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After a language has been learned and then forgotten, relearning some
words appears to facilitate spontaneous recovery of other words. More
generally, relearning partially forgotten associations induces recovery of
other associations in humans, an effect we call free-lunch learning (FLL).
Using neural network models, we prove that FLL is a necessary con-
sequence of storing associations as distributed representations. Specifi-
cally, we prove that (1) FLL becomes increasingly likely as the number of
synapses (connection weights) increases, suggesting that FLL contributes
to memory in neurophysiological systems, and (2) the magnitude of FLL
is greatest if inactive synapses are removed, suggesting a computational
role for synaptic pruning in physiological systems. We also demonstrate
that FLL is different from generalization effects conventionally associ-
ated with neural network models. As FLL is a generic property of dis-
tributed representations, it may constitute an important factor in human
memory.

1 Introduction

A popular aphorism states that “there’s no such thing as a free lunch.”
However, in the context of learning theory, we propose that there is. In
previous work, free-lunch learning (FLL) has been demonstrated using a
task in which participants learned the positions of letters on a nonstan-
dard computer keyboard (Stone, Hunkin, & Hornby, 2001). After a period
of forgetting, participants relearned a proportion of these letter positions.
Crucially, it was found that this relearning induced recovery of the non-
relearned letter positions. Preliminary results suggest that FLL also occurs
using face stimuli.

If the brain stores information as distributed representations, then each
neuron contributes to the storage of many associations, so that relearning
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Figure 1: Free-lunch learning protocol. Two subsets of associations 4; and A,
are learned. After partial forgetting (see text), performance error Er. on subset
A; is measured. Subset A, is then relearned to preforgetting levels of perfor-
mance, and performance error Epost on subset A; is remeasured. If Epost < Epre
then FLL has occurred, and the amount of FLL is § = Epre — Epost-

some old and partially forgotten associations affects the integrity of other
old associations. Using neural network models, we show that relearning
some associations does not disrupt other stored associations but actually
restores them.

In essence, recovery occurs in neural network models because each as-
sociation is distributed among all connection weights (synapses) between
units (model neurons). After partial forgetting, relearning some of the as-
sociations forces all of the weights closer to preforgetting values, resulting
in improved performance even on nonrelearned associations.

1.1 The Geometry of Free-Lunch Learning. The protocol used to ex-
amine FLL here is as follows (see Figure 1). First, learn a set of n; +n;
associations A= A; U A, consisting of two intermixed subsets A; and A,
of n1 and n, associations, respectively. After all learned associations Ahave
been partially forgotten, measure performance on subset A;. Finally, relearn
only subset Ay, and then remeasure performance on subset A;. FLL occurs if
relearning subset A, improves performance on A;. Unless stated otherwise,
we assume that for a network with n connection weights, n > ny + ny.

For the present, we assume that the network has one output unit and
two input units, which implies n = 2 connection weights and that A; and
A, each consist of 1y = np =1 association, as in Figure 2. Input units are
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Figure 2: Geometry of free-lunch learning. (a) A network with two input units
and one output unit, with connection weights w, and wj, defines a weight
vector w = (w,, wp). The network learns two associations A; and A,, where (for
example) A; is the mapping from input vector x; = (x11, x12) to desired output
value d;; learning consists of adjusting w until the network output i1 = w - x;
equals d;. (b) Each association 4; and A, defines a constraint line Ly and L,,
respectively. The intersection of L, and L, defines a point wy that satisfies both
constraints, so that zero error on A; and A4, is obtained if w = wy. After partial
forgetting, w is a randomly chosen point w; on the circle C with radius r, and
performance error Eyre on 4 is the squared distance p*. After relearning A, the
weight vector w; is in L, and performance error Eppst on A; is g%. FLL occurs if
8 = Epre — Epost > 0, or equivalently if Q = p> — ¢* > 0. Relearning A, has one
of three possible effects, depending on the position of w; on C: (1) if wy is under
the larger (dashed) arc Crr; as shown here, then p? > g% (8 > 0) and therefore
FLL is observed; (2) if wy is under the smaller (dotted) arc, then p* < g% (§ < 0),
and therefore negative FLL is observed; and (3) if wy is at the critical point w,;;,
then p? = g2 (§ = 0). Given that wy is a randomly chosen point on C and that
the length of Cr . is Srr1, the probability of FLL is P(§ > 0) = Sgp./nr (ie., the
proportion of Cg;; under the upper semicircle of C).

connected to the output unit via weights w, and wj, which define a weight
vector w = (w,, wp). Associations A; and A, consist of different mappings
from the input vectors x; = (x11, x12) and x = (x21, x22) to desired output
values d; and d,, respectively. If a network is presented with input vectors
x1 and Xp, then its output values are 13 = W - x; = w,X11 + wpX12 and 1 =
W - Xp = W, X21 + WX, respectively. Network performance error for k = 2
associations is defined as E (w, A) = Zle(di — )%
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The weight vector w defines a point in the (w,, wy)-plane. For an input
vector x;, there are many different combinations of weight values w, and
wyp that give the desired output d;. These combinations lie on a straight
line L1, because the network output is a linear weighted sum of input val-
ues. A corresponding constraint line L exists for A. The intersection of L;
and L, therefore defines the only point wy that satisfies both constraints,
so that zero error on A; and A, is obtained if and only if w = wy. With-
out loss of generality, we define the origin wy to be the intersection of L,
and L,.

We now consider the geometric effect of partial forgetting of both as-
sociations, followed by relearning A,. This geometric account applies to a
network with two weights (see Figure 2) and depends on the following
observation: if the length of the input vector |x;]| =1, then the perfor-
mance error E(w, A1) = (d1 — 11)* of a network with weight vector w when
tested on association A; is equal to the squared distance between w and
the constraint line L, (see appendix C). For example, if w is in L, then
E(w, A1) = 0, but as the distance between w and L, increases, so E (w, A;)
must increase. For the purposes of this geometric account, we assume that
Ixull = lxall = 1.

Partial forgetting is induced by adding isotropic noise v to the weight
vector w = wy. This effectively moves w to a randomly chosen point w; =
wo + v on the circle C of radius = ||v||, where r represents the amount of
forgetting. For a network with w = wy, learning A, moves w to the nearest
point wy on L, (see appendix B), so that w, is the orthogonal projection
of wi on L. Before relearning A, the performance error Ep, on A is
the squared distance p? between w; and its orthogonal projection on L;
(see appendix C). After relearning A, the performance error E is the
squared distance g2 between w, and its orthogonal projection on L;. The
amount of FLL is § = Ep — Epest and, for a network with two weights, is
equal to Q = p? — g% The probability P(§ > 0) of FLL given L; and L, is
equal to the proportion of points on C for which § > 0 (or, equivalently, for
which Q > 0). For example, averaging over all subsets A; and 4, there is
the probability P(§ > 0) = 0.68 that relearning A, induces FLL of A; (see
Figure 5), a probability that increases with the number of weights (see
theorem 3).

If we drop the assumption that a network has only two input units, then
we can consider subsets A; and A, with n; > 1 and n, > 1 associations. If
the number of connection weights n > max(n, 1), then A; and A, define
an (n — n)-dimensional subspace L; and an (n — 1;)-dimensional subspace
L,, respectively. The intersection of L1 and L, corresponds to weight vectors
that generate zero error on A= A; U A,.

Finally, we can drop the assumption that a network has only one output
unit, because the connections to each output unit can be considered as a
distinct network, in which case our results can be applied to the network
associated with each output unit.
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2 Methods

Given a network with n input units and one output unit, the set A of associ-

ations consisted of k input vectors (x1, ..., Xx) and k corresponding desired

scalar output values (dy, ..., dy). Each input vector comprises n elements

x = (x1, ..., x,). The values of x; and d; were chosen from a gaussian dis-
2

tribution with unit variance (i.e., 02 = 07 = 1). A network’s output ; is a

weighted sum of input values y; = w - x; = Z’](.:l w;x;j, where x;; is the jth
value of the ith input vector x;, and each weight w; is one input-output
connection.

Given that the network error for a given set of k associations is E(w, A) =
Y ¥ (d — )%, the derivative VEw) =235 (d; — yi)x; of E with respect
to w yields the delta learning rule Wy, = Wy — nV E(w,,), where 7 is
the learning rate, which is adjusted according to the number of weights.
A learning trial consists of presenting the k input vectors to the net-
work and then updating the weights using the delta rule. Learning was
stopped when ||VEw)ll < k0.001, where ||VEwll is the magnitude of the
gradient.

Initial learning of the k = n associations in A = A; U A, was performed
by solving a set of n simultaneous equations using a standard method,
after which perfect performance on all # associations was obtained. Partial
forgetting was induced by adding an isotropic noise vector vwithr = ||v|| =
1. Relearning the n, = /2 associations in A, was implemented with k = n,
using the delta rule.

3 Results

Our four main theorems are summarized here, and proofs are provided
in the appendixes. These theorems apply to a network with n weights that
learns n; + n, associations A = A; U A, and, after partial forgetting, relearns
the 1, associations in A.

Theorem 1.  The probability P (8 > 0) of FLL is greater than 0.5.

Theorem 2.  The expected amount of FLL per association in Ay is

E[8/n] = Z—ﬁE[nan]E[nvuZ]. (3.1)

For given values of E[||x||*] and E [ v||%], the value of n,, which maximizes
E[8/mn1] (subject to ny +np < n),isn, =n —ny.

If each input vector x = (x1, ..., x,,) is chosen from an isotropic (e.g.,
isotropic gaussian) distribution and the variance of x; is o2, then E [||x||?] =
no?. If o2 is the same for all n, then the state of a neuron (with a typical
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sigmoidal transfer function) would be in a constantly saturated state as
the number of synapses increases. One way to prevent this saturation is
to assume that the efficacy of synapses on a given neuron decreases as the
number of synapses increases. If forgetting is caused primarily by learning
spurious inputs, then the delta learning rule used here implies that the
“amount of forgetting” ||v|| is approximately independent of 1. We therefore
assume that ||v|| and o2 are constant, and for convenience, we set [|v| = 1
and o2 = 1. Substituting these values into equation 3.1 yields

E[5/m1] = % 3.2)
Using these assumptions, simulations of networks with n = 2 and n = 100
weights agree with equation 3.2, as shown in Figure 3.

The role of pruning can be demonstrated as follows. Consider a network
with 100 input units and one output unit with n = 100 weights. If n, = 90 as-
sociations are relearned out of an original set of 1y + 1, = 100 associations,
then E[§/n1] = ny/n = 0.90. However, if n = 1000, then E[§/1;] = 0.09. In
general, as the number n — (n; + 1) of unpruned redundant weights in-
creases, so E[§/n1] decreases. Therefore, E[§/n1] is maximized if n; + n, = n.
If n1 + np < n, then the expected amount of FLL is not maximal and can
therefore be increased by pruning redundant weights until n = n; + n, (see
Figure 4).

Note that for a particular network, performance error E,. on A; after
learning A, can be zero. For example, if w = w* in Figure 2, then p =g =0,
which implies that §/n; = Epest = g2 = 0.

Theorem 3.  The probability P(§ > 0) of FLL of A; satisfies

_ag(n, ng, n2) + az(n, np) var (Ix|1°)/ Elllx|1°T
nyny(n + 2)°

PG >0)>1 , (3.3)

where

ag(n, ny, np) =2 {ny(n+2)(n — nz) + n(n —nz) + n(n+2)(n — 1)} (3.4
a1(n, ny) =n*(2n + ny + 6). (3.5)

Theorem 3 implies that if the numbers (11 and n,) of associations in A;
and A, are fixed nonzero proportions of the number # of connection weights
(n1/nand ny/n, respectively) and var (||x||*) /nE [||x||2]2 — 0asn — oo, then
P(8 > 0) - 1asn — oo; and the probability that each of the 1; associations
in A; exhibits FLL is P(§/n; > 0) = P(§ > 0) because § > 0 iff §/n; > 0.

For example, if we assume that each input vector x = (xy, ..., X;,) is
chosen from an isotropic (e.g., isotropic gaussian) distribution and the
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variance of x; is o2, then var (||x||?)/E [||x||2]2 =2/n. This ensures that

var (|[x[|?)/nE [||x||2]2 — 0 as n — oo, and therefore that P(§ > 0) — 1 as
n— oo.

Using this assumption, an approximation of the right-hand side of equa-
tion 3.3 yields

_ 2(1 4+ a1 — 1) . 224 ap + 6/n)
nopay ajan(n + 2)?

P >0)>1 , (3.6)

where o1 =m/n and ap =ny/n. In this form, it is easy to see that
P >0)—> 1lasn — oo.

We briefly consider the case 11y > nand n, > n, so thateach of L1 and L,
is a single point. If the distance D between these points is much less than
[Ivll, then simple geometry shows that performance error E,. on 4 is large
and that relearning A, reduces this error for any v (i.e., with probability 1)
with Eppst o D?, even in the absence of initial learning of A; and A, (see
equation A.18 in appendix A). A similar conclusion is implicit in Atkins
and Murre (1998).

Theorem 4. If, instead of relearning A, the network learns a new subset As
(drawn from the same distribution as Ay), then the expected amount of FLL is less
than the expected amount of FLL after relearning subset Ay.

Learning A is analogous to the control condition used with human
participants (Stone et al., 2001), and the finding that the amount of recovery
after learning A is less than the amount of recovery after relearning A, is
predicted by theorem 4.

Figure 3: Distribution of free-lunch learning. (a) Histogram of amount of FLL
8/n1 per association, based on 1000 runs, for a network with n = 2 weights (see
section 2). After learning two association subsets (n = 0.1), A; and A, containing
n; =1 and n, = 1 associations (respectively), the network has a weight vector
wy. Forgetting is then induced by adding a noise vector v with ||v||> = 1 to wy.
One association A4, is then relearned, and the change in performance on A;
is measured as 8/n; (see Figure 2). Negative values indicate that performance
on A; decreases after relearning A,. (b) Histogram of amount of FLL §/n; per
association for a network with n =100 weights and 5 = 0.005, with A; and
A, each consisting of n; = n, = 50 associations, using the same protocol as in
(@). In both (a) and (b), the mean value of §/n; is about 0.5, as predicted by
equation 3.2. As the number of associations learned increases, the amount of
FLL becomes more tightly clustered around §/1; = 0.5, as demonstrated in these
two histograms, and the probability of FLL increases (also see Figure 5).
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Figure 4: Effect of pruning on free-lunch learning. Graph of the expected
amount of FLL per association E[§/1;] as a function of the total number 1, + 1,
of learned associations in A = A; U A, as given in equation 3.2. In this exam-
ple, the number of connection weights is fixed at n = 100, and the number of
associations in A= A; U A, increases from n; + 1, = 2 to n; + n, = 100. The
number 7, of relearned associations in A4, is a constant proportion (0.5) of the
associations in A. If n; + n, < n, then the network contains n — (n; + 1,) un-
pruned redundant connections. Thus, pruning effectively increases as 1, + 1,
increases because, as the number #; + n, of associations grows, so the number
of unpruned redundant connections decreases. The expected amount of FLL
per association E[8/#:] increases as the amount of pruning increases.

4 Discussion

Theorems 1 to 4 provide the first proof that relearning induces nontransient
recovery, where postrecovery error is potentially zero. This contrasts with
the usually small and transient recovery that occurs during the initial phase
of relearning forgotten associations (Hinton & Plaut, 1987; Atkins & Murre,
1998), and during learning of new associations (Harvey & Stone, 1996). In
particular, theorem 2 is predictive inasmuch as it suggests that the amount of
FLL in humans should be (1) proportional to the amount of forgetting of A =
A1 U A and (2) proportional to the proportion 1, /(11 + n2) of associations
relearned after partial forgetting of A.

We have assumed that the number 17 + 1, of associations A= A; U A,
encoded by a given neuron is not greater than the number 7 of input con-
nections (synapses) to that neuron. Given that each neuron typically has
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Figure 5: Probability of free-lunch learning. The probability P(§ > 0) of FLL of
associations A; as a function of the total number 1, + 1, of learned associations
A= AU A for networks with n = ny 4+ n, weights. Each of the two subsets
of associations A; and A, consists of 11 = 1, = n/2 associations. After learning
and then partially forgetting A, performance on A; was measured. P(§ > 0) is
the probability that performance on subset A, is better after subset A, has been
relearned than it is before A, has been relearned. Solid line: Empirical estimate
of P(8 > 0). Each data point is based on 10,000 runs, where each run uses input
vectors chosen from an isotropic gaussian distribution (see section 2). Dashed
line: Theoretical lower bound on the probability of FLL, as given by theorems 1
and 3, assuming that input vectors are chosen from an isotropic (e.g., isotropic
gausssian) distribution.

many thousands of synapses (e.g., cerebellar Purkinje cells), it seems likely
that this assumption is valid. However, the total amount of FLL is maximal
if my = np =n/2, so that the full potential of FLL can be realized only if
n + np = n. This optimum number of synapses can be achieved if inactive
(i.e., redundant) synapses are pruned. Pruning may therefore contribute to
FLL in physiological systems (Purves & Lichtman, 1980; Goldin, Segal, &
Avignone, 2001).

We have also assumed that a delta rule is used to learn associations be-
tween inputs and desired outputs. This general type of supervised learning
is thought to be implemented by the cerebellum and basal ganglia (Doya,
1999). Models of the cerebellum (Dean, Porrill, & Stone, 2002) use a delta rule
to implement learning. Similarly, models of the basal ganglia (Nakahara,
Itoh, Kawagoe, Takikawa, & Hikosaka, 2004) use a temporally discounted
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form of delta rule, the temporal difference rule. This temporal difference
rule has also been used to model learning in humans (Seymour et al.,
2004), and (under mild conditions) is equivalent to the standard delta rule
(Sutton, 1988). Indeed, from a purely computational perspective, it is dif-
ficult to conceive how these forms of associative learning could be imple-
mented without some form of delta rule.

Our analysis is based on the assumption that the network model is lin-
ear. Of course, many nonlinear networks can be approximated by linear
networks, but it is possible that the results derived here have limited appli-
cability to certain classes of nonlinear networks.

Relation to Task Generalization. It is only natural to ask how FLL
relates to tasks that a human might learn. One obvious but vital condition
for FLL is that different associations must be encoded by a common set of
neuronal connections. Aside from this condition, it might be thought that
relearning A, improves performance on A; because A; and A, are somehow
related (as in Hanson & Negishi, 2002; Dienes, Altmann, & Gao, 1999), so
that learning A, generalizes to A;. This form of task generalization can occur
if Ay and A, are related as follows. If the input-output pairs in 4; and A,
are sampled from a sufficiently smooth function f and n; 3> nand n, > n,
then A; and A, are statistically related, and therefore the weights induced
by learning A; are similar to those induced by learning A,. Consequently,
the resultant network input-output functions ¢; and g, (respectively) both
approximate the function f (i.e., g1 ~ g ~ f). In this case, learning A,
yields good performance on A;. In the context of FLL, if A; U A; is learned,
forgotten, and then A, is relearned, performance on A; will also improve.
However, the reason for this improvement is obvious and trivial: it is simply
that A; and A, are statistically related and large enough (i.e., with 1y > n
and n, > n) to induce similar network functions.

In contrast, the effect described in this letter does not depend on statisti-
cal similarity between A; and A,. Crucial assumptions are that n; + 1, <n,
nm < n, and 1y < n, so that learning the n, associations in A, in a network
with 1 weights is underconstrained. This implies that the network function
induced by learning A; has no particular relation to the network function
induced by learning A,, even if A; and A, are sampled from the same func-
tion f (provided A; and A, are disjoint sets). For example, if A; and A,
each consists of one association sampled from a linear function f (i.e., a
line), then learning A, in a linear network (as in Figure 2a) induces a linear
network function g; (i.e., a line) that intersects with f but is otherwise un-
constrained. Thus, learning A, does not necessarily yield good performance
on A;. The FLL effect reported here depends on relearning after forgetting.
To cite an extreme example, if unicycling and learning French were encoded
by a common set of neurons, then, after forgetting both, relearning unicy-
cling could improve your French (although the mechanism involved here
is unrelated to that described in Harvey & Stone, 1996). Thus, FLL contrasts
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with the task generalization outlined above, where it is obvious that both
A; and A, induce similar network functions.

Motivated by the demonstration that recovery occurs in humans (Stone
et al., 2001; Coltheart & Byng, 1989; Weekes & Coltheart, 1996) (but not
in all studies—Atkins, 2001), we have proven that FLL occurs in network
models. The analysis presented here suggests that FLL is a necessary and
generic consequence of storing information in distributed systems rather
than a side effect peculiar to a particular class of artificial neural nets.
Moreover, the generic nature of FLL suggests that it is largely indepen-
dent of the type (i.e., artificial or physiological) of network used to learn
associations.

FLL appears to be a fundamental property of distributed representations.
Given the reliance of neuronal systems on distributed representations, FLL
may be a ubiquitous feature of learning and memory. It is likely that any
organism that did not take advantage of such a fundamental and ubiquitous
effect would be at a severe selective disadvantage.

Appendix A: Analysis of Free-Lunch Learning

We proceed by deriving expressions for Ep., Epost, and 8 = Epre — Epost. We
prove that if n; + n, < n, then the expected value of § is positive. We then
prove that if n; 4+ ny < n, the probability P(§ > 0) of FLL is greater than 0.5,
that its lower bound increases with n (if n1/n and n,/n are fixed), and that
this bound approaches unity as n increases.

A.1 Definition of Performance Error. For an artificial neural network
(ANN) with weight vector w, we define the performance error for input

vectors xi, . . ., X, and desired outputs di, . . ., d. to be
Cc
E(a, ... Xei Wody, . ode) =Y (Wexi —d;). (A1)
i=1

By putting X = (x1, ..., x.)T,d = (d1,...,d.)" and
EX;w,d) = E(x1,...,Xc; W, dq,...,d),

we can write equation A.1 succinctly as

EX; w,d) = |Xw —d|>. (A.2)

Given a ¢ x n matrix X and a c-dimensional vector d, let Lx 4 be the affine
subspace,

Lxa = {w:X"Xw =X"d},
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of R". Since

i 1k (XTX) < 1k (X),
ii. XTXa=0=a’X'Xa=0= Xa=0,

it follows that rk (XTX) = rk (X) (where rk denotes the rank of a matrix),
and so

Lx, q is nonempty. (A.3)

If X and d are consistent (i.e., there is a w such that Xw = d), then

Lxg={w:Xw=d}.

A.2 Comparison of Performance Errors. Given weight vectors w; and
wy, a matrix X of input vectors, and a vector d of desired outputs, define

s(wy, wp; X, d) = Epre - Epost’

where Ep = E(X; wi, d) and Epest = E(X; wz, d). Let W be any element of
LX,d~ Then

8w, wa; X, d) = [ Xwy — dJ)* — | Xw — d|?
= [ Xw1 [ — [Xw2|* — 2 (w1 —wy)" X7d
= (w1 — wo)T XTX (W1 + w») — 2 (W — wo)T XTXW

= (w1 —w2)T XTX (W + Wy — 2W). (A.4)

Suppose given n; x n matrices X; and n;-dimensional vectors d; (for i =
1, 2). Put

Ll' = LX,,di fori = 1,2.
If X; has rank n;, then
X; =T,Z;

for unique n; x n; and n; x n matrices T; and Z; with T; upper triangular
and Z;Z] =1,,. Note that the matrix Z!Z; represents the operator that
projects onto the image of X X;, and so

z!'z,X'x; = XI'x;. (A.5)
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Let wy be an element of Lx 4, where

(%) e ()
that is,

(XTX1 + X3 Xo) wo = X] dy + X] do. (A.6)
(By equation A.3, such a wy always exists.) Given v in R”, put

W1 = Wo + V.

Let wgp and w; be the orthogonal projections of wy and wy, respectively,
onto L,. Then

XJ Xowor = X] dy (A7)

wr=wop + (I — Z3 Z,) (W1 — wpp).

Manipulation gives

Wi — Wy = ZEZZ (V +wp — W()z) R (A.8)
and so
W1+ Wo — 2wy = (21” — ZEZQ) vV — ZgZQ (Wo —wpp) . (A9)

Let W be any element of Ly, 4,. Then equations A.4, A.6, A.7 to A.9,and A.5
yield
3(wr, wp; Xy, dy)
= (w1 —w2)" X{ X (W1 + Wz — 2%)
= (w1 —w2)T XIX; (Wi 4+ wy) —2(wy —wp)” XT'dy
=(wp — wz)T XlTX1 (W1 + wp —2wp) — 2 (W — wz)T Xng (Wo — wpa)
=(Vv+wy— WOZ)T ZzTszlTXl (w1 + wa — 2wyg)
—2(v+wy— Woz)T ZZTZZXZTXZ (Wo — wpp)
=(v+wo—wn) Z)ZX] X1 (2L, — Z]Z,) v
— (v +wo —wp) ZTZ:XIXZ1 Z, (wo — won)

-2 (V + wg — Woz)T Z%ZngXZ (Wo — W)
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=v'Z]Z,X{ X, (21, — Z] Zo) v
—2(wo —woo)' Z1Z, [XTX; (1, — 21 Z,) — X3 Xo ) v
— (wo —wo2)" Z1Z, (2X3 Xz + XIX4Z2 Z,) (Wo — Wop)
=v'Z]Z,X{ X, (2L, — Z; Zo) v
—2(wo — W) {Z1ZX[ X (L, — Z1Z,) — X3 Xo ) v
—(wo — wo2)" (2X] Xa + Z] ZoX{ X1 Z] Z5) (Wo — Wo2) - (A.10)

A.3 Moments of Isotropic Distributions. In order to obtain results on
the distribution of performance error, it is useful to have some moments of
isotropic distributions.

Let u be uniformly distributed on S5"-1 andlet A and Bben x n matrices.
The formulas for the second and fourth moments of u given in equations
9.6.1 and 9.6.2 of Mardia and Jupp (2000), together with some algebraic
manipulation, yield

tr(A)

E[u’Au]= " (A.11)
T
E [uTAuuTBu] = w(AB) + :?: +)2_)|— r@)® (A.12)
2 Ty _ 2
var (u” Au) = ntr (A%) + r;tzr(i(inz)) 2tr (A) ) (A.13)

Now let x be isotropically distributed on R", that is, Ux has the same distri-
bution as x for all orthogonal # x n matrices U. Then writing x = ||x||u with
lull = 1 and using equations A.11 to A.13 gives

E [IIx]1?] tr (A)

E[x"Ax]= " (A.14)
E[x AxxTBx] = LM {tr (AB) o iA;) +tr(A) e (B)}
. E[Ix|14] {ntr (A%) + ntr (AAT) - 2tr (A)?
var (x' Ax) = 2012
2 2
N var (|x[|?) tr (A) ' (A15)

n2
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A4 Distribution of Performance Error. Now suppose that X, di, Xy,
d,, and v are random and satisfy

X1 and v are independent,
the distribution of Xjis isotropic, (A.16)
v has an isotropic distribution,

where conditions A.16 mean that UX;V has the same distribution as X; for

all orthogonal n; x 17 matrices U and all orthogonal # x n matrices V. Then
equation A.10 yields

E[8(w1, wo; Xq, dp) X1, X2 ]

E 2
- Wtr (X1X1Z]Z,)

— (Wo — wo2)" (2XIX2 + Z1 Z,X] X121 Z,) (wo — won) - (A.17)

Taking expectations over X; and X; in equation A.17 gives the following
general result on FLL:

E[8(w1, wy; X1, dy)] > 0 iff

E[|Iv]*] > n*E[(wo — woo)" (2X] X2 + Z3 ZoX] X1 Z] Z,) (wo — wo2) ]
nnyp .

(A.18)

The intuitive interpretation of this result is that if E [||v||?] is large enough,
then there is FLL, whereas if P (wo # wg) > 0 then “negative FLL” can
occur. In particular, if n; + 1, < nand P (v # 0) > 0, then there is FLL.

A.5 The Case 11 + 1, < n. In this section we assume that Xy, d;, X; and
d, are random and that

(X1, d1), (X2, d2) and v are independent, (A.19)
the distribution of v is isotropic. (A.20)

We suppose also that 117 + 1, < 1, and that the distributions of X, dy, Xy,
and d, are continuous. Then, with probability 1,

X1W0 = d1 and X2W0 = dz,

so that wp; = wy and equation A.10 reduces to

8w, wa; X1, dv) = vI Z] ZoX{ Xq (21, — Z3 Z) v. (A.21)
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A.5.1 FLL Is More Probable Than Not. Let w} be the reflection of wy in Ly,
that is,

W) =wy — (W) — Wp).

Consideration of the parallelogram with vertices at wy, wi, wj, and
w1 + W] — wy gives

2 (IX1 (w1 — wo) I + 1X1 (W — wo) 1)
= X1 ([w1 — wol + [wi — wo]) I> + X1 ([w1 — wol — [w} — wo]) II?
=4 (X1 (W2 — wo) > + X1 (w1 — wo) [1?),

so that (since d; = X;wy)

8(wy, wo; X1, di1) + 8(w7i, wa; Xy, dy)

= [1Xa (w1 — wo) [I> + X1 (W} —wo) > = 2[[ X1 (w2 — wo) ||

=2[X; (w1 —wy) [|> > 0.
Thus if &(wi, wp; Xy, d1) <0, then §(wj,wy; Xy, dy)>0. If v is dis-
tributed isotropically, then wj — wq is distributed isotropically, so that

8(wj, wo; X1, d1) has the same distribution (conditionally on X, d; and
X3) as §(wq, wp; X1, dp), and so

P(8(w1, wa; Xy, d1) < 01Xy, d1, Xp) < P(8(w7, wa; Xy, di) > 0[Xq, di, X2)
= P(S(Wl, W2, Xl, dl) > O|X1, dl, Xz).
(A.22)
Further, if ve L, \ Ly, then wy =w; =wj, so that §(wy, wy; Xq,dy) =
8(wj, wy; X1, d1) > 0. By continuity of §, there is a neighborhood of v on

which 8(wy, wo; X1, dq) > 0 and §(w7, wp; X, d1) > 0. Thus, if Lo\L; # 9,
then equation A.22 can be refined to

P(8(w1, wo; X1, di) < 01Xy, di, Xp) < P(8(w7, wo; X1, d1) < 01Xy, di, X).
(A.23)

Since P(L, € Ly) = 0and P(§(wq, wo; X1, d1) < 0|Xq, d1, X)isa continuous
function of Xj, d; and X;, it follows from equation A.23 that

P(8(w1, wa; Xq, d1) < 0) < P(8(wy, wa; Xy, dp) > 0),

which implies the following result.



Free-Lunch Learning 211

Theorem 1

P(s(w1, wo; X1, d7) > 0) > 0.5.
This implies that the median of §(w1, wy; X, d;) is positive.

A.5.2 A Lower Bound for P(§ > 0). Our proof depends on Chebyshev’s
inequality, which states that for any positive value of ¢,
var(s)
2

P(js —E[]l = t) <

3

where var(§) denotes the variance of §. If we set ¢t = E[§], then (since, by
equation A.28, E[§] > 0)

<0< var (3)

P@E=0)= oo

(A.24)

This provides a lower bound for the probability of FLL. We prove that this
bound approaches unity as n approaches infinity.
Now we assume (in addition to conditions A.19 and A.20) that

the distributions of X; and X, are isotropic. (A.25)
It follows from equations A.21, A.14, and A.15 that
n
E[8(w1. i X1, d) 1Z2. vI=V' Z] ZE[Ix*] 1, (2, — 2] Zo) v

n
zﬁﬂwﬂﬁﬁbm (A.26)

where x is the first column of XlT, and

var (§(wy, wa; X1, dq) |22, v)

" {E LIxI#] {(n = 2)1ZovI* + n| Zov 2| (2L, — Z] Zo) v||?}
=

n2(n +2)

- (A.27)

var (||x]|?) | Z2v||*
N (IxI*) 1 Z2v | '

Since v has an isotropic distribution, equations A.26, A.11, and A.13 imply
that
niny

E[S(w, wai X1, di) 25, IvII] = — 7= [Ix112] Ivli. (A.28)
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Given that there are n; associations in the subset A; that is not relearned,
equation A.28 implies the following theorem about the expected amount of
recovery per association in A;.

Theorem 2

E S(wy, wo; X1, dy)
ni

n
bww}=£EMNﬁMW- (A.29)

Equations A.26 and A.13 also imply that

var (E [8(w1, wo; X1, d1) |Zs, V]IZy, |IVI])

_m o\2 IIvI* (21, — 2n3)
_<ZEU“”D n2(n + 2)

2
_ 2nima(n — m)E [IxI?]” Iv]I*

) A.30
nt(n +2) ( )
and it follows from equations A.27 and A.12 that
E[var (§(w1, wo; X1, d1) |Z, V) |Zs, ||v] ]
omlivi® [ E[IxI] {0 = 2)ma(nn + 2) + nma(2n — 12 4 2)}
T n(n+2) n2(n + 2)
mdwmmm+m}
+ 2
n
mm|lv|*
= A 27 L] 202 + 20— my = 2) + var (1) ( +2)(m2 + 2)}
(A.31)

Then equations A.30 and A.31 give

var (8(w1, wa; X1, d1) | Zs, [Iv]])

2
_ 2n2my(n — m)E[|Ix|?]” v|*
- n4(n + 2)

mm|v|*

B 2R {E[IxII*]2(n* + 2n — np — 2) + var (Ix|1?) (n + 2)(n2 + 2)}
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_ mm|v|*
n*(n + 2)?

+n?(2n 4 ny + 6)var(||x||?)},

{2[m(n + 2)(n — n2) + n(n — np) + n(n + 2)(n — L]E[||x|I*1*

and so

var (8(wi, wo; Xu, di) |Zo, [Ivll) — ao(n, n1, np) 4+ a1(n, np)y (n)
E[8(w1, wa; X1, d1) | Zo, V]| ]2 nina(n + 2)2

’

where

ao(n, n1, ng) =2{m(n + 2)(n — nz) + n(n — nz) + n(n + 2)(n — 1)}
a1(n, np) =n>2n + ny + 6)
. var (||x]|?)

E [IxI2]*
Chebyshev’s inequality implies the following theorem.

Theorem 3

o(n, nq, nz) +a1(n, ng, n2)y(n)

a
P (8(w1, wy; X7, dp) < 0|23, <
(B(w1, wo; X1, d1) < 012, ||v]]) (1 + 2)?

Since the right-hand side does not depend on Z, or ||v||, this gives the
following result.

If y(n)/n — 0 and ny/n, ny/n are bounded away from zero as n — oo,
then

P (8(w1, wp; X1,dq) > 0) — 1, n— oo.
Example. If

x ~ N(0, 021,),

then
2 2 2 4 2
E[|Ix|I*] = noy, var (||x||*) = 2noy, y(n) = =
and so
P(8(w1, wo; X1,dg) >0) > 1, n— 0o,

provided that n1 /n and n,/n are bounded away from zero.
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A.5.3 Learning As Instead of A». Now suppose that relearning of 4, is
replaced by learning another subset As of #, associations. Let the matrix
X3 and vector d3 be such that the subspace L3 corresponding to As has the
form L3 = LXs,ds'

Let w3 and wy3 denote the orthogonal projections of wi onto L3 and
L1 N L3, respectively. Then

ws = wis + (I, — Z3 Z5) (W1 — w3), (A.32)
and so
wi = w3 + Z1 Z5 (W — wis). (A.33)

From equation A.4 with W = w3, and equations A.33 and A.32, we have
8(w1, ws; Xa, di) = (w1 — wa)" X] Xq (w1 + w3 — 2wi3)
= (w1 —wiz)" ZTZ:XTX; (w1 + w3 — 2wy3)
=(v—a) Z]Z:XIX; (21, - Z1Z5) (v — @), (A34)
where

(:):W13 — Wp.

Since X;wy = X;wy3, equation A.34 can be expanded as
8(wr, wa; Xq, dy)
=v'Z]Z:X{ X, (21, — Z}Z3) v
—v'ZIZ:XI X0 (21, — Z1Z3) & — &7 Z3 Z:X] X (21, — Z3 Z3) v
— @' ZI 25X X423 Z5,
and so

E[§(wy, ws; Xq, d1)[Xq, di, Xz, d2, X3, d3]

E 2
= Wtr (Z3ZsX{ X1 20y = Z3Z5)) — &' Z3 ZsX{ Xi Z5 Z5

E 2
- wtr (X1X1Z3Z5) = X125 Z5& .

Now assume that

(X1, d1), (X2, d2), (X3, d3) and v are independent,

the distributions of X, X;, X3 and v are isotropic.
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Since

wE [tr (X] X127 Zy)] = wE [tr (XX, 2] Z5)]

=E[6(w1, wo; X4, d1)],
we have the following theorem.
Theorem 4

E[8(wy, w3; X1, d1)] < E [8(w1, wp; X7, d1)].

Appendix B: Behavior of the Gradient Algorithm

If E is regarded as a function of w, then differentiation of equation A.2
shows that the gradient of E at w is

VEw) =2X" (Xw —d).

Then for any algorithm that takes an initial w© to w®»), w®, ... using steps
wttD) — w in the direction of VE wo), w® — w® isin theimage of X7 X, and
so is orthogonal to Ly 4. It follows that if |[Xw(® — d||> — min, [|[Xw — d|?
as t — 0o, then w") converges to the orthogonal projection of w® onto
nyd.

Appendix C: The Geometry of Performance Error When n; =1

Given associations A; and A, we prove that if ny = 1 and input vectors
have unit length (so that [x;|| = 1), then the difference § in performance
errors on association A; of wy (i.e., after partial forgetting) and w, (i.e., after
relearning A) is equal to the difference Q = p? — g2. This proof supports
the geometric account given in the article and in Figure 2 and does not (in
general) apply if n; > 1.

We begin by proving that (if 71 = 1 and [|x;|| = 1) the performance error
of an association A; for an arbitrary weight vector w is equal to the squared
distance p? between w; and its orthogonal projection w) onto the affine
subspace L corresponding to A;. If n; = 1, then L; has the form

L1={W:W~X1=d1}

for some x; and d;. Given an arbitrary weight vector wy, we define the
performance error on association A; as equivalent to

E(wi, A1) = (wy - xq —di)*. (c1)
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The orthogonal projection w) of w; onto L is

, di —wy - X
W; = Wp + WX], (CZ)
so that
di =wj - xq. (C.3)

Substituting equation C.3 into C.1 and using C.2 yields

2 2
E(wi, A1) = llwi — wilI%lixal

=PIl (C.4)
Now suppose that ||x;]| = 1. Then
E(wy, A) = p?,

that is, the performance error is equal to the squared distance between the
weight vectors w; and wj. The same line of reasoning can be applied to
prove that

E(ws, A1) = q°.

Thus, the difference § in performance error on A; for weight vectors wy and
W» is

8§=E(wy, A1) — E(wp, A)

=p’=q’
=Q.
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