, entirely determined by its gain ρ0 and by the delay τ (not

to be confused with T ), which is the delay between the motor output V and the

sensor input X0. The range of ρ0 defined by Eq. 3.30 results from the demand

that the reflex should be a negative feedback loop and that it must be stable.

In addition, it is assumed that also the transfer function P1 of the predictive

pathway represents unfiltered throughput given by:

P1 := 1 (3.33)

Finally it is assumed that the disturbance D should be short with a duration which

is shorter than τ (otherwise the loops would become unstable) and that it can be

developed into a product series of conjugate zeroes and poles (e.g. low-/band- or

high-pass characteristics like Eq. 3.14). Thereby, D also takes on the property of

a typical transfer function.

Eq. 3.27 turns into:

∆ρj =
µ

2π
δρj

∫ ∞

−∞
|DHj|2︸ ︷︷ ︸

A(iω)

−iω

1− ρ0eiωτ︸ ︷︷ ︸
−iωF (−iω)

dω (3.34)

where D = 1 is set which represents a delta function as a disturbance.

Now Plancherel’s theorem (Stewart, 1960) is applied to Eq. 3.34 to transfer the

integral back into the time-domain and prove that it is negative. This leads to:

∆ρj = µ δρj

∫ ∞

0

a(t)f ′(t)dt (3.35)



Chapter 3 The Organism in its Environment 53

The function F (s) of Eq. 3.34 is given by the transformation pair:

F (s) =
1

1− ρ0e−sτ
↔ (3.36)

f(t) = (−1)nδ(t− nτ), n = 0, 1, 2, . . . (3.37)

where f represents an alternating delta function at t = 0, τ, 2τ, . . . which starts

with a positive delta-pulse (Doetsch, 1961). Thus, together with −iω the complete

term (−iω 1
1−ρ0eiωτ ) represents f ′(t), the temporal derivative of f .

The other term A(s) of Eq. 3.34 is given by:

A(s) = |DHj|2 (3.38)

a(t) = Φ[d(t) ∗ hj(t)] (3.39)

where “∗” denotes a convolution and “Φ” the autocorrelation-function.

As a consequence of the above findings the integral in Eq. 3.35 has to be discussed

which is specified by Eqs. 3.37 and 3.39. The integral should be negative to assure

stability. From above it is known that D is short-lived with a duration shorter

than τ , without which the loop-system would be instable to begin with. Thus, the

discussion can be reduced to t ≈ 0. It is known that the autocorrelation function

a has a positive maximum at t = 0 and that the derivative f ′ of a delta-pulse at

zero approaches −∞ for t → 0; t > 0. As a consequence the integral is negative

as required for convergence.

3.3.4.2 Real resonator-functions

Now real resonator functions for Hk and Hj are introduced (see Eqs. 2.2–2.5).

Transfer functions of resonators are not orthogonal, but it will be shown by nu-

merical integration that the system can still be treated as if orthogonal transfer-

functions for Hk were used. In the case of non-orthogonal functions this results

with (Eqs. 3.25,Eqs. 3.30–3.33 to:

∆ρj =
µ

2π

N∑
k=1

δρk

∫ ∞

−∞

−iωH+
j H−

k

1− ρ0eiωτ
dω (3.40)

Fig. 3.3a shows the numerically obtained results for ∆ρj as defined in Eq. 3.40 in

the case of a perturbation. Fig. 3.3b shows the equilibrium case with ρ0 = 0.
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Figure 3.3: Numerical integration of Eq. 3.40. The disturbance was set to
D := 1 and the delay τ was set to 1. The frequencies of the resonators (see
Eq. 2.2–2.5) Hk and Hj were varied from 0.01 to 0.1 in steps of 0.001. The
quality Q was set to 0.9. Part (a) shows the change of the weights ρj for ρ0 < 0

and part (b) shows the change of the weights for ρ0 = 0.

Note that the resonators are not orthogonal since for nearly all j 6= k there are

non-zero contributions. The system, however, still compensates for perturbations

and, thus, converges, for the following reason. First, consider Fig. 3.3a, which

represents the case of how the system values of the integral (Eq. 3.40) are negative

on the diagonal. This means that any perturbation at ρj will lead to a counterforce

onto itself and, consequently to a compensation of the perturbation.

However, the non-diagonal elements k 6= j are non-zero, so those contribution

has to be discussed and we have to argue why this does not interfere with the

compensation process. Thus, the question of stability must be rephrased into the
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question of how a perturbation at one given weight ρk will influence the other

weight(s). Most importantly we observe that the value of the integral (Fig. 3.3a)

is substantially smaller than one everywhere. This, however, shows that any per-

turbation at index k will reenter the system at index j only in a strongly damped

way. This process leads to a decay of any perturbation through further iterations.

This strictly holds for two paired indices j and k. However, even for the complete

sum in Eq. 3.40, which describes all cross-interference terms, it can be argued that

perturbations will be eliminated. This is true as long as the sum remains below

one, which is realistic, given the small and sign-alternating values of the integral

surface.

Thus, strict orthogonality as defined in Eq. 3.26 is not really necessary to assure

convergence. This constraint can be relaxed to the constraint that the absolute

value of the sum in Eq. 3.40 should remain below one.

Figure 3.4: The best choice for ρ0 and Q. Parameters: fk = fj = 0.04 for
both plots and q = 0.9 for b).

To get optimal perturbation-compensation the diagonal elements in Fig. 3.3 should

be kept as negative as possible. For that purpose the best values for ρ0 and Q

have to be found. Fig. 3.4 shows the result of integrating Eq. 3.40 for one diagonal

element (see legend for parameters). The best value for Q is approx 0.85. The

optimal solution for ρ0 is at ρ0 → −1. This makes sense since the environment has

a unity feedback and the case ρ = −1 is the limit where the compensation becomes

unstable. A practical choice is below −1, for example 0.9 as used in Fig. 3.3. This

result supports the limitations for ρ0 (and in general for the feedback loop) which

have been introduced at the beginning of this section with Eq. 3.30.

At this point the reader should be reminded of the introduction to the thesis: that

from the beginning there must be a feedback which must “work” in the sense that it

must be able to perform a specific task, namely to establish a desired state. In the

context of this section it became clear also that the following learning behaviour



Chapter 3 The Organism in its Environment 56

needs as a basis a working feedback loop to build up anticipatory structures. Thus,

the general design principle is still first to build up an organism which has a working

feedback loop and then give it the chance to build up anticipatory structures with

the help of predictive learning4.

3.4 Summary

This chapter has shown that ISO learning is able to turn a reactive system into a

proactive system. The starting point in this chapter was therefore a reactive sys-

tem. Such a reactive system has been introduced as a closed loop control system

which is disturbed by an unpredictable disturbance. It reacts after a disturbance

has caused a deviation from its desired state. To prevent such deviation from the

desired state another sensor input is taken into account which is able to predict

this deviation. It has been proven that ISO learning is able to use such a pre-

dictive input to generate an appropriate anticipatory action which eliminates the

disturbance before it can cause a deviation from the desired state. In terms of

engineering, ISO learning provides a forward-model of the reflex.

4From that point of view it would be interesting to leave the initial design of the feedback
loops to evolutionary algorithms so that there is no need explicitly design them by hand.



Chapter 4

The Robot Experiment

4.1 Introduction

Up to this point ISO learning has been treated in a very general way without

referring to any specific application. In this section ISO learning shall be tested in

a specific application, namely in two robot experiments. These robot experiments

use a more complex setup than in the theoretical derivations since the control of

the robot demands more than one motor unit. Therefore the robot experiments

will show not only the robustness of ISO learning but also suggest how to scale up

to more complex situations.

The first experiment (section 4.2) involves a collision avoidance-task and the sec-

ond experiment an additional attraction task (section 4.3). While the avoidance-

task will show the robustness of ISO learning in a real world-task, the attraction-

and avoidance-experiment will discuss observer-problems. It will be shown that

the attraction experiment looks like a reward retrieval and that an observer is

tempted to attribute internal reward-signals. However, it will be shown that there

is no need for such a reward signal and that ISO learning solves the problem also

by reflex-avoidance.

4.2 Avoidance reaction

The task in this robot experiment is collision avoidance. The avoidance experiment

was first simulated on a computer in a simple environment containing a border

and a few randomly placed obstacles. After this initial test-phase the program

57
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was connected to a real robot via a standard I/O interface. The parameters were

left the same as in the simulation using 10 ms time steps. The observed behaviour

of the computer-simulation and that of the real robot were basically the same. In

this section the data from the real-robot experiment is presented since it demands

more from ISO learning in the sense of robustness than the simulation.

Figure 4.1: Simple sensor motor feedback with prediction which is made ex-
plicit by the example of collision avoidance. The solid lines depict a pre-wired
reflex loop which exists before learning. This reflex loop performs a reflex re-
action — in this case a retraction reaction (motor response) when the bump
sensor (reflex eliciting signal) has been triggered. Learning has the task to learn
that the earlier range finder signal (predictive signal, dashed pathway) can be

used to generate an earlier motor reaction to prevent the bump (reflex).

The built in reflex behaviour is a retraction reaction after the robot has hit an

obstacle (Fig. 4.1, solid pathway). This represents a typical feedback mechanism

with the desired state that the signal at the bump sensor should remain zero.

To prevent the robot leaving the desired state it can use other sensor modalities

which can predict a looming collision. In our case this is achieved with range

finders (Fig. 4.1, dashed pathway). The learning algorithm has the task of learning

the existing temporal correlation between the range finder- and the bump sensor

signals. After learning the robot can generate a motor reaction already in response

to the range finder signals and thereby avoid the retraction reflex. Functionally,

the reflex will be eliminated and the “predictive pathway” takes over after learning.

Up to this point the algorithm had been treated in a pure open-loop condition,

where learning was entirely unsupervised. The robot experiments shown below

create a situation where the behavioural reaction influences the sensor inputs,

thereby creating a closed loop situation (Fig. 4.1). Unsupervised learning thereby

turns into something which can be called “self-referenced” learning to distinguish

it from “reinforcement” learning which requires an explicitly defined punishment
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or reward signal, which is not present in closed loop ISO learning.

Figure 4.2: Robot-circuit: The robot consists of three bump sensors (BS),
two range finders (RF) and two output neurons: one for the speed (ds) and one
for the steering angle (dφ). These output neurons represent simple summation
circuits (indicated by

∑
). The robot has a reflex behaviour which is established

by the signals from the bump sensors (dotted lines) which are fed into 4 band
pass filters H0 with f0 = 1Hz and Q0 = 0.6. The output of the band pass
filters is summed at the neurons for speed (ds) and steering angle (dφ). The
corresponding weights are adjusted in such a way that the robot performs an
appropriate retraction reaction if either of the bump sensors is triggered. The
synaptic weights in this unconditioned reaction are kept constant at ρds

0 = 0.15
and ρdφ

0 = −0.5. The task of learning is to use the signals from the range
finders (RF) to predict the trigger of the bump sensor (BS). The two signals
from the left and the right range finder are fed into two filter-banks with N = 10
resonators with frequencies of fk = 1Hz

k ; k ≥ 1 and Q = 1 throughout. The
20 signals from the two filter banks converge on both the speed neuron and on
the neuron responsible for the steering angle. Learning rate was µ = 0.00002.

L depicts the implementation of the learning rule (Eq. 2.6).

The robot’s circuit diagram is shown in Fig. 4.2; a detailed description, which

includes a list of the robot’s control parameters is given in Appendix B. The robot

has three bump sensors and two range finders. All signals are filtered by band pass

filters and converge onto two neurons which generate two different motor outputs:

one controls the robot’s speed and the other the robot’s steering angle. The speed

of the robot is set to a fixed value and its steering to zero so that the undisturbed
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robot drives straight forward. The built in retraction behaviour is generated by

the dotted pathways where the bump sensors trigger highly damped sine waves in

the corresponding resonators. This signal is sign-inverted and directly transmitted

to the motors. Essentially, it consists of just one single half wave which, leads to

the retraction reaction. The weights are initially set to appropriate values (see

the legend of Fig. 4.2) and effectively do not change during learning so that the

retraction behaviour always remains the same. The dotted bump sensor pathways

with their strong weights which determine the motor output are together with the

arising behavioural feedback equivalent to the reflex loop discussed in Fig. 4.1.

The range finder signals (solid lines) react at a distance of about 15 cm from an

obstacle and are therefore able to predict a collision. However, the temporal delay

between the range finder signal and the bump signal is variable and depends on

the actual motion trajectory of the robot. To cope with a rather wide range of

temporal delays the same approach as in section 2.5.2 has been used, implementing

two resonator filter-banks which get their signals from the two range finders. Filter

banks consist of 10 resonators covering approximally a temporal interval between

50 ms and 500 ms. These resonator signals converge onto both the speed- and the

steering neuron. Their weights are initially set to zero.

Depending on the initial conditions, different solutions were found by the robot to

avoid obstacles. One solution, for example, is that the robot after learning simply

stops in front of an obstacle or that it slightly oscillates back and forth. This type

of behaviour may look trivial but is entirely compatible with the learning goal of

avoiding obstacles. More commonly a different type of solution is observed where

the robot continuously drives around and uses mainly its steering to generate

avoidance movements. Other solutions do not seem to be possible and have not

been observed. Furthermore, it must be mentioned that the robot always found

one of these solutions after sufficiently long learning.

Figs. 4.3 shows episodes of the robot behaviour and its signals for one selected

example trajectory. The signals shown in Figs. 4.3c,d correspond to a situation

where the robot still collides with the walls. Corresponding collision points are

marked in Fig. 4.3a by small letters c and d. As expected, learning leads to a

change of the temporal relation between the range finder signal and the bump

signal. This can be seen by the different lengths of T depicted in Fig. 4.3c,d

and is due to the learned motor output which is increasingly dominated by the

range finder signal. This supports the filter bank approach which has been used

in the robot experiment. Finally, Figs. 4.3e depicts a situation where the robot
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Figure 4.3: a) Manually reconstructed robot movement trace in an arena
(240 cm× 200 cm) with three obstacles (shaded) at the onset of learning. Mo-
tors were not entirely balanced leading to a curved start of the trajectory. Many
collisions (circles, solid=forward-, dashed=backward collision) occur and trap-
ping at obstacles happens. After a collision a fast reflex-like retraction&turning
reaction is elicited. b) Robot movement trace after successful learning of the
temporal correlation between signals at RF and BS. No more collisions oc-
cur, the trajectory is smooth. A complete movie of this trial can be viewed
at http://www.cn.stir.ac.uk/predictor/real — movie 1 and on the CD
which comes with this thesis (click on “avoidance learning”). c-e) Signals at RF
(top), BS (middle), and motor control signal ds (bottom) for different learning
stages. c) Signals occuring at the early collision marked ’c’ in part a of this
figure. A stereotyped motor reaction is elicited in response to the CS signal. d)
Signals occurring at the late collision ’d’. Motor reactions occur in response to
RF but are not sufficient to avoid the collision. When it occurs a strong motor
reaction is again elicited. e) Signals occurring at the curve marked ’e’ in (b).
Smooth motor reactions occur in response to RF, CS remains silent because no

collision occurs.

has learned to avoid the obstacles (CS = 0).

Note that the low pass component of the band pass filters smoothes the rater noisy

range finder signals which substantially adds to the robustness of the algorithm.

Furthermore, pure noise signals are not correlated to other sensor signals and do

not contribute to learning.

The change of the weights in the robot example shall now be compared with
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Figure 4.4: Development of the synaptic weights for the same trial as in
Fig. 4.3 and the complete motor signal-traces for ds and dφ.

the results from the simulations. It can be seen that the weights approximately

stabilise also in the robot experiments presented here (Fig. 4.4). Their actual

values depend on the solution found. The situation in the robot experiment,

however, is more complicated than in the simulations shown earlier, because the

ds− and dφ−neurons get signals from more than two sensors at the same time.

Thus, very often triplets of temporal correlations exist, like during a slanted wall

approach first a signal is obtained from the right, then one from the left range

finder and finally that from the right bump sensor. After successful learning the

bump sensor remains silent but the robot is still left with sequences of ranger-

finder events. Thus, learning continues, though at a lower rate even after the last

collision has happened (the bump has been avoided).

As a central observation, this shows that the system (here: the robot) continues to

operate without a designated reference-signal (because x0 is zero now). Learning

continues between the remaining inputs (here: the range-finders).

This can, for example, be seen in Fig. 4.4 when looking at the development of the

weight from the left range finder to dφ which continues to change after the last

collision has occurred (at t = 85 s). Ultimately, the earlier of the two range finder

signals would dominate, but this will lead to a stable situation only for very simple

(e.g., circular) trajectories where an unchanging relation between both range finder

signals is forced upon the robot.
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Figure 4.5: Illustration of the attraction reflex and the learned behaviour. a)
When one of the LDRs enter the bright spot the robot drives to its centre which
causes the spot to vanish. b) The two sound detectors SD enable the robot to

locate the object from the distance.

4.3 Attraction- and avoidance reaction

The robot experiment of the last section showed only an avoidance reaction. In

this section it will be shown as a computer-simulation that it is also possible to con-

struct an attraction case with ISO learning. The computer-simulation presented

here combines the avoidance- and attraction-reaction.

The design of the reflex reaction is the crucial point also in the attraction case.

Therefore, the difference between an attraction reaction and an avoidance reaction

is a different initial reflex reaction. While in the avoidance case the reflex is the

avoidance of an object in the attraction case the reflex is simply the attraction of

an object.

The reflex of the attraction case has the task to drive the robot towards the centre

of a constantly illuminated area. At the moment the robot enters the centre the

illumination vanishes and a new illuminated area appears somewhere else. This

process could be interpreted as targeting and eating of food.

To establish this reflex the robot has been equipped with two light-dependent
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resistors (LDRs). The signals of the LDRs are fed to the reflex input. The turning

reaction is generated by using the difference of the signals between both LDRs

(see Fig. 4.5) which causes a turn towards the activated LDR. If both LDRs are

activated identically there will be no turning reaction (as the difference is zero).

The predictive signal for the robot is provided by a sound signal which is emitted

from the centre of the illuminated area. The sound signals are detected by two

microphones (MIC) attached to the robot. The difference of the microphone-

signals provides a azimuthal information for the robot about the relative origin of

the sound source. This azimuthal information is already available from a distance

and allows the robot to predict the final turning reflex. Therefore, predictive

learning takes place between the sound signals and turning-reflex. Learning stops

as soon as the final turning-reflex is no longer needed. This is the case when both

LDRs are triggered exactly simultaneously which means that the robot is heading

straight for the centre of the illuminated area.

Figure 4.6: Additional circuitry for the computer-simulation of the attraction
case. The avoidance circuitry is the same as shown in Fig. 4.2. The attrac-
tion task only involves dφ. The light detectors (LDRs, signal-range: [0 . . . 1])
establish together with the resonators H0 (f = 0.01, Q = 0.51) the attraction
reflex. The fixed weight for the reflex is set to ρ0 = 0.005. The two sound
detectors (SD) provide a signal which is inverse-proportional to the distance to
a sound-source. The difference of the signals from sound detectors is fed into a
filter-bank with fi = 0.1/i, i ∈ [1 . . . 5] and Q = 0.51. The learning rate was set
to µ = 0.0002. All other parameters are identical to the avoidance task taking

10ms for one simulation-step.

Fig. 4.6 shows a more detailed view on the additional circuit needed for the attrac-

tion case which is based on the general circuit shown in Fig. 2.6b. The avoidance

case is not shown but is identical to the circuit shown in Fig. 4.2.

The reflex reaction is triggered by the signals of the two LDRs which provide the
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signal x0 = LDRl − LDRr. The (here fixed) weight ρ0 > 0 and the resonator

H0 (f0 = 0.01, Q = 0.51) are arranged in such a way that the robot performs a

stereotype turn towards the centre of the illuminated area.

The predictive signal x1 is generated by using two MIC signals. The signal is

simply assumed to give the euclidian distance (rr/l→m) of the left (l) or right (r)

microphone from a sound source m. The difference of the signals from the left

and the right microphone rm→r − rm→l is a measure of the azimuth of the sound

source m to the robot. Since there is usually more than one sound source in the

playground the resulting signal is an average over all sound sources. Including a

decay of the sound strength with the distance we get as the final difference signal

for the M sound sources:

x1 =
M∑

m=1

rm→l − rm→r√
rm→lrm→r

(4.1)

This mathematical model has been chosen to stay as close as possible to an elec-

tronic implementation for the real robot which includes a pulsed sound source

(8 kHz with 62 Hz bursts), two PLL-tone detectors (for 8kHz) and a difference

amplifier which subtracts the averaged “lock-detect” outputs of the tone-detectors

(e.g. XR2211). Female crickets use such chirps for the localisation of male crickets

with similar frequency choices (Webb, 1995).

ISO learning receives at the predictive input x1 this difference signal (Eq. 4.1)

which is fed into a filter bank of 5 resonators with different frequencies which

converge on the same dφ-neuron which also gets the signals from the avoidance

reaction. Learning is achieved as usual by Eq. 2.6.

Fig. 4.7 shows the trajectories before (a) and after (b) learning. Before learning

the robot hits the illuminated areas by chance. At (1) entering the illuminated

area causes a reflex-like reaction where the robot makes a sharp turn into the

area. After such a turn, the area vanishes and a new one appears at another

position. At (2), the robot shows the reflex-reaction after a bump. From time-

step 24, 500 onward, no more illuminated areas are created so that their number

decreases and after step 29, 000 the playground is empty. After learning it can be

seen that the robot is directly targeting the illuminated areas and that it hits the

areas now fairly centrally. This leads to the effect that no reflex reaction (dφ) is

caused when the robot enters the illuminated areas. Note that dφ itself can be

non-zero as in (2). However, in all cases (1-4) dφ remains constant and therefore

the derivative of dφ is zero. A zero derivative means that there is no learning and
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Figure 4.7: Trajectories of the attraction task before (t = 0) and after learning
(t = 21000 . . . 24000). a) before learning the robot randomly finds bright spots
and bumps into the walls. Both the bright spots (1) and the walls (2) cause
reflex reactions. b) after learning the reflex reactions have been replaced by an
avoidance reaction on the one hand and by an attraction reaction on the other
hand. Note that the robot’s trajectory directly aims towards the centre of the
bright spots. Therefore the robot enters the spots in a way that both LDRs are
triggered at the same time (reflex is no longer triggered). The complete simula-
tion can be seen at http://www.cn.stir.ac.uk/predictor/animat/ and also

on the CD (click on “Attraction and Avoidance Learning”).

the weights ρj stabilise. This can be seen in Fig. 4.8 where the weights stabilise

after approximately step 24, 000. At that point the playground is in the condition

shown in Fig. 4.7b where the robot enters the illuminated areas centrally.

The weights turn out to be negative because of the setup of the LDRs and the

MICS. For example, when the left LDR is triggered (which leads to dφ > 0) the

input to the filter bank is negative (the left microphone is closer to the sound

source than the right one). Therefore the weights become negative.

Thus, it is also possible to construct an attraction-behaviour by ISO learning. Like

in the avoidance case the initial reflex defines the attraction reaction. Learning

the predictive attraction behaviour leads again to the situation that the initial

reflex-reaction will be “avoided”, in spite of the fact that this case deals with an

attraction-behaviour (on the system-level of behaviour).

4.4 Summary

This chapter has presented two robot experiments which show that ISO learning

is able to solve the classical obstacle avoidance task and that it is able to solve

also an additional attraction task.
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Figure 4.8: Development of the synaptic weights for the same trial as in
Fig. 4.7. The dotted lines mark the area which is shown in Fig. 4.7b. The weight-
index ρi corresponds to the index of the resonators: fk = f1/k, k ∈ [1 . . . 5]

For the classical obstacle avoidance task the robot starts with a preprogrammed

reflex: when the robot collides with an obstacle it retracts and then continues

its journey. ISO learning was able to correlate the signals from the range finders

with the trigger of the reflex reaction. The result was a turning reaction before the

robot would collide with an obstacle. Therefore the collision avoidance experiment

has shown that ISO learning is able to create an anticipatory action to avoid the

trigger of the reflex reaction. This learning is very fast. Only a few collisions are

needed to learn the avoidance reaction.

The attraction task defines an additional reflex reaction. In this experiment a

playground was constructed with illuminated areas. The wiring of the reflex causes

a turning reaction of the robot towards the centre at the moment when it enters

such a illuminated area. If the robot is already heading towards the centre of

the illuminated area no reflex is triggered. Such illuminated areas also emit sound

signals which can be detected by the robot even from a distance. The sound-signals

form the predictive signal which is used by ISO learning to generate a predictive

reaction. This finally results with a behaviour whereby the robot heads to the

centre of the illuminated area before it enters it. As a consequence, the reflex is no

longer triggered. Thus, the proactive behaviour is here demonstrated by targeting

the illuminated area from a distance and subsequently no reflex is needed when

entering the area itself.
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Finally, it should be noted that to the observer, the targeting towards the illumi-

nated area from a distance it closely resembles a reward retrieval which seems to

involve planning. However, it looks only like a reward retrieval. There is neither

an internal signal which represents a reward signal, nor is there planning involved.

ISO learning is always based on an avoidance learning, namely reflex avoidance.

Therefore the observer must be cautious if he/she is interpreting behaviour and

then attributing this behaviour to inner states.



Chapter 5

Discussing the Organism

5.1 Introduction

In the following sections ISO learning itself will be discussed in the open-loop

condition. This means that the feedback from the environment is ignored and only

the internal structure of the organism is discussed. Therefore this chapter refers

to the results of chapter 2 which presented ISO learning without environmental

feedback.

The discussion will start with similarities on the circuit level (section 5.2). An

important part of ISO learning is the low-pass filtering of the input-signals. In

technical applications it is common practise to low-pass filter signals and to utilise

the properties of low pass filtered signals. This is especially the case in the field

of Kalman filtering. Therefore the relation between Kalman filtering and ISO

learning will be discussed.

Another similarity arises when the learning curves of ISO learning (see Fig. 2.2) are

compared with learning curves of neurons. Physiological experiments have shown

that the precise timing between input-spikes and output-activity determines the

weight-change. The following section 5.3 will try to give the different parts of ISO

learning a physiological meaning and will also point out the differences which arise

when such an ANN1-rule like ISO learning is compared with physiology.

The last two parts of this chapter will discuss animal learning and will approach

ISO learning from the level of behaviour (section 5.4). Animals change their be-

haviour while they are interacting with their environment. Also ISO learning

1Artificial Neural Network
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changes the behaviour of an agent, especially from a reactive agent to a proactive

agent. In animal learning there are two standard theories how learning is to be

understood: classical conditioning and instrumental conditioning (also called re-

inforcement learning). Both learning schemes are related to ISO learning: both

learn sequences of events by associating stimuli with each other. Classical con-

ditioning will be discussed in section 5.4.1 and instrumental conditioning will be

discussed in section 5.4.2.

Most of the psychological theories of animal learning are only on a descriptive

level. However, there are mathematical models which try to model the behaviour

of classical conditioning and instrumental conditioning. Therefore the remainder

of the section about animal learning will discuss mathematical models of animal

learning which are related to ISO learning (section 5.4.5). In particular the discus-

sion will be guided by the distinction between algorithms which need an explicit

reward signal and those which are able to learn without such a signal.

5.2 The predictability of low-pass filtered signals

ISO learning pre-filters all input signals (see Fig. 2.1) to render them predictable.

The Kalman-filter which belongs to the class of adaptive filters also uses such a

technique. This paragraph compares Kalman filtering and its underlying signal

model with ISO learning.

One important goal of adaptive filtering is to separate unwanted noise from a signal

(Bozic, 1979). For example, when an audio signal is being transmitted through a

telephone line it will be disturbed by random noise. At the receiver there appears a

mixture of the original signal and the noise. Adaptive filters have the task to strip

off the noise and reconstruct the original speech signal. Another example comes

from problems which are related to observation-processes. If one wants to track

the trajectory of a plane one can achieve that with the help of radar (Bozic, 1979,

p.136). Radar uses a rotating transmitter and receiver and one gets estimates of

the plane’s location at discrete time steps. Because of atmospheric disturbances

or bad reflection one gets a noisy response which can only roughly estimate the

plane’s position. Thus, in both examples one receives a data-stream which is

disturbed by noise and the goal is to reconstruct the original signal without the

noise.

Having the two examples in mind they can be used to generalise to an abstract
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model which describes an observation- or measurement-process. Such processes

can be described by a mixture of the original signal (xk) and the additive noise

(vk). Here discrete measurements are considered represented at k time-steps:

yk = cxk + vk (5.1)

where c is a constant and vk is white noise with zero mean.

The task of adaptive filtering is to filter out the unwanted noisy components and

preserve the original signal as much as possible. However, this is still too general

since the signal-model of the un-disturbed signal xk has not yet been defined.

The signal model of the undisturbed signal has to be defined as precisely as possi-

ble since it provides us with important a priori knowledge about the original signal.

This knowledge makes it much easier to reconstruct the original signal from the dis-

turbed signal. This becomes clear if the example of the plane is recalled. Consider

the plane’s trajectory: Since the plane usually cannot perform jerky manoeuvres

and since the plane has a high inertia due to its mass one can conclude that the

plane’s trajectory is fairly smooth. More precisely, this means that the future

development of the trajectory emerges out of its past. The trajectory can only be

changed by a limited amount every time step and therefore it always incorporates

the coordinates of the past. This also means that the trajectory is predictable for

a certain amount of time. Such a signal model can be represented by the following

time-discrete (k) recursive filter which gets white noise wk at its input:

xk = axk−1 + wk−1 (5.2)

where xk is the output of the filter. White noise is a signal which does not depend

on its past at all. Its autocorrelation function is zero (except at zero). The goal

is to get a smooth and therefore predictable signal at the output of the filter.

This is achieved by the recursive character of Eq. 5.2. The parameter 0 < a < 1

determines how smooth (or how predictable) the output xk shall be. With low

values (a → 0) the noise dominates and the output is only predictable for a

few time steps. With high values for a → 1 the signal becomes more and more

dependent of its past and therefore more and more predictable2.

The Kalman filter as one special case from the class of adaptive filters assumes

the above signal model to separate noise from the original signal. The Kalman

2Compare to the so called “eligibility-trace” in TD-learning and in the Sutton and Barto-
Model which is discussed later.
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filter uses the a priori knowledge about the original signal (Eq. 5.2) namely that

it is smooth and therefore its changes are slow and predictable. The Kalman

filter gets at its input the signal xk of the above recursive signal model (Eq. 5.2)

disturbed by additive noise (see Eq. 5.1). The task for the Kalman-filter is to

smooth out the disturbed signal yk from Eq. 5.1 to eliminate the noise but without

changing the shape of the original signal component xk. Since the Kalman filter

assumes that the signal is smooth and that it changes gradually it can be used to

predict the course of the original signal xk (usually one step ahead). This is a very

important property used in many applications such as the previously mentioned

radar tracking.

Up to this point the signal model of the Kalman filter has been interpreted in

the time domain. However, the model can also be interpreted in the frequency

domain. The above example of the telephone-transmission makes that clear. The

original speech signal is band-limited. On the other hand noise is not band-limited.

It spans a broad frequency-range. Thus, there are frequency ranges where there

is only noise and there are frequency ranges where there is a superposition of

the original speech signal and the noise. It is obvious that a filter which has its

passband matched with the frequency range of the original voice signal eliminates

the noise in an optimal way. The Kalman filter can be interpreted as such an

optimal filter which filters the noise and preserves the original signal.

In the temporal domain the choice of the signal model for the original signal

has been crucial for the success of the Kalman filter. The same applies for the

frequency-domain. The signal model Eq. 5.2 now has to be interpreted in the

frequency-domain. In the frequency domain Eq. 5.2 represents a first order low-

pass. The choice of |a| < 1 adjusts thereby its cut-off frequency. The frequency

distribution of the noise signal is flat. The filtering of the white noise by Eq. 5.2

leads to a distribution of the signal xk which decays at higher frequencies.

From the discussion of the time domain, it becomes clear that the filter Eq. 5.2

renders the noise predictable. Thus, if one wants to turn unpredictable noise into

a predictable signal the noise simply has to be low-pass filtered. This applies not

only to noise. If the input signal is already smoothed out then the low pass filter

makes it even more predictable.

In the frequency domain the a priori knowledge of the Kalman filter can be inter-

preted in the following way: the Kalman filter uses the property of the original

signal, namely that it is band-limited. The Kalman filter operates as an adaptive

low-pass filter which chooses automatically the optimal cut-off frequency which
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is the cut off frequency of the filter of the signal model. In other words the cut-

off frequency is chosen in a way that above the cut-off frequency there is only

noise and below there is the superposition of noise and signal. This is the optimal

solution which eliminates optimally the noise from the original signal.

The main difference between ISO learning and the Kalman-filter theory is that

in the latter the operations are performed on the same signal (auto-correlation)

whereas ISO learning calculates predictions between different signals (cross-cor-

relation).

Like the Kalman-filter, theory ISO learning also makes use of the predictability of

low-pass filtered signals. The input signals xi are all filtered by the band-pass fil-

ters Hi. In contrast to the Kalman filter theory ISO learning does not assume that

the input signals (x0, . . . , xN) are predictable. It must be stressed that ISO learn-

ing renders the input signals predictable and therefore makes use of the Kalman

signal-model and not of the actual Kalman filter theory. The Kalman-filter the-

ory is (implicitly) used by Der and Liebscher (2002) who state that the driving

force of learning is to make the sensor-inputs themselves predictable. However, in

the case of ISO learning there is no need to get smooth input-signals. The use

of the derivative v′ in ISO learning emerges from the fact that output signal v is

smooth and that its derivative has a phase lead which can be used to employ pre-

dictive learning (Eq. 2.6). Thus, ISO learning makes the input-signal predictable

whereas the Kalman filter-theory assumes that the original signal is predictable

to reconstruct it.

Another difference between ISO learning and Kalman-theory is the actual filter

setup. In the Kalman-theory the filter is an IIR-filter with variable coefficients

which are adjusted during learning to the best cut-off frequency. In ISO learning

the cut-off frequency is determined by a filter bank: Consider a noisy signal x1 at

the input of the filter bank (see Fig. 2.6). Each filter filters a different frequency

range out of the input signal. Learning is achieved by Eq. 2.6 as a correlation

of the filter-outputs uk with the derivative of the output v. The question is now

which input ui leads to a weight change? The signals uk which are uncorrelated

with the output v (and therefore to any other input uj, j 6= k) will average out

at the end and the corresponding weight ρk will stay zero. Consequently, inputs

which provide only un-correlated noise do not contribute to the output. Thus,

ISO learning is able to filter out uncorrelated noise and to preserve the correlated

signals at its inputs uk. This is similar to the Kalman filter-theory in the sense

that the noise is filtered out from the disturbed transmitted signal. However,
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as stated above ISO learning uses correlations between different signals and the

Kalman-filter theory uses auto-correlations of only one signal.

The low-pass characteristic of the transfer-functions is crucial to receive the phase

lead in the derivative of v. However, there are other possible transfer functions for

H0, . . . , HN which have a low-pass characteristic. Those possible transfer-functions

shall be discussed here. The derivative v′ is an integral part of the learning rule

since it causes a phase lead in relation to the original function v. In the time

domain this demands that the impulse response can be described in the ideal case

by a pure sine-wave. This is the case with the resonator (see Eq. 2.2) which has

a damped sine wave as impulse response. In the frequency domain there could

arise different demands which are more determined by the actual application. For

example, it might be useful to filter out DC-components from the input signals.

The simplest solution would be to introduce a zero-crossing in Eq. 2.2 so that the

frequency response at ω = 0 would be forced to zero. However, this is not possible

since the transfer function

H(s) =
s

(s + p)(s + p∗)
(5.3)

contains a phase lead

h(t) =
1

b
eat [b cos(bt)− a sin(bt)] (5.4)

in form of a cosine. Thus, if one wants to filter out DC-components one has to do

this by a high-pass in front of the resonator. This high-pass cannot be an ideal

high-pass Hhigh = s since it would again lead to Eq. 5.3. A solution would be to

use a real high-pass with a non-zero cut-off frequency. Such a high-pass must be

designed in a way that the demand of a phase-lead is still not violated.

5.3 Mapping ISO learning to neurophysiology

The remainder of this paragraph will explore how close the learning rule (Eq. 2.6)

is related to neurophysiology. The most striking similarity between ISO learning

and neuronal plasticity can be established in the field of spike timing dependent

plasticity (STDP). The common feature of STDP is that the timing of the post-

and presynaptic activity determines the actual change of the synaptic weight.

If the presynaptic activity precedes the postsynaptic activity the corresponding

weight increases and if the timing is reversed the weight decreases. This type of
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plasticity has been explored in the tectum, the hippocampus and also in the cortex

of several species (Markram et al., 1997; Zhang et al., 1998; Bi and Poo, 1998; Xie

and Seung, 2000). Abbott and Nelson (2000) and Bi and Poo (2001) summarised

the different aspects of STDP in the different brain regions. These observations

have been formalised by Gerstner et al. (1997), Kistler and van Hemmen (2000),

Song et al. (2000), and Song and Abbott (2001) in a spiking neuron model. A

review about the theory of synaptic plasticity in spiking neurons can be found in

van Hemmen (2001). Fig. 5.1 shows one example of a recorded learning curve of

Figure 5.1: The learning curve of tectal neurons from Xenopus. The graph
depicts the resulting change of excitatory postsynaptic potentials dependent of

the timing of pre- and postsynaptic activity (Zhang et al., 1998).

spike timing dependent plasticity. The learning curve is similar to the learning

curve shown in Fig. 2.2. Especially if identical resonators (H = H0 = H1) with

identical qualities (Q = Q0 = Q1) are used the resulting basic shape is similar to

the learning curves taken from neuro-physiological data.

There are two ways to establish a link between the neuro-physiological data and

ISO learning. The difference arises from the interpretation of the signals in ISO

learning. The signals can be either interpreted as membrane-potentials or, on

the other hand, they can be interpreted as firing-rates. Firing rates can be seen
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as a linear first oder approximation of a spiking neuron model (Kistler and van

Hemmen, 2000; Song and Abbott, 2001). The rate-code shall be discussed first.

The interpretation of the signals in ISO learning as rate codes made it possible to

develop analytical solutions in the closed loop case. Although the timing of single

spikes is lost in the approximation of a rate-code the link to STDP is still existing.

Thus, there is still the opportunity to develop a learning rule which is dependent

on the pre- and post-synaptic timing although only a rate code is employed. This

has been shown by Xie and Seung (2000), and Roberts (1999). Both establish

a link between the STDP learning curve and the learning rule Eq. 2.6. Xie and

Seung (2000) do not assume a specific STDP learning curve. To get firing rates

they averaged the post- and presynaptic spike trains over time and calculated the

cross-correlation function of the post- and presynaptic firing rates. Then, they

developed the cross-correlation functions into a Taylor series. This finally resulted

in the following learning rule:

ρ̇jk ∝ νk[β0νj + β1ν̇j + . . .] (5.5)

where:

β0 =

∫ τ

−τ

f(u)du (5.6)

β1 =

∫ τ

−τ

uf(u)du (5.7)

νk is the presynaptic firing rate, νj is the postsynaptic firing rate, ρjk is the cor-

responding weight, f(u) is the learning curve and τ determines the limits for the

integration. The learning curve f(u) determines the weight change between a pair

of pre- and postsynaptic spikes which have a temporal difference of u. In the case

of classical Hebbian learning f(u) is symmetric at zero (f(−u) = f(u)) and in

the case of STDP f(u) is antisymmetric (f(−u) = −f(u)). It is interesting that

in the case of a symmetric learning curve Eq. 5.5 becomes the classical Hebbian

learning rule

ρ̇jk ∝ β0νkνj (5.8)

and in the case of an antisymmetric learning curve, Eq. 5.5 becomes the so called

differential Hebbian learning rule:

ρ̇jk ∝ β1νkν̇j (5.9)

which is equivalent to the learning rule presented here (see Eq. 2.6). Thus, a
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completely antisymmetric learning curve between spiking neurons also leads to

temporal Hebb (or differential Hebb) in a rate-coded model. Roberts (1999) also

applied a Taylor series, however, more explicitly in using the derivative of a gauss-

distribution for the learning curve f(u). This results in a learning rule which

contains the derivative of the postsynaptic spike-probability as a multiplicative

factor. The pre-synaptic activity can enter the learning rule after any transforma-

tion (which includes the unmodified pre-synaptic rate).

Therefore rate-coded models can account for spike-timing dependent plasticity if

the corresponding learning rules contain the derivative of the output-rate of the

cell. Roberts (1999) argues that the derivative of the postsynaptic rate should

be taken into account as well as the derivative of the presynaptic rate. In ISO

learning this is not possible. To stabilise the weights the correlation of the signal

with its derivative is needed (Eq. 2.6) or in other words: the correlation between

a sine and a cosine.

The main advantage in contrast to the above spiking models is that a rate-coded

model can be treated analytically with the help of signal/control-theory and it is

easy to integrate the environment in the model. In spiking neuron models, the

underlying mathematical description is usually based on statistics. This makes it

extremely difficult to deal with system-theoretical models which involve more than

one processing step like the closed loop model presented here. Another argument

to use a rate code comes from the aspect that ISO learning directly transfer sensor

signals into motor outputs. Sensor and motor surfaces usually rely only on rate

codes (Shepherd, 1990, pp.32–66). Since sensor signals are directly transferred

into motor signals one can justify a model-neuron which operates with rate codes.

The interesting difference to spiking neuron models is the origin of the learning

curve. In spiking neuron models, the learning curve is generally a fit to neuro-

physiological data. The actual function is usually a difference of exponentials to

allow for an easier statistical treatment (Kistler and van Hemmen, 2000). In ISO

learning the learning curve results from the impulse-responses of the resonators

(Hk). In other words: the input dynamics determine the shape of the learning

curve.

Now the low-pass characteristic of the resonator Hk has to be discussed in the

context of neurophysiology. Low pass characteristics are very common in neuro-

physiology. They reflect the fact that any system needs a certain time to react.

Therefore low-pass filtering can be found as a basic property of nerve cells (leaky

integrator), in many receptor responses and in the change of chemical potentials
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(Shepherd, 1990, pp.32–66). Thus, such low-pass characteristics are also one of

the basic properties of any neuronal cell model (Koch and Segev, 1989).

Now, the signals in ISO learning shall be directly identified by signals in a spik-

ing neuron. In principle, there is no obstacle in transferring ISO learning to a

spiking neuron-model. The test-signals at the inputs x0, . . . of ISO learning (see

Fig. 2.1) have been delta-pulses and could easily identified as pre-synaptic spikes

(Rieke et al., 1997, pp.281–283). The problem arises from the actual mapping of

cell-properties to ISO learning. The low-pass characteristics seem to be no obsta-

cle. Especially STDP is strongly linked to the dynamics of the NMDA channel

(Ekström et al., 2001) which exhibits the right timing properties. Thus, it should

be relatively straightforward to redesign ISO learning into a biophysically more

realistic one, which directly relies on such internal neuronal variables and which

uses spike trains as inputs. However, the identification of the derivative in neu-

rophysiology is much more difficult and still poses some problems. Another form

of sequence learning (TD-learning) uses also the derivative of the output-signal.

Mapping TD-learning onto neurophysiology has recently been attempted by Rao

and Sejnowski (2001) using the TD-learning algorithm but the relation between

TD-learning and STDP is less direct and, accordingly, the transition between

those two models is bit more intricate (Dayan, 2002). Especially the mapping of

the derivative to neurophysiology was not successful.

At this point the learning between different inputs of the neuron has to be con-

sidered and it has to be discussed between which inputs learning takes place3.

Synaptic potentiation in biology usually happens under homo-synaptic learning

(Bi and Poo, 2001). This means that a synapse is potentiated when it receives

both, a pre-synaptic spike and a postsynaptic spike. Thereby the pre-synaptic ac-

tivity has to precede the postsynaptic activity (by approx 5 ms) (Nishlyama et al.,

2000). If the timing is reversed depression is induced. Hetero-synaptic learning

changes a synapse which only gets a postsynaptic spike but not pre-synaptic one.

Heterosynaptic LTP usually does not happen in biology (Nishlyama et al., 2000)

but in rare cases it has been observed (Bi and Poo, 2001). No heterosynaptic

learning happens in ISO learning: Eq. 2.6 does not change the weight ρj when the

input signal uj is zero.

In section 2.5.1.4 the change of the weight ρ0 has been discussed. In some cases

it was desirable that ρ0 stays constant, especially if ρ0 is strong and represents

3The ISO learning rule defines its goal at the input and not at the output. There is at least a
weak link in the work by Anastasio (2001) who explains the VOR-reflex with a cerebellar model
which involves no error signal but the minimisation of the overall input at the purkinje cells.
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an important reflex which should not vanish during learning. To keep ρ0 constant

some additional measures have been suggested. Here it can be shown that in

biology this problem often does not exist. In biology there is the possibility given

that strong weights stay stable even if the STDP suggests a small decrease of the

synaptic strength (see Fig. 2.5 where ρ0 slightly decreases). The stabilisation of

the strong weight can be achieved by homo-synaptic self-potentiation of the same

pathway. Potentiation in general is strong in weak synapses and weak in strong

synapses (Guo-Quing and Poo, 1998). However, the synapse must at least be

strong enough to cause a postsynaptic spike when it is triggered by a pre-synaptic

spike because potentiation only happens in conjunction with a postsynaptic spike.

Thus, once a synapse is strong enough to cause a postsynaptic spike it will maintain

its strength by itself. ISO learning has the problem that if one allows all weights to

change the weight of the reflex ρ0 will slowly decline (Eqs. 2.21,2.22). This may be

an unwanted effect especially if the reflex is essential for survival and the weight

ρ0 has to be kept constant in ISO learning. However, in biology this problem

does not seem to exist since the decline of the weight ρ0 will be compensated by

homo-synaptic potentiation.

There is a variety of cases when an organism has to navigate successfully through

a spatial area. The goal might be to find food (Blum and Abbott, 1996) or to

avoid objects. To navigate successfully the organism must have spatial information

about its environment. Neuro-physiological data supports this assumption in that

some animals have specialised cells which fire when the organism is at a specific

place. Therefore these cells are called “place cells” (O’Keefe, 1976; Ekström et al.,

2001). When a rat is exploring a maze such a place cell fires — after learning

— at a specific place in the maze. Since the rat encounters different places in

the maze different place cells fire at different times. Therefore the place cells fire

in a temporal sequence. Such a temporal sequence is ideally suited for temporal

sequence-learning algorithms like ISO learning or TD-learning. There have been

successful attempts to use the output of place cells for TD-learning (Arelo and

Gerstner, 2000) to learn to find a target.

ISO learning can also use the input of place cells to learn a sequence of places.

The reference is again the reflex behaviour which has nothing to do with the

place cells. It can be implemented in the same manner like in the attraction- or

avoidance-examples (as a retraction-behaviour or as a movement towards a light-

source, . . . ). The place cells can be used as the predictive inputs of the learning

circuit x1, . . . , xN . Learning starts at the place cell which fires directly before the

reflex reaction is triggered. This place cell becomes the predictor for the final reflex



Chapter 5 Discussing the Organism 80

and can trigger the earlier anticipatory behaviour. Once this behaviour has been

learned a second place cell can predict the first one and so on. Thus, the temporal

sequence which is formed by the place cells is learned and used to generate an

anticipatory response caused by the earliest place cell.

Place cells provide a convenient form of pre-processing of the raw visual input

for ISO learning (and for other temporal sequence learning algorithms). They

generate from the intensity-levels of the visual field a temporal sequence of events.

In general it can be stated that often a certain form of pre-processing of the

inputs is desirable so that a sequence of events is generated when the organism is

moving in its environment. Place cells can be an appropriate form of input to our

algorithm.

5.4 Animal learning

In the next sections learning paradigms shall be explored which exist in psychology

and animal behaviour (Mackintosh, 1974), and they shall be compared to ISO

learning. It is important to keep in mind that ISO learning is designed for a closed

loop learning-paradigm and that in psychology this differentiation between open

and closed loop is often not used. Therefore direct comparisons to ISO learning

in the sense of benchmarks are not possible. Additionally one should keep in

mind that in constructivism attributions towards internal states are not permitted

because they do not reveal themselves to the observer. Therefore the construct of

the “reward” can not be used since it associates behaviour with internal states.

The first topic is classical conditioning.

5.4.1 Classical conditioning

One of the oldest paradigms of animal learning is classical conditioning (Pavlov,

1927). The standard example of classical conditioning is Pawlow’s dog which

salivates when it gets food. This is the unconditioned reaction (UR) namely sali-

vation to the unconditioned stimulus (US) “food”. If the sound of a bell precedes

the food the dog starts to salivate when it hears the sound of the bell. This is

the conditioned reaction (CR) to the conditioned stimulus (CS). Note that the

unconditioned reaction and the conditioned reaction are the same.

Any feedback from motor output to sensor input is usually ignored or explicitly
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interrupted in classical conditioning (Domjan, 1998)4. The remainder of this para-

graph will attempt to give some arguments against the open-loop assumption of

classical conditioning. It seems not to be realistic in the light of a feedback/feed-

forward system theory.

Figure 5.2: Pavlov’s experiment seen as a open-loop experiment (a) and as a
closed loop experiment (b). a) Open loop case: the food triggers the salivation
reaction which does not feed back to the sensor input. b) Closed loop case (self-
referential system with saliva as elements): saliva is absorbed (by food) and
causes a lack of saliva in the throat. The lack of saliva is detected by a saliva
sensor in the throat and triggers production of saliva. The saliva production

feeds back to the saliva detector.

The focus shall be on the dog’s reaction (UR and CR), namely the salivation (see

Fig. 5.2). The experiment with the dog shall be interpreted both in a closed loop

paradigm and in an open loop paradigm. In classical conditioning the act of sali-

vation does not change the sensor input(s) — in this case the smell of the food

and/or the sound of the bell (Fig. 5.2a). This means that the dog’s action (saliva-

tion) does not feed back to the dog’s sensor inputs (Domjan, 1998, inner cover).

For the dog this means that it does not know if the salivation has any effect in

his mouth. This finding can be analysed in the light of the feedback/feed-forward

paradigm (compare Fig. 3.2 and Fig. 5.2). In the context of this paradigm it

seems to be that the dog is using a forward model for his salivation since there is

no motor-sensor feedback. This corresponds to the outer pathway in Fig. 3.2 via

D, P1, X1 and V with P01 = 0. As pointed out in section 3 the exclusive use of the

outer pathway has been reached if HV has become the inverse of the environmental

4For example, Domjan is one author who explicitly elaborates about the open-loop character
of classical conditioning.
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transfer function which means that the organism has complete knowledge about

the environment concerning the specific task (salivation, obstacle avoidance, . . . ).

If the general findings of section 3 are related to Pavlov’s experiment the conse-

quence is that the dog already knows exactly how much to salivate to get the right

saliva-concentration — before the food has even entered the mouth. However, this

seems to be quite unrealistic because the dog would have to use a forward model

already implemented as a pre-wired reflex. Food is not uniform so that different

amounts of saliva have to be produced to make it digestible. One can argue that

the closed loop has simply been ignored (Lieberman, 1993) by the observer of the

experiment. It is much more probable that the salivation is involved in a closed

loop (Fig. 5.2b) where the concentration of the saliva is measured by a sensor in

the dog’s mouth. Thus, the salivation might not be triggered by the food, it is

rather triggered by a low concentration of the saliva in the mouth and therefore

more saliva must be produced. It is interesting to note that in Fig. 5.2b develops

on the level of behaviour a self-referential model on the basis of saliva (saliva leads

to saliva).

Changing the interpretation of the experiment from open-loop to closed loop leads

also to the change of the unconditioned stimulus (US). In the original example by

Pavlov (open-loop) it is the food which triggers the salivation (see Fig. 5.2a). In

the closed loop interpretation (see Fig. 5.2b) it is the concentration of saliva in the

mouth. The unconditioned stimulus (US) can be a saliva-sensor which measures its

concentration and triggers salivation if its getting dry (Lieberman, 1993). Learning

any predictive cue, like the bell, can start the salivation earlier and can prevent

the unwanted situation when the food is being eaten and the mouth is not yet

wet.

As stated in the introduction an organism can only rely on feedback mechanisms

(including internal feedback like, for example, memory). However, the observer

looks from the outside at the organism and does not see the feedback loops of the

organism since for the observer it is tempting to treat the organism as an input-

output system to integrate the organism in his/her own feedback loops. However,

even if the external observer is aware of his/her observer status it is difficult for

the external observer to identify the feedback from the motor output to the sensor

input. Only the behaviour can be observed but which sensor inputs are used

cannot be observed.

The observer-perspective leads to another problem: the interpretation of the food

as a reward. Therefore one can be tempted to conclude that the salivation becomes
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a predictor for the reward “food”. However, there are experiments which show

that this interpretation is far too complex. It it has been observed that Pavlov’s

dog licks a light bulb when the light-bulb has been learned as the conditioned

stimulus (Lieberman, 1993, p.354). The same applies to pigeons which learn that

a light precedes the application of food (Domjan, 1998, p.62). The pigeons always

first peck the light and then run to the food-dispenser (and peck the food). From

that one can conclude that the stimulus food is simply substituted by the light and

does not carry any higher semantic meaning in the sense of a reward. Especially

in the case of the dog it is obvious that the licking the light-bulb is not very

“rewarding” for the dog.

ISO learning also works with stimulus substitution. There is no interpretation of

the primary stimulus (food or bump) as a reward or punishment. The reflex is

simply substituted by a predicting behaviour. Therefore ISO learning leads to the

same behaviour.

Next, the flexibility of the motor reaction has to be discussed. In all the above

experiments the motor reaction has always been the same. Thus, the UR and

CR were the same. This is also the case in ISO learning if only one output-

neuron is considered. In that case ISO learning can not generate completely new

reactions during learning since there is only one motor-reaction possible. The only

parameters which can be varied are strength and timing. This limitation can be

seen in avoidance reactions of rats. There are experiments which demonstrate that

rats are able to escape an electric shock by jumping over a fence. However, the rats

are not able to press a button to prevent the shock (Lieberman, 1993, p.354). More

complex organisms, however, are able to generate different behavioural pattern to

different stimuli. If one wants to model more sophisticated motor reactions one has

to think about extensions of ISO learning at that point (Lieberman, 1993, p.168).

The simplest extension has already been shown in the robot experiment where two

neurons for speed and angle have been used. Already with this simple combination

of two neurons the robot shows quite complex behaviour after learning.
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5.4.2 Instrumental conditioning

In contrast to classical conditioning instrumental conditioning5 explicitly uses a

feedback loop in the environment: “if the occurrence of an operant is followed by

presentation of a reinforcement stimulus the strength [of the operant] is increased”

[cited from Skinner in Hilgard (1975)]. Thus, instrumental conditioning is a closed

loop-paradigm since the behaviour (the operant) feeds back to a special input (“re-

inforcement stimulus”). An action (or a chain of actions) leads to a reinforcement

of the action. Therefore in the context of feedback reinforcement-learning and ISO

learning seem to be similar.

However, reinforcement learning explicitly involves a reward-signal. Therefore

to describe ISO learning in the context of reinforcement-learning a reward has

to be defined. On the level of observed behaviour this can be demonstrated by

the robot experiment (see section 4.3). Assuming that there is no access to the

internal structure of the organism the reward has to be defined by behavioural

observations6. If the robot is observed performing its attraction task one could

interpret finding (and “eating”) the light-spots as a reward (and the bump into

obstacles as punishment). Thus, it is possible to interpret the robot’s behaviour

in the context of reinforcement learning if one defines a certain behaviour as the

reward. However, from observation it is difficult to say if the reward is the final

turning reaction or the disappearing (“eating”) of the light-spot.

Summarising, although there seems to be a reward in the attraction-simulation

there is no reward-signal in the robot itself. Thus, the introduction of the reward

does not relate to internal signals and is therefore an observer-problem which shall

be avoided in this thesis.

5Instrumental conditioning can also be labelled with the expression “reinforcement-learning”.
Both terms will be used equivalently. In a strict sense there might be a difference between the
two expressions, namely that reinforcement-learning can be interpreted as open-loop when it is
used in a technical application where an engineer trains the network. However, the training is
also performed on the outcome of an action and is therefore open-loop again.

6Such a behavioural observation can be anything which indicates a reward. This also involves
self-observation like introspection. However, even self-observation can not observe neuronal
signals but only mental states. Thus, there must be still a definition of a reward in the context
of mental states.
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5.4.3 How to distinguish between classical conditioning

and instrumental conditioning?

Despite the problems of defining a reward properly it is possible to interpret the

robot’s behaviour in the context of reinforcement-learning and in terms of classi-

cal conditioning (with an appropriate feedback). Therefore the distinction which

separates reinforcement learning from classical conditioning is much more fuzzy

than expected. Psychologists are aware of this similarity for precisely the reasons

which are pointed out above. Therefore they also conclude:

Classical conditioning and reinforcement learning are much more the

same than Skinner proposed (Hilgard, 1975, p.209).

Thus, the way to distinguish between classical conditioning and reinforcement

learning by closed/open-loop or by reward/stimulus-substitution leads to unsat-

isfactory results. Finally it is an observer-problem since the observer can not be

sure of having identified the right closed loop or having identified the right reward.

However, the distinction between classical conditioning and reinforcement-learning

has not been given up. Therefore another distinction has been introduced: it is

the number of sequential motor-reactions followed by a stimulus. Dayan (2001)

argues that instrumental conditioning involves a chain of multiple motor reactions

(“action planning”) to optimise a final reward whereas classical conditioning in-

volves only one final decision (“stimulus-response” or a “habit”). Therefore Dayan

and others argue that there are two different systems which interact:

Konorski, Dickinson, Balleine and their colleagues have suggested that

there are really two separate motivational systems, one associated with

Pavlovian motivation, as in SR7, and one associated with instrumental

action choice8 (Dayan, 2001).

However, ISO learning still does not fit into this distinction. Looking at the circuit

which represents the flow of the signals, ISO learning (see Fig 2.1) is clearly a

“stimulus-response” (or classical conditioning) system since it directly transforms a

stimulus into a motor reaction (this has been already pointed out above). However,

looking at the behaviour of the robot in the attraction experiment the robot seems

7Means stimulus-response which is equivalent to classical conditioning.
8Equivalent to reinforcement-learning.
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to perform a sequence of movements to find the target (namely the light-spot).

Thus, it is a matter of the point of view (therefore of the observer) if ISO learning

is interpreted as a stimulus-response system or as an action-planning system.

5.4.4 Classical conditioning and instrumental conditioning

in the context of constructivism

In the above paragraph it was shown that it is possible to interpret ISO learning

in the context of classical conditioning or in the context of reinforcement learning.

However, in the context of constructivism certain aspects are not permitted and

certain aspects are allowed.

In constructivism the concept of a “reward” is not permitted as being an attri-

bution to an internal state of the organism. This would violate the separation of

the system-levels. At this point it must be stressed that it is not the question if

a reward has “really” a neuronal correlate or not. Constructivism simply avoids

this dispute in not attempting to identify neuronal structures with the observed

behaviour.

The introduction of the reward also leads to problems of how to interpret the

actions which lead to the reward. This becomes clear if Dayan’s definition of

reinforcement-learning is taken which is based on “action-planning”. Thus, the

organism generates a sequence of actions to get the final reward. This leads to the

assumption that organisms are rationally working towards a reward. The question

arises: Do they “really” optimise their rewards? A reward optimising organism

would explicitly plan its behaviour to get the final reward. Thus, first there is the

plan and then there is the reward. However, one could argue that very often we

behave the other way round. We stumble into a good outcome and then post-

rationalise the actions which happened before as rational action-planning. Thus,

maybe the career of a celebrity was simply a chain of lucky outcomes because

he/she has been at the right places and met the right people. After having become

famous the press, the PR-team or the celebrity him/herself invent stories regarding

the sophisticated life-long plan to become famous9.

All these problems arise when different system-levels are mixed up: A certain

9Some constructivists go so far to say that persons in general post-rationalise their life in
inventing reasons why they have made certain decisions. Constructivists argue that persons can
only perform self-observation since they are not able to access their internal neuronal states and
are therefore in a similar position like an external observer.
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behaviour is interpreted as a reward or a sequence of behaviour is treated as

action planning. This might or might not be the case. Therefore an interpretation

like Pavlov’s stimulus-substitution avoids the endless debate of defining rewards

in staying either on the neuronal or on the behavioural level.

Open loop or closed loop was another distinction to decide if learning is reinforce-

ment learning or classical conditioning. In the context of constructivism only the

closed loop models can be used. Reinforcement learning uses the closed loop model.

However, it uses a reward-signal and is therefore not directly applicable. Classical

conditioning is by definition open loop. However, with an appropriate feedback it

can become a closed loop model without a reward (with stimulus-substitution) as

discussed above.

Another important criterion in constructivism is that the organism shall control its

input and not its output. This means that the organism acts in the environment

to achieve a certain input-condition and not a certain output. This is the case in

reinforcement-learning where the organism acts to get a reward when one accepts

that the reward finally results from a certain input condition (which is usually not

specified). Since classical conditioning is open-loop it can not sense consequences

and therefore it can only have the task to control its output.

Summarising, neither classical conditioning nor reinforcement learning fits in the

context of constructivism. The basic reason for this is the elimination of the

reward by the system-levels in constructivism. Another reason is the closed loop

character which demands that the organism has to control its input and not its

output.

5.4.5 Models of animal learning: drive re-enforcement vs

reward-based learning

After having introduced the learning paradigms from the psychological perspective

they will be now be re-introduced from the perspective of computational neuro-

science.

Temporal sequence learning has often been associated with classical conditioning

(Pavlov, 1927; Dayan and Abbott, 2001). In classical conditioning an associa-

tion between an unconditioned stimulus (US) and a conditioned stimulus (CS) is

learned so as to learn a conditioned response (CR). Since temporal sequence learn-

ing learns the sequence between events one event must be the reference for all the
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other events. Thus, a reference is needed with defines t = 0. Additionally a refer-

ence in form of a pathway or a signal is needed which drives the learning behaviour.

Such a reference can be interpreted in two very different ways which leads to two

very distinct groups of temporal sequence learning: the drive-reinforcement mod-

els (Sutton and Barto, 1981; Klopf, 1988) and the reward-based models (Sutton

and Barto, 1982; Dayan, 2001).

In the drive-reinforcement models the strongest response triggered by a stimulus

serves as a reference. Usually this is the unconditioned response (UR) triggered by

the unconditioned stimulus (US) which results from a strong connection between

the sensor input of the US and the motor output. Learning tries to generate

an earlier conditioned response which anticipates the unconditioned response at

t = 0. If the conditioned response has become strong enough it will replace

the original UR; indeed it will now actually become a new UR on which further

temporal sequence learning-stages could be built. Thus, learning is not guided

by a pathway or signal with a special label, rather it is guided by the strength

of the response called the drive. That learning is guided by drive reinforcement

is supported by psychological studies and is called “stimulus substitution” (see

above). ISO learning is clearly a drive-reinforcement model since it does not use

any reward signal and since it is able to substitute one drive by another. Leaving

all weights variable makes the ISO-algorithm completely un-supervised since there

is no special input10.

On the other hand there exists a variety of models which use a reward-signal as a

reference and try to predict the reward in order to maximise it. Interestingly today

only these models have survived. The development of temporal sequence learning-

rules has completely shifted towards the reward-based models. By the use of the

reward signal, these algorithms belong to the class of externally evaluating learning

schemes. Learning-algorithms which need external evaluation usually have their

applications in engineering where the (external) engineer teaches the system to

make it useful for his/her purposes.

As a consequence they do not fit directly in the framework of autonomous be-

haviour in its rigorous sense. However, it is conceivable that reward-based learning-

systems do exist in autonomous agents in the sense that they are bootstrapped by

“first correlative experiences”, for example by ISO learning.

10This is true for the learning circuit (Fig. 2.1). The special role of some inputs is not deter-
mined by the learning circuit but by the feedback loops.
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5.4.5.1 The Rescorla/Wagner rule

Rescorla and Wagner (1972) were the first to try to describe classical conditioning

in a formal mathematical model. Their aim was to explain the development of the

response (UR,CR) in time, not its outcome. According to their theory, learning

is driven by the surprise a stimulus represents for an organism. This surprise is

measured in their model by the strength of the association between the US and

the CS. The surprise is at its maximum before learning and converges to zero if the

CR has the same strength than the UR. Therefore, the surprise can be measured

as the difference between the maximum strength of conditioned response Vmax and

the strength of the conditioned response after trial n: Vn. The dynamics of the

response Vn are described by the Rescorla/Wagner learning rule:

∆Vn = c (Vmax − Vn)︸ ︷︷ ︸
surprise

(5.10)

At the beginning of learning the associative value between the CS and the US

is zero and the surprise is maximal which leads to maximum learning. During

the course of learning the surprise decreases due to the causal coupling of the

CS with the US. At the end Vn has the same value as Vmax. The problem with

the Rescorla/Wagner model is that the value for Vmax is known only after the

experiment has taken place. Thus, it is only possible to describe the learning

dynamics a-posteriori and not in real-time during the experiment. However, the

Rescorla/Wagner-rule makes it plausible that the surprise can be seen as a basis

for learning. In our model this surprise plays an important role, too, but it is

expressed in a completely different form, namely as the disturbance D in the

closed loop model. Before learning the organism experiences the highest surprise

(contingency) and after learning the organism is able to predict the disturbance.

As a consequence the surprise has been changed to certainty.

5.4.5.2 The Sutton and Barto Model of classical conditioning

The Rescorla/Wagner-Model was not able to model classical conditioning in real-

time since it needs the final outcome of the experiment in the form of Vmax. The

earliest model which was able to model the process of ongoing-learning for classical

conditioning was developed by Sutton and Barto (1981). It uses a similar learning

rule to ISO learning involving the derivative of the output signal and correlating

it with the input-signal (see Fig. 5.3a). However, there are important differences.
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Figure 5.3: Comparison of three drive reinforcement algorithms (a-c) and TD-
learning (d) in Laplace notation. Transfer functions are denoted as E,K,H, T ,
the derivative operator as s. The input X0 represents the unconditioned (US)
and X1 the conditioned input (CS). All models are extendible to more than one
CS but to reduce the complexity only one CS-input is shown. The amplifier
symbol denotes the changing synaptic weight. Note that diagram (c) is drawn
with a fixed weight at X0 to make it more easily comparable to the other di-
agrams. All models use a derivative of the postsynaptic signal to control the
weight change. Both Sutton and Barto-models (a,d) use low-pass filters K only
in the conditioned pathway, Klopf’s model (b) is identical to model (a) with the
exception of an additional temporal derivative at this input. Only in ISO learn-
ing all inputs are filtered, which together with the output-derivative generates
orthogonal behaviour, leading to weight stabilisation (for further explanations

see text).

Each conditioned stimulus11 (xk, k ≥ 1) generates an “eligibility trace” in the

form of an exponential decay which gives the system the opportunity to calculate

temporal correlations. This trace12 is calculated by

yk,t+1 = (1− λ)zk,t + λyk,t (5.11)

11Not to confuse the reader with more additional symbols than really needed the naming
convention of the thesis is taken. x still represents the input of a model-neuron and v represents
the output of the neuron. All signals xk, k ≥ 1 are CS-inputs and the signal x0 is the US.

12Note the similarity to the Kalman-filter theory and its signal model.
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where λ ∈ [0, 1] is a decay constant and

zk,t =

{
1, xk > 0

0, xk = 0
(5.12)

This trace enters the learning rule

∆ρk = βαk(vt − vt−1) · yi (5.13)

where αk and β are learning constants. The output v of the system is calculated

with the unfiltered inputs:

v = ρ0x0 +
N∑

k=1

ρkxk (5.14)

First, the Sutton and Barto model is compared with ISO learning regarding the

filters which have been used (E1 and H1 in Fig. 5.3a,c). The Sutton and Barton

model uses a simpler filter at the input x1 (or CS) than ISO learning. In contrast

to ISO learning which uses filters of second order (see Eqs. 2.2 and 2.3) the Sutton

and Barto model uses only a low-pass filter of first order (see Eq. 5.11). The decay

constant a is always the same for all filters. This restricts the model to simple

timing conditions which have been judged as being not realistically enough for

classical conditioning experiments. ISO learning generalises from the Sutton and

Barto model in using a filter bank of second order filters (band-passes) to deal

with different temporal delays.

If one compares the structure of ISO learning with the Sutton and Barto model,

it can be seen that there are different pathways for the processing of the input

signals for the learning rule and for the generation of the output. This leads to

the effect that the learning rule correlates filtered input signals (see Eq. 5.11) with

the derivative of a sum of unfiltered signals (see Eqs. 5.13) and 5.14). In ISO

learning the learning rule correlates only filtered signals with each other, namely

filtered input signals with a sum of filtered signals. This symmetry of correlating

only filtered signals with each other leads to the highly desirable feature of the

stabilisation of the weights after the reflex has successfully been avoided.

However, the Sutton and Barto model does not aim for weight stabilisation depend-

ing on an input-condition (x0 = 0) like in ISO learning. Their weight stabilisation

is related to a certain output-condition and is therefore related to the model of

Rescorla and Wagner (1972). In their model learning stops at the moment when
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the CR has reached the same magnitude as the UR. Thus, in the Sutton and

Barto model learning stops when the strengths of the UR and the CR are at the

same levels. This model it is equivalent of having learned the relation between the

CS and the US.

At this point it is quite obvious that the Sutton and Barto-model is an open-loop

model since it implicitly assumes that the strength of the UR and the CR after

learning should be the same. In the robot example it became clear that this is

normally not the case which can be seen in the strongly different motor-responses

before and after learning (see Fig. 4.3). The reflex behaviour can be quite coarse

with strong reactions while learning can lead to more precise actions which need

a small motor signal.

The Sutton and Barto-model presented here is a typical drive-reinforcement model

since learning is driven by the strength of the signals and not by an external

teaching signal. The model has not been developed further, since it failed to

reproduce some psychological results properly as shown by Klopf (1988) who also

provided an improved version of the Sutton and Barto model. Klopf’s model shall

be discussed next.

5.4.5.3 Klopf’s model

The model by Klopf (1988) is shown in Fig. 5.3b (see also for a similar model:

Kosco 1986). In particular the dependence of different intervals between the US

and the CS on the learning rate has been improved. To achieve this Klopf basically

used a more complex filtering of the input signals for the learning rule. While the

Sutton and Barto model uses only a first-order low-pass with one parameter (λ in

Eq. 5.11), Klopf uses an FIR-filter. An FIR-filter is implemented by a tapped delay

line where every tap contributes a weight to the learning behaviour. Therefore the

FIR filter has as many parameters as there are delay-elements. Thus, the FIR-

filter offers much more freedom for the design of the learning behaviour than the

IIR-filter in the Sutton and Barto-model as it has more free parameters. As in

the Sutton and Barto model only the learning circuit (which changes the weight)

gets the filtered CS-signal. The second difference to the Sutton and Barto-Model

is the use of the derivative at the input of the learning circuit. Klopf argues that

only changes in the CS-inputs cause change of the weights.

The actual weight change is calculated by the following equation which also incor-
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porates the FIR-filter with the coefficients ck.

∆ρj,t = ∆vt

τ∑
k=1

ck|ρj,t|∆xk,t−j (5.15)

The cj are fitted to psychological data to mimic the effects of different timings

between the CS and the US. The summation is the same as in the Sutton and

Barton-Model (see Eq. 5.14) but every input signal xi is split up connecting to

one positive and one negative synapse to establish a more realistic model.

Klopf’s model is also a drive-reinforcement model as it does not define an explicit

reward. Because of the use of the derivatives and the application of the FIR-

filter makes the model becomes robust against different temporal relations and

durations between the US and CS. The Sutton and Barto model, for example,

demands that there is no temporal overlap between the CS and the US while the

Klopf-Model can cope with such an overlap.

With respect to this thesis, the most interesting aspect of Klopf’s work is that

he has taken the environment into account. He argued that the environment

of an autonomous agent has to be non-evaluative. This means that it must not

provide explicit evaluations, for example reward signals. All evaluations have to be

performed implicitly within the organism’s boundaries. Those implicit evaluations

should be free of anthropomorphic interpretations and he argues that learning is

only based on relating signals to signals:

I will suggest that drives in their most general sense, are simply signal

levels in the nervous system, and that reinforcers, in their most general

sense, are simply changes in signal levels (Klopf, 1988).

This directly relates to the constructivist’s view: The environment and the organ-

ism shall use descriptions which are free of attributions coming from any observers

perspective. Taking the environment as non-evaluative gives one the opportunity

to describe it purely by the laws of physics. The same applies to the organism

itself, if one defines the drives and reinforcers only by the dynamics of signals.

Another interesting insight is given into positive and negative feedback loops.

Klopf argues that any positive feedback must be combined with a negative feedback

to ensure stability. Furthermore he argues that even positive feedbacks can be

described as negative feedbacks:
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Drives implemented as positive feedback loops would seem to support

the goal of drive induction rather than drive reduction. With this

having been said, it may then be observed that, in the case of biological

systems, drive induction, as in the pursuit of prey, always to be followed

by drive reduction, as in the consumption of prey [emphasised]. This

may suggest a simple general principle for the design (or evolution) of

drive-reinforcement networks: primary drives implemented as positive

feedback loops should always lead, when activated, to the subsequent

activation of primary drives that are implemented as negative feedback

loops (Klopf, 1988).

At that point one can go one step further and argue that in choosing the right

sensor-motor loop it is possible to form a negative feedback also within the pa-

radigm of food acquisition. This has been shown in the computer-simulation

(section 4.3).

5.4.5.4 Temporal Difference (TD) Learning

Sutton and Barto developed their first model further which they called TD learning

(Sutton, 1988). In contrast to their earlier model they introduced an explicit

reward signal (see Fig. 5.3d). This signal represents an explicit goal in the learning

algorithm which should be reached during learning, namely to predict the reward

signal. TD-learning has the goal of generating an output v which predicts a reward

r by the help of its (sensorial) input signals x. This goal is achieved by minimising

a prediction error δ between reward and output. Thus, learning relies on the

predefined reward which acts like a teacher signal in supervised learning (Widrow

and Hoff, 1960). Another difference to the drive reinforcement models is that

the output in the TD-model is no longer a motor-reaction, it is the prediction

of the reward. Thus, with the introduction of TD-learning the output signal of

the algorithm has become the status of an internal signal whereas the output of

the drive-reinforcement models is interpreted as the conditioned or un-conditioned

(motor-) response. The same applies to the reward signal itself. If one wants to

describe an autonomous agent then he/she is forced to define what is a reward

and has to hard-wire the reward(-system) into the organism. This carries the

danger that the observer-perspective is imposed onto the system and at the end

the organism is no longer autonomous but has become a slave of the external

observer. This has to be kept in mind if one uses TD-learning to model autonomous

behaviour.
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Now the similarities between the TD-learning rule and the one used in the current

study have to be discussed. The original TD-learning by Sutton and Barto uses

discrete time steps (τ) and this shall be used as a basis here. However there is a

time-continuous version available (Doya, 2000). TD-learning calculates a temporal

difference error δ (thus, similar to the famous δ-rule by Widrow and Hoff 1960) by

means of subtracting subsequent output values from each other and relating this

error value to the reward:

deltat = rt + vt+1 − vt (5.16)

The actual weight change is then performed by correlating the result of Eq. 5.16

with the corresponding input-signal delayed by nτ, withn ≥ 1:

∆ρk,t = xk,t−τdeltat (5.17)

Note that in Fig. 5.3d only one CS-input is shown which enables TD-learning only

to look one step ahead. In real applications TD-learning needs a tapped delay line

for each CS-input which generates a sequence of CS-pulses (see Dayan and Abbott

2001 for a detailed description of TD-learning).

The second group of terms in Eq. 5.16 seems to be related to the derivative used

in ISO learning (see Eq. 2.6). This mathematical similarity, however, carries a

distinctively different interpretation, which can be understood as follows: The

goal of TD-learning is that the output v(t) should at any point in time predict the

total remaining reward

v(t) =
T∑

s=t

r(s) (5.18)

at the end of learning. Take the example of a rat exploring a maze where at each

intersection a decision about a turn has to be made creating a temporal sequence

of events. Each turn leads to a different reward (e.g., food) to be picked up along

the way. This clarifies the concept of “total remaining reward” until the end of the

maze is reached at T . Furthermore it is known that the total remaining reward

can be iteratively approximated using the next following prediction value v(t + 1)

to yield something like the total remaining expected reward:

T∑
s=t

r(s) ≈ r(t) + v(t + 1) = e(t, t + 1) (5.19)

During learning this total remaining expected reward e is compared with its actual
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prediction v to define the prediction error δ. Thus, delta(t) = e(t, t + 1) − v(t),

leading to the apparent similarity of the resulting temporal difference terms v(t +

1)− v(t) in TD-learning with the derivative used by us. From this interpretation,

however, it is quite clear that the term v(t+1) arises only in conjunction with r(t).

This kind of conjunction cannot be found in ISO learning because it is reward-

free. Furthermore, the structure of TD-learning is acausal, looking forward in time

using v(t + 1) to calculate delta(t). In a strict sense looking into the future can

only be performed by an observer who can predict the reward. Therefore it is not

straightforward to implement the reward for TD-learning in an autonomous agent

without violating causality.

The ideas of TD-learning are very similar to an algorithm used in engineering which

is called “dynamic programming” which was introduced by Bellman (1957) and has

been further developed under the name Q-learning (Watkins, 1989; J.C.H Watkins

and Dayan, 1992). Bellman was interested in decision processes where during a

multi-stage process the final outcome should be maximised:

xN = tN(tN−1(tN−2(tN−3 . . . (x0) . . .))) (5.20)

Here xN should be maximised after having undergone the transformations t0 . . . tN .

A typical example is chess play where in every step a decision has to be made

towards the final goal, namely to win the game. The idea is to solve this equation

from the last transformation to the first one (Neuhauser, 1966). Therefore first the

last transformation tN is changed until a maximum has been reached and then the

last but one and so on until t0 is reached. This can be formulated by a recursion

formula which is usually called the Bellman-recursion (Bellman, 1957, p.83). It

is obvious that TD-learning and dynamic programming have several aspects in

common, especially that both algorithms maximise the final outcome which is

called reward in the case of TD-learning.

The direct comparison between ISO learning and TD-learning (see Fig. 5.4) shows

that (as mentioned before) the reward pathway and the error calculation of TD

learning is replaced by the reflex-pathway in ISO learning algorithm.

Both algorithms (TD and ISO learning) can be identified with neuronal structures.

However, the structural differences of ISO learning and TD-learning suggest differ-

ent neuronal substrates. The TD learning circuit consists of two different compo-

nents: The error-signal circuit and the predictive circuit which are identified with

the dopamine system and with cortical or other dopamine modulated brain areas.

This is supported by the work of Schultz et al. (1997) who identified the response
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Figure 5.4: Differences between a) TD-learning and b) ISO learning.

of the dopamine-system with the error-signal from Eq. 5.16 in reward-experiments

with awake monkeys. ISO learning algorithm, on the other hand, suggests only

one neuronal circuit because all pathways are equivalent as supported by Hauber

et al. (2001). They blocked NMDA-channels in instrumental conditioning tasks

and could block the learning of the association between the reward and its predic-

tors.

5.4.5.5 Motivated reinforcement-learning

At this point it must be mentioned that the concept of the reward has recently

been extended to cover more psychological data. Therefore another consequent

solution exists which instead of radically eliminating rewards (like constructivism)

rather introduces rewards throughout. In Dayan (2001) classical conditioning is

also interpreted as a reward-based theory so that it is possible to create a unifying

theory built up on rewards which is called “motivated reinforcement-learning”.

5.4.5.6 Pure Hebbian learning

Briefly it should be mentioned that it is also possible to use pure Hebbian learn-

ing to establish classical conditioning (Hebb, 1967). The Hebb rule is similar to

many drive-reinforcement learning-rules (like ISO learning) in that sense that it

correlates an input signal xj with the output signal v and changes the weight ρj

accordingly:
dρj

dt
= xj · v (5.21)
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The difference to the temporally asymmetric ISO learning is that such a learning is

temporally symmetric in respect to the timing of the input- and the output-signal.

Signals which coincide within a temporal window contribute to a weight change.

Thereby the temporal order of the signal does not change the learning behaviour.

Therefore Hebbian learning is not directly suitable for sequence learning. Only

by the introduction of delays does Hebbian learning become suitable for learning

of temporal relations. The simplest way to achieve this uses a delay line which

can be identified by the transmission delay between two neuronal cells. Classical

conditioning with the help of Hebbian learning and transmission delays has been

modelled, for example, by Verschure and Coolen (1991) and successfully used in

robot-experiments. Grossberg and Schmajuk (1989) used Hebbian learning in

conjunction with a filter bank with different temporal delays to make it possible

to learn different timings. Grossberg motivates the filter-bank approach by the

fact that individual Purkinje-cells exhibit different delays so that a population

of Purkinje cells can provide a filter bank which generates different delays. It

is obvious that such a sequence of signals (Grossberg and Schmajuk (1989) call

this a “spectrum”) can be correlated with other signals using Hebbian learning.

There have been several applications of this so called spectral timing model, for

example, in pitch perception (Grossberg, 1995) or in motor control (Grossberg and

Merrill, 1996). Also in technical applications the filter-bank approach has been

used extensively, however mostly in the frequency-domain (Vaidyanathan, 1993).

The disadvantage of Hebbian learning is that the weights do not stabilise without

additional measures being taken. If one wants to use Hebbian learning in the field

of classical conditioning then the weights have to stabilise at the moment when the

CR has the same magnitude as the UR. This can be achieved by delayed inhibition

(Verschure and Pfeifer, 1992).

In Hebbian learning it is well known that the learning rule has a symmetric matrix

which can be used to calculate its eigenvalues. The corresponding eigenvectors are

the principle components of the input signals. It will be shown that such eigenval-

ues do not exist in ISO learning. The Laplace-representation of the learning rule

Eq. 2.24 can be used to write it in a more general form and it is possible to describe

both the classical Hebb-rule and the temporal Hebb-rule in the Laplace-domain:

Mij =
1

2π

∫ ∞

−∞
Ui(iω)L(−iω)Uj(−iω)dω (5.22)

Mji =
1

2π

∫ ∞

−∞
Ui(−iω)L(iω)Uj(iω)dω (5.23)
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where L(iω) determines if it is classical Hebbian or temporal learning

L =

{
1 Classical Hebbian

iω Temporal Hebbian
(5.24)

In the case of classical Hebbian learning (L = 1) the change of the indices in

Eqs. 5.22 and 5.23 does not change the result and therefore the resulting matrix is

symmetric as expected. However, employing temporal Hebbian learning (L = iω)

in Eqs. 5.22 and 5.23 changes the signs which makes the matrix anti-symmetric.

As a consequence the matrix in the case of temporal Hebb has no eigenvalues. In

general it can be stated that only in the case of a pure symmetric setup does the

matrix have eigenvalues. That the matrix in the case of temporal learning has

no eigenvalues reflects the property that classical Hebb learns events regardless of

their temporal order while temporal Hebb learns events which form a temporal

sequence.

5.4.6 Summary of the learning rules for animal learning

The last paragraphs were guided by the distinction between drive reinforcement

models and those based an a value- (or reward-) system. What all these models

have in common is that they analyse time sequences in order to generate anticipa-

tory behaviour (for another summary of all learning rules except ISO learning see

the technical report by Balkenius and Morén 1998). This is actually performed by

analysing the time backwards starting at a certain reference-point (t = 0). This

reference is either a reward signal (TD, Q-learning) or a drive (Sutton/Barto,

Klopf, ISO learning). In dynamic programming and its successor Q-learning, the

learning backward in time is performed explicitly in the form of decisions which

are learned recursively. The rat, for example, decides at every branch if it should

turn left or right to get the final reward. Once the final reward has been obtained

the last decision is memorised and in the next trial the last but one decision will

be learned. Thus, the rat maximises the final reward by starting with the final

reward and then memorising the right decisions backwards.

However, the behaviour of a rat searching (and finally finding) food can also be

explained by pure drive-reinforcement learning. In this case there is not a final

reward but a final behaviour (namely the act of eating or the final movement

towards the food). Predictions are related in the drive reinforcement models to

the final behaviour. In the case of the reward-based models the eating of the food
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is interpreted as a reward for the rat whereas in the case of the drive reenforcement

models the eating of the food is not associated with any internal state of the rat.

Thus, the drive reenforcement models do not attribute behaviour to internal states.

They directly relate sensor inputs to motor reactions.

Figure 5.5: Comparison of the learning rules for temporal sequence learning.
The rules can be related to psychology (observer perspective), to biology (neu-
ronal perspective) or to engineering (tools). The actual implementations can be

divided into drive-reenforcement models and reward-models.

A major difference between the different models is how or if the weights stabilise.

In standard Hebbian learning the weights undergo exponential growth (Oja, 1982)

so that the system deteriorates without additional measures. There are many

solutions to solve the problem of exponential growth, such as well adjusted decay-

terms (Young, 2001), synaptic competition (Miller, 1996b), restrictions imposed

on the timing of the input signals (Klopf, 1988) and the already mentioned delayed

inhibition (Verschure and Voegtlin, 1998)13.

In the above mentioned models of classical conditioning (TD, Sutton and Barto,

Klopf) stabilisation of the weights is achieved by taking the UR as a reference. The

rules are adjusted in such a way that at the moment when the CR has the same

amplitude as the UR learning stops and the weights stabilise. All these strategies

to stabilise the weights share a common feature in that they use the output signal

13Also by personal communication at a conference in Edinburgh.
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as a reference (in this case the UR). This dates back to the Rescorla/Wagner rule

of classical conditioning where learning stops when the CR has a similar strength

to the UR (see above).

In contrast to the above models ISO learning achieves weight stabilisation by

its feedback which influences the inputs. From the moment the reflex has been

avoided the weights stabilise. Thus, ISO learning is the only model which uses

an input to stabilise the weights (see for example section 2.4.2 or section 2.5.2.3

where the weights stabilise when the input x0 becomes silent). Using an input to

control the learning behaviour only makes sense if there is a feedback from the

output to the input so that the effect of the output on the environment and finally

on the input can be felt. In the open loop case the weights continue to grow as in

Hebbian learning (see for example Fig. 2.3 when x0 and x1 are active).

Another difference between the models is the level of biological or psychological re-

alism. Q-learning is the most abstact form of sequence learning since it optimises a

reward in a very formal way, like in a typical engineering task or in business-related

optimising tasks. TD-learning, ISO learning, SB-learning and Klopf’s learning rule

claim to have a certain relation to biology in the sense that they are modelled with

formal neurons.

5.5 Summary

This chapter compares ISO learning to open-loop paradigms in the fields of en-

gineering, neurophysiology and animal learning. In the field of engineering the

Kalman filter assumes low-pass filtered signals at its inputs because of their pre-

dictability. ISO learning goes along the same lines by making signals predictable

at its inputs.

Recent results in neurophysiology have shown that the precise timing of pre and

post-synaptic signals determines if a synapse is strengthened or weakened. The

same applies to ISO learning where the timing of the input-signals determines

if the weight is strengthened or weakened. The different parts of ISO learning

can be partially identified by neuronal properties. The low pass filtering of the

input signals can be identified with the passive low pass characteristics of the

cell membranes and with the active properties of ion-channels, especially with the

NMDA-channel. The important result is that with ISO learning the learning curve

is directly obtained from the channel- and membrane-properties.
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The main part of the chapter discusses the different learning schemes of animal

learning and their corresponding mathematical models. The two main paradigms

in animal learning are classical conditioning and instrumental conditioning. Look-

ing closer at these two paradigms another distinction becomes more appropriate:

learning with or without rewards.

The following discussion of the mathematical models also is guided by the differ-

ence between a reward being needed or not. ISO learning itself does not need a

reward-signal and is therefore non-evaluative. Also non-evaluative are the early

models by Sutton and Barto (1987) and the drive reinforcement-model by Klopf

(1988). Although both models do not need any reward signal they are different

from ISO learning. The difference arises in the different control strategies: The

models by Sutton and Barto (1987) and Klopf (1988) control their outputs while

ISO learning controls its input. This reflects the fact that the models by Sutton

and Barto (1987) and Klopf (1988) are open-loop models and that ISO learning

is designed for the closed loop.

Additionally, the reward-based model TD-learning by Sutton (1988) has been

discussed. It is not directly related to ISO learning as it is evaluative. However,

it looks similar due to its similar mathematical structure. Like ISO learning TD-

learning utilises the derivative of its output signal. However, the derivative in TD-

learning has another meaning than in ISO learning. In TD-learning the derivative

helps to calculate the expected reward. ISO learning, however, calculates a motor

output and not an internal signal, like a reward-prediction.



Chapter 6

Discussing the Organism in its

Environment

6.1 Introduction

The last chapter discussed ISO learning without environment. In this chapter the

environment is no longer ignored and establishes a closed loop condition. As in

the previous chapters the closed loop is established by the environment by feeding

the motor actions back to the sensors of the organism.

This chapter is divided into two main parts. The first part will discuss direct

implications of the closed loop paradigm by comparing ISO learning to similar ap-

proaches, especially to approaches in the field of engineering. As described in this

thesis, ISO learning tackles the problem of classical reactive control, in particular

the fact that it always reacts too late. To overcome this problem ISO learning turns

such a reactive system into a pro-active system. In the field of engineering similar

problems arise when controlling a plant with a standard feedback-controller, for

example with a classical PID controller. The solutions from the field of engineering

and those by ISO learning will be compared in section 6.2.1.

The analytical treatment of ISO learning in the closed loop (in chapter 3) treated

only two sensor inputs which means that only two loops can be created: the

predefined reflex and the learned anticipatory (re)action. However, it is possible

to employ more than two inputs. Consequently, the question arises if more than

two loops are formed by using more than two sensor-inputs. This leads to nested

loops and will be discussed in section 6.2.2.

103
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The reflex pathway is the reference in ISO learning. The reflex pathway determines

the direction of learning and defines what is early and what is late. Therefore the

reflex pathway can be interpreted as a boundary condition for learning as pointed

out in the introductory chapter. Section 6.2.3 will explore how other works in

the field of machine- or animal-learning employ boundary conditions to prevent

arbitrary results during and after learning.

The second part of this chapter will discuss indirect implications of the closed loop

paradigm. As pointed out in the introductory chapter, the closed loop is the basis

for an autonomous agent. This implies that the agent observes its environment in

a different way than an observer observes the agent. One important implication of

the observation process is observed uncertainty (section 6.3.1). The agent itself is

confronted by the uncertainty of its environment. On the other hand, the observer

is confronted with the uncertainty of the behaviour of the agent. Such uncertainty

of behaviour could be interpreted as autonomy and therefore in section 6.3.2 an

attempt will be taken to define autonomy by the observed uncertainty. However,

in addition, the observer is usually an autonomous agent. When an observer

observes uncertainty in an organism then the organism also observes uncertainty

in the observer. This is called the “double contingency problem” and will be

discussed in section 6.3.3.

There is also a conflict of interests between the organism and observer. While

the organism itself wants to keep its homeostasis the external observer wants to

treat the organism as an input-output system. Thinking of a hen and a farmer it

becomes clear that the egg under the hen is observed in a different way. While

the hen wants to keep the egg (homeostasis), the farmer wants to have the egg

(input/output system). This example reflects the different perspectives of au-

tonomous organisms and engineers. This will be discussed in section 6.3.4.

Finally the question will be asked if robotics can be used to clarify processes in

biology: Is it possible to model neuronal processes on a robot or not (section 6.3.5)?

The last section of this chapter will assume that this is in general possible and will

discuss the different approaches in the field of autonomous robotics (section 6.3.6).
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6.2 Anticipatory closed Loop Control

6.2.1 The Inverse Controller

In the robot experiment it has been demonstrated that the reflex implements

a non-optimal solution. The bump can not be avoided by the simple reflex loop.

However, by using predictive sensor inputs it was possible to generate anticipatory

reactions so that the bump could be avoided. Since the sluggishness of the feedback

loop is a very generic problem it does not only pose problems in biology but also

in engineering.

Figure 6.1: A possible application of ISO learning in a chemical plant. A
reaction chamber transforms an entry substance with the help of heat into the
final product. The heat is provided by steam and can be regulated by means of
a valve. The chemical reaction of the chamber has an optimal temperature and
therefore the task is to keep the temperature T2 = const. This is achieved by
a feedback mechanism involving T2, the controller and the valve which controls
the amount of steam. The entry substance has the temperature T1 which can
vary and therefore disturb the feedback loop. ISO learning can use the change
at T1 (additional input as dashed line) to generate an anticipatory response.

As in biology the simplest form for an engineered control-process is the feedback

loop (Palm, 2000). For example, with such a control the temperature in a reaction-

chamber can be kept constant (see Fig. 6.1, solid lines). This is achieved by a closed

loop involving a heater, a temperature sensor and an appropriate

controller. The controller generates from the temperature-signal an appropriate
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control signal for the heater so that the temperature is kept constant. However,

such a setup has the same problem as all feedback-controlled systems, namely that

it only can react after the temperature in the chamber has changed. The unwanted

temperature change is due to a disturbance in the environment which can not be

predicted by the simple feedback controller. Thus, the temperature-change in this

engineering example is the equivalent of a bump in the robot-experiment.

As in the robot experiment the feedback-controller which controls the reaction-

chamber can be extended so that the unwanted sluggishness of the feedback can

be eliminated. This is achieved by using sensor signals which are able to predict

the temperature change in the reaction chamber. Such a predictor could be the

temperature of the substance which is about to enter the chamber (see Fig. 6.1,

dashed line). Such a predictive sensor-signal can be used to adjust the heater in

such a way that it precisely counteracts the temperature-change at the moment

it would happen. Finally the temperature in the chamber stays constant all the

time, although there are disturbances present.

Figure 6.2: Illustration of the inverse-controller paradigm (based on Fig. 3.2
with P01 := 0). a) Controller before and during learning. b) After having

successfully avoided the inner reflex loop (P0,H0, ρ0).

Fig. 6.2 shows the generalised version derived from the above example with the

reaction chamber. The transfer functions P0 and H0 form the feedback loop and

P1, HV form the predictive pathway. The signal D is the disturbance. Fig. 6.2

is a simplified version of Fig. 3.2 where P01 = 0. Thus, the output of the con-

troller does not affect the predictive pathway (D, P1). In the reaction-chamber

example this means that the heater does not change the temperature of the entry

substance before it enters the reaction chamber. For example, the entry substance
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is stored in another place so that it cannot be affected by leaking heat from the

reaction chamber. Since the circuit-diagram is a special case of the derivations of

section 3.3 the mathematical framework derived there can be directly applied to

this engineering-problem.

Fig. 6.2b shows the condition where the controller is always able to keep the output

at the desired state and therefore the feedback is no longer used. This is achieved

by an appropriate HV which generates with the help of the predictive input x1 an

output-signal so that the organism is able to counteract the disturbances. Having

P01 = 0 Eq. 3.6 becomes

HV = −P−1
1 e−sT (6.1)

Thus, the transfer-function of the controller HV is composed by two transfer-

functions of the plant. The delay T and the inverse of the transfer-function P1.

The difficult task for the controller is to find the inverse of P1. A solution which

approximates Eq. 3.6 by a superposition of resonator-responses has been shown

in this thesis. However, this problem is far more general since it is present in

every feedback loop and therefore also in every technical feedback-system. Since

in Eq. 6.1 the inverse of P1 is calculated it is called the “inverse controller problem”

(Palm, 2000).

The inverse controller problem belongs to the most famous problems in engi-

neering. Typical solutions are always based on an intrinsic model (a so called

“forward model”) of the to-be-controlled system (Palm, 2000, p.592). Often the

transfer function HV is adjusted manually or heuristically until the feedback loop

(H0, P0, ρ0) has been eliminated. This technique is called “disturbance compen-

sation”. As opposed to this, ISO learning is model free because it is based on

learning. Furthermore, engineered forward models have the central disadvantage

that they will fail if something unexpected happens.

A difficulty with disturbance compensation is that it is an open-loop

technique in that it contains no self-correcting action (Palm, 2000,

p.592).

Thus, control engineers always use their forward controllers only in conjunction

with the feedback loop controller on which the forward model was originally based.

The same strategy is pursued in a natural way in ISO learning. Fig. 3.2 clearly

shows that the reflex will again take over if the predictive pathway fails.

A frequently addressed problem in biology is motor control (Kawato, 1999; Karniel,
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2000; Doya et al., 2001; Wolpert et al., 2001) and especially the control of volun-

tary limb movements, for example in the arm-movement models developed by

Haruno et al. (2001) and others. These authors also employ forward models (viz.

inverse controllers) to address problems of limb control in a mixed model approach

(Wolpert and Ghahramani, 2000). The idea that forward models are involved in

motor control has been explored for example by Grüsser (1986) who tried to ex-

plain the stability of the visual percept during voluntary eye-movements by means

of an internal representation of the motor command (“efferent copy”, “corollary

discharge”). By now clear evidence exists for such a general mechanism. The

details of how it is implemented, however, are still under debate.

The development of the inverse controller inside the boundaries of an organism

can also be interpreted as a form of object recognition. However, one must be

cautious since constructivism does not permit mixing the behavioural level with

the signal-level. Therefore one has to find a closed description on the level of

behaviour and on the level of signals. On the level of behaviour one can inter-

pret the robot’s behaviour as follows: Before learning the robot can only react

after it has bumped into an obstacle. After learning the robot generates an an-

ticipatory reaction (caused by the range-finders) before the bump happens. This

could be interpreted by an observer as the robot having gained knowledge about

the obstacle (in the sense that it will trigger the reflex). Therefore the observed

behaviour, namely avoiding obstacles, could be interpreted as the recognition of

the obstacles. The equivalent interpretation from the robot’s perspective is the

calculation of a forward-model which supersedes the reflex. Thus, the generation

of a forward-model on the robot’s signal-level could be interpreted as a form of

object recognition on the behavioural level. In the experiments presented here the

robot only learns to identify obstacles. Scheier and Lambrosios (1996) used such

a form of sensor-motor learning to learn to categorise between different objects.

6.2.2 Nested loops

In the above section the inner feedback loop was replaced by a fast feed-forward

pathway. In the moment the feedback loop has become inactive learning has

reached its goal and therefore further learning is no longer needed. However, in

an organism learning can often continue and can form new feedback loops.

There is an important difference between the engineering model (Fig. 6.2) and the

biologically inspired model (Fig. 3.2) which enables the latter to continue with
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learning. Opposed to engineering P01 is usually not zero so that there exist two

nested loops in Fig. 3.2. The inner loop is the original reflex formed by H0 and

P0. The outer loop is established by HV , P01 and P1. Once the inner feedback

loop (H0, P0) has been eliminated the outer feedback loop takes over. Thus, a

new feedback loop has been formed which also has the same disadvantage as any

other feedback loop, that it always is too late. This provides the opportunity to

continue learning which has again the goal to eliminate the outer(most) feedback

loop.

Figure 6.3: Nested loops

Fig. 6.3 shows a generalisation of Fig. 3.2 with more than two loops. Learning

starts as usual by superseding the innermost feedback loop (H0, P0) by the second

feedback loop (HV 1, P01, P1). This process can continue now over and over in

superseding the mth feedback loop by the (m + 1)th feedback loop. This process

is limited by the number of sensor-inputs and by their ability to predict each

other as there must be a delay between the different loops (T ). Thus, nested

loops are created which supersede each other finally leading to the loop which
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gets the disturbance without any delay. The concept of the nested loops has

several advantages. The fallback-principle is more gradual than in the case with

only two loops. Once one of the loops fails, an inner loop can take over which

gives learning more security. Also the use of more loops gives the organism the

opportunity to develop a greater behavioural variety for different situations. For

example in one environment the outermost loop works but in another situation

only a loop in between works. Therefore the organism gets more flexibility.

Still the concept of loops has not been exploited to the end. Some year ago, von

Uexküll (1926) argued that the sensor-motor-loops are only a part of the whole

story. It is also quite obvious that the organism itself can establish internal loops

within its boundaries. In ISO learning the next step towards an internal loop would

be to use the motor output directly as an input without using the environment.

Such a feedback mechanism is called efferent copy (von Uexküll, 1926; Grüsser,

1986) and is a consequent extension of the feedback mediated by the environment.

However, from the organism’s perspective there is no difference if the feedback is

internal or external. If it is useful in the context of slow feedback loops it will be

used.

6.2.3 Boundary conditions

Hebbian learning rules like the one used here belong to the class of unsupervised

learning rules. Unsupervised learning seems to be the obvious choice for creat-

ing the first and earliest stages of autonomous behaviour, because it does not re-

quire external (teacher-like) knowledge. Instead it relies purely on self-organisation

based on the correlation structure of the inputs. Such unguided self-organisation

processes, however, can also lead to a situation where nonsensical correlations are

learned leading in the end to an undesired network behaviour. The standard solu-

tion to avoid this problem is the introduction of boundary conditions which keep

the self-organisation process within sensible margins. In practice this is either done

heuristically by the network designer, or, as a better choice, boundary conditions

are introduced such that they intrinsically (and in a natural way) represent the

structure of the problem to which the self-organisation process is applied.

In the case of the unsupervised temporal sequence learning algorithm, this is

achieved by embedding the learning circuit in an environment which leads to a

closed loop situation. The causal relation which naturally exists between many

different pairs of sensor events (pain follows heat, taste follow smell, etc.) as
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described in the introduction creates an implicit boundary condition for our al-

gorithm by using the latest incoming event (the one which drives the reflex) as

the temporal reference for learning. The environment has two properties for ISO

learning: It provides feedback and it contains disturbances, but it is clear that it

does not provide any reward or any other teaching signal. Klopf (1988) called this

feedback loop “non-evaluative” since there is nothing in the environment which

evaluates the organism’s performance. Instead, here ISO learning becomes self-

referenced (von Foerster, 1960; Maturana and Varela, 1980): the actions of the

learner influence its own learning without any evaluation process.

6.3 Observer-problems caused by the closed loop

paradigm

6.3.1 Uncertainty vs. certainty

Coping with an uncertain environment is one main aspect of the definition of

autonomous behaviour (Verschure, 1998). Ekdahl (2001) used the ability to an-

ticipate events for his definition of autonomy. He distinguishes causal and acausal

systems: a system relying only on reflexes is a causal system since it can not look

into the future. Thus, the system experiences the environment as uncertain since it

can never predict when the disturbance D will actually trigger the reflex-reaction

(see Fig. 3.1). From the moment the system has built up anticipatory reactions

the system has become acausal since it can to a limited degree predict the future.

Thus, the disturbance D can be predicted and therefore the organism has gained

certainty over the occurrence of the disturbance D (see Fig. 3.2). In this thesis

words like “causal” or “acausal” must be used with caution since Ekdahl’s defi-

nition of autonomy is in danger of getting mixed up with the definition of causal

systems in the field of signal-/control-theory. In the context of signal-theory the

robot’s circuits always operate causally since the calculations of the signals can

only be performed with signals from the past. However, for Ekdahl autonomous

agents are those which are able to learn anticipatory behaviour. This distinction

shall be used from now in this thesis and shall be extended by the observer-

perspective. Thus, there shall be two different views: the organism’s perspective

and an observer who observes the organism. In the following the perspective of

the organism is described first, followed by the observers perspective.

The acquisition of additional sensorial information enables the organism to predict
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changes in the environment. Thus, for the organism anticipatory actions with the

result from the prediction of a reflex reaction leads to more security as compared

to a situation where it had to rely exclusively on the reflex reaction. However,

on the other hand the gain of security for the organism will lead to an increase

of uncertainty seen by any external observer. Or in other words: to an increase

of uncertainty observed in the domain of behaviour. The uncertainty is expressed

by the behaviour of the organism. This can clearly be seen in the robot-example:

from the moment learning eliminates the stereotypical reflex the robot’s behaviour

becomes more unpredictable. The robot solves its goal (obstacle avoidance) but

an external observer can only guess how the robot actually does that.

It must be noted that the robot still operates completely deterministically and

that there is nothing mystical about that. However, the observer has the problem

that he/she has no access to the internal structure of the robot (thus, it is a typical

observer-problem). The more sensor inputs and the more nested loops exist the

more the behaviour of the robot becomes unpredictable from the observer’s point

of view. At a certain point the observer is no longer able to conclude which sensor

signal has caused a certain action. The observer has to begin to guess about the

causes and consequences.

Thus, while the robot is gaining certainty about its environment the environment

experiences the robot as uncertain. This duality of uncertainty and certainty de-

pending on the point of view (organism vs. “observer”) is often used in definitions

of autonomy (Ford and Hayes, 1995). This will be explained next.

6.3.2 Autonomy

Based on the background of the two system levels (behaviour and neuronal signals)

it now becomes possible to define autonomy. Autonomy shall be defined from the

observer’s point of view (thus, at the behavioural level):

In colloquial speech, the more complex a system becomes, the more

it hides its functioning and internal mechanisms from the curious ob-

server, the more likely we ascribe purposeful behaviour to it. In man-

made (i.e., allopoetic) machines designed so far, the purpose lies ex-

clusively in the domain of descriptions of the observer (Riegler, 2002).

An organism is autonomous from the moment that the organism shows behaviour

which is no longer completely predictable (Walter, 1953; Anderson, 1989; Riegler,
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2002). This is always the case when the organism has more than one choice of what

it could do but the observer does not know the cause of the organism’s decision.

Finding out the reason behind a certain behaviour only is a problem for the ob-

server since the organism itself is still, in theory, completely describable by its

internal states (nervous signals, chemical potentials,. . . ) but for us these internal

states are usually not accessible.

Finally, it must be stressed that unpredictability can also be achieved without

learning, because it is possible to design an agent which is hard-wired and which

expresses random or stochastic behaviour (i.e. with an internal noise generator).

Such a behaviour is completely unpredictable per se but not of interest in the

context of this study.

However, there do exist theories which argue that at the beginning of the ontogen-

esis the organism is in a completely unordered state (“tabula rasa”). Learning has

the task of structuring the organism step by step. Such a view is related to the so

called synergetics of Haken (1992, 1995) and dates back to von Foerster’s “order

from chaos” (von Foerster, 1985). ISO learning and also, for example, Hawkins

and Kandel (1984) oppose such a view that starts with (working!) reflexes and

not with an internally unordered organism. Such an organism would probably not

be able to survive. That an organism is already ordered at birth is supported by

developmental theories, especially by Piaget (1930).

6.3.3 Double contingency

With more than one organism in the world each experiences each other as an

additional source of disturbance and vice versa. Learning still has the task to make

sure that every organism learns predictions about its environment. However, now

“the others” are part of the environment and they also try to do the same namely

predicting “their others”. This leads to Luhmann’s double contingency-theory:

Mutual (viz “double”) contingency is a basic phenomenon in which organisms try

to predict each other. For Luhmann (1984, p.148) the double contingency is the

driving force of any social system.

Double contingency already emerges when two organisms meet since they both

will try to predict each other. This becomes clear in the robot experiment. If

two robots were be placed in the playground they would bump into each other

like any other obstacle in the playground. However, there is a difference between
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walls as obstacles and robots as obstacles. Walls do not change their position

so that the timing between the vision sensor and the bump sensor is completely

defined by the approaching robot. Having two robots in the playground leads

to the effect that the reciprocal anticipatory avoidance movements of both robots

leads to a reciprocal change of the timing of the arriving sensor-events. Each robot

now experiences difficulties in establishing temporal relations between the vision

sensor and the bump sensor since the other robot will slow down when it predicts

the bump with its opponent. Thus, reciprocal anticipations lead to much more

complex learning than that observed with only fixed walls and objects. However,

the aim of this section is only to give an idea of how a social system could emerge

out of the duality of certainty and uncertainty. There is no attempt in this thesis

to make it a serious topic since there are still too many open questions like how

to measure observed uncertainty in the environment and how to relate it to the

disturbance D without crossing the system-levels.

6.3.4 Differences between Biology and Engineering

Now, there shall be an attempt to demonstrate the differences between ISO learn-

ing and those of a typical engineering model (Luhmann, 1984, see footnote on

p.63). In engineering there is always an external observer, the engineer, who

wants the system (for example the robot) to do precisely what he/she bids. This

can be achieved by hard-wiring all properties into the system or by “teaching”

the system the desired response (Segre, 1988) which is also a standard technique

in neuro-informatics (Pal and Kar, 1996). Before “learning” the neural network

generates an undesired output or just generates a random-output. The engineer

“teaches” the system by a special signal until it has reached the desired behaviour.

The classical example is the delta rule where the actual output of a model-neuron

is compared with the desired output. The error between the actual output and the

desired output changes the synaptic weights with the goal to get the error to zero

(Widrow and Hoff, 1960). Thus, the system first exhibits unpredictable or unde-

sired behaviour. Then later (after learning) it becomes completely predictable in

the sense that it is now useful for the engineer (who is part of the environment).

ISO learning embedded in the environment behaves the other way round: for an

observer, the behaviour of the robot at first is completely predictable due to its

reflex. After learning the robot’s behaviour is only partially predictable for an

observer since the robot has found one behavioural solution out of many possi-

ble solutions. From experiment to experiment (and even during an experiment)
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the robot develops different strategies so that, despite the fact that the robot

always starts from the same pre-wired initial condition (reflex)1. This is the com-

plete opposite of a technical solution: in a technical solution the observer wants

to have a predictable system. Thus, one can differentiate between two different

paradigms: the “Engineering Paradigm” and the “Biology Paradigm”. The “En-

gineering Paradigm” is always interested in a particular desired behaviour which

is achieved by an external evaluation of the system’s behaviour. In the “Biology

paradigm” the organism follows its internal objectives and there is no external

evaluation.

Von Uexküll used this difference between biology and engineering and argued that

machines can never be alive since they are only extensions of our sensor and

motor surfaces. Obviously von Uexküll referred in his work to the engineering-

paradigm which leads to reliable machines which indeed can be used to extend

our senses (TV, radio, telescopes, ...) and our motor reactions (car, air-plane,

. . . ). The biology-paradigm, however, leads to very unreliable machines since

these machines become autonomous. Nobody would use these machines for his or

her purposes since they produce uncertainty for their environment, hence for their

users, too. Thus, it is clear that one has to choose the paradigm depending on the

research-interest. Using the “biology paradigm” makes it possible to get closer to

an understanding of autonomous agents.

Temporal difference (TD-) learning and also Q-learning have their origins in En-

gineering. This becomes clear when it is remembered that both algorithms use a

reward-signal. In the context of engineering this makes sense since the engineer

wants to have a reliable response at the end of learning. If one wants to use TD-

learning rigorously in the context of autonomous behaviour (“biology-paradigm”)

then one is faced with a problem that the reward signal would have to come from

“inside the organism” and not from the outside in the form of “wishful attribu-

tions” (Sharkey and Ziemke, 1997). Drive reinforcement learning eliminates the

problem of defining a reward from the beginning and should be considered if an

autonomous agent has to be designed.

1The pre-wired initial condition could be interpreted as a “genetic” basis.
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6.3.5 Biology and Pure Physics

Descartes was one of the first who struggled with the problem that an organism

should in principle be entirely describable by physical laws (Descartes, 1952)2.

This poses the problem that there is no difference between an organism and a

mechanical machine. The concept of a “soul” was no longer needed. Knowing

that the church would never accept a view which explained a human only by

physical laws he solved this problem by dividing the human brain processes into

voluntary and in-voluntary parts (Rachlin, 1976, p.4). The in-voluntary processes

in the human body could be explained by mechanical or physical laws whereas the

voluntary processes could not.

Three hundred years later this discussion is still vividly alive: Von Uexküll dis-

tinguishes between biology and physics (von Uexküll, 1926, p.71) arguing that

biology is more than only physics. While physics only relies on physical laws bi-

ology has an underlying “plan”. This can be interpreted in different ways (God,

metaphysics, . . . ). The “plan” in Uexküll’s view means that the reflexes of the

organism are perfectly integrated into the environment. This means that before

learning starts there is already a perfectly adjusted mechanism, namely through its

reflex. This perfect integration is due to evolutionary processes that the species

has undergone during several millions of years. This thesis demands the same,

however by bypassing evolution and adjusting the reflex so that “it works”. In

that sense this thesis completely conforms with Uexküll. However, there are dif-

ferent views regarding whether a robot can ever be perfectly integrated in the

environment which leads to the next section.

6.3.6 Robotics

Robotics is a discipline which can clarify the concepts of autonomous behaviour

and interactions with a complex environment quite naturally. The emphasis shall

be on those contributors to that field who explicitly or implicitly use a closed loop

paradigm.

Rodney A. Brooks is one of the pioneers in the field of autonomous robots (Brooks,

1989b; Lorigo et al., 1997). Brooks argues that looking for the right representa-

tion of the world for the robot is the major obstacle in designing a working robot

and that the search for the right representation is endless. In the end the robot’s

2Descartes: 1596–1650
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representation is in danger of being a a representation which mainly reflects the

engineer’s world-view. Therefore Brooks make a radical decision and introduced

robots without “representation”. Instead he started from a functional point of

view: His robots should “work” in their environment. Brooks used, for the def-

inition of a “working” organism, Uexküll’s suggestion that an organism has to

be integrated into its environment where it shall always be able to perform its

function(s). Therefore for Brooks it is not important how the internal circuits of

the robot are interpreted by an observer but how they perform a certain function

while interacting with the environment3.

If there is more than one sensor-motor loop these loops are organised in a sub-

sumption architecture which finds its correspondence in this thesis in the nested

reflex loops:

We build an incremental layer of intelligence which operates in parallel

to the first system. It is pasted on to the existing debugged system and

tested again in the real world. This new layer might directly access the

sensors and run a different algorithm on the delivered data. The first-

level autonomous system continues to run in parallel, and unaware of

the existence of the second level (Brooks, 1997).

Such engineered robots exhibit complex behaviour and observers attribute rewards,

punishments and other anthropomorphic aspects into the robots. Brooks sees

himself as an engineer and not as an psychologist or a biologist. Therefore he

always refrained from implementing his robots in a biologically realistic manner.

Brooks is of the opinion that the brain is still not understood and that the crude

simulations done by connectionists are far removed from the realism which is

needed to simulate certain brain structures successfully. Therefore Brooks operates

on the level of behaviour. This point of view conforms with the behaviourists but

in Brook’s case also with the constructivists. Speaking with Luhmann he describes

his robots only on the level of behaviour (see introduction) and does not make any

attempt to cross levels. Thus, he does not attribute from behaviour to internal

states and therefore he does not need a representation of “fear” or “pleasure” in

the circuits of his robots.

3The discovery of the functional nature of neuronal processes especially in the retina by
Lettvin et al. (1959) has probably stimulated Maturana to develop his theory of constructivism.
The frog’s retina is only interested in small moving objects (flies) and in big moving objects
(enemies). The resulting motor-reactions are quite obvious and lead to two independent closed
loops. The one has the function for eating food and the other loop has the function to escape.
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Moving on to the signal (or neuronal) level Brooks identifies two ways to interpret

the internal signals of his robots without using external attributions. One way

refers to the functional cycles by von Uexküll as stated above. The other interpre-

tation is related to constructivism. Constructivists argue that the neuronal system

operates self-referentially since it relates neuronal signals to neuronal signals. As

Brooks is an engineer he relates electrical signals to electrical signals:

An alternative decomposition makes no distinction between peripheral

systems, such as vision, and central systems. Rather the fundamental

slicing up of an intelligent system in the orthogonal direction dividing

it into activity producing subsystems. Each activity, or behaviour

producing system individually connects sensing to action. [. . . ] Our

favourite example [. . . ] is a creature, actually a mobile robot, which

avoids hitting things. [. . . ] It is still necessary to build up this system

by decomposing it into parts, but there need to be no clear distinction

between a “perception subsystem”, a “central system” and an “action

system” (Brooks, 1997).

This is closely related to Klopf’s work and also to the approach presented here.

ISO learning fits perfectly with Brook’s view since it also only relates signals to

signals. As in Brook’s work this thesis does not use the term “representation”.

Instead transfer functions are used here which also simply relate signals to signals.

Just as in this thesis Brooks is also aware of the observer problem. Attributing

“fear” to a mobile robot does not mean that the robot actually has signals which

represent “fear”.

More biological realism towards biology can be seen in Verschure’s work with

mobile robots. In the field of temporal sequence learning Verschure has been

working several years in using robot applications (Verschure and Pfeifer, 1992;

Verschure and Voegtlin, 1998). In his words every organism undergoes three steps

of development (Verschure, 1998): pre-wired reflex (fixed connections), adaptive

control (classical Hebbian learning of sequences of sensor inputs) and reflective,

contextual control (goal- or reward-oriented learning). In Vershure’s terminology

adaptive control has no goals but builds up temporal associations with “proximal”

and “distal” sensors. At the stage of the reflective control a goal is introduced in

the form of a reward or punishment when, for example, an object has successfully

been found. Other have introduced similar distinctions between different levels of

processing such as Meysel (1991) or Karniel (2000).
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This thesis shows that Verschure’s division into three levels of control may be too

rigid. The behavioural pattern, observed in the robot presented here, seems to

be punishment-guided, which would place it at the advanced level of reflective

control. The un-supervised, non-evaluative, but self-referenced internal structure

of the robot’s interaction with the environment, however, place it at the more

simple level of adaptive control.

This shows that autonomous agents can develop rather complex behavioural pat-

terns by means of simple nested feedback loop systems which can be interpreted

as a reward or punishment by an observer. Although the robot operates inter-

nally reward-free the external observer attributes rewards into the robot. This is

a typical observer-problem.

In this thesis the role of rewards have been questioned and argued that they might

exist only for an external observer while internal processing is guided by reward-

free learning. Along the same lines the question can be asked if associative hebbian

learning is only a construct of the external observer. The internal processing might

be much simpler. Such processing might be based on non associative learning, for

example habituation and sensitisation. The work by Damper et al. (2000) presents

a robot which expresses behaviour which looks like associative learning but only

needs habituation and sensitisation.

This shows that attributing from behaviour to internal states can be utterly wrong.

Internal states are not observable from the outside and therefore the observer

must guess. However, the main reason for those misinterpretations arise from the

closed loop operation of any organism and its consequences, like input control and

homeostasis. Paradoxically, the closed loop paradigm also offers a solution out

of the observer problems. Luhmann’s solution to this problem is the complete

separation of the two system-levels. Behaviour triggers behaviour and neuronal

signals trigger neuronal signals. This solution is only possible because of the closed

loop paradigm. Only in a self-referential system the levels separate. Robotics is

the right discipline to point out observer-problems or in general phenomena of

organismic life as it operates in a closed loop paradigm per se.

6.3.7 Embodiment

Living organisms are perceived of having a “body” which forms a boundary be-

tween the living organism and its environment. Robots also have something like

a “body” and even a simple Hoover seems to have a body. The body essentially
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Table 6.1: Different forms of embodiment.

Authors Embodiment Organism Environment
Searle/Sharkey/Ziemke organismic living real
Brooks functional physical,living/artif real
Riegler/Quick self-referent any any
Pfeifer/Scheier physical physical,living/artif real

refers to a physical object which determines with its boundary what is inside and

what is outside. The question arises if a physical body is needed to implement an

autonomous (or intelligent) agent.

Classical AI denies that an agent needs a physical body. For classical AI the

(physical) agent is not important since the agent is completely describable by its

underlying algorithms. Algorithms have the advantage that they are not linked

to a special body or substrate (Dorffner, 1991, p.7). Therefore the actual imple-

mentation of the algorithm does not matter. This means for an agent that it can

be either implemented as a computer-program and or as a living agent made of

flesh and blood (Turing, 1950). Computers and living organisms are equivalent in

classical AI. Both perform information-processing: they receive input-data, pro-

cesses the data and produce an output. A summary of classical AI can be found

in Pfeifer and Scheier (1999, pp.36–58).

The identification of an organism as disembodied information-processing computer

by classical AI has always been criticised. All these criticisms target the disem-

bodied view of AI and claim that a real body is needed. Therefore the subject

which discusses whether a real body is needed for an intelligent autonomous agent

or not is called “embodiment”. The remainder of the paragraph will present dif-

ferent definitions of embodiment (see Table 6.1). It will start with the strongest

definition of a “organismic” embodiment and close with “physical” embodiment.

The earliest criticisms which challenged classical AI came from Searle (1980).

Searle compares a real organism of flesh and blood with a replica-model which is

built in the form of a computer. The difference for Searle is that only the real

organism can “really” feel “fear” or “punishment”. In other words: the living

organism gives the sensorial stimuli a meaning which can be further related to

intentionality (Mele, 1997). Intentions are related to internal motivations which

give the stimuli meanings. For Searle it is clear that only “real” organisms can

have “real” feelings and that artificial agents do not experience feelings at all. Such

internal representations only exist in a living organism and not in a mechanical
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“body” (which is called today “organismic embodiment” Ziemke 2001). He argues

that the existence of internal human-like experiences is linked to the special matter

living organisms are constituted.

Searle’s definition about “organismic embodiment” can also be found today:

Without an integral body it [the robot] does not experience pleasure or

pain in reinforcement learning; there are only weight changes or pro-

gram changes. The actual putative ’experience’ of a robot undergoing

reinforcement learning is the same both for reward and punishment.

The organism, on the other hand, is driven by its bodily aversions and

needs (Sharkey and Ziemke, 1997).

Only if there are living cells and only if they form an integral body it is possible for

the organism to have “real” experiences. “Real” feelings for Ziemke and Sharkey

are linked to the matter they emerge from and how this matter is organised:

A robot is a collection of inanimate mechanisms and non-moving parts

that form a loosely integrated physical entity. [. . . ] By way of example,

if you attach a hula-hoop of a bunch of clothes pegs to your body, they

will clearly be objects attached to your body. [. . . ] There is not the

same clear distinction between the robot body and the objects around

it as there is for an organism. This is not just a trivial matter. The

chemical, mechanical, and integrating mechanisms of the living things

are missing from robots. Cells need oxygen and so living bodies need

to breathe, they need nutrition and so bodies need to behave in a way

that enables ingestion of appropriate nutrients (Sharkey and Ziemke,

1997).

However, Sharkey and Ziemke do not justify their view by referring to intentional-

ity. They argue that evolution is the key to the difference between artificial agents

and living organisms. Citing von Uexküll they argue that the organism’s relation

to its environment has developed during a long evolution and that finally a perfect

solidarity between the environment and the organism has evolved. This solidarity

is further developed during the ontogenesis of the organism. Thus, the organism is

“rooted” in its environment. More specifically the organism has developed during

its evolution “working” feedback loops (also called functional cycles) which are

further developed during the ontogenesis.
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At that point Sharkey’s and Ziemke’s arguments can be integrated into the frame-

work of this thesis. In their view feedback loops have evolved in a long evolu-

tionary process so that they perform their task for the organism. Sharkey’s and

Ziemke’s point is that only a very long evolution is able to adjust the parameters

of feedback-mechanisms. Otherwise the organism would deteriorate. This is con-

tradicted by classical control-theory. Feedback-mechanisms are used because they

are very robust and already a rough adjustment of the parameters let them achieve

their goals. This can be seen in the robot-experiment. The retraction-mechanism

which follows after a bump can have a wide range of parameters. It does not

matter how the robot performs the retraction-mechanism. The important aspect

is that the result is the right one (it must “work”). Therefore the argument that

evolution has carefully adjusted the parameters of a feedback-mechanism does not

necessarily hold. The advantage of feedback-mechanisms is that they know very

little about the environment – but they still work. This also means that the robot

is far more robust to other environments than predicted by Sharkey and Ziemke.

Also the avoidance case makes it clear. First, the avoidance case has been simu-

lated on a computer which provided ISO learning with an artifical environment.

Later the same algorithm was transferred with the same parameters and was con-

nected with a real robot. There was no need no change the parameters of the

feedback loops. The real robot worked well with the parameters obtained from

the simulation. Obviously, the difference between simulation and the real-world

application is compensated by the feedback loop. Therefore this suggests that

feedback loops provide a robustness which enables an organism to live with only

roughly adjusted parameters and therefore a “perfect solidarity” between organ-

ism and environment is not needed. This perfect solidarity might later develop

during learning (or the ontogenesis) but for initial reflexes it is not needed.

Above it has been stressed by Sharkey, Ziemke and von Uexküll that organisms

operate in feedback loops. However, classical AI interprets an organism as an

input/output system by ignoring the feedback loop. This is a direct implication of

the computer-metaphor where a computer (or algorithm) is perceived by its user

as an input/output system. The user inputs information, the computer processes

it and sends it back to its output. There is nothing wrong if this metaphor is

applied to computers as they have to be reliable tools. However, computers do

operate in a closed loop as the user closes the loop by him- or herself. In a more

systems theoretical interpretation the difference between input/output paradigm

and the closed loop paradigm lie in the control condition. While the organism

controls its input the computer user controls the output of the computer.
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Brooks was probably the first who targeted the input/output paradigm in the

context of autonomous agents (Brooks, 1989a,b). He argues that an organism, in

contrast to an algorithm, is not an input/output or stimulus/response-system but

rather a closed loop system. Like Uexküll Brooks stresses the fact that agents

evolve in functional cycles (or feedback loops).

The concentration on functional cycles avoids attributions towards internal states.

Brooks stays either on the signal-level or on the behavioural level but does not

mix them. Therefore he calls his view “intelligence without representation”. The

agents act in an “intelligent” way but the internal wiring is guided by the demand

that the feedback loops have to work. Brooks therefore avoids the never ending

discussion if there are “real” feelings and if these are only represented in “real”

bodies4. Thus, Brooks avoids the observer-problem, namely identifying internal

states like feelings in an organism or a robot. As with this thesis he simply avoids

giving an answer to the question by concentrating on the function of the agent. If

the observer attributes pleasure or pain into the robot is his/her fault (and many

do).

It is important to note that such functional cycles imply an environment. Oth-

erwise there is nothing to do. In the case of Brooks the environment must be a

real one to call an agent embodied. The agent itself can be made of something

different than of flesh and blood.

The problem of embodiment refers to the fact that abstract algorithms

do not interact with the real world. Rodney Brooks forcefully argued

that intelligence requires a body (from Pfeifer and Scheier 1999).

Therefore Brook’s definition of embodiment is weaker than the one by Ziemke and

Sharkey. Also an artificial agent can be embodied (see Tab. 6.1).

The most general definitions have been proposed by Riegler (2002) and (Quick

and Dautenhahn, 1999) who demand that an embodied system must operate self-

referentially and it must maintain internal goals (see Tab. 6.1). This is usually

called autopoiesis. Quick stresses the point that the organism has to be struc-

turally coupled to an environment and the environment must provide perturba-

tions (see Maturana and Varela 1980). Therefore Quick emphasises, like Brooks,

that there must be an environment and this must be different in contrast to the

organism. Riegler on the other hand stresses the functional cycles (e.g., the feed-

back loops), namely that the organism has to “work” in its environment and that

4He also avoids the symbol-grounding problem which is discussed in Pfeifer and Scheier (1999).
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it has to gain functional competence in its environment. This can also be called

“historical embodiment”. Riegler is probably the only one who stresses the fact

that learning (gaining competence) is an important aspect of embodiment.

Both views are strongly related to this thesis where also self-reference is demanded

and the disturbance from the environment plays an important part. These two

points shall now be discussed in more detail.

Figure 6.4: Transformation of the standard feedback loop (a, see also Fig. 3.1)
into a unity gain feedback (b). The transfer-function of the environment P0

can be integrated in the transfer-function of the organism. The environmental
transfer-function can be eliminated so that the environment in the form of P0

is no longer existing. However, the disturbance in the environment can not be
eliminated.

Self-reference with a disturbance can be established by the simple reflex. This is

shown in Fig. 6.4a. The question arises why these two demands lead to a definition

of embodiment. More specifically it boils down to the question: what belongs to

the environment and what belongs to the organism?

To find the answer to what belongs to the organism and what belongs to the envi-

ronment it must be recalled that Fig. 6.4 represents the organism’s point of view.

The signals are therefore neuronal signals. Also the environment is represented

as neuronal signals and therefore there is no distinction between environment and

organism in the form of different signals.

Even the distinction between environment and organism with the help of the

transfer-functions is not useful since Fig. 6.4a can be transformed to Fig. 6.4b

by dividing by P0. This effectively eliminates the transfer-function of the envi-

ronment. In engineering this flexibility is often used to simplify the mathematical

description of a system (Palm, 2000). The resulting transfer-function H0/P0 seems

now to be inside the organism. Therefore from the organism’s point of view it is

difficult to decide what is inside and what is outside.
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However, the disturbance can not be eliminated. It is always a property of the

environment which can therefore be used to identify the environment. Therefore

embodiment from the organism’s point of view can be defined by the disturbances:

A self-referential system is embodied if there exist disturbances which

only exist outside the organism. Inside there are no disturbances. As

a consequence a boundary which distinguishes inside and outside can

be drawn.

Thinking in terms of evolution the disturbance can be interpreted as the con-

stituent aspect for the organism. For example, cell-membranes have been devel-

oped during evolution in order to protect proteins from the contingencies (for

example acids) in the environment. Therefore embodiment can be seen as a form

of boundary-maintenance (Luhmann, 1984). This principle is used in Luhmann’s

work also on the level of behaviour. Society forms sub-systems which is also a

form of boundary-maintenance (political parties, the financial system, gangs, . . . ).

With the above given definition of embodiment and the introduction of transfer-

functions for the organism and the environment, a solution for the “hoola hoop”

problem can be offered: does it belong to the “body” of the robot or not? Through-

out this thesis signals have been related to signals by transfer-functions. Thus,

if the hoola-hoop does not change any transfer-function it does not exist for the

robot/organism. If it changes a transfer function it is inevitably relevant for the

robot. If the hoola-hoop belongs to the organism or to its environment is a mat-

ter of interpretation. From the robot’s point of view it is not distinguishable.

As pointed out above the environmental transfer-function P0 can be integrated

into the internal transfer-function H0. Using the above definition the hoola-hoop

belongs to the robot’s body if it does not cause a disturbance (for the robot).

For example, perhaps the robot can exploit the dynamics of the hoola-hoop to

perform a certain task better than without it. Thus, the hoola hoop is in this

case is no longer a disturbance but it is integrated in the self-referential processes

of the robot. This becomes clearer with an example: On the WGW’025 Pfeifer

described a person who has to carry water in buckets down a hill. This person

used the dynamical properties of the buckets filled with water to “dance” down

the hill. Pfeifer added that the belly of the water-carrier might also contribute to

the dynamics of the “dance”. The question arises what belongs to the body and

what does not belong to the body. Therefore he suggested “fuzzy” boundaries

5EPSRC/BBSRC International Workshop Biologically-Inspired Robotics: The Legacy of W.
Grey Walter 14-16 August 2002, HP Bristol Labs, UK
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between body and environment. This is equivalent to the possibility of changing

the transfer-functions in the above mentioned manner (for example, of having only

one internal transfer-function H0/P0).

In one example the hoola-hoop changed the robot’s transfer-function(s) in a desired

manner. Therefore, it was considered being a part of the robot’s body. This

argument can be made stronger. Pfeifer and Scheier (1999) demands that the

agent has to be a physical object. Therefore this form of embodiment is called

“physical embodiment”. This means that the environmental transfer-functions

(P0 and P1 in Fig. 3.2) have to be at least partially constituted by a contact to

the physical world.

Summarising, like Riegler’s and Quick’s work this thesis does not demand that an

autopoietic system has to consist of flesh and blood, nor does it demand a real

environment. The consequence of this is that embodiment has nothing to do with

the actual physical realisation of the agent. It can be an organism, a robot or a

computer simulation. Any system which establishes autopoiesis and experiences

perturbations can be declared as being embodied. Autopoiesis and perturbations

translate in this thesis to feedback and disturbances which means that there is

an active process which maintains homeostasis. Thus, embodiment in this thesis

means more than a passive exchange between a system and its environment. This

process has to be active and therefore a granite outblock in the antartic tundra

(Quick and Dautenhahn, 1999) is not embodied from the point of view of this the-

sis. Active feedback is seen here as the basic property of the living since it implies

boundary-maintenance (system/environment) and it directly provides a learning-

goal, namely to supercede the feedback by fast feed-forward action. As already

pointed out also the disturbance is essential for the definition of embodiment given

here since it defines an area (the body) where this disturbance is compensated.

In a broader context embodiment can be interpreted as the creation of a bound-

ary which has the task of reducing entropy within boundaries and is therefore

related to the second law in thermodynamics (Balian, 1991). As discussed in this

thesis, time plays an important role in this law since entropy is a measure of

the unpredictability of events. Therefore this thesis argues that the basic driving

force for the development of spatial boundaries and the development of suitable

learning-rules is the a-symmetry of time.
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6.4 Summary

This chapter has discussed ISO learning in the closed loop established by the

environment. In the closed loop situation ISO learning turns the reactive organism

into a proactive organism. A similar problem is known in the field of industrial

control. Standard feedback control reacts also always too late. The solution of

this problem is the inverse controller which performs feed-forward control. This is

equivalent in ISO learning with the generation of an anticipatory action. Therefore

ISO learning can also be applied to industrial control problems.

ISO learning does not limit the number of input channels. Consequently the

number of feedback loops is not limited. Every input in ISO learning can therefore

form a new feedback loop. New loops can be formed as long as new inputs are

available and as long as the new loop anticipates the slower reacting loop. At

the end, nested loops arise which anticipate each other. Such nested loops were

also employed by Rodney Brooks in his subsumption architecture. In contrast to

Brooks in ISO learning the loops emerge while in Brook’s work they were usually

hard-wired into the robot.

The closed loop paradigm has also consequences on the way the organism observes

its environment and how the organism is observed by its environment. Especially,

uncertainty is observed in a different way from the perspective of the organism and

from the perspective of an external observer. While the organism gains security by

learning anticipations, the environment experiences the opposite. The behaviour

of the organism becomes more and more unpredictable. Consequently, autonomy

is defined by gaining more certainty from the perspective of the organism and at

the same time becoming more unpredictable for observers in the environment.

Not only the uncertainty is observed in a different way. Also the function of the

agent is observed in a different way by the organism itself and by the environment.

While for the organism its function is defined by itself, the observer defines the

organism as an input/output system. The organism has to be useful to the ob-

server. These two points of view have been called the “engineering paradigm” and

“the biology paradigm”. Consequently, one has to decide which paradigm should

be employed in a certain context.

Autonomous robotics is the natural discipline which employs closed loop appli-

cations. In the context of this work it is important that robotics in particular

is aware of problems which arise when behaviour is observed and interpreted.

Rodney Brooks has shown that “intelligent” robots can be implemented without
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attributing towards internal states. His solution is similar to the one presented in

this thesis: closed loops. As already pointed out in the first chapter, closed loops

establish systems without any quality. By closing the loop one can either stay on

the level of signals or on the level of behaviour. This prevents the mixing of the

system-levels and prevents misinterpretations of behaviour. This should also be

kept in mind when working with reward signals in autonomous robotics. Reward

signals cross the system-levels since the internal reward-signals are associated to

external behaviour.



Chapter 7

Concluding remarks

Using constructivism as the underlying paradigm it was possible to develop a

reward-free, isotropic algorithm for sequence order learning (ISO learning) in which

learning relies only on the temporal order of its inputs. This has the advantage

that all input signals are treated equally and that learning takes place between all

of them. Thus, it represents a form of unsupervised sequence learning. Learning

is only driven by the temporal relation between input- and output-signals.

In the second part of this study a closed loop situation has been introduced by

means of behavioural feedback which determines the functional role of the inputs

to ISO learning. The starting point is the setup of a primary reflex loop which

is distinguished from all other inputs only by the fact that it initially carries the

largest synaptic weight. In general, such closed loop reflex loop situations have

the disadvantage that any re-action will only occur after an incoming sensor event.

This inherent disadvantage of feedback loops leads to a general objective for im-

proving animal behaviour which is to find a mechanism which prevents the reflex.

Sequence learning can achieve this by creating earlier, anticipatory actions.

In addition, it has been shown that weights stabilise as soon as the reflex has been

successfully avoided. Because of the isotropy of the inputs, any other input line

can take on the role of the reference signal during learning and the initial reflex

can even be unlearned or reduced in strength – a situation which is observed in

many physiological reflexes.

In the robot application it has been shown that ISO learning can solve the classical

obstacle avoidance task in a fast and robust way. The robot was initially equipped

with a fixed reflex reaction. ISO learning established then a relation between the
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trigger of the reflex and earlier arriving signals from range finders. This lead to

an avoidance reaction which prevented collisions with obstacles.

It seems that only avoidance-behaviour can be learned as ISO learning is guided

by “reflex-avoidance”. However, attraction behaviour can also be learned by ISO

learning without any modification of the earning rule. Only the reflex must be

adjusted. This has been shown in a simulated robot-experiment. This experi-

ment made clear that one must be cautious when behaviour is interpreted and

conclusions are drawn towards internal states. The behaviour of the robot sug-

gested a reward-based maximisation inside the robot. However, internally it was

a reward-free minimisation, namely the elimination of the reflex. To avoid such

observer-problems this thesis suggests the sole use of one self-referential system-

level: either neuronal signals or behaviour.



Appendix A

Plancherel’s theorem

This theorem is rather unknown, therefore we state it here as:∫ ∞

0

f1(t)f2(t)dt =
1

2π

∫ +∞

−∞
F1(iω)F2(−iω)dω (A.1)

=
1

2π

∫ +∞

−∞
F1(−iω)F2(iω)dω (A.2)

where F is the Laplace transform of f (Stewart, 1960). If we set f1 = f2 = f it

becomes the more commonly used theorem of Parseval.
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The robot-hardware

A modified commercial robot (“rug warrior”, 16 cm diameter) was used. Two

active wheels are driven by DC motors, steering is achieved through different DC-

levels. Average speed was adjusted to 0.45 m/s using an appropriate bias to ds.

To detect mechanical contact the robot has three microswitches in a triangular

configuration. Visual signals are generated by active range finders with an angle

of 70◦ between them. The computations were done on a computer (Pentium 90)

running LINUX in realtime-mode. The communication between the robot and the

computer was achieved by a simple cable.

Fig. B.1 shows the circuit which connects the computer (a) with the modified robot

(b). On the robot-side only the additional components compared to the original

design of the rug-warrior are shown. However, only the range-finder circuitry of

the original robot was used.

The analog signals were provided by a cheap ISA AD/DA-card (“super 12 bit

AD/DA-card”). Only the DA converter was used in the robot experiment. The

A/D converter could be used to transmit the information from the LDRs for future

experiments.

All digital signals were interfaced by the parallel printer-port. See table B.1 for

the pinouts of the printer-port.
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Figure B.1: Interfacing between PC (a) and robot (b). Part a) and b) are
linked via a cable which is plugged into the connectors X1 and X2. Only those
parts are shown which are new compared to the original rug-warrior design.
Connector X3 is connected to an AD/DA interfacing card and X4 is connected
to the parallel port of the PC. The power (±12V ) is supplied externally by a
standard switching power supply. The bump sensors of the robot (connector
BUMP) pull the corresponding line to ground level. For the range-finders the
circuitry of the rug-warrior is used. The two infra-red transmitters (IR-TR)
are controlled directly by two ports of the printer-port and the signal of the
infra-red detector (IR-REC) is directly fed back to the printer port. The D/A
converter in the PC provides two analog signals of the range (−10V . . . + 10V )
which are amplified by T1-T4 and sent to the two motors of the rug warrior.

The LDR-signals are for future use.

Table B.1: Pinout of the parallel printer-port

Pin Name Robot
2 D0 IR-transmitter, left
3 D1 IR-transmitter, right

11 BUSY bump, left
12 PE bump, rear
13 SEL bump, right
15 /ERROR IR-receiver

B.1 Motor control

On the PC-side (a) the AD/DA card was used to provide analog signals for the

motors of the robot. On the robot side two complementary power amplifiers
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supply the motors with a maximum current of 250mA (limited by R3 and R7).

To get even more protection against overcurrents R1,R2,R5 and R6 limit the total

current through the transistors to 750mA. Because of the simple design of the

power amplifier there exists a dead zone (±0.7V ) where the input signal causes

no output signal (0V ). This dead zone was compensated in the control-software.

Taking into account the output-range of the DA-converter the active range for the

motor was approximately ±8V .

B.2 Range-finders

The range finders of the robot use a standard IR-receiver which is common in

TV-remote controls. Such IR-receivers are only sensitive to pulsed infra-red at a

frequency of approx 40kHz. The 2 IR-transmitters work with such a pulsed fre-

quency and can be switched on and off by the printer-port. To detect obstacles in

the 2 directions first one IR-transmitter is switched on and after 1ms the response

of the IR-receiver is registered. The same timing protocol applies to the other

IR-transmitter which is executed directly after the first one. Thus, the detection

takes place within 2ms. Since one time step is 10ms the temporal difference be-

tween the left and the right sensor can be neglected. The detection range was

adjusted to 0.5 − 15.0 cm.

B.3 Bump-sensors

The bump sensors of the robot are directly accessible at the printer-port. Since

the bump sensors only pull down the signals to ground an array of three pull-up

resistors is used to achieve TTL-level.
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