
LETTER Communicated by Stephen José Hanson

Free-Lunch Learning: Modeling Spontaneous Recovery of
Memory

J. V. Stone
j.v.stone@sheffield.ac.uk
Psychology Department, Sheffield University, Sheffield S10 2TP, England

P. E. Jupp
pej@st-andrews.ac.uk
School of Mathematics and Statistics, St. Andrews University, St. Andrews KY16
9SS, Scotland

After a language has been learned and then forgotten, relearning some
words appears to facilitate spontaneous recovery of other words. More
generally, relearning partially forgotten associations induces recovery of
other associations in humans, an effect we call free-lunch learning (FLL).
Using neural network models, we prove that FLL is a necessary con-
sequence of storing associations as distributed representations. Specifi-
cally, we prove that (1) FLL becomes increasingly likely as the number of
synapses (connection weights) increases, suggesting that FLL contributes
to memory in neurophysiological systems, and (2) the magnitude of FLL
is greatest if inactive synapses are removed, suggesting a computational
role for synaptic pruning in physiological systems. We also demonstrate
that FLL is different from generalization effects conventionally associ-
ated with neural network models. As FLL is a generic property of dis-
tributed representations, it may constitute an important factor in human
memory.

1 Introduction

A popular aphorism states that “there’s no such thing as a free lunch.”
However, in the context of learning theory, we propose that there is. In
previous work, free-lunch learning (FLL) has been demonstrated using a
task in which participants learned the positions of letters on a nonstan-
dard computer keyboard (Stone, Hunkin, & Hornby, 2001). After a period
of forgetting, participants relearned a proportion of these letter positions.
Crucially, it was found that this relearning induced recovery of the non-
relearned letter positions. Preliminary results suggest that FLL also occurs
using face stimuli.

If the brain stores information as distributed representations, then each
neuron contributes to the storage of many associations, so that relearning

Neural Computation 19, 194–217 (2007) C© 2006 Massachusetts Institute of Technology

Free-Lunch Learning 195

Figure 1: Free-lunch learning protocol. Two subsets of associations A1 and A2

are learned. After partial forgetting (see text), performance error Epre on subset
A1 is measured. Subset A2 is then relearned to preforgetting levels of perfor-
mance, and performance error Epost on subset A1 is remeasured. If Epost < Epre
then FLL has occurred, and the amount of FLL is δ = Epre − Epost.

some old and partially forgotten associations affects the integrity of other
old associations. Using neural network models, we show that relearning
some associations does not disrupt other stored associations but actually
restores them.

In essence, recovery occurs in neural network models because each as-
sociation is distributed among all connection weights (synapses) between
units (model neurons). After partial forgetting, relearning some of the as-
sociations forces all of the weights closer to preforgetting values, resulting
in improved performance even on nonrelearned associations.

1.1 The Geometry of Free-Lunch Learning. The protocol used to ex-
amine FLL here is as follows (see Figure 1). First, learn a set of n1 + n2

associations A = A1 ∪ A2 consisting of two intermixed subsets A1 and A2

of n1 and n2 associations, respectively. After all learned associations A have
been partially forgotten, measure performance on subset A1. Finally, relearn
only subset A2, and then remeasure performance on subset A1. FLL occurs if
relearning subset A2 improves performance on A1. Unless stated otherwise,
we assume that for a network with n connection weights, n ≥ n1 + n2.

For the present, we assume that the network has one output unit and
two input units, which implies n = 2 connection weights and that A1 and
A2 each consist of n1 = n2 = 1 association, as in Figure 2. Input units are

196 J. Stone and P. Jupp

a b

Figure 2: Geometry of free-lunch learning. (a) A network with two input units
and one output unit, with connection weights wa and wb , defines a weight
vector w = (wa , wb). The network learns two associations A1 and A2, where (for
example) A1 is the mapping from input vector x1 = (x11, x12) to desired output
value d1; learning consists of adjusting w until the network output y1 = w · x1

equals d1. (b) Each association A1 and A2 defines a constraint line L1 and L2,
respectively. The intersection of L1 and L2 defines a point w0 that satisfies both
constraints, so that zero error on A1 and A2 is obtained if w = w0. After partial
forgetting, w is a randomly chosen point w1 on the circle C with radius r , and
performance error Epre on A1 is the squared distance p2. After relearning A2, the
weight vector w2 is in L2, and performance error Epost on A1 is q 2. FLL occurs if
δ = Epre − Epost > 0, or equivalently if Q = p2 − q 2 > 0. Relearning A2 has one
of three possible effects, depending on the position of w1 on C : (1) if w1 is under
the larger (dashed) arc CF L L as shown here, then p2 > q 2 (δ > 0) and therefore
FLL is observed; (2) if w1 is under the smaller (dotted) arc, then p2 < q 2 (δ < 0),
and therefore negative FLL is observed; and (3) if w1 is at the critical point wcrit ,
then p2 = q 2 (δ = 0). Given that w1 is a randomly chosen point on C and that
the length of CF L L is SF L L , the probability of FLL is P(δ > 0) = SF L L/πr (i.e., the
proportion of CF L L under the upper semicircle of C).

connected to the output unit via weights wa and wb , which define a weight
vector w = (wa , wb). Associations A1 and A2 consist of different mappings
from the input vectors x1 = (x11, x12) and x2 = (x21, x22) to desired output
values d1 and d2, respectively. If a network is presented with input vectors
x1 and x2, then its output values are y1 = w · x1 = wa x11 + wb x12 and y2 =
w · x2 = wa x21 + wb x22, respectively. Network performance error for k = 2
associations is defined as E(w, A) = ∑k

i=1(di − yi)2.

Free-Lunch Learning 197

The weight vector w defines a point in the (wa , wb)-plane. For an input
vector x1, there are many different combinations of weight values wa and
wb that give the desired output d1. These combinations lie on a straight
line L1, because the network output is a linear weighted sum of input val-
ues. A corresponding constraint line L2 exists for A2. The intersection of L1

and L2 therefore defines the only point w0 that satisfies both constraints,
so that zero error on A1 and A2 is obtained if and only if w = w0. With-
out loss of generality, we define the origin w0 to be the intersection of L1

and L2.
We now consider the geometric effect of partial forgetting of both as-

sociations, followed by relearning A2. This geometric account applies to a
network with two weights (see Figure 2) and depends on the following
observation: if the length of the input vector ‖x1‖ = 1, then the perfor-
mance error E(w, A1) = (d1 − y1)2 of a network with weight vector w when
tested on association A1 is equal to the squared distance between w and
the constraint line L1 (see appendix C). For example, if w is in L1, then
E(w, A1) = 0, but as the distance between w and L1 increases, so E(w, A1)
must increase. For the purposes of this geometric account, we assume that
‖x1‖ = ‖x2‖ = 1.

Partial forgetting is induced by adding isotropic noise v to the weight
vector w = w0. This effectively moves w to a randomly chosen point w1 =
w0 + v on the circle C of radius r = ‖v‖, where r represents the amount of
forgetting. For a network with w = w1, learning A2 moves w to the nearest
point w2 on L2 (see appendix B), so that w2 is the orthogonal projection
of w1 on L2. Before relearning A2, the performance error Epre on A1 is
the squared distance p2 between w1 and its orthogonal projection on L1

(see appendix C). After relearning A2, the performance error Epost is the
squared distance q 2 between w2 and its orthogonal projection on L1. The
amount of FLL is δ = Epre − Epost and, for a network with two weights, is
equal to Q = p2 − q 2. The probability P(δ > 0) of FLL given L1 and L2 is
equal to the proportion of points on C for which δ > 0 (or, equivalently, for
which Q > 0). For example, averaging over all subsets A1 and A2, there is
the probability P(δ > 0) = 0.68 that relearning A2 induces FLL of A1 (see
Figure 5), a probability that increases with the number of weights (see
theorem 3).

If we drop the assumption that a network has only two input units, then
we can consider subsets A1 and A2 with n1 > 1 and n2 > 1 associations. If
the number of connection weights n ≥ max(n1, n2), then A1 and A2 define
an (n − n1)-dimensional subspace L1 and an (n − n2)-dimensional subspace
L2, respectively. The intersection of L1 and L2 corresponds to weight vectors
that generate zero error on A = A1 ∪ A2.

Finally, we can drop the assumption that a network has only one output
unit, because the connections to each output unit can be considered as a
distinct network, in which case our results can be applied to the network
associated with each output unit.

198 J. Stone and P. Jupp

2 Methods

Given a network with n input units and one output unit, the set Aof associ-
ations consisted of k input vectors (x1, . . . , xk) and k corresponding desired
scalar output values (d1, . . . , dk). Each input vector comprises n elements
x = (x1, . . . , xn). The values of xi and di were chosen from a gaussian dis-
tribution with unit variance (i.e., σ 2

x = σ 2
d = 1). A network’s output yi is a

weighted sum of input values yi = w · xi = ∑k
j=1 w j xi j , where xi j is the j th

value of the ith input vector xi , and each weight wi is one input-output
connection.

Given that the network error for a given set of k associations is E(w, A) =∑k
i=1(di − yi)2, the derivative ∇E(w) = 2

∑k
i=1(di − yi)xi of E with respect

to w yields the delta learning rule wnew = wold − η∇E(wold), where η is
the learning rate, which is adjusted according to the number of weights.
A learning trial consists of presenting the k input vectors to the net-
work and then updating the weights using the delta rule. Learning was
stopped when ‖∇E(w)‖ < k0.001, where ‖∇E(w)‖ is the magnitude of the
gradient.

Initial learning of the k = n associations in A = A1 ∪ A2 was performed
by solving a set of n simultaneous equations using a standard method,
after which perfect performance on all n associations was obtained. Partial
forgetting was induced by adding an isotropic noise vector v with r = ‖v‖ =
1. Relearning the n2 = n/2 associations in A2 was implemented with k = n2

using the delta rule.

3 Results

Our four main theorems are summarized here, and proofs are provided
in the appendixes. These theorems apply to a network with n weights that
learns n1 + n2 associations A = A1 ∪ A2 and, after partial forgetting, relearns
the n2 associations in A2.

Theorem 1. The probability P(δ > 0) of FLL is greater than 0.5.

Theorem 2. The expected amount of FLL per association in A1 is

E[δ/n1] = n2

n2 E[‖x‖2]E[‖v‖2]. (3.1)

For given values of E[‖x‖2] and E
[‖v‖2

]
, the value of n2, which maximizes

E[δ/n1] (subject to n1 + n2 ≤ n), is n2 = n − n1.
If each input vector x = (x1, . . . , xn) is chosen from an isotropic (e.g.,

isotropic gaussian) distribution and the variance of xi is σ 2
x , then E

[‖x‖2
] =

nσ 2
x . If σ 2

x is the same for all n, then the state of a neuron (with a typical

Free-Lunch Learning 199

sigmoidal transfer function) would be in a constantly saturated state as
the number of synapses increases. One way to prevent this saturation is
to assume that the efficacy of synapses on a given neuron decreases as the
number of synapses increases. If forgetting is caused primarily by learning
spurious inputs, then the delta learning rule used here implies that the
“amount of forgetting” ‖v‖ is approximately independent of n. We therefore
assume that ‖v‖ and σ 2

x are constant, and for convenience, we set ‖v‖ = 1
and σ 2

x = 1. Substituting these values into equation 3.1 yields

E[δ/n1] = n2

n
. (3.2)

Using these assumptions, simulations of networks with n = 2 and n = 100
weights agree with equation 3.2, as shown in Figure 3.

The role of pruning can be demonstrated as follows. Consider a network
with 100 input units and one output unit with n = 100 weights. If n2 = 90 as-
sociations are relearned out of an original set of n1 + n2 = 100 associations,
then E[δ/n1] = n2/n = 0.90. However, if n = 1000, then E[δ/n1] = 0.09. In
general, as the number n − (n1 + n2) of unpruned redundant weights in-
creases, so E[δ/n1] decreases. Therefore, E[δ/n1] is maximized if n1 + n2 = n.
If n1 + n2 < n, then the expected amount of FLL is not maximal and can
therefore be increased by pruning redundant weights until n = n1 + n2 (see
Figure 4).

Note that for a particular network, performance error Epost on A1 after
learning A2 can be zero. For example, if w = w∗ in Figure 2, then p = q = 0,
which implies that δ/n1 = Epost = q 2 = 0.

Theorem 3. The probability P(δ > 0) of FLL of A1 satisfies

P(δ > 0) > 1 − a0(n, n1, n2) + a1(n, n2) var (‖x‖2)/E[‖x‖2]2

n1n2(n + 2)2 , (3.3)

where

a0(n, n1, n2) = 2
{
n1(n + 2)(n − n2) + n(n − n2) + n(n + 2)(n − 1)

}
(3.4)

a1(n, n2) = n2(2n + n2 + 6). (3.5)

Theorem 3 implies that if the numbers (n1 and n2) of associations in A1

and A2 are fixed nonzero proportions of the number n of connection weights
(n1/n and n2/n, respectively) and var

(‖x‖2
)
/nE

[‖x‖2
]2 → 0 as n → ∞, then

P(δ > 0) → 1 as n → ∞; and the probability that each of the n1 associations
in A1 exhibits FLL is P(δ/n1 > 0) = P(δ > 0) because δ > 0 iff δ/n1 > 0.

For example, if we assume that each input vector x = (x1, . . . , xn) is
chosen from an isotropic (e.g., isotropic gaussian) distribution and the

200 J. Stone and P. Jupp

variance of xi is σ 2
x , then var

(‖x‖2
)
/E

[‖x‖2
]2 = 2/n. This ensures that

var
(‖x‖2

)
/nE

[‖x‖2
]2 → 0 as n → ∞, and therefore that P(δ > 0) → 1 as

n → ∞.
Using this assumption, an approximation of the right-hand side of equa-

tion 3.3 yields

P(δ > 0) > 1 − 2(1 + α1 − α1α2)
nα1α2

− 2(2 + α2 + 6/n)
α1α2(n + 2)2 , (3.6)

where α1 = n1/n and α2 = n2/n. In this form, it is easy to see that
P(δ > 0) → 1 as n → ∞.

We briefly consider the case n1 ≥ n and n2 ≥ n, so that each of L1 and L2

is a single point. If the distance D between these points is much less than
‖v‖, then simple geometry shows that performance error Epre on A1 is large
and that relearning A2 reduces this error for any v (i.e., with probability 1)
with Epost ∝ D2, even in the absence of initial learning of A1 and A2 (see
equation A.18 in appendix A). A similar conclusion is implicit in Atkins
and Murre (1998).

Theorem 4. If, instead of relearning A2, the network learns a new subset A3
(drawn from the same distribution as A2), then the expected amount of FLL is less
than the expected amount of FLL after relearning subset A2.

Learning A3 is analogous to the control condition used with human
participants (Stone et al., 2001), and the finding that the amount of recovery
after learning A3 is less than the amount of recovery after relearning A2 is
predicted by theorem 4.

Figure 3: Distribution of free-lunch learning. (a) Histogram of amount of FLL
δ/n1 per association, based on 1000 runs, for a network with n = 2 weights (see
section 2). After learning two association subsets (η = 0.1), A1 and A2, containing
n1 = 1 and n2 = 1 associations (respectively), the network has a weight vector
w0. Forgetting is then induced by adding a noise vector v with ‖v‖2 = 1 to w0.
One association A2 is then relearned, and the change in performance on A1

is measured as δ/n1 (see Figure 2). Negative values indicate that performance
on A1 decreases after relearning A2. (b) Histogram of amount of FLL δ/n1 per
association for a network with n = 100 weights and η = 0.005, with A1 and
A2 each consisting of n1 = n2 = 50 associations, using the same protocol as in
(a). In both (a) and (b), the mean value of δ/n1 is about 0.5, as predicted by
equation 3.2. As the number of associations learned increases, the amount of
FLL becomes more tightly clustered around δ/n1 = 0.5, as demonstrated in these
two histograms, and the probability of FLL increases (also see Figure 5).

Free-Lunch Learning 201

202 J. Stone and P. Jupp

Figure 4: Effect of pruning on free-lunch learning. Graph of the expected
amount of FLL per association E[δ/n1] as a function of the total number n1 + n2

of learned associations in A = A1 ∪ A2, as given in equation 3.2. In this exam-
ple, the number of connection weights is fixed at n = 100, and the number of
associations in A = A1 ∪ A2 increases from n1 + n2 = 2 to n1 + n2 = 100. The
number n2 of relearned associations in A2 is a constant proportion (0.5) of the
associations in A. If n1 + n2 ≤ n, then the network contains n − (n1 + n2) un-
pruned redundant connections. Thus, pruning effectively increases as n1 + n2

increases because, as the number n1 + n2 of associations grows, so the number
of unpruned redundant connections decreases. The expected amount of FLL
per association E[δ/n1] increases as the amount of pruning increases.

4 Discussion

Theorems 1 to 4 provide the first proof that relearning induces nontransient
recovery, where postrecovery error is potentially zero. This contrasts with
the usually small and transient recovery that occurs during the initial phase
of relearning forgotten associations (Hinton & Plaut, 1987; Atkins & Murre,
1998), and during learning of new associations (Harvey & Stone, 1996). In
particular, theorem 2 is predictive inasmuch as it suggests that the amount of
FLL in humans should be (1) proportional to the amount of forgetting of A =
A1 ∪ A2 and (2) proportional to the proportion n2/(n1 + n2) of associations
relearned after partial forgetting of A.

We have assumed that the number n1 + n2 of associations A = A1 ∪ A2

encoded by a given neuron is not greater than the number n of input con-
nections (synapses) to that neuron. Given that each neuron typically has

Free-Lunch Learning 203

Figure 5: Probability of free-lunch learning. The probability P(δ > 0) of FLL of
associations A1 as a function of the total number n1 + n2 of learned associations
A = A1 ∪ A2 for networks with n = n1 + n2 weights. Each of the two subsets
of associations A1 and A2 consists of n1 = n2 = n/2 associations. After learning
and then partially forgetting A, performance on A1 was measured. P(δ > 0) is
the probability that performance on subset A1 is better after subset A2 has been
relearned than it is before A2 has been relearned. Solid line: Empirical estimate
of P(δ > 0). Each data point is based on 10,000 runs, where each run uses input
vectors chosen from an isotropic gaussian distribution (see section 2). Dashed
line: Theoretical lower bound on the probability of FLL, as given by theorems 1
and 3, assuming that input vectors are chosen from an isotropic (e.g., isotropic
gausssian) distribution.

many thousands of synapses (e.g., cerebellar Purkinje cells), it seems likely
that this assumption is valid. However, the total amount of FLL is maximal
if n1 = n2 = n/2, so that the full potential of FLL can be realized only if
n1 + n2 = n. This optimum number of synapses can be achieved if inactive
(i.e., redundant) synapses are pruned. Pruning may therefore contribute to
FLL in physiological systems (Purves & Lichtman, 1980; Goldin, Segal, &
Avignone, 2001).

We have also assumed that a delta rule is used to learn associations be-
tween inputs and desired outputs. This general type of supervised learning
is thought to be implemented by the cerebellum and basal ganglia (Doya,
1999). Models of the cerebellum (Dean, Porrill, & Stone, 2002) use a delta rule
to implement learning. Similarly, models of the basal ganglia (Nakahara,
Itoh, Kawagoe, Takikawa, & Hikosaka, 2004) use a temporally discounted

204 J. Stone and P. Jupp

form of delta rule, the temporal difference rule. This temporal difference
rule has also been used to model learning in humans (Seymour et al.,
2004), and (under mild conditions) is equivalent to the standard delta rule
(Sutton, 1988). Indeed, from a purely computational perspective, it is dif-
ficult to conceive how these forms of associative learning could be imple-
mented without some form of delta rule.

Our analysis is based on the assumption that the network model is lin-
ear. Of course, many nonlinear networks can be approximated by linear
networks, but it is possible that the results derived here have limited appli-
cability to certain classes of nonlinear networks.

Relation to Task Generalization. It is only natural to ask how FLL
relates to tasks that a human might learn. One obvious but vital condition
for FLL is that different associations must be encoded by a common set of
neuronal connections. Aside from this condition, it might be thought that
relearning A2 improves performance on A1 because A1 and A2 are somehow
related (as in Hanson & Negishi, 2002; Dienes, Altmann, & Gao, 1999), so
that learning A2 generalizes to A1. This form of task generalization can occur
if A1 and A2 are related as follows. If the input-output pairs in A1 and A2

are sampled from a sufficiently smooth function f and n1 � n and n2 � n,
then A1 and A2 are statistically related, and therefore the weights induced
by learning A1 are similar to those induced by learning A2. Consequently,
the resultant network input-output functions g1 and g2 (respectively) both
approximate the function f (i.e., g1 ≈ g2 ≈ f). In this case, learning A2

yields good performance on A1. In the context of FLL, if A1 ∪ A2 is learned,
forgotten, and then A2 is relearned, performance on A1 will also improve.
However, the reason for this improvement is obvious and trivial: it is simply
that A1 and A2 are statistically related and large enough (i.e., with n1 � n
and n2 � n) to induce similar network functions.

In contrast, the effect described in this letter does not depend on statisti-
cal similarity between A1 and A2. Crucial assumptions are that n1 + n2 ≤ n,
n1 < n, and n2 < n, so that learning the n2 associations in A2 in a network
with n weights is underconstrained. This implies that the network function
induced by learning A1 has no particular relation to the network function
induced by learning A2, even if A1 and A2 are sampled from the same func-
tion f (provided A1 and A2 are disjoint sets). For example, if A1 and A2

each consists of one association sampled from a linear function f (i.e., a
line), then learning A2 in a linear network (as in Figure 2a) induces a linear
network function g1 (i.e., a line) that intersects with f but is otherwise un-
constrained. Thus, learning A2 does not necessarily yield good performance
on A1. The FLL effect reported here depends on relearning after forgetting.
To cite an extreme example, if unicycling and learning French were encoded
by a common set of neurons, then, after forgetting both, relearning unicy-
cling could improve your French (although the mechanism involved here
is unrelated to that described in Harvey & Stone, 1996). Thus, FLL contrasts

Free-Lunch Learning 205

with the task generalization outlined above, where it is obvious that both
A1 and A2 induce similar network functions.

Motivated by the demonstration that recovery occurs in humans (Stone
et al., 2001; Coltheart & Byng, 1989; Weekes & Coltheart, 1996) (but not
in all studies—Atkins, 2001), we have proven that FLL occurs in network
models. The analysis presented here suggests that FLL is a necessary and
generic consequence of storing information in distributed systems rather
than a side effect peculiar to a particular class of artificial neural nets.
Moreover, the generic nature of FLL suggests that it is largely indepen-
dent of the type (i.e., artificial or physiological) of network used to learn
associations.

FLL appears to be a fundamental property of distributed representations.
Given the reliance of neuronal systems on distributed representations, FLL
may be a ubiquitous feature of learning and memory. It is likely that any
organism that did not take advantage of such a fundamental and ubiquitous
effect would be at a severe selective disadvantage.

Appendix A: Analysis of Free-Lunch Learning

We proceed by deriving expressions for Epre, Epost, and δ = Epre − Epost. We
prove that if n1 + n2 ≤ n, then the expected value of δ is positive. We then
prove that if n1 + n2 ≤ n, the probability P(δ > 0) of FLL is greater than 0.5,
that its lower bound increases with n (if n1/n and n2/n are fixed), and that
this bound approaches unity as n increases.

A.1 Definition of Performance Error. For an artificial neural network
(ANN) with weight vector w, we define the performance error for input
vectors x1, . . . , xc and desired outputs d1, . . . , dc to be

E(x1, . . . , xc; w, d1, . . . , dc) =
c∑

i=1

(w · xi − di)
2
. (A.1)

By putting X = (x1, . . . , xc)T , d = (d1, . . . , dc)T and

E(X; w, d) = E(x1, . . . , xc; w, d1, . . . , dc),

we can write equation A.1 succinctly as

E(X; w, d) = ‖Xw − d‖2. (A.2)

Given a c × n matrix X and a c-dimensional vector d, let LX,d be the affine
subspace,

LX,d = {
w : XT Xw = XT d

}
,

206 J. Stone and P. Jupp

of R
n. Since

i. rk
(
XT X

) ≤ rk (X),
ii. XT Xa = 0 ⇒ aT XT Xa = 0 ⇒ Xa = 0,

it follows that rk
(
XT X

) = rk (X) (where rk denotes the rank of a matrix),
and so

LX,d is nonempty. (A.3)

If X and d are consistent (i.e., there is a w such that Xw = d), then

LX,d = {w : Xw = d}.

A.2 Comparison of Performance Errors. Given weight vectors w1 and
w2, a matrix X of input vectors, and a vector d of desired outputs, define

δ(w1, w2; X, d) = Epre − Epost,

where Epre = E(X; w1, d) and Epost = E(X; w2, d). Let w̃ be any element of
LX,d. Then

δ(w1, w2; X, d) = ‖Xw1 − d‖2 − ‖Xw2 − d‖2

= ‖Xw1‖2 − ‖Xw2‖2 − 2 (w1 − w2)T XT d

= (w1 − w2)T XT X (w1 + w2) − 2 (w1 − w2)T XT Xw̃

= (w1 − w2)T XT X (w1 + w2 − 2w̃) . (A.4)

Suppose given ni × n matrices Xi and ni -dimensional vectors di (for i =
1, 2). Put

Li = LXi ,di for i = 1, 2.

If Xi has rank ni , then

Xi = Ti Zi

for unique ni × ni and ni × n matrices Ti and Zi with Ti upper triangular
and Zi ZT

i = Ini . Note that the matrix ZT
i Zi represents the operator that

projects onto the image of XT
i Xi , and so

ZT
i Zi XT

i Xi = XT
i Xi . (A.5)

Free-Lunch Learning 207

Let w0 be an element of LX,d, where

X =
(

X1

X2

)
d =

(
d1

d2

)
,

that is,

(
XT

1 X1 + XT
2 X2

)
w0 = XT

1 d1 + XT
2 d2. (A.6)

(By equation A.3, such a w0 always exists.) Given v in R
n, put

w1 = w0 + v.

Let w02 and w2 be the orthogonal projections of w0 and w1, respectively,
onto L2. Then

XT
2 X2w02 = XT

2 d2 (A.7)

w2 = w02 + (
In − ZT

2 Z2
)

(w1 − w02) .

Manipulation gives

w1 − w2 = ZT
2 Z2 (v + w0 − w02) , (A.8)

and so

w1 + w2 − 2w0 = (
2In − ZT

2 Z2
)

v − ZT
2 Z2 (w0 − w02) . (A.9)

Let w̃ be any element of LX1,d1 . Then equations A.4, A.6, A.7 to A.9, and A.5
yield

δ(w1, w2; X1, d1)

= (w1 − w2)T XT
1 X1 (w1 + w2 − 2w̃)

= (w1 − w2)T XT
1 X1 (w1 + w2) − 2 (w1 − w2)T XT

1 d1

= (w1 − w2)T XT
1 X1 (w1 + w2 − 2w0) − 2 (w1 − w2)T XT

2 X2 (w0 − w02)

= (v + w0 − w02)T ZT
2 Z2XT

1 X1 (w1 + w2 − 2w0)

− 2 (v + w0 − w02)T ZT
2 Z2XT

2 X2 (w0 − w02)

= (v + w0 − w02)T ZT
2 Z2XT

1 X1
(
2In − ZT

2 Z2
)

v

− (v + w0 − w02)T ZT
2 Z2XT

1 X1ZT
2 Z2 (w0 − w02)

− 2 (v + w0 − w02)T ZT
2 Z2XT

2 X2 (w0 − w02)

208 J. Stone and P. Jupp

= vT ZT
2 Z2XT

1 X1
(
2In − ZT

2 Z2
)

v

− 2 (w0 − w02)T ZT
2 Z2

{
XT

1 X1
(
In − ZT

2 Z2
) − XT

2 X2
}

v

− (w0 − w02)T ZT
2 Z2

(
2XT

2 X2 + XT
1 X1ZT

2 Z2
)

(w0 − w02)

= vT ZT
2 Z2XT

1 X1
(
2In − ZT

2 Z2
)

v

− 2 (w0 − w02)T {
ZT

2 Z2XT
1 X1

(
In − ZT

2 Z2
) − XT

2 X2
}

v

−(w0 − w02)T (2XT
2 X2 + ZT

2 Z2XT
1 X1ZT

2 Z2) (w0 − w02) . (A.10)

A.3 Moments of Isotropic Distributions. In order to obtain results on
the distribution of performance error, it is useful to have some moments of
isotropic distributions.

Let u be uniformly distributed on Sn−1, and let A and B be n × n matrices.
The formulas for the second and fourth moments of u given in equations
9.6.1 and 9.6.2 of Mardia and Jupp (2000), together with some algebraic
manipulation, yield

E
[
uT Au

]= tr (A)
n

(A.11)

E
[
uT AuuT Bu

] = tr (AB) + tr
(
ABT

) + tr (A) tr (B)
n(n + 2)

(A.12)

var
(
uT Au

) = ntr
(
A2

) + ntr
(
AAT

) − 2tr (A)2

n2(n + 2)
. (A.13)

Now let x be isotropically distributed on R
n, that is, Ux has the same distri-

bution as x for all orthogonal n × n matrices U. Then writing x = ‖x‖u with
‖u‖ = 1 and using equations A.11 to A.13 gives

E
[
xT Ax

] = E
[‖x‖2

]
tr (A)

n
(A.14)

E
[
xT AxxT Bx

] = E
[‖x‖4

] {
tr (AB) + tr

(
ABT

) + tr (A) tr (B)
}

n(n + 2)

var
(
xT Ax

) =
E

[‖x‖4
] {

ntr
(
A2

) + ntr
(
AAT

) − 2tr (A)2
}

n2(n + 2)

+ var
(‖x‖2

)
tr (A)2

n2 . (A.15)

Free-Lunch Learning 209

A.4 Distribution of Performance Error. Now suppose that X1, d1, X2,
d2, and v are random and satisfy

X1 and v are independent,

the distribution of X1is isotropic, (A.16)

v has an isotropic distribution,

where conditions A.16 mean that UX1V has the same distribution as X1 for
all orthogonal n1 × n1 matrices U and all orthogonal n × n matrices V. Then
equation A.10 yields

E [δ(w1, w2; X1, d1) |X1, X2]

= E
[‖v‖2

]
n

tr
(
XT

1 X1ZT
2 Z2

)
− (w0 − w02)T (

2XT
2 X2 + ZT

2 Z2XT
1 X1ZT

2 Z2
)

(w0 − w02) . (A.17)

Taking expectations over X1 and X2 in equation A.17 gives the following
general result on FLL:

E[δ(w1, w2; X1, d1)] > 0 iff

E[‖v‖2] >
n2E

[
(w0 − w02)T

(
2XT

2 X2 + ZT
2 Z2XT

1 X1ZT
2 Z2

)
(w0 − w02)

]
n1n2

.

(A.18)

The intuitive interpretation of this result is that if E
[‖v‖2

]
is large enough,

then there is FLL, whereas if P (w0 �= w02) > 0 then “negative FLL” can
occur. In particular, if n1 + n2 ≤ n and P (v �= 0) > 0, then there is FLL.

A.5 The Case n1 + n2 ≤ n. In this section we assume that X1, d1, X2 and
d2 are random and that

(X1, d1), (X2, d2) and v are independent, (A.19)

the distribution of v is isotropic. (A.20)

We suppose also that n1 + n2 ≤ n, and that the distributions of X1, d1, X2,
and d2 are continuous. Then, with probability 1,

X1w0 = d1 and X2w0 = d2,

so that w02 = w0 and equation A.10 reduces to

δ(w1, w2; X1, d1) = vT ZT
2 Z2XT

1 X1
(
2In − ZT

2 Z2
)

v. (A.21)

210 J. Stone and P. Jupp

A.5.1 FLL Is More Probable Than Not. Let w∗
1 be the reflection of w1 in L2,

that is,

w∗
1 = w2 − (w1 − w2) .

Consideration of the parallelogram with vertices at w0, w1, w∗
1, and

w1 + w∗
1 − w0 gives

2
(‖X1 (w1 − w0) ‖2 + ‖X1 (w∗

1 − w0) ‖2)
= ‖X1

(
[w1 − w0] + [

w∗
1 − w0

]) ‖2 + ‖X1
(
[w1 − w0] − [

w∗
1 − w0

]) ‖2

= 4
(‖X1 (w2 − w0) ‖2 + ‖X1 (w1 − w2) ‖2) ,

so that (since d1 = X1w0)

δ(w1, w2; X1, d1) + δ(w∗
1, w2; X1, d1)

= ‖X1 (w1 − w0) ‖2 + ‖X1 (w∗
1 − w0) ‖2 − 2‖X1 (w2 − w0) ‖2

= 2‖X1 (w1 − w2) ‖2 ≥ 0.

Thus if δ(w1, w2; X1, d1) < 0, then δ(w∗
1, w2; X1, d1) > 0. If v is dis-

tributed isotropically, then w∗
1 − w0 is distributed isotropically, so that

δ(w∗
1, w2; X1, d1) has the same distribution (conditionally on X1, d1 and

X2) as δ(w1, w2; X1, d1), and so

P(δ(w1, w2; X1, d1) < 0|X1, d1, X2) ≤ P(δ(w∗
1, w2; X1, d1) > 0|X1, d1, X2)

= P(δ(w1, w2; X1, d1) > 0|X1, d1, X2).

(A.22)

Further, if v ∈ L2 \ L1, then w2 = w1 = w∗
1, so that δ(w1, w2; X1, d1) =

δ(w∗
1, w2; X1, d1) > 0. By continuity of δ, there is a neighborhood of v on

which δ(w1, w2; X1, d1) > 0 and δ(w∗
1, w2; X1, d1) > 0. Thus, if L2\L1 �= ∅,

then equation A.22 can be refined to

P(δ(w1, w2; X1, d1) < 0|X1, d1, X2) < P(δ(w∗
1, w2; X1, d1) < 0|X1, d1, X2).

(A.23)

Since P(L2 ⊂ L1) = 0 and P(δ(w1, w2; X1, d1) < 0|X1, d1, X2) is a continuous
function of X1, d1 and X2, it follows from equation A.23 that

P(δ(w1, w2; X1, d1) < 0) < P(δ(w1, w2; X1, d1) > 0),

which implies the following result.

Free-Lunch Learning 211

Theorem 1

P(δ(w1,w2; X1, d1) > 0) > 0.5.

This implies that the median of δ(w1,w2; X1, d1) is positive.

A.5.2 A Lower Bound for P(δ > 0). Our proof depends on Chebyshev’s
inequality, which states that for any positive value of t,

P(|δ − E[δ]| ≥ t) ≤ var(δ)
t2 ,

where var(δ) denotes the variance of δ. If we set t = E[δ], then (since, by
equation A.28, E[δ] > 0)

P (δ ≤ 0) ≤ var (δ)

E [δ]2 . (A.24)

This provides a lower bound for the probability of FLL. We prove that this
bound approaches unity as n approaches infinity.

Now we assume (in addition to conditions A.19 and A.20) that

the distributions of X1 and X2 are isotropic. (A.25)

It follows from equations A.21, A.14, and A.15 that

E [δ(w1, w2; X1, d1) |Z2, v] = vT ZT
2 Z2E

[‖x‖2] n1

n
In

(
2In − ZT

2 Z2
)

v

= n1

n
E

[‖x‖2] vT ZT
2 Z2v, (A.26)

where x is the first column of XT
1 , and

var (δ(w1, w2; X1, d1) |Z2, v)

= n1

{
E

[‖x‖4
] {

(n − 2)‖Z2v‖4 + n‖Z2v‖2‖ (
2In − ZT

2 Z2
)

v‖2
}

n2(n + 2)

+ var
(‖x‖2

) ‖Z2v‖4

n2

}
. (A.27)

Since v has an isotropic distribution, equations A.26, A.11, and A.13 imply
that

E [δ(w1, w2; X1, d1) |Z2, ‖v‖] = n1n2

n2 E
[‖x‖2] ‖v‖2. (A.28)

212 J. Stone and P. Jupp

Given that there are n1 associations in the subset A1 that is not relearned,
equation A.28 implies the following theorem about the expected amount of
recovery per association in A1.

Theorem 2

E
[

δ(w1,w2; X1, d1)
n1

∣∣∣∣ Z2, ‖v‖
]

= n2

n2 E[‖x‖2]‖v‖2. (A.29)

Equations A.26 and A.13 also imply that

var (E [δ(w1, w2; X1, d1) |Z2, v] |Z2, ‖v‖)

=
(n1

n
E

[‖x‖2])2 ‖v‖4
(
2nn2 − 2n2

2

)
n2(n + 2)

= 2n2
1n2(n − n2)E

[‖x‖2
]2 ‖v‖4

n4(n + 2)
, (A.30)

and it follows from equations A.27 and A.12 that

E [var (δ(w1, w2; X1, d1) |Z2, v) |Z2, ‖v‖]

= n1‖v‖3

n(n + 2)

{
E

[‖x‖4
] {

(n − 2)n2(n2 + 2) + nn2(2n − n2 + 2)
}

n2(n + 2)

+ var
(‖x‖2

)
n2(n2 + 2)

n2

}

= n1n2‖v‖4

n3(n + 2)2

{
E

[‖x‖4] 2(n2 + 2n − n2 − 2) + var
(‖x‖2) (n + 2)(n2 + 2)

}
.

(A.31)

Then equations A.30 and A.31 give

var (δ(w1, w2; X1, d1) |Z2, ‖v‖)

= 2n2
1n2(n − n2)E

[‖x‖2
]2 ‖v‖4

n4(n + 2)

+ n1n2‖v‖4

n3(n + 2)2

{
E

[‖x‖4] 2(n2 + 2n − n2 − 2) + var
(‖x‖2) (n + 2)(n2 + 2)

}

Free-Lunch Learning 213

= n1n2‖v‖4

n4(n + 2)2 {2[n1(n + 2)(n − n2) + n(n − n2) + n(n + 2)(n − 1)]E[‖x‖2]2

+ n2(2n + n2 + 6)var(‖x‖2)},

and so

var (δ(w1, w2; X1, d1) |Z2, ‖v‖)

E [δ(w1, w2; X1, d1) |Z2, ‖v‖]2 = a0(n, n1, n2) + a1(n, n2)γ (n)
n1n2(n + 2)2 ,

where

a0(n, n1, n2) = 2{n1(n + 2)(n − n2) + n(n − n2) + n(n + 2)(n − 1)}
a1(n, n2) = n2(2n + n2 + 6)

γ (n) = var
(‖x‖2

)
E

[‖x‖2
]2 .

Chebyshev’s inequality implies the following theorem.

Theorem 3

P (δ(w1,w2; X1, d1) ≤ 0 |Z2, ‖v‖) ≤ a0(n, n1, n2) + a1(n, n1, n2)γ (n)
n1n2(n + 2)2 .

Since the right-hand side does not depend on Z2 or ‖v‖, this gives the
following result.

If γ (n)/n → 0 and n1/n, n2/n are bounded away from zero as n → ∞,
then

P (δ(w1, w2; X1, d1) > 0) → 1, n → ∞.

Example. If

x ∼ N
(
0, σ 2

x In
)
,

then

E
[‖x‖2] = nσ 2

x , var
(‖x‖2) = 2nσ 4

x , γ (n) = 2
n

,

and so

P(δ(w1, w2; X1, d1) > 0) → 1, n → ∞,

provided that n1/n and n2/n are bounded away from zero.

214 J. Stone and P. Jupp

A.5.3 Learning A3 Instead of A2. Now suppose that relearning of A2 is
replaced by learning another subset A3 of n2 associations. Let the matrix
X3 and vector d3 be such that the subspace L3 corresponding to A3 has the
form L3 = LX3,d3 .

Let w3 and w13 denote the orthogonal projections of w1 onto L3 and
L1 ∩ L3, respectively. Then

w3 = w13 + (
In − ZT

3 Z3
)

(w1 − w13) , (A.32)

and so

w1 = w3 + ZT
3 Z3 (w1 − w13) . (A.33)

From equation A.4 with w̃ = w13, and equations A.33 and A.32, we have

δ(w1, w3; X1, d1) = (w1 − w3)T XT
1 X1 (w1 + w3 − 2w13)

= (w1 − w13)T ZT
3 Z3XT

1 X1 (w1 + w3 − 2w13)

= (v − ω̃)T ZT
3 Z3XT

1 X1
(
2In − ZT

3 Z3
)

(v − ω̃) , (A.34)

where

ω̃ = w13 − w0.

Since X1w0 = X1w13, equation A.34 can be expanded as

δ(w1, w3; X1, d1)

= vT ZT
3 Z3XT

1 X1
(
2In − ZT

3 Z3
)

v

− vT ZT
3 Z3XT

1 X1
(
2In − ZT

3 Z3
)
ω̃ − ω̃T ZT

3 Z3XT
1 X1

(
2In − ZT

3 Z3
)

v

− ω̃T ZT
3 Z3XT

1 X1ZT
3 Z3ω̃,

and so

E [δ(w1, w3; X1, d1)|X1, d1, X2, d2, X3, d3]

= E
[‖v‖2

]
n

tr
(
ZT

3 Z3XT
1 X1

(
2In − ZT

3 Z3
)) − ω̃T ZT

3 Z3XT
1 X1ZT

3 Z3ω̃

= E
[‖v‖2

]
n

tr
(
XT

1 X1ZT
3 Z3

) − ‖X1ZT
3 Z3ω̃‖2.

Now assume that

(X1, d1), (X2, d2), (X3, d3) and v are independent,

the distributions of X1, X2, X3 and v are isotropic.

Free-Lunch Learning 215

Since

E
[‖v‖2

]
n

E
[
tr

(
XT

1 X1ZT
2 Z2

)]= E
[‖v‖2

]
n

E
[
tr

(
XT

1 X1ZT
3 Z3

)]
= E [δ(w1, w2; X1, d1)] ,

we have the following theorem.

Theorem 4

E[δ(w1,w3; X1, d1)] ≤ E [δ(w1,w2; X1, d1)] .

Appendix B: Behavior of the Gradient Algorithm

If E is regarded as a function of w, then differentiation of equation A.2
shows that the gradient of E at w is

∇E(w) = 2XT (Xw − d) .

Then for any algorithm that takes an initial w(0) to w(1), w(2), . . . using steps
w(t+1) − w(t) in the direction of ∇E(w(t)), w(t) − w(0) is in the image of XT X, and
so is orthogonal to LX,d. It follows that if ‖Xw(t) − d‖2 → minw ‖Xw − d‖2

as t → ∞, then w(t) converges to the orthogonal projection of w(0) onto
LX,d.

Appendix C: The Geometry of Performance Error When n1 = 1

Given associations A1 and A2, we prove that if n1 = 1 and input vectors
have unit length (so that ‖x1‖ = 1), then the difference δ in performance
errors on association A1 of w1 (i.e., after partial forgetting) and w2 (i.e., after
relearning A2) is equal to the difference Q = p2 − q 2. This proof supports
the geometric account given in the article and in Figure 2 and does not (in
general) apply if n1 > 1.

We begin by proving that (if n1 = 1 and ‖x1‖ = 1) the performance error
of an association A1 for an arbitrary weight vector w1 is equal to the squared
distance p2 between w1 and its orthogonal projection w′

1 onto the affine
subspace L1 corresponding to A1. If n1 = 1, then L1 has the form

L1 = {w : w · x1 = d1}

for some x1 and d1. Given an arbitrary weight vector w1, we define the
performance error on association A1 as equivalent to

E(w1, A1) = (w1 · x1 − d1)2. (C.1)

216 J. Stone and P. Jupp

The orthogonal projection w′
1 of w1 onto L1 is

w′
1 = w1 + d1 − w1 · x1

‖x1‖2 x1, (C.2)

so that

d1 = w′
1 · x1. (C.3)

Substituting equation C.3 into C.1 and using C.2 yields

E(w1, A1) = ‖w1 − w′
1‖2‖x1‖2

= p2‖x1‖2. (C.4)

Now suppose that ‖x1‖ = 1. Then

E(w1, A1) = p2,

that is, the performance error is equal to the squared distance between the
weight vectors w1 and w′

1. The same line of reasoning can be applied to
prove that

E(w2, A1) = q 2.

Thus, the difference δ in performance error on A1 for weight vectors w1 and
w2 is

δ = E(w1, A1) − E(w2, A1)

= p2 − q 2

= Q.

Acknowledgments

Thanks to S. Isard for substantial help with the analysis presented here; to R.
Lister, S. Eglen, P. Parpia, A. Farthing, P. Warren, K. Gurney, N. Hunkin, and
two anonymous referees for comments; and J. Porrill for useful discussions.

References

Atkins, P. (2001). What happens when we relearn part of what we previously knew?
Predictions and constraints for models of long-term memory. Psychological Re-
search, 65(3), 202–215.

Free-Lunch Learning 217

Atkins, P., & Murre, J., (1998). Recovery of unrehearsed items in connectionist models.
Connection Science, 10(2), 99–119.

Coltheart, M., & Byng, S. (1989). A treatment for surface dyslexia. In X. Seron (Ed.),
Cognitive approaches in neuropsychological rehabilitation. Mahwah, NJ: Erlbaum.

Dean, P., Porrill, J., & Stone, J. V. (2002). Decorrelation control by the cerebellum
achieves oculomotor plant compensation in simulated vestibulo-ocular reflex.
Proceedings Royal Society (B), 269(1503), 1895–1904.

Dienes, Z., Altmann, G., & Gao, S.-J. (1999). Mapping across domains without feed-
back: A neural network model of transfer of implicit knowledge. Cognitive Science,
23, 53–82.

Doya, K. (1999). What are the computations of the cerebellum, the basal ganglia and
the cerebral cortex? Neural Networks, 12(7–8), 961–974.

Goldin, M., Segal, M., & Avignone, E. (2001). Functional plasticity triggers forma-
tion and pruning of dendritic spines in cultured hippocampal networks. J. Neu-
roscience, 21(1), 186–193.

Hanson, S. J., & Negishi, M. (2002). On the emergence of rules in neural networks.
Neural Computation, 14, 2245–2268.

Harvey, I., & Stone, J.V. (1996). Unicycling helps your French: Spontaneous recovery
of associations by learning unrelated tasks. Neural Computation, 8, 697–704.

Hinton, G., & Plaut, D. (1987). Using fast weights to deblur old memories. In Proceed-
ings Ninth Annual Conference of the Cognitive Science Society, Seattle WA, 177–186.

Mardia, K. V., & Jupp, P. E. (2000). Directional statistics. New York: Wiley.
Nakahara, H., Itoh, H., Kawagoe, R., Takikawa, Y., & Hikosaka, O. (2004). Dopamine

neurons can represent context-dependent prediction error. Neuron, 41(2), 269–280.
Purves D., & Lichtman, J. (1980). Elimination of synapses in the developing nervous

system. Science, 210, 153–157.
Seymour, B., O’Doherty, J. P., Dayan, P., Koltzenburg, M., Jones, A. K., Dolan, R. J.,

Friston, K. J., & Frackowiak, R. (2004). Temporal difference models describe higher
order learning in humans. Nature, 429, 664–667.

Stone, J. V., Hunkin, N. M., & Hornby, A. (2001). Predicting spontaneous recovery of
memory. Nature, 414, 167–168.

Sutton, R. (1988). Learning to predict by the methods of temporal differences. Machine
Learning, 3, 9–44.

Weekes, B., & Coltheart, M. (1996). Surface dyslexia and surface dysgraphia: Treat-
ment studies and their theoretical implications. Cognitive Neuropsychology, 13,
277–315.

Received August 1, 2005; accepted May 19, 2006.

