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Abstract

The biological immune system exhibits powerful information processing capabil-

ities, and therefore is of great interest to the computer scientist. A rapidly expanding

research area has attempted to model many of the features inherent in the natural im-

mune system in order to solve complex computational problems. This thesis examines

the metaphor in detail, in an effort to understand and capitalise on those features of

the metaphor which distinguish it from other existing methodologies. Two problem

domains are considered — those of scheduling and data-clustering. It is argued that

these domains exhibit similar characteristics to the environment in which the biological

immune system operates and therefore that they are suitable candidates for application

of the metaphor. For each problem domain, two distinct models are developed, incor-

porating a variety of immunological principles. The models are tested on a number of

artifical benchmark datasets. The success of the models on the problems considered

confirms the utility of the metaphor.
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Chapter 1

Introduction

The study of biological systems has long proved inspirational to the computer scientist

as a means of solving complex computational problems, with many attempts to mimic

the mechanisms inherent in the natural world. For example, early neural network pio-

neers attempted to model the circuitry and processing thought to be found in the brain;

the field of evolutionary algorithms was inspired by Darwininan studies of natural evo-

lution; ant colony optimization algorithms are modelled on the behaviours exhibited

by real ants, and more recently, the concept of DNA computing has arisen, inspired by

the processes that govern life itself. The driving force behind such research is two-fold:

the use of biologically inspired metaphors can result in new computer technologies and

novel methods of problem solving, and conversely, computing can provide new tools

and techniques for exploring biological concepts from an alternative prospective.

The field of artificial immune systems (AIS) is also inspired by a biological

metaphor — in 1986 the theoretical immunologist, J.D. Farmer, first suggested

a possible relationship between biological immunology and computing in a pa-

per which compared natural immune systems, adaptation and machine learning

([Farmer et al., 1986]). Since then, the field has expanded rapidly, with numerous pa-

pers published by computer scientists applying AIS to a diverse set of topics ranging

from computer security [Forrest et al., 1994] to behaviour arbitration for autonomous

mobile robots [Ishiguro et al., 1996]. A dip into the biological journals reveals a

similar number of computational models of immunological phenomena, for example

[Weinand, 1990, Perelson, 1989, Celada and Seiden, 1992]. In light of the increasing

1



Chapter 1. Introduction 2

amount of research in this area, it thus seems pertinent to examine the immune system

metaphor in relation to information processing in more detail, and to ask which are

the features of the natural immune system that really distinguish it from other biolog-

ical metaphors, and to attempt to categorise the types of problem area in which this

particular metaphor might provide an advantage over others.

1.1 Immunology

There are four main causes of death to the human being — injury, infection, degenera-

tive disease and cancer. Of these, only the former two regularly kill their victims before

they reach child bearing age, and as such are a potential source of lost genes. The im-

mune system is an example of a mechanism which may help to ensure the survival of

those genes, and has evolved over time in order to protect us from infectious organ-

isms existing in the environment. Thanks to the immune system, infections in a normal

individual caused by microbes such as viruses, bacteria, fungi and parasites are gener-

ally short lived and leave little permanent damage. The immune response broadly falls

into two categories — the innate or non-specific response, and the adaptive or specific

response. The innate response is provided by a number of non-specific chemicals such

as lysozyme which destroys the outer surface of many bacteria, non-specific chemical

effectors such as macrophages and simple barrier mechanism such as the skin. On the

other hand, the adaptive response is highly specific for particular pathogens (antigens),

and furthermore, it improves with each subsequent exposure to the pathogen. It can

therefore can be said to ’remember’ specific pathogens. It is with this adaptive aspect

of the immune system that artificial models are generally concerned. The adaptive re-

sponse consists of two major phases — a recognition phase followed by a reaction to

eliminate the pathogens, and is achieved via a class of immune cells collectively known

as lymphocytes. Recognition is generally accepted to require the immune system to be

able to distinguish between the body’s own cells (self) and foreign pathogens, (non-

self), though recently some immunologists have controversially rejected this theory

and proposed that in fact the job of the immune system is only to distinguish dan-

gerous non-self from self ([Matzinger, 1994a, Matzinger, 1994b]. As far as computer
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scientists are concerned however, the task essentially remains one of recognition fol-

lowed by an action such as elimination, and it is the mechanisms by which the natural

immune system achieves these aims that make the system so attractive to the topic of

information processing.

1.2 Some Key Concepts and their Relevance to Infor-

mation Processing

The immune system can be considered to be a remarkably efficient and powerful in-

formation processing system which operates in a highly parallel and distributed man-

ner. It operates in a dynamic and unpredictable environment in which it is necessary

to react to changes in a timely manner — this is achieved partly through imprecise

but efficient recognition mechanisms and by utilising memories of past experiences

to provide useful pointers to the correct course of action. It contains several features

that make it appealing from a computational point of view. These are summarised

below. The list attempts to correlate features of immune system with the well-known

terminology of information processing. The information is adapted from that given in

[Dasgupta, 1998]:

• Recognition: The immune system can recognise and classify different patterns

and generate selective responses. In the natural immune system, recognition

is achieved via inter-cellular binding, the strength of which is determined by

molecular shape and electrostatic charge. One view is that during the recogni-

tion process, the immune system is solving the problem of self-nonself discrim-

ination.

• Feature extraction: Features are extracted from pathogens by antigen present-

ing cells or APCs which extract features from them and present them on their

surface. This serves two purposes, that of a filter and a lens. The filter removes

noise and the lens focuses attention.

• Diversity: The immune system can utilise a combinatoric process to generate

a diverse set of pathogen recognising molecules, and ensures that at least some
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lymphocytes can bind to any antigen, whether known or unknown.

• Learning: The immune system learns by experience the structure of specific

antigens, following the first exposure (primary response) of the system to a new

antigen. The main mechanism for learning is via altering the concentrations of

lymphocytes during the primary response phase.

• Memory: It has been shown that when the immune system has been activated,

a few lymphocytes become special ’memory cells’ which are then content-

addressable. The longevity of these cells is dynamic and requires continued

stimulation from residual antigens. A balance is achieved between economy and

performance by maintaining a minimal but sufficient memory of the past.

• Distributed detection: The immune system is inherently distributed throughout

the body — lymphocytes constantly circulate throughout the blood, lymphoid

organs and tissue spaces.

• Self-regulation: There is no central organ coordinating the immune response and

therefore the mechanisms are self-regulatory, although not necessarily stable in

the sense of converging to a time-independent state.

• Threshold Mechanism: An immune response and the subsequent proliferation of

immune cells only takes place above a certain matching threshold, related to the

strength of chemical binding.

• Co-Stimulation: Activation of immune cells is regulated through co-stimulation

in which ’helper’ T-Cells deliver a second signal, to ensure tolerance and to

distinguish between harmless and dangerous invaders.

• Dynamic protection: The processes governing generation of high-affinity im-

mune cells dynamically balance exploration vs exploitation in adaptive immu-

nity. This dynamic protection increases the cover provided by the immune sys-

tem over time.

• Probabilistic detection: Detection of antigens is approximate, therefore a lym-

phocyte can bind with several different kinds of structurally related antigen.
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Thus, the immune system contains a number of general mechanisms which poten-

tially can be copied or adapted in computer systems. From the perspective of infor-

mation processing, it is unnecessary to attempt to replicate all of these aspects of the

natural immune system in a computer model, rather they should be used as general

guidelines in designing a system. Indeed, as becomes clear in the literature review of

chapter 2, in practice most AIS applications only implement some modified subset of

these features. Perhaps more importantly, it should be noted that several of these fea-

tures are apparent in other biologically inspired systems — the IS has been compared

to artificial neural networks ([Dasgupta, 1997], to sparse distributed memories (SDM)

[Smith et al., 1999], to classifier systems [Farmer et al., 1986] and to case-based rea-

soning systems [Hunt et al., 1995]. Therefore, a question that deserves more attention

is to what end does the immunological metaphor provide analogies that cannot be pro-

vided by another less seductive labelling. One of the aims of this thesis is to attempt to

isolate the unique features of the immune system that seem most relevant and identify

the types of problem areas to which they could profitably be applied.

1.3 Overview of Application Areas

The above discussion suggests that potential application areas for the application of

the immune system metaphor are those in which we are seeking robust and ’good

enough’ solutions to problems occurring in dynamic environments that allow a system

to continue functioning satisfactorily. These features are characteristic of a number of

real-world problem domains. However in this thesis two particular areas are chosen

as being particularly suitable; scheduling and data-clustering. As will be seen in the

next section when the analogy is made explicit, the problems faced by the immune

system of recognising and eliminating harmful invaders on a relatively short timescale

are very similar to those faced in the two identified domains.

1.3.1 Scheduling

Consider a typical real-world manufacturing scenario in which assembling a finished

product for delivery to a customer requires the manufacturing of several individual
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parts or subcomponents of the product before they can be assembled into the final

article. The rate of production of the products and hence ultimately the cost of pro-

ducing them is controlled by a schedule — however, creation of a suitable schedule is

well-known to be a highly complex problem. Many factors must be taken into con-

sideration when producing a schedule, for example the costs associated with storing

the raw materials required to manufacture the products, the common need to produce

expensive products on a ’just-in-time’ basis, and the set-up times associated with using

machines. Even when an attempt is made to take these factors are taken into account,

the fact cannot be ignored that a factory is by definition operating in a dynamic and un-

predictable environment:- machines break down, employees get sick, materials arrive

late, and customer demands change rapidly. Some of these events occur frequently,

and can be more or less predicted to some extent (for example, materials from a cer-

tain supplier may often arrive late), whereas others occur on a much more ad-hoc

basis and cannot be foreseen. An ’ideal’ schedule therefore, if there is such a thing, is

not necessarily one which optimises some measurable criterion such as make-span or

maximum tardiness, but one which has some built-in flexibility that can absorb some

unpredictable event without disrupting the planned schedule. At the same time, the

schedule should still deliver some acceptable level of quality when measured against

some pre-determined criteria.

Thus, it can be seen that the task of producing robust schedules has a direct analogy

with the task faced by the immune system . Both operate in a dynamic and unpre-

dictable environment — the immune system must mount an efficient and immediate

antibody response against invaders if it is to survive — similarly, in order to minimise

costs, a useful scheduling system should be able to mount a response to environmen-

tal changes by rapidly altering schedules so that minimum disruption is caused. The

antibodies produced by the immune system do not have to perfectly match the invad-

ing pathogens in order to eliminate them, similarly the new schedules produced by the

scheduling system to not have to be optimal, just ’good enough’ for the scheduling to

continue with the least interruption. Futhermore, both systems can utilise a memory of

past events in order to produce an efficent response, but are also required to be capable

of responding to entirely new situations. It therefore seems plausible that some or all



Chapter 1. Introduction 7

of the characteristics of the immune system may be adapted to implement a scheduling

system.

1.3.2 Data Clustering

Modern technology makes it incredibly straightforward for companies to gather vast

amounts of data concerning individuals and their habits on a daily basis, for example

through the use of credit cards or supermarket loyalty cards. Interpreting such huge

quantities of data, and identifying clusters and trends within it is a mammoth task,

especially as the data may be rapidly changing. Data-clustering can be defined as “the

unsupervised classification of patterns (observations, data items or feature vectors)

into groups (clusters)” [Jain et al., 1999], and is performed in the hope that implicit

previously unknown and potentially useful knowledge can be extracted from the data.

It is a large field in its own right, and there are many documented approaches. The

reader is referred to [Jain et al., 1999] for a recent and detailed survey.

However, the immune metaphor may provide a novel and alternative approach.

Both the immune system and a data-clustering system have to operate in very large

input spaces. In the immune system, a lymphocyte recognises a set of antigens, due

to its imprecise matching characteristics; that set can be considered to be equivalent to

a cluster within a database. The lymphocyte that recognises all the items in a cluster

thus provides a concise description of the cluster itself. The number of lymphocytes

present and the specificity of the recognition process provides a mechanism for con-

trolling the number of clusters present, and hence provides a method of controlling

how specifically (or generally) the clusters are described. The fact that recognition is

imprecise is important — data in a database is likely to contain much noise and re-

dundant information, therefore some kind of imprecise recognition mechanism will be

essential.

The natural immune system can react to unseen pathogens either by producing

new lymphocytes using its inbuilt diversity generating mechanisms or by adapting ex-

isting lymphocytes via mutation mechanisms. Similarly, when new data arrives in the

database, the centres and sizes of the clusters may need to move and adapt in order

to recognise the new data. New cluster centres may be created and old ones may
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disappear over the course of time, the key point being that the system can respond

dynamically to the state of the database at a given moment in time.

The natural immune system is very efficient at recognising the sudden appearance

of harmful invaders; a data-clustering system should be able to recognise the appear-

ance of anomalous data in the database. This feature would automatically result from

an immune based model — data-items belonging to existing clusters would be recog-

nised by existing lymphocytes in the system’s memory, whereas data belonging to new

clusters would trigger creation of an entirely new lymphocyte. This event could trigger

a warning to an external observer of the system, signifying that the new item is non-

representative of the general patterns. Imagine for example attempting to cluster data

collected by a credit-card company relating to card usage. The company is interested

in clustering the data to identify patterns in card usage, but would also like to detect

fraudulent card-usage. If a newly presented data-item does not belong to an already

established cluster, it could identify an attempt at fraudulent usage of the card, which

further human examination could verify.

Finally, the distributed nature of the immune system architecture is attractive,

given the fact that very large datasets are also likely to be distributed. This disserta-

tion presents two new immune system based models for tackling non-stationary data-

clustering problems, that attempt to take advantage of the immune metaphors.

1.4 Aims and Contributions of Thesis

The main contributions of this dissertation are as follows:

1. Development of two AIS models for performing job-shop scheduling, both based

on the use of evolutionary algorithms.

2. Analysis of the models, and empirical testing and comparison of them on bench-

mark job-shop scheduling data.

3. Development of two models for performing clustering in non-stationary

databases based on combining immune system metaphors with that of another

class of associative memories, SDM.
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4. Analysis and testing of both models on an artificially generated test-bed of non-

stationary data.

1.5 Guide to Remainder of Thesis

Chapter 2 introduces some basic immunology for computer scientists. This is fol-

lowed by a review of a number of very different models of artificial immune systems,

which identifies the features of the natural immune system each model contains, and

discusses the types of application to which each has been applied. Chapter 3 contains

a detailed description of the scheduling domain and presents two AIS models for solv-

ing job-shop scheduling problems, including detailed experimental results. In Chapter

4, the data-clustering domain is described, and an artificial test-bed for experimenting

with AIS models is introduced. Chapter 5 presents an AIS which is evolved using a

co-evolutionary genetic algorithm, and describes the results of extensive experimenta-

tion. An improved AIS for performing data-clustering that is self-organising is then

presented in Chapter 6, with new results. The dissertation is concluded in Chapter 7.



Chapter 2

Background

This chapter begins with a brief introduction to immunology, necessary to set the scene

for the remainder of the thesis. It is of course a vast topic, and only the most rele-

vant features are covered here. For a more detailed overview, the interested reader is

referred to an introductory immunology text such as [Roitt et al., 1988]. This intro-

duction is followed by a review and comparison of existing AIS implementations, and

an overview of existing literature in the application of immune systems to the chosen

domains of scheduling and data-clustering. Finally, there is a discussion of the rela-

tionship of the immune system to a class of associative memories known as Sparse

Distributed Memories.

2.1 Basic Immunology

This section presents some basic immunological concepts which are central to the

adaptive immune response. As already stated, it is with this aspect of the immune sys-

tem that most artificial systems are concerned. Key to all adaptive responses is a class

of cells known as lymphocytes which specifically recognise individual pathogens, re-

gardless of the location of those pathogens, whether in blood, tissue fluids or actually

inside host cells. Lymphocytes fall into two categories, T-Cells (Thymus dependent),

and B-Cells, (Bone marrow dependent). The function of the B-Cell is to attack extra-

cellular pathogens by releasing antibodies, i.e. specific molecules which recognise and

10
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antigen antibody

recognition

epitope

paratope

Figure 2.1: ’Lock and Key’ recognition between antigen and antibody

bind to target antigens. Antigens can be either a molecule on the surface of a pathogen,

or a toxin produced by the pathogen. The antibodies have a distinct molecular struc-

ture, that of a flexible Y-shape, and recognise the shape of particular antigen via a

mechanism often likened to a lock and key, as shown in figure 2.1. The portion of the

antigen that is recognised by the antibody (and therefore acts as the lock) is known as

the epitope (antigen determinant), and the portion of the antibody analogous to the key

that recognises the antigen determinant is known as the paratope.

T-Cells have a wider range of functions. One group of T-Cells interacts with the B-

Cells to help them divide, differentiate and make antibodies. Another group interacts

with phagocytic cells (which bind to micro-organisms and internalise them) to help

them destroy intra-cellular pathogen. These two groups are known as helper T-cells.

The third kind recognises cells infected by viruses and destroys them. In general,

most implementations of artificial immune systems have concentrated on mimicking

the functionality of B-Cells and ignored the role of T-Cells, though some aspects of

helper T-Cells are modelled in some systems, for example [Carter, 2000].

There is much immunological evidence to verify the existence of the basic cells

involved in the immune response, however opinion as to the process by which these

cells are able to mount a response falls into two distinct camps. One camp favours

a process known as clonal selection, the other argues for the existence of an immune

network. As both approaches have potential significance for artificial models of the

immune system, they are now presented.
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2.1.1 The Network Hypothesis

Studies have shown that each antibody has a specific antigen determinant known as

the idiotope — this gives rise to a possibility first articulated by Jerne in [Jerne, 1973]

that antibodies can recognise other antibodies as well as antigens, resulting in a large,

self-regulating and mutually reinforcing network of antibodies.

This is shown in figure 2.2. In this diagram, the idiotope of B-Cell1, ID1 stimu-

lates B-Cell2, and the two become connected via the paratope of B-Cell2, P2. Thus,

ID1 is acting as an antigen from the viewpoint of B-Cell2, and this causes B-Cell2

to suppress the antibodies produced by B-Cell1. On the other hand, ID3 acts as an

antigen from the viewpoint of B-Cell1, and is recognised by BCell1s paratope, P1, and

thus ID3 stimulates B-Cell1 to produce antibodies. Hence, a large chain of suppres-

sion and stimulation can be set up between B-Cells, resulting in a self-organising and

self-regulatory network. Importantly, the network is not fixed, but varies continuously

according to the dynamical changes in the environment. This is known as the meta-

dynamics of the system [Varela and Coutinho, 1988], and is realised by incorporating

newly generated cells into the network and removing useless ones. The new cells are

generated when cells in the existing network are stimulated and proliferate, resulting in

some mutant species, and also owing to gene-recombination in the bone marrow. De-

spite these dynamic perturbations, an underlying core network of B-Cells is thought

to be maintained by the immune system, representative of the antigens to which it has

been exposed. The network remains stable due to the suppression mechanisms which

prevent the over-stimulation of B-Cells.

2.1.2 Clonal Selection

The clonal selection theory considers that each lymphocyte, whether B-Cell or T-Cell,

is capable of recognising essentially one kind of antigen. When an infectious agent

is encountered, a few of the many circulating B-Cells recognise it. Those cells are

then induced to proliferate rapidly until within a few days there are sufficient num-

ber of them to mount an adequate response. This process by which an antigen se-

lects for and generates the specific clones of its own antigen-binding cells is known
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Figure 2.2: Jerne’s Idiotypic Network Hypothesis

as clonal selection and is illustrated in figure 2.3, which is adapted from that given in

[Roitt et al., 1988].

Those lymphocytes that are stimulated by binding to specific antigen begin to un-

dergo cell-division by expressing new receptors which signal proliferation. Several cy-

cles of division occur, before some of the proliferating B-Cells eventually mature into

plasma cells which are capable of producing antibodies specific to the antigen. Others

mature into memory cells, which retain the immunological memory of the stimulating

antigen and are then available for re-stimulation should re-infection with the antigen

occur at a later date. Thus, the memory cells confer long lasting immunity on the

system. During proliferation, some of the daughter cells may undergo somatic muta-

tion which can increase the specificity of the antibody for the antigen — this effect is

discussed in more detail later in this chapter in section 2.2.2.1. Clearly this overview

represents an extreme simplification of the actual processes that occur during prolif-

eration of the antibodies, in particular it omits the role of helper T-Cells which assist

in the proliferation of B-Cells. Nevertheless, the detail provided is sufficient to al-
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low the main processes apparent in the biological immune system to be captured and

implemented in an artificial system.

It is unnecessary for computer scientists to be drawn into a debate about which

of the two hypotheses presented as alternatives for the mechanism by which the real

immune system operates is correct. Simply, it is sufficient to note that both hypothe-

ses contain important properties that have potential analogies as far as information

processing is concerned, and that therefore any combination of these ideas may be

modelled in a computational immune system when applying the metaphor to fields

such as scheduling and data-clustering.

2.2 Artificial Immune Systems

The seminal work that kick-started the field of Artificial Immune Systems was a paper

by Farmer and Perelson [Farmer et al., 1986] in 1986. This paper introduced a dynamic

model of the immune system based on Jerne’s network hypothesis that was simple

enough to simulate on a computer. An antibody is represented as pair of binary strings

(p,e) signifying the paratope and epitope. A simplifying assumption is made that each

antibody consists of exactly one paratope and one epitope although in reality this is

not the case. Reaction between antibodies (and between antibodies and antigens) is

simulated via complementary matching of strings. The method in which matching is

implemented attempts to model several features of the biological system. Firstly, exact

matches are not required for reaction to take place and secondly, strings are allowed to

match in more than one alignment, with the strength of the match proportional to the

sum of all possible matches. This is an attempt to model the fact that molecules can

interact in more than one way, and if so, react more strongly as they spend more time

together than those molecules that can only interact in one alignment. A threshold is

introduced, as in the natural IS, below which reaction is not considered to take place.

From a microscopic point of view, when two antibodies interact, the antibody with

the paratope reproduces some fixed number of times, whilst the antibody with the epi-

tope is eliminated with some fixed probability. This is controlled by the degree of

complementarity between the paratope and epitope. Simulation of the microscopic
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dynamics is avoided in the model by use of differential equations for the concentra-

tions. If there are N antibody types, with concentrations x1,x2, ...,xN then the system

is simulated via the following differential equation:

ẋi = c

[
N

∑
j=1

m jixix j− k1

N

∑
j=1

mi jxix j +
N

∑
j=1

m jixiy j

]
− k2xi (2.1)

The first term represents the stimulation of the paratope of antibody i by the epitope

of antibody j. The second term represents the suppression of antibodies of type i when

their epitopes are recognised by the paratopes of type j. Both terms assume that the

probability of a collision between an antibody of type i and j is proportional to the

product of the concentrations of these antibodies xix j. The third term captures the

fact the system is driven by the presence of antigens, of concentration yi. In these

three terms, the match specificities mi j take into account what reactions occur and how

strongly. Finally, the last term models the tendency of antibodies to die in the absence

of any interactions. The parameter c is a rate constant which depends on the number of

collisions per unit time, and the rate of antibody production stimulated by a collision.

k1 represents a possible inequality between stimulation and suppression and k2 is a

further rate constant which can be varied. An essential element of the model is that

the list of antibody and antigen types is dynamic — new antibodies are generated by

applying crossover and mutation operators to the paratopes and epitopes of existing

antibodies, and antigens are generated either randomly or by design.

Farmer also postulates that the idiotypic network formed in this model provides

a mechanism for allowing antigen to be remembered for long periods of time, bear-

ing in mind that in some cases, antigens in the biological immune system can be re-

membered over time periods comparable to the lifespan of the organism. Consider

figure 2.4 adapted from [Farmer et al., 1986]. Paratope pi recognises epitope ei−1 for

i = 1,2, ...,n. If by chance p1 recognises en in addition to e0 then a cycle is formed,

and en must resemble e0. If the antigen is eliminated, then the existence of the cycle

maintains the concentration of those antibodies that recognised the antigen and thus

provides a memory of the antigen.

Thus, this model incorporates many of the features of the natural immune system.

The preliminary paper by Farmer does not report any application of the model to a
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Figure 2.4: Formation of a cycle allowing antigen with epitope e0 to be remembered.

The arrows denote recognition via the matching algorithm

pattern recognition system, its primary intention being to learn more about the internal

operation of the immune system in real systems. However, they note “...generalised

versions of the model may be capable of performing artificial intelligence tasks”.

Gibert and Routen [Gibert and Routen, 1994] adopted this approach and attempted

to apply it to create a content-addressable auto-associative memory. Inputs to their

system are black and white pictures of 64x64 pixels which are analogous to antigens.

The aim was to present the antigen to the system, initiate a response during which a

memory of the antigen would be created, then observe the existence of the memory by

initiating a secondary response via injection of the same or similar antigen. However,

they report that they were unable to satisfy the simultaneous requirements of remem-

bering patterns whilst maintaining system stability. They suggest two variations of the

model. In the first, they attempted to forcibly create recognition loops in the network

to enable the maintenance by the network of clones responding to the antigen, and thus

provide a memory of the antigen. However, they show subsequently that this proves

unstable, in that clones would proliferate continuously and lead to collapse of the sys-

tem. They modified this system to increase suppression of clones, which resulted in a

stable system, in which memory cells were maintained by the network but tended to

dissipate slowly and eventually disappear. However, the system responded poorly, in

that it did not show good quality output, particularly after a secondary response.

2.2.1 Negative Selection Based Models

A whole class of implementations of artificial immune systems focus on modelling

the generally accepted self/non-self discrimination ability of the biological immune
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system. The basic principles behind all of these models are as follows (modified from

Dasgupta [Dasgupta and Forrest, 1999])

• Define self as a multiset S of strings of length l over a finite alphabet, a collection

which we wish to process or monitor

• Generate a set R of detectors, each of which fails to match any string in S. (A

partial matching rule may be applied)

• Monitor S for changes by continually matching the detectors against S. If any

detector ever matches, a change or deviation must have occurred.

This basic algorithm has been employed extensively in computer security applica-

tions. [Forrest et al., 1994] applied the analogy to computer virus detection, to host-

based intrusion detection[Forrest et al., 1997a], and to making computers robust to

wide-spread attacks, [Forrest et al., 1997b]. [Hofmeyr and Forrest, 2000] describe a

further system for protecting local area networks (LANs) from network-based attacks.

The key to each of these applications clearly lies in defining ’self’ in each case. For

example, in Hofmeyr’s work on LAN security, self is defined as a set of datapath triples

defining TCP connections logged to the network. These were collected over a period

of 50 days, which after filtering out noisy traffic sources such as web-servers, resulted

in a set of 1.5 million datapaths.

The negative detection algorithm has also been applied by Dasgupta in

[Dasgupta and Forrest, 1996, Dasgupta, 1996] to detecting anomalies in time series

data. In this case, the aim is to detect temporal changes in the cutting force patterns

obtained from machine tool data, and thus predict when a machine is likely to break. In

this case, self is defined by first collecting raw sensory data from machines in normal

operation over a moving time window and mapping this real-valued data into a binary

form (essentially by normalising each analog value with respect to a defined range and

discretising it into bins — each data point is assigned the integer corresponding to the

bin within which it falls).

In [Hofmeyr and Forrest, 2000], Hofmeyr describes a general immune framework

called ARTIS, based on the principle of negative selection, which embodies many of

the characteristics of the biological immune system. In this system, a set of detectors is
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maintained at each of n nodes in a distributed system. The detectors in each set detect

non-self and are created and maintained as shown in figure 2.5 which is taken directly

from [Hofmeyr and Forrest, 2000]. In this diagram, a detector consists of a randomly

created bit-string. New detectors remain immature during a tolerization period T in

which they are exposed to self (or at worst to an environment which consists mainly

of self). If any randomly generated detector matches anything during this period it

is killed and is replaced by a new randomly generated detector. If it survives T , it

becomes mature but naive, and lives for a further fixed number of time-steps. The

number of matches it accumulates is monitored, and if this number exceeds a certain

threshold τ, it becomes activated. Once activated, if it receives some co-stimulation

from an outside source to confirm that what is matched was truly non-self, then it

becomes a memory detector and lives indefinitely, and from then onwards only requires

a single match for activation. If it does not receive co-stimulation, it dies.

Thus, according to Hofmeyr, the immunological principles embodied in ARTIS are

as follows:

• It is distributed; different detector sets can be placed on different nodes

• Having different detectors at different nodes confers diversity

• The system is robust, as a loss of some detectors on one node does not result in

a complete absence of protection

• If the self set is typical of normal behaviour, then policy is implicitly specified.

• As detection is localized and needs no communication, the system is scalable

• The system is adaptable to changes in normal behaviour owing to its use of

tolerization and finite detector lifetimes.

However, several objections can be raised to the use of this model. Firstly, it is nec-

essary to generate a set of detectors which do not recognise any string in self. The time

complexity of this is proportional to the number of times a detector must be regener-

ated until it is valid. [Forrest et al., 1994] show that the number of retries required to
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Figure 2.5: The lifecycle of a detector in ARTIS (taken from

[Hofmeyr and Forrest, 2000])
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generate a valid detector V (d) is a geometric random variable with parameter P(V (d))

and so the expected number of trials ρ until success is given by

E(ρ) =
1

(1−ρM)|SR|
(2.2)

where SR is the self set and ρM the probability of a match between a candidate detector

and a self string. The number of retries is thus exponential with the size of the self set.

Helman in [Helman and Forrest, 1994] has proposed an alternative generation algo-

rithm which runs in linear time with the size of self, based on a dynamic programming

technique, and [D’haeseleer, 1995] further proposes a greedy algorithm, however these

algorithms are not general and only apply to problems in which matching is achieved

via a specific matching rule, based on the number of common contiguous matching

bits between the detector string and the self-string. Thus, the application of the neg-

ative selection model may be limited to domains in which detectors can be generated

in a suitable time-frame, and further more to applications in which self can be easily

defined.

The second objection and perhaps more fundamental concern is that a system based

on negative selection implicitly assumes that the problem domain can be divided into

two distinct sets of event, ’normal’ and ’abnormal’. In reality, this is not the case, as

the categorisation of some events may be ambiguous, depending on circumstances, and

hence cannot be correctly classified. ARTIS in particular is built on the assumption that

the boundaries between self and non-self can be implicitly inferred by observing the

behaviour of the system and assuming that self occurs more frequently than non-self,

or that there is some period of time during which self can be collected separately from

non-self. Moreover, although the system is adaptable to changes in self, it is unclear

that in reality this would be true if those changes occurred on anything but a very slow

time-scale.

The final limitation arises from the fact that the system requires the intervention of

a human operator to provide the co-stimulation required to convert a mature detector

into a memory detector, and hence the system is not completely autonomous, a feature

which is of course desirable.
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Nevertheless, of all the implementations of artificial immune systems described in

the literature, ARTIS perhaps bears most resemblance to a real immune system and

has been shown to be capable of performing network intrusion detection. To empha-

sise the generality of the architecture, [Hofmeyr and Forrest, 2000] also suggest further

applications to which the framework could be applied, namely mobile agent security,

epidemiological monitoring and detection of fraudulent financial transactions.

2.2.2 Models based on Evolutionary Algorithms

A class of artificial immune systems has emerged from the evolutionary algorithm

(EA) community, due to the observation that an EA could act as an excellent tool for

evolving sets of antibodies. Three different models that rely on an EA as the underlying

engine for producing antibodies are described below.

2.2.2.1 A Library Based Model

The immune systems variable V-region genes contain numerous gene segments,

the individual function of which can only be seen when each segment is joined

to others to construct one of a large number of possible antibody molecules. It

is speculated ([Leder, 1991]) that the human immune system contains seven ’li-

braries’, each containing differing numbers of gene segments and that random se-

lection of a component from each library produces an antibody molecule. As there

are many theoretical combinations of these components, an immune system can gen-

erate a large number of unique antibodies from a limited genetic source. Hightower

[Hightower et al., 1995] and Perelson [Perelson et al., 1996] present an abstract model

of such a library bases system. Again using a binary representation as suggested by

Farmer in [Farmer et al., 1986] their system uses a haploid chromosome to encode l

libraries, each of which contains c gene segments. A gene segment is simply a binary

string in each case of length n. An antibody is produced by combining a randomly se-

lected component from each library, as show in figure 2.6, and is thus of length n× c.

Thus an immune system containing l libraries, each with c components, can be used

to format cl different antibodies. The complete set of antibodies that can be formed

is known as the potential antibody repertoire. If the components in each library are
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genetically dissimilar, then the scope for producing a set of antibodies that together

match a wide range of antigens is increased.

Hightower et al. use a genetic algorithm to evolve the composition of the binary

immune libraries, i.e. the genotype for a task in which the expressed antibodies (the

phenotype) must recognise a set of binary strings. The fitness of an individual (i.e.

the entire genetic library) is determined by its overall ability to recognise antigen

molecules. Fitness is determined by generating a set of expressed antibodies from

an individual, and testing how well that set recognises a set of antigens. Each antigen

receives an antigen score which is the maximum of all the match-scores computed be-

tween the antigen and the expressed antibodies. The overall fitness of the individual

is then found by combining the antigen scores, and averaging them. An alternative

scheme is to assign the fitness of the individual equal to the lowest antigen score, with

the rationale that an individuals fitness is effectively limited by that of the antigen it is

least equipped to recognise. Despite the fact the fitness pertains only to phenotypic in-

formation, Hightower et al show that a GA is able to effectively organise the structure

of the antibody libraries in order to perform this task.

Perelson [Perelson et al., 1996] uses this immunological model combined with a

GA to investigate actual biological phenomena such as clonal selection and the Bald-

win effect. The latter effect was first observed by Baldwin [Baldwin, 1896] over 100

years ago and is the notion that useful characteristics can be passed down to a future

generation without genetic propagation. The learning occurs by a process known as

somatic mutation in which stimulated antibodies produce daughter cells, in which one

or more genes become mutated. The daughter cells thus have varying abilities to recog-

nise a single antigen. Certain key mutations can lead to a significantly increased recog-

nition ability, however, these key mutations are not written back to the genome libraries

and hence cannot directly be passed onto future offspring. [Perelson et al., 1996] find

that evolution of the genetic libraries can be accelerated by incorporating this type of

learning into the model.

To summarise the features provided by this model, its strengths lie in the ability to

use a straightforward genetic algorithm acting on a binary representation to evolve a

small set of genetic libraries capable of providing a wide range of diversity. The most
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Figure 2.6: Expressing an antibody from an artificial immune system

interesting observation to emerge from this work is the fact that selection pressure

acting only on the phenotype is capable of acting on the genotype. This suggests that

the model might be extended to more complex fitness functions and applications in

which it is straightforward to calculate some measure of phenotypic fitness of a single

antibody but more difficult to quantify the fitness of the entire immune system as a

whole. So far however, the model appears only to have been used in studies of natural

immunological processes, and not extended to other domains.

2.2.2.2 Emergent Fitness Sharing

The library based model just discussed uses one bit string to represent an entire im-

mune system. An alternative approach is taken by [Smith et al., 1993] who propose a

population based algorithm in which a genetic algorithm is used to produce and main-

tain multiple subpopulations of antibodies within the complete population. Therefore,

an immune system in this case is represented by the entire population manipulated

by the genetic algorithm, rather than a single individual in the population as in High-

tower’s work. An important difference between Smith’s model and the library-based

model that arises from this is that in Smith’s model the bit string represents both the

genes that code for an antibody and the phenotypic expression of the antibody itself,

and thus is a further simplification of the natural immune system.

The algorithm proposed in [Smith et al., 1993] to evolve and maintain a diverse

population of antibody niches is known as emergent fitness sharing.
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1. Choose an antigen at random.

2. Choose a sample of size σ of the antibody population, at random and without

replacement.

3. Each antibody in the sample is matched against the chosen antigen, using a

match-function M to compute its match-score.

4. The antibody in the sample with the highest match score has its match score

added to its fitness. The fitness of all other antibodies remains unchanged.

5. Repeat from step (1) for typically three times the number of antigens.

Interactions between strings are defined by a matching function which rewards

more specific matches over less specific ones in an effort to capture the immune sys-

tems ability to distinguish non-self from self — this is accomplished by ensuring that

the recognition is specific.

Using this model, they show that their binary immune system is capable of detect-

ing common patterns in a noisy environment, and that using the GA with the emergent

fitness sharing function, it is possible to maintain diversity within the antibody popu-

lation. Thus their immune system captures one of the essential characteristics of the

natural immune system that it is capable of recognising an enormous number of for-

eign pathogens using limited genetic resources. They also show that like the natural

immune system, their model can perform feature detection. This is made evident by

performing experiments in which the GA evolves an antibody population of identical

antibodies which can match multiple antigens by detecting common schema. This kind

of common feature detection is very useful to the natural immune system, for example

it learns to recognise certain bacteria by identifying a common polysaccaride contained

in the cell walls of many different types of bacteria. Finally, their experiments show

that within the antibody population, multiple peaks corresponding to recognition of

different antigens can be maintained, and that the size of those peaks is proportional

to the bias within the antigen population. This is somewhat reminiscent of clonal se-

lection within the immune system, in which the lymphocytes that best recognise an

antigen are proliferated and hence increase in number.
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Figure 2.7: Mapping from B-Cell Genome to activation threshold and antibody (taken

directly from [Potter and De Jong, 1998]

2.2.2.3 A Co-evolutionary Immune System

Another system comprising of an evolutionary algorithm working in conjunction

with a binary representation of an immune system is described by Potter et al in

[Potter and De Jong, 1998] and [Potter and De Jong, 2000]. In this model, an antibody

representation is chosen which attempts to capture more closely a feature of the natural

immune system in that it contains some antibodies which only recognise very specific

antigen, and others that are more wide-ranging in their matching ability. The repre-

sentation enables a spectrum of antibodies to be modelled, ranging in specificity from

those that only bind to single antigen to those that match whole families of antigen

sharing common characteristics.

The representation is shown in figure 2.7. As in Hightower’s work, there is a map-

ping from genotype to phenotype to specify an antibody. The first 8 bits of the genome

map to a real-valued activation threshold. The remaining part consists of a pattern

and a map from which an antibody is generated. A mask bit of 1 generates a schema

value equal to the corresponding bit in the pattern, a mask bit of zero produces a ’don’t

care’ symbol in the antibody which matches anything. The mapping is many-to-one,

i.e. many genotypes may result in the same phenotype. This is intended to represent

another feature observed in real immune systems that many dissimilar chains of amino

acids may fold into the same basic three-dimensional shape, and hence recognise sim-

ilar antigen.

Rather than use the emergent fitness sharing algorithm just described in order to

resolve the problem of preserving diversity within an antibody population, they pro-

pose the use of a co-evolutionary genetic algorithm in which individuals from multiple
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non-interbreeding subpopulations collaborate to solve the target problem. The fitness

of a B-Cell (and hence its antibody) is calculated by adding it to a ’serum’ consisting of

the best B-Cells from each of the other populations. The serum is then presented with

a set of both self and non-self ’molecules’ — the fitness of the serum is defined as the

number of non-self or foreign molecules recognised by all the antibodies in the serum

minus the number of self molecules recognised. Thus each B-Cell gains a reward

that summarises how well it collaborates with other B-Cells to cover the collection of

foreign molecules.

This system was applied to a concept learning problem, that of discriminating be-

tween the concepts ’Republican’ and ’Democrat’ by examining the voting records of

members of the U.S House of Representatives. The performance of their immune sys-

tem was compared to that of a symbolic inductive learning system AQ15, and the re-

sults showed that the immune system not only capable of learning the concepts, i.e. its

predictive accuracy was equal to that of AQ15, but that the description of the concepts

it produced was significantly more concise than that of AQ15.

The co-evolutionary architecture of this model in theory gives the potential for dis-

tributing the co-evolving populations to different nodes or machines, and hence confers

robustness on the system, as there is no longer a single point of failure, and to this ex-

tent it is perhaps more faithful to the natural immune system model than the models

of Hightower and Forrest described in the previous two sections. The model also con-

tains other of the key characteristics of the natural immune system given in chapter 1,

section 1.2, namely that the method of representing B-Cells from which antibodies can

be derived allows feature extraction to be performed, and the utilisation of a thresh-

old mechanism for detecting matching. Furthermore, the co-evolutionary architecture

allows diversity to be maintained across the system. However, as the authors them-

selves point out in [Potter and De Jong, 1998], the model is of course an extremely

loose model of an actual invertebrate immune system.

2.2.3 A Summary of EA Based Models

This section has presented several different models of immune system that incorporate

an EA of one kind or another as a mechanism for evolving antibody sets with the



Chapter 2. Background 28

desired properties. Each of the models described operates in a binary antigen universe,

and all the models exhibit a common subset of the features of the natural immune

system, namely they perform recognition via probabilistic detection of pathogens, are

capable of maintaining diversity, are able to learn the structure of the antigenic universe

to which they are exposed, and to some extent are able to perform feature extraction.

All the models draw inspiration from at least some features observed in the real system,

for example the matching functions employed by Potter, Hightower, Forrest and Smith

are all based on actual immunological observations.

None of the EA-based models explicitly makes use of the concept of memory de-

tectors, although in the work reviewed none of the system had been applied to prob-

lems in which the environment is dynamic, hence the need to use memory detectors is

perhaps unnecessary. On the contrary, in all the systems just described detectors are

evolved to meet a specific goal, and once attained, the evolution is stopped. Thus, it

could be argued that the memory detectors are merely the set of detectors or libraries

that result from the evolution process. However, if detectors were required to be gener-

ated continuously as in ARTIS, an evolutionary approach could run into problems, due

to the time-scales required to perform the evolution. There are two other key features

of the natural system not exhibited by any of the EA models — self-regulation and co-

stimulation. By definition, an EA must have a fitness function controlling evolution,

and hence this can be considered analogous to having a central control function. Co-

evolution, or the presence of a 2nd signal confirming the nature of the detection, is not

incorporated into any of these models. Nevertheless, the EA seems to provide a sensi-

ble starting point for an artificial immune system, certainly in a binary universe, as it

does provide a feasible method of searching the detector-space for suitable detectors,

rather than randomly generating them as in ARTIS.

2.3 Network Models for Machine Learning

A number of implementations of artificial immune systems rely on the immune net-

work metaphor. As previously mentioned, the network model of the immune system

is disputed by some theoretical immunologists, never the less, significant progress has
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been made in applying the idea to problems in machine learning. Two influential net-

work models can be identified in the literature today — these are described in some

detail, however first some of the background work that led to these models is briefly

reviewed.

One of the earliest applications of the network idea to a machine learning prob-

lem was given by Cooke and Hunt, [Cooke and Hunt, 1995], who developed an AIS to

classify sequences of DNA as promoter-containing or promoter-negative. This work

attempted to closely adhere to the biological model — thus, for example it modelled

B-Cells containing gene libraries and messenger RNA from which antibodies could

be produced via a transcription mechanism, and it utilised matching rules weighted

in favour of contiguous matching regions. B-Cells were stimulated according to the

algorithm given by Farmer in equation 2.1, and clones of B-Cells produced via so-

matic hypermutation. New clones were then integrated into the network. Whilst the

work yielded some promising results, it was unable to perform as well as a previously

published neural network approach to classifying the data. The model was improved

in [Hunt and Cooke, 1996] in an attempt to build an immune system capable of case-

based reasoning. The idea was that each B-Cell in the network would represent a case,

and similar cases would be linked together via the network which was self-organising

in nature. The system contained both specific and generalised cases, attempting to

mimic the way that the natural system can generalise over infections. This model still

exhibited some major limitations as far as application to real-world complex data-sets.

In particular, many problems were associated with building the immune network — if

the network was randomly initialised, it took a long time to build useful patterns within

the network, and there was an extremely high overhead associated with insertion and

deletion of nodes into and from the network, especially as the size of the network

grew. Furthermore, attempting to mimic the method by which matching occurs in the

real immune system proved too simplistic, and only applicable to binary data strings.

Further work described in [Hunt et al., 1999] resulted in a new system named Jisys

which addressed these problems and was used to detect patterns in a database contain-

ing information relating to mortgage fraud.

Building on the foundations laid by Hunt at. al, a sequence of improvements pre-
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sented in [Timmis et al., 2000] has led to the emergence of a system originally named

RLAIS, Resource Limited Artificial Immune System, and now renamed AINE, de-

scribed in [Timmis and Neal, 2001]. This represents one of the most sophisticated and

successful network models in the current literature. Timmis claims:

this system is a major step forward in making artificial immune systems a
viable contender for effective unsupervised machine learning and allows
for not just a one shot learning mechanism but a continual learning model
to be developed

AINE introduces the concept of the Artificial Recognition Ball, or ARB. A network

consists of a number of linked ARBs, with links representing similarity between them.

Similarity is calculated on the basis of the Euclidean distance either between two ARB

cells or between a cell and an antigen. The network initially consists of a cross-section

of the data to be learnt, with the remainder of the training data comprising the antigen

set. The system contains a fixed number of B-Cells — the ARBs compete for the ability

to represent these B-Cells, according to their current stimulation level. Stimulation of

an ARB is determined by three factors; the primary stimulation of the ARB by antigen

(i.e. the data), ps; the affinity of an ARB for its neighbours in the network, nn; and

finally by how much is is suppressed by its neighbours, ns. The calculation of the exact

stimulation level sl is given in equation 2.3, where a is the number of antigens an ARB

has been exposed to, pdx is the distance between the ARB and the xth antigen in the

normalized data-space, and disx is the distance of the xth neighbour from the ARB.

sl = ps + nn−ns =
a

∑
x=0

(1− pdx) +
n

∑
x=0

(1−disx)−
n

∑
x=0

(disx) (2.3)

B-Cells are allocated to ARBs, depending on their stimulation level, regardless of

how many B-Cells are actually available. Then, the weakest B-Cells are systemati-

cally removed until the number of B-Cells allocated is exactly equal to the maximum

available. This introduces competition between ARBs and provides a mechanism for

achieving population control. Remaining ARBs are cloned and mutated according to

their stimulation level, and the clones are integrated into the network if their affin-

ity to other ARBs in the network is below some fixed threshold. This gives rise to a

meta-dynamical system which eventually stabilises into a network that represents the
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patterns within the data. The network is visualised in order to observe clusters. The

algorithm was applied to the classic Fisher Iris dataset, and resulted in the three known

clusters clearly appearing within the network within twelve iterations of the algorithm.

Although the network undergoes perturbations, the clusters are still visible after three

hundred iterations. The system requires tuning of three parameters: the threshold gov-

erning insertion of cells into the network, the number of resources allowed, and muta-

tion rate which controls diversity. More details concerning setting and effects of these

parameters are given in [Timmis, 2000a, Knight and Timmis, 2001].

Timmis claims that the mechanisms used by the algorithm were inspired by phe-

nomena observed in the natural immune system. Thus, he suggests that it is reasonable

to assume that the natural system must contain a finite number of B-Cells and cannot

undergo exponential growth in the the number of B-Cells, and therefore it is reason-

able to limit the resources within the artificial model. It is also suggested that the

behaviour of AINE simulates the metadynamics of the immune network discussed in

section 2.1.1 — AINE maintains a core network describing the training data, no matter

how many times the training data is presented, although perturbations occur from iter-

ation to iteration. Finally, the concept of ARBs is consistent with a view expounded

by Perelson that the biological system consists of a finite number of antibodies which

are representative of an infinite number of antigens based on a notion of shape space.

This is the idea that each antibody can recognise all antigens that occur in a volume Ve

surrounding the antibody, and that if an infinite number of antigens can be placed in

each volume Ve then a finite number of antibodies can recognise all antigen.

A fundamental point that must be addressed in relation to this model (and other

related network models) is to consider how far its performance may be limited by its

use of Euclidean distance between points as a measure of their similarity. For example,

consider the Fisher Iris Data used by Timmis to test the AINE network. Closer exam-

ination of this data reveals that in the usual set of 100 measurements used in training,

the 8th item belongs to one class, whilst the 91st item belongs to another. However,

when the Euclidean distance between all pairs of points is examined, the 8th item is

closest to the 91st item, despite the items belonging to different classes. Therefore, a

clustering algorithm based on Euclidean distance between points without any kind of
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supervision could not correctly classify these items. In order to separate these items,

some warping of the dimensions must be undertaken, which cannot be performed with-

out supervision. No information could be found in the literature as to the percentage of

items in the Fisher set correctly classified by the AINE algorithm, therefore despite the

appearance of three distinct clusters within the data in the diagrams given for example

in [Timmis and Neal, 2001], it would be interesting to compare the number of items

correctly classified to that produced by other more established methods.

The second influential network model is a system named aiNet, due to

De Castro and Von Zuben, and described in [De Castro and Von Zuben, 2000b,

De Castro and Von Zuben, 2001]. The system was designed with the goals of data

clustering and of filtering redundant data. In this model, the immune network is con-

sidered as an edge-weighted graph, not necessarily fully connected, composed of a

set of nodes (cells) and node pairs (edges) which are assigned a weight or connec-

tion strength. The network is evolutionary in the sense that evolution strategies are

used to control the network dynamics and plasticity, and also connectionist once a ma-

trix of connection strengths is defined to measure the affinities between the network

cells. As in the AINE model described above, network cells compete for antigenic

recognition, and those successful undergo cell proliferation, whilst antibody-antibody

recognition results in network suppression. Similarity in this system is also calculated

on the basis of Euclidean distance between cells. The exact algorithm is given in fig-

ure 2.8 — steps (1(a)i-1(a)vii) simulate the clonal selection and affinity maturation

processes occurring in the natural immune system, steps 1(a)(viii)-1(a)(x) and steps

1(b)-1(c) simulate the metadynamics of the immune network. Note that steps 1(a)(ix)

and 1(a)(x) introduce both clonal suppression and network suppression elements to

the algorithm. The model contains rather a large number of parameters, and also has a

high computational cost per iteration (of the order O(p3)). Furthermore, it is difficult

to determine sensible stopping criteria.

The network outputs consist of a matrix of memory cell coordinates and a matrix

of inter-cell affinities. The network structure is analysed by calculating the minimum

spanning tree of the network — this allows the clusters in the data to be identified and

also a means of determining which network cell belongs to which cluster. Results are
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reported on the application of aiNet to two problems — a simple data-set consisting

of 5 linearly separable clusters, and the well known two-donut problem. For the first

problem, clusters are correctly identified, and the algorithm produces a 66% compres-

sion rate. For the donut problem, again correct classification is achieved alongside a

reduction in the dataset size of 92%.

In summary, aiNet and AINE both draw heavily on the immune network metaphor

in order to produce systems which are well adapted to clustering real-valued data, and

incorporate many of the characteristics of the immune system outlined in section 1.2

of chapter 1. Their drawbacks lie mainly in the high overhead of maintaining the

dynamical network by inserting and removing nodes, which may prove a significant

deterrent to applying the network to rapidly changing datasets. This is obviously an

intrinsic disadvantage of any network based model. Another factor to note is that

secondary visualisation processes have to be applied to interpret the networks produced

and it is not straightforward to determine the class of a new item of data. Finally, as

already noted above, the use of Euclidean distance as a similarity measure may limit

the ultimate effectiveness of network based models. It seems possible that artificial

data-sets could be constructed to serve as a counter-example in which data could not

be clustered by either the AINE or aiNet algorithms.

2.4 Supervised Learning Using An Artificial Immune

Model

The network models just presented that perform data-clustering are unsupervised

learning systems — this thesis is also concerned with unsupervised data-clustering.

However, it is worth examining the features present in a supervised learning system

proposed by [Carter, 2000]. This supervised learning algorithm based on an immune

system analogy performs pattern recognition and classification. The system is known

as Immunos−81, and uses abstractions of T-Cells, B-Cells, antibodies and their inter-

actions. Artificial T-Cells control the creation of B-Cell populations or clones, which

compete for recognition of unknown data-items. The clone with the highest affinity

for the data is then said to recognise and thus classify the unknown data.



Chapter 2. Background 34

1. At each iteration step, do:

(a) For each antigen i, do:

i. Determine its affinity to all the network cells according to a distance met-

ric in shape-space, di j

ii. Select the n (or n% of the) highest affinity network cells;

iii. Reproduce (clone) these n selected cells. The number of progeny of each

cell, Nc, being proportional to their affinity: the higher the affinity, the

larger the clone size;

iv. Increase the affinity of these Nc cells to antigen i, by reducing the distance

between them (corresponding to greedy search)

v. Calculate the affinity of these improved cells with antigen i

vi. Re-select τ% of the most improved (highest affinity) cells and put them

into a partial matrix Mp of memory cells

vii. Eliminate those cells whose affinity is inferior to threshold d (affinity

threshold), yielding a reduction in the size of the Mp matrix

viii. Calculate the network cell-cell (Ab-Ab) affinity, si j

ix. Eliminate those cells whose affinity si j is inferior to threshold s, leading

to another possible reduction in Mp (clonal suppression);

x. Concatenate the original network cell matrix with the partial matrix of

memory cells (C← [C;Mp])

(b) Determine the whole network inter-cell affinities and eliminate those cells

whose affinity with each other is inferior to threshold s (network suppression)

(c) Replace r% of the worst individuals by novel randomly generated ones

2. Test some defined stopping criterion and stop if necessary

Figure 2.8: The aiNet algorithm (taken from [De Castro and Von Zuben, 2000b])
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Immunos−81 embodies the biological concepts of T-Cells (in contrast to most AIS

models reviewed in this chapter), B-Cells, learning, and recognition. T-Cells are used

to control the production of B-Cells within the system, and learn the primary structure

of antigens, that is in this case the type and sequence of variables in the antigen data. B-

Cells in the system perform ’instance recognition’, i.e. they recognise specific features

of each individual antigen. The system does not explicitly represent a concept of self,

neither does it simulate idiotypic interactions between B-Cells. Furthermore, it does

not contain any pre-formed T or B-Cells, they are created as the system runs.

The system was tested on two standard machine-learning data-sets, consisting of

eight nominal and six continuous variables. The first data set known as the Cleveland

data-set consisted of 303 records from patients with suspected coronary artery disease.

This was used as a training set prior to presenting the system with 200 unknown patient

cases. Correct classification of the unknown data was produced in 80.3% of cases,

and when cross-validation runs on the original Cleveland data set were performed,

performance ranged from a high of 96% to a low of 63.2%. These figures compared

very well with other machine learning techniques, the closest competitor being a k-

nearest neighbour classifier.

2.5 Immune Algorithms for Scheduling

As stated in the introductory chapter, one of the themes of this thesis is to explore

the use of an immune metaphor in the context of scheduling. An extensive search

of the literature revealed some other applications of artificial systems to this broad

domain. [Fukuda et al., 1999, Mori et al., 1997] describe a general framework for an

autonomous distributed system to control semiconductor production. Their system

consisted of multiple agents, corresponding to features of the immune system, to con-

trol production. Thus, the framework consisted of four types of agent, detector agents,

mediator agents, inhibitor agents and restoration agents, which interacted with each

other and with a production line, Detector agents,corresponding to B-Cells in the im-

mune system, were used to detect specific malfunctions in the system. Mediator agents

mimic the behaviour of lymphokines which are secreted by T-Cells in the immune sys-
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tem to activate B-Cells. The function of these agents was to activate an inhibitor agent

to inhibit firing. The inhibitor agents corresponded to B-Cells killing antigens, and the

restoration agent (corresponding to helper T-Cells in the biological system) served a

purpose similar to the detector agents. The framework has not been tested in practical

applications but the authors claim that the framework could enable decision making

in real-time and tolerance to a changing environment. A similar agent-based immune

system was described by [Russ et al., 1999] for performing task allocation in computer

systems, in order to make a system capable of adapting to a changing environment.

Of more interest to the type of scheduling that it is proposed to tackle in this thesis is

work by [Mori et al., 1998] and [Costa et al., 2002]. Mori et al describe an AIS which

is used as an optimisation algorithm to solve a multi-objective scheduling problem.

The problem they discuss is as follows: orders can be split into several jobs of suitable

batch sizes. Each job is then processed on a sequence of machines. Thus, two sub-

problems exist: the first is a job-splitting problem in which each order consisting of

splittable jobs must be split into optimal batch sizes, and the second is then a standard

job-shop scheduling problem which determines the sequence that each job is processed

on each machine.

Mori et al propose an immune algorithm that mimics the idea of an immune net-

work as proposed by [Jerne, 1973], in combination with somatic recombination and

mutation in order to maintain diversity in the antibody population. Their system pro-

duces schedules for single problems in which a set of objective functions is optimized,

and therefore does not consider building in robustness and flexibility into the schedule

to cope with unpredictable events, as discussed in section 1.3.1 of Chapter 1. However,

the authors propose that their system could be adapted in future to cope with dynam-

ical environments in which orders of jobs are changed or the objective functions vary

dynamically.

The immune network consists of two types of antibody — one which encodes batch

sizes (as integers), and a second which encodes the job priority, and is a permutation of

integers. An antigen represents the conditions of the problem, such as the order quan-

tity and objective functions. Affinity between two antibodies is defined by measuring

the informative entropy between the antibodies — this quantity is a measure of the
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Figure 2.9: Immune Algorithm for Production Scheduling

diversity between the antibodies, measured by comparing allele values at each locus.

Affinity between an antibody and antigen is simply the value of the objective function

given by solving the problem defined by the antigen using the batch-sizes and sequence

defined by the antibody. Antibodies proliferate and are suppressed depending on their

concentrations and affinities for other antibodies in the network and for the antigen.

Those antibodies with high affinity for antigen (and therefore representing low cost so-

lutions) proliferate — however, if the concentration of an antibody becomes excessive,

its proliferation is suppressed, in order to enable exploratory search as well as focusing

on local minima. If an antibody is suppressed until it is eliminated, new replacement

antibodies are generated by genetic reproduction operators such as crossover and mu-

tation. When a good solution has been found, it is stored in the memory cells so that

it can be immediately retrieved if the same antigen is presented in the future. The

operation of the system is shown in figure 2.9.

Compared to a straightforward ’generate and test’ method, the immune algorithm

provided better results with respect to waiting time, which is claimed to be due to the

immune algorithm’s ability to search the global space of solutions. Essentially, the
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immune system is being utilised as an optimisation algorithm in these cases. Although

the algorithm itself is faithful to the network model of immunology, the manner in

which it is applied to the problem area does not take full advantage of the potential of

the analogy for tackling practical features of scheduling problems.

[Costa et al., 2002] introduce an immune algorithm for make-span minimisation on

parallel processors. This algorithm is also an optimisation algorithm, in that it finds

an optimal solution to a single, specific scheduling problem, and does not consider the

question of producing solutions which are robust to changes in the environment. How-

ever, the algorithm is described for completeness. The immune system is based on the

CLONALG algorithm due to De Castro, [De Castro and Von Zuben, 2000a]. A simpli-

fied version of this algorithm is shown in figure 2.10. Antibodies consisting of strings

of integers represent feasible solutions to the scheduling problem, and the affinity of

each antibody is given by LB
1+M(k)−LB where LB is a derived lower bound for the prob-

lem, and M(k) the make-span of the antibody under consideration. The process is run

until no improvement in the best solution can be found. The algorithm was tested on

390 instances of generated problems in which each instance had i processors on which

to schedule j jobs, with the processing time of each job obeying a uniform distribution

in the range [1,k]. They compared their results to tabu search, simulated annealing,

local search, and a number of heuristics. Their results were encouraging, showing that

the immune based algorithm was effective in dealing with instances characterised by

jobs with long processing times on a small number of machines, especially when com-

pared to single-solution strategies. It is claimed that these superior results are due to

the ability of the immune system approach to maintain diversity within a population of

candidate solutions.

2.6 Artificial Immune Systems for Dynamic Problems

One of the key characteristics of the immune system is its ability to function in

a dynamic environment. In this section, applications of artificial immune sys-

tems which directly exploit this analogy are considered. [Gaspar and Collard, 1999,

Gaspar and Collard, 2000] have applied an immune system analogy to producing a
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1. Create a population of k antibodies representing feasible solutions to the problem

2. For each generation do:

• For each antibody do:

– decode the antibody

– determine the antibody affinity

• determine the number of clones of each antibody

• determine the number of mutations of each antibody

• do cloning and mutation

• For each clone do:

– decode the clone

– determine the clone affinity

– if Affinity(clone) > Affinity(antibody), replace antibody with clone

3. whilst stopping criteria not met

Figure 2.10: The CLONALG algorithm [De Castro and Von Zuben, 2000a]
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system to perform time-dependent optimisation. They consider a canonical benchmark

problem, in which the fitness of a solution is defined by its similarity to an arbitrary

bit-string which represents the current optimum and changes regularly. The problem

can be parameterised with respect to the continuousness of transitions, the transition

period, and transition range, and hence makes a suitable benchmark. Gaspar et al

propose an immune based algorithm capitalising on the biological immune systems

adaptive nature. An antigen represents the current optimum, which must be matched

by B-Cells. Their system, named Sais, features both a primary (reactive) response and

a secondary response, mimicking memory. The system starts with a random popula-

tion of B-Cells, each able to detect a given antigen. At each generation, three operators

are applied to the population; evaluation, clonal selection and recruitment. The evalu-

ation phase results in an exogenic activation for each B-Cell, based on the Hamming

Distance between the B-Cell and the current optimum, and an endogenic activation

based on the number of different types of B-Cells in the population and the current

density of the B-Cell itself in the current population. This tends to force convergence

of the system towards a set of equally represented categories. The Clonal Selection

phase produces intermediary populations of both exo-activated and and endo-activated

B-Cells, by applying a selection operator according to their activation level, and in the

case of exo-activated cells, applying somatic hypermutation. Cells from both interme-

diary populations are then combined into a new population in the recruitment phase,

again using a selection process. Results show that Sais is capable of handling the dy-

namic optimisation problem described. The authors attribute its success to the fact that

their system is reactive in the sense that it can discover new optima, but also that it can

preserve diversity (unlike, for example, straightforward genetic algorithms) so that it

can remain reactive over time. The model is loosely based on the idiotypic networks

presented in the previous sections, however is clearly an over-simplified model of the

immune system itself. Nevertheless, it captures some of the essential mechanisms by

which the immune system operates in a dynamic, complex environment, and exhibits

analogies of the primary and secondary responses due its maintenance of multiple cat-

egories of B-Cells within the population. This work also reinforces the notion that an

artificial immune system may be a convenient metaphor to work with in non-stationary
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environments.

The preceding sections have presented an overview of the main techniques used to

implement artificial immune systems. Furthermore, a detailed summary of the litera-

ture relating to the topics of interest in this thesis has been given. The field is expanding

rapidly however, and there are many more examples of AIS in the literature than could

be described in this thesis. The interested reader is referred to a detailed bibliography

containing 293 references produced by [Dasgupta et al., 2002] — this bibliography

contains a wide variety of applications, implemented using variations on one or more

of the techniques described in this chapter.

2.7 Sparse Distributed Memories and their Relation-

ship to Immunological Memory

Smith et. al have shown that immunological memory is a member of a class of sparse

and distributed associative memories. Another type of memory typical of this class is

Kanerva’s Sparse Distributed Memory, or SDM [Kanerva, 1988]. The work presented

in chapters 5 and 6 of this thesis draws heavily on the analogy between the SDM and

the immune system, and hence a brief description of the SDM is now presented to

outline the underlying concepts so that the correspondence between the two types of

memory can be made clear. A more detailed discussion of the properties of the SDM

is provided later in this thesis in chapters 4 and 6.

2.7.1 Kanerva’s model

The SDM is a form of memory which can be written to by providing an address and

data, and then read from by providing an address and getting an output. The SDM is

specifically designed to function with enormous address spaces, in which it would be

impossible to physically instantiate all of the possible address locations. For exam-

ple, SDM can cope with addresses of 1000 bits, and therefore 21000 potential address-

data locations. An SDM instantiates a small and random subset of these locations,

which are referred to as hard locations, and are said to sparsely cover the input space
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[Kanerva, 1988].

Each hard location has an associated set of counters, one for each bit. Whenever an

address is presented to memory, the Hamming Distance between the address and each

of the hard locations is calculated. All hard locations that are within some threshold

distance R, referred to as the recognition radius, of the address become active — this

subset is called the access circle of the address. The method in which read and write

operations are performed is shown in figures 2.11 and 2.12.

In order to write an item of input data to the memory, each bit of input data is stored

at every location in the access circle: if the ith input bit is 1, then the ith counter at each

hard location in the access circle is incremented by 1, if the ith input bit is 0, then the

ith counter at each hard location in the access circle is decremented by 1.

To read an item from the memory, the sum of the ith counter value of each of

the hard locations in the access circle is calculated, for each bit: if the sum of the ith

counters is positive, the ith output bit is 1, if the sum of the ith counters is negative, the

ith output bit is 0.

The SDM has several appealing properties. The data is distributed independently

to many hard locations, thus it is robust to the loss of individual hard locations and

exhibits a graceful degradation of response. Furthermore, the mechanism by which

data is retrieved is imprecise, therefore data can be retrieved even if a read address is

corrupted and hence slightly different from a prior write address, due to the associative

nature of the recall. The associative behaviour results from the overlapping of access

circles — if the access circle of a read address overlaps that of the write address, then

all locations within the overlap are activated, and thus give associative recall.

2.7.2 Correspondence between SDM and Immunological Memory

Smith et al discuss the correspondence between SDM and immunological memory

(IM) in great detail in [Smith et al., 1999]. This section reiterates their argument to

illustrate the close relationship between the two systems. Table 2.1, reproduced from

[Smith et al., 1999] summaries the correspondence between the two memories.

Both IM and the SDM perform recognition by means of detectors; in the case

of SDM, the recognition is of addresses, via hard locations. In IM, the recognition
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Figure 2.11: Writing a piece of data to the SDM with a recognition radius R = 2: a) The

input data is presented to the memory. b) The Hamming Distance D between the data

and each hard location is calculated, and those locations in which D≤ R are selected.

c) The counters at each bit of the selected locations are updated according to the input

data
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Figure 2.12: Reading a piece of data from the SDM with a recognition radius R = 2: a)

The input address is presented to the memory. b) The Hamming Distance D between

the data and each hard location is calculated, and those locations in which D ≤ R are

selected. c) The counters at each bit of the selected locations are summed d) Bits in

which the sum ≥ 0 output 1, bits where the sum is < 0 output 0
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Immunological Memory Sparse Distributed Memory

Antigen Address

B/T Cell (Antibody) Hard Location

Ball of Stimulation Access Circle

Affinity Hamming Distance

Response/Tolerance Data

Primary Response Write and Read

Secondary Response Read

Cross-Reactive Response Associative Recall

Table 2.1: Structural and functional correspondence between immunological memory

and SDM. The table is taken directly from [Smith et al., 1999]

is of antigens, by B/T cells which produce antibodies. In both cases the potential

recognition space is huge, and therefore both systems can only sparsely cover their

respective input spaces with detectors. Thus, in both systems, recognition can only

be imprecise, and thus detectors become activated if they are within some threshold

distance of the input. In IM, the threshold is determined by the binding affinity between

antigen and antibody, in SDM the threshold is determined with respect to Hamming

Distance. In either case, a subset of detectors becomes active on presentation of an

input, in the case of IM, this is called the ball of stimulation of the antigen, in SDM it

is referred to as the access circle.

Both systems store information associated with each input. In the case of SDM,

the information is simply contained in the bit-strings comprising the input data. In IM,

the equivalent information stored is determined by the immune response itself, i.e. the

mechanism by which the immune system responds to an antigen and the types of cells

invoked to perform that mechanism.

Both systems perform associative recall. In an SDM, if a noisy or corrupt input

datum activates a set of detectors that overlap with those activated by a prior input,

then detectors from the prior input will contribute to the output. In IM, a mutant strain

of an antigen plays the same role as the noisy input in SDM, and a previously activated
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antibody will contribute to the response.

Thus, it should be clear from the preceding discussion that the SDM and immune

system analogies are interchangeable, and that elements from both models could theo-

retically be incorporated into any new AIS model.

2.8 Conclusion

This chapter has presented a broad overview of some basic immunology and of the

diverse range of artificial models of the immune system currently described in the lit-

erature. The models range in nature from those that attempt to closely model biological

phenomena, to those that simply use the metaphor as loose inspiration for a computa-

tional system. All of the systems described exhibit a subset of the features of the real

immune system described in chapter 1. The remainder of this thesis introduces four

new models based on the immune analogy, which also attempt to capture the salient

characteristics of the immune system. The problems domains to which they are applied

have been chosen to capitalise on these characteristics as much as possible.
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Immune Systems for Scheduling

3.1 Introduction

The previous chapters have outlined the properties of the biological immune system

that would seem important in an information processing context in some detail, and

provided an overview of a number of computational implementations of systems which

incorporate various subsets of these properties. The discussion of these properties (in

both biological and artificial terms) implies that the immune system metaphor would

lend itself most readily to those type of real-world applications which operate in dy-

namic and unpredictable environments, in which it is necessary to react to changes

in a timely manner and in which memory of past experiences provides useful point-

ers as to the correct course of action. The biological immune system is not perfect;

not every potential pathogen can be recognised by every individual, and those that are

recognised often recognised imprecisely. Despite this, the system as a whole functions

sufficiently well for the human race to have survived for many thousands of years. This

suggests that potential application areas for the application of the metaphor are those

in which we are not seeking to find optimal solutions or answers to some problem,

but more simply robust and ’good enough’ solutions that allow the system to continue

operating.

Some example application areas fitting these aspirations have already been de-

scribed in chapter 2. In the introductory chapter, it was suggested that another ob-

46
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vious application area in which many of the characteristics describing the environment

in which the IS operates are paralleled is that of scheduling. This analogy was made

explicit in section 1.3.1 of chapter 1. Here, it was noted that an ’ideal’ schedule is

not necessarily one which optimises some measurable criterion such as make-span or

maximum tardiness, but one which has some built-in flexibility that can absorb some

unpredictable event without disrupting the planned schedule. Also, it was made clear

that the schedule must still deliver some acceptable level of quality when measured

against some pre-determined criteria. This chapter first provides an overview of cur-

rent approaches to the re-scheduling problem identified in the (non-immune system)

literature. The job-shop scheduling problem is then properly defined so that the anal-

ogy between a scheduling system and the immune system can be made explicit (section

3.4). Two approaches to immunology based scheduling are then described.

3.2 Other Approaches to Robust Scheduling

The type of real problem described in the introduction has received much attention

over the years from many areas of the academic community, initially from the the

Operations Research community and later from Artificial Intelligence, using a wide

and varied list of techniques. The real-world scenario described is often typified by

the job-shop scheduling problem, of which there exist many benchmark examples on

which algorithms can be compared, (for example [Beasley, 1990]). These problems

are generally NP-hard and cannot be solved to optimality — however, a great deal of

attention has been paid to attempting to produce schedules that are as close to optimal

schedules as possible, in the sense that some objective is minimised. In the majority of

cases however, such ’optimal’ schedules are often extremely fragile — a minor change

in conditions can render the schedule useless. This has no practical value in a real

world situation, in which if any rescheduling is required, it is often desirable to produce

a new schedule which resembles the old one. For example, a new schedule which

differs significantly from the original one may result in having to recall employees from

holiday or changing set-ups on machines, both of which have economic implications.

A review of the literature indicates that comparatively little attention has been paid
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to this problem of rescheduling. There appear to be two possible approaches:

1. Reschedule from scratch from the point at which a breakdown occurs, thus con-

sidering a completely new scheduling problem.

2. Produce a schedule in the first place that is capable of absorbing changes in the

environment.

The approach outlined in (1) above has been adopted by [Bierwirth et al., 1995,

Fang et al., 1993], using genetic algorithms. Approach (2) was taken by

[Wu et al., 1999] though this work is in respect to making schedules robust to dis-

turbances in operation processing times, and does not consider other possible events

that may perturb the original schedule. This work employed a graph-theoretic ap-

proach combined with a branch-and-bound algorithm. [Herrmann, 1999] used a co-

evolutionary algorithm to tackle a similar problem in which the algorithm converges to

the worst case and therefore most robust scenario. [Jensen and Hansen, 1999] propose

a new method of creating robust solutions to job-shop problems that produces solutions

which are robust to breakdowns of machines.

In this chapter, a new method of producing robust schedules to job-shop schedul-

ing problems is proposed which falls into category (2) above. Thus, it is proposed

that an immune system analogy can be used to construct schedules in a manner which

produces schedules that are resilient to changes in the environment. The use of the

immune system analogy also results in a scheduling system that contains sufficient

’building blocks’ to potentially construct schedules that cover a wide range of contin-

gencies.

3.3 Definition of the Job-Shop Scheduling Problem -

JSSP

In a typical job-shop scheduling problem (JSSP) j jobs are required to be scheduled

on m machines. A single plan defines the ( j ∗m) operations that must occur. Each

operation has a fixed processing time p jm. Each job is expected to arrive at the factory
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at time A j, and must be completed by due-date D j. A machine can only process one

job at a time, and preemption of any operation on any machine is not allowed. In both

models proposed in this chapter, we only consider contingencies involving unexpected

arrival dates of jobs into the factory — deviations in arrival date can result in jobs

having to be stored ready for processing for long periods of time if they arrive early, or

cause delays in processing of other jobs if they arrive late. However, the methodology

described is sufficiently generic that other contingencies such as deviations in due-

dates or processing times could be incorporated straightforwardly.

There are many objectives by which the quality of a schedule can be measured,

based on either completion time or due-date. Those based on completion time, for

example the total production time (makespan), are rarely of commercial interest as the

exact details of a problem are not known from the start and they do not have a clear

end. In the case of job-shop scheduling, it is more sensible to consider objectives based

on the date by which individual jobs are supposed to be completed. In this work we opt

to use the measure of maximum tardiness, Tmax, with the implication that a schedule’s

cost is directly related to the latest job that completes after its due-date. If each job j

completes at time C j, then the maximum tardiness of the schedule is defined as shown

in equation 3.1, and means that the cost of a schedule is directly related to the amount

of time that the latest job completes after its due-date.

Tmax = max(0,C j−D j) (3.1)

Other due-date based objectives, such as weighted tardiness or number of tardy

jobs are simply variations on this theme.

3.4 Definition of an Immune-Based Scheduling System

A stylised model of the environment in which an immune-based scheduling system

might operate is shown in figure 3.1. The relationship between the standard immuno-

logical terms and a scheduling environment is defined below:

Antigen — a set of conditions describing a possible scenario in the factory for which

a schedule must be produced, i.e. each antigen defines one possible set of arrival
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Figure 3.1: A stylised model of an Artificial Immune System for scheduling
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dates and due-dates under which a schedule must be produced.

Antigen Universe — a set of antigens representing a sample of the possible scenarios

and contingencies that may occur.

Antibody — a set of instructions for constructing a schedule.

Ag-Ab Complex — combination of an antibody and antigen produces an Ag-Ab com-

plex which in this case represents a complete schedule, with start times and finish

times for each operation. The schedule is produced using the instructions given

by the antibody and the information supplied by the antigen.

Match-Score — the match-score represents the strength of the Ag-Ab complex, i.e.

in a scheduling scenario the maximum number of time units a job is late in

the schedule produced as a result of matching antibody and antigen. A perfect

schedule has a match-score of 0 — the higher the match-score, the worse the

schedule.

Thus, the scheduling immune system model contains a set of antibodies defining

possible methods for creating schedules, and a set of antigens, representing a sample of

the potential situations that may arise. The number of antibodies is small compared to

the number of potential situations, therefore each antibody should match (to a greater

or lesser extent) a subset of the antigens in the universe. Thus, there are three obvious

and important questions to address when designing such an immune system:

1. How can one represent both antigens and antibodies ?

2. What are the building blocks from which the immune system assembles antibod-

ies, and how are they generated ?

3. How are antibodies assembled from these building blocks ?

The next section proposes a model — SCHED1− IS, based on immunological

principles, that can accomplish these tasks, and discusses the reasoning behind the

design choices that were made.
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3.5 SCHED1− IS

3.5.1 Choice of IS Model

Having established precisely those features of the biological immune system which

we wish to incorporate into an immune-based scheduling system, returning to the

published literature showed that there were two obvious candidates of artificial IS

models on which a system could be based. The first of these models, proposed in

[Hightower et al., 1995], was described in detail in chapter 2, and a further model due

to [Oprea and Forrest, 1998] is described below. Although both model binary uni-

verses in which bit-strings represent both antibodies (genotypically and phenotypi-

cally) and antigens, in principle, both could be extended to include more complex

representations.

To recap, [Hightower et al., 1995] described a binary model of the immune system

which was used to study the effects of evolution on the genetic encoding for antibody

molecules, which showed that robust pattern recognisers can be learned with a surpris-

ingly small amount of information. In this model, each individual in a population ma-

nipulated via a genetic algorithm represents the genetic specification for the antibody

libraries of one immune system. Bit strings were used to represent both the genotype

— libraries of gene segments — and the antibody molecules of the phenotype. Fur-

ther work ([Perelson et al., 1996]) provided insight into how and why the natural IS

evolved as it did.

Oprea in [Oprea and Forrest, 1998, Oprea and Forrest, 1999] describes a simplified

version of the Hightower model which was used as part of a detailed study on the

sources and evolutionary significance of diversity in the biological immune system.

In this model, one individual’s genome consists of a single library containing a set of

complete antibodies — i.e. the single antibody library represented by an individual can

be viewed as exactly the antibody repertoire. It is claimed in [Oprea and Forrest, 1999]

that this does not affect the generality of the model and adding more libraries would

not affect the results. The aim of the work was to investigate the type of antibody

repertoire that might evolve in relation to a given pathogenic environment.

We opted to extend the more general approach taken by [Hightower et al., 1995],
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using multiple libraries, as it appeared to fit the scheduling analogy and philosophy

we were trying to create more closely; in a scheme containing multiple libraries, each

library can be viewed as holding a piece of a schedule “jigsaw”. Selecting different

pieces from each library and combining them into a whole schedule allows for the

creation of many different schedules. In contrast, if Oprea’s approach were adopted,

a library would contain completed schedules, therefore the whole library is simply

offering a limited selection of alternative schedules, and thus is less flexible.

3.5.2 Representation of antibodies and gene-libraries in

SCHED1− IS

Having elected to represent the scheduling system as a series of libraries of compo-

nents which are randomly selected from, and recombined into a complete schedule,

the immediate difficulty to be faced is exactly how to represent the schedule; the rep-

resentation must be of a form that can be broken down into random fragments that

can be recombined in a manner which always guarantees a feasible representation of a

schedule.

As mentioned previously, the majority of AIS models operate in a binary universe.

[Nakano, 1991] have described a binary representation to encode schedules for aca-

demic job-shop problems. However, a complex effort was required to design such an

encoding, and its use in a GA context needed specialised repair operators to retain the

ability to decode chromosomes as feasible schedules, therefore the representation is

not suitable for use in the library-based model we propose.

However, an indirect representation of a schedule in which the representation en-

codes the method for constructing a schedule rather than the schedule itself offers ob-

vious advantages, in that it can generally be manipulated by standard genetic operators

without loss of meaning. A search of the relevant GA literature revealed one such rep-

resentation which possessed the ideal properties. This representation was proposed in

[Fang et al., 1993] and consists of a string of length j×m integers which is interpreted

as follows:

If the string is represented as “abcd...” then place the 1st untackled task of
the ath uncompleted job into the schedule in the first place where it will
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fit, then place the first untackled task of the bth uncompleted job into the
schedule etc.”.

This representation was found to be very successful in tackling a wide range of

scheduling problems at the time of publication, though since this work was completed

it has been superseded by an alternative indirect representation proposed by the au-

thor of this dissertation in [Hart and Ross, 1998]. However, it remains suitable for the

purposes of building and evaluating an immune system model. Clearly, a string repre-

senting a set of schedule building instructions in this manner can be broken down into

sub-fragments which can be combined in any manner.

Thus, SCHED1− IS is composed of a set of l libraries, each containing c compo-

nents. Each component is a string of s genes, subject to the constraint that s× l = j×m,

i.e. so the length of the expressed antibody must be equal to the number of operations.

Each of the s genes has a value in the range (0−( j−1)). c can be varied independently.

This is shown in figure 3.2.

3.5.3 Representation of an Antigen

An antigen describes a set of expected arrival dates and due-dates for each job in the

shop and hence each antigen represents one of the contingencies we wish to deal with.

Therefore, each antigen is simply an ordered list of dates represented by integers:

Arrive Due

Job1: 10 20

Job2: 5 11

Job3: 15 17

Note that information regarding the sequence in which each job visits each ma-

chine is separately maintained as this information is constant in the system. The anti-

gens therefore represent only the variable information in the system. Of course, if the

sequencing of jobs was also considered to be variable in the system, then the antigens

could also represent this information.
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Figure 3.2: The figure shows an example of the immune system represented in

SCHED1− IS. The immune system consists of l libraries, each containing c compo-

nents. Randomly selecting one component from each library and concatenating them

produces an indirect, feasible representation of a schedule



Chapter 3. Immune Systems for Scheduling 56

3.5.4 Evolution of the Gene Libraries

A genetic algorithm is used to evolve a set of immune libraries as shown in figure

3.2 in exactly the same manner as [Hightower et al., 1995]. Each individual in the

population represents a complete set of libraries, i.e. an entire immune system. As in

[Hightower et al., 1995], a haploid representation is used in which the total number of

genes in each individual is (l× c× s). Each AIS in the initial population is generated

by assigning a random value to each gene. The fitness of an individual is determined

by its overall ability to produce schedules which optimise Tmax across all the potential

scenarios described in the antigen universe, i.e. against all potential antigen encounters.

The procedure by which fitness is calculated is a modified version of that given in

[Hightower et al., 1995], as described in chapter 2, section 2.2.2.1. A set of antibodies

(schedules) are expressed from an individual by combining one component from each

library (see section 3.5.2 of this chapter) and then exposed to the antigen universe.

For each antibody-antigen encounter, a schedule is constructed, and the quality of the

schedule in terms of Tmax measured. Each antigen receives an antigen-score which

is the minimum, i.e. the best, of all the values of Tmax measured for that antigen.

The overall fitness of an individual is computed by averaging all the antigen-scores;

this assumes the survival probability of an individual depends on all the pathogenic

challenges it encounters. An alternative approach would be to take the view that in fact

the survival probability is dependent on the extent to which it is able to deal with the

most difficult encounters, and therefore its fitness is characterized by the worst value

of Tmax found during an antigen encounter. The exact algorithm for computing fitness

is given in figure 3.3.

After a match-score for an antibody has been calculated, the antibody is mutated at

random in M positions, and the match-score recalculated. If the match-score improves,

then the original antibody is assigned this new match-score. The mutations are not

written back to the gene library.
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1. Express N antibodies at random from each individual

2. Select K antigens at random, with replacement, from the antigen uni-

verse.

3. For each of the K antigens selected:

• Using the arrival-dates defined by antigen Ki, produce N sched-

ules, using the N expressed antibodies.

• Calculate Tmax for the each of the N schedules

• Apply somatic mutation to each antibody and re-calculate the

value T ′max for each schedule.

• Assign antigen Ki an antigen-score equal to the best (i.e. lowest)

value of (Tmax,T ′max) found

4. Average the K antigen-scores to give an overall fitness for the individual

Figure 3.3: Algorithm for computing the fitness of each individual in SCHED1− IS
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1. Express N antibodies at random from a set of evolved libraries

2. For a given antigen A, calculate the quality of the schedule generated

(Tmax) by applying the instructions encoded in each of the N antibodies

3. Select the antibody Ab∗ with the best value of Tmax

4. Produce C clones of Ab∗, by mutating each gene with probability pm.

5. Calculate the new value of Tmax for each clone, and return the best, C∗.

Figure 3.4: Algorithm for simulation of the immune-response. This algorithm produces

a schedule in response to a change in scheduling conditions

3.5.5 Evaluating the IS Produced — Inducing an Immune Re-

sponse

[Hightower et al., 1995] showed that the method just described allows a genetic al-

gorithm to optimise complex genetic information, even though selection pressure is

acting on the phenotype which expresses incomplete genotypic information. However,

we are concerned with producing a practical scheduling system. This means that once

a set of immune libraries has been evolved, we must be able to generate high qual-

ity schedules from those libraries in response to a new scheduling scenario quickly

and efficiently. Thus, we must model and evaluate the biological immune-response.

This has been discussed in detail in chapter 2 where the process of clonal selection

[Burnet, 1959] was described. Activated B-Cells (i.e. those which best recognise an

antigen) proliferate, growing into a clone of cells. As clones grow, the immune system

turns on a mutation mechanism that generates mutations in the genes that code for the

antibody. These point mutations occur at very high frequency. This process (known

as somatic mutation) when coupled with selection, results in B-Cells that have very

high affinity matches with antigen. This process is directly modelled in the response

mechanism, which is outlined in figure 3.4.
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3.6 Experimental Approach

SCHED1− IS is heavily based on the model proposed by [Hightower et al., 1995,

Perelson et al., 1996]. As all previous experiments with this model have been con-

ducted using binary match-functions based on the simple binary universes first sug-

gested by [Farmer et al., 1986] we first needed to verify that the proposed model using

integer values for genes and a match-function based on evaluating the schedule pro-

duced by combining antigen and antibody actually underwent a process of evolution;

i.e. the overall fitness of the immune-systems evolved after 200 generations was greater

than those of the random initial population. We also wished to confirm the three find-

ings of the Hightower work, namely;

1. The greater the antigen expression rate, the faster the learning

2. The larger the expressed antibody repertoire, the faster the learning and the

higher final fitness of the evolved population

3. Somatic mutation accelerates evolution and illustrates the Baldwin effect.

As a result of attempting to confirm these findings, we would also be able to deduce

sensible values for the system parameters, particularly N and K.

However, even if we show that evolution does take place in the proposed system,

the actual values of fitness achieved following evolution do not give any indication as to

whether or not the system has any practical value. This can only be gauged by inducing

an immune response from the evolved system, and testing whether or not schedules can

be produced which provide satisfactory solutions to scenarios that were defined in the

world in which the libraries evolved, and also in response to completely new scenarios.

Therefore, although a brief series of experiments is performed in order to confirm that

the SCHED1− IS system can evolve, the majority of this work is directed towards

evaluating the immune systems produced, in order to quantify how they perform in a

scheduling environment.

The data that was used is now described in section 3.6.1, followed by a description

of parameters that were common to all experiments performed.
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3.6.1 Experimental Data

Antigen universes, (AUs), were generated based on a set of benchmark scheduling

problems given by Morton&Pentico in [Morton and Pentico, 1993]. These problems

have been commonly used in a large number of scheduling studies. Results are re-

ported here for the problem known as jb11.ss, which was selected as being typical of

a medium-sized problem from this set. This problem contains 15 jobs, to be processed

on 5 machines, and is known to have an optimal solution where no job arrives late.

Each AU generated contained 10 antigens — an antigen was generated by mutating

the original arrival date for each job with probability pu to another random date, in

the range (0,300), subject to the condition that the new arrival date was at least pt

days before the due-date of the job, where pt was the minimum processing time re-

quired to complete the job. (Note that this method does not guarantee that the resulting

conditions can lead to an optimum schedule where no job is tardy.)

3.6.2 Common parameters

In all experiments, a population of 100 random individuals was generated, with each

individual characterised by (l = 5,c = 5) and therefore s = 15 (as the total length of an

antibody produced from an individual must equal the number of operations, 75). Thus,

a total of cl = 3125 antibodies can be formulated from a single immune system. These

values were chosen after considerable experimentation with combinations of c and l.

The value of c can be increased independently of l and s, however, clearly there is a

trade-off between the amount of diversity that can be achieved within the system, and

the amount of time required to evolve the system, given that selection pressure acts

only on the phenotype. A similar trade-off exists in balancing l and s — the length s of

the segment represents a common sequence of instructions for building a schedule. The

likelihood of finding common sequences decreases as s increases, but the size of the

search space increases exponentially as s decreases (and therefore l increases). The

values of c, l,s reported here appeared to be a satisfactory compromise that allowed

evolution to take place over a tractable amount of time, yet still produce satisfactory

results.
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All genes were randomly initialised with values in the range (0-14) as there were

15 jobs. The genetic algorithm used a generational reproduction strategy, with recom-

bination performed by tournament selection of size 5, and uniform crossover. Each

experiment was run for 200 generations, and repeated 10 times. All antigen universes

contained 10 antigens and unless stated otherwise were generated by setting pu = 0.2.

Setting the tournament size to 5 exerts a high selection pressure, however given the

nature of the fitness function, this was found to produce better results than when using

a smaller tournament size.

3.6.3 Verification of the Hightower Model

Figure 3.5 shows the results of an initial series of experiments that were performed

to verify that our model did indeed exhibit the characteristics expected (see section

3.6). All experiments were repeated 10 times, and the best fitness found averaged.

Firstly, the antigen exposure rate was held constant at K = 2 (20% of the potential

pathogen repertoire) whilst the antibody expression rate was varied. Next, the antibody

expression rate was fixed at N = 15 (0.005% of cl), and the antigen exposure rate

varied between 20% and 100% of the potential number of antigens. Finally, some

experiments were performed to confirm that somatic mutation could accelerate the

evolution process. The optimal number of genes to undergo somatic mutation was

varied and the resulting fitness of the immune systems measured, as well as the fitness

trajectories over the course of the evolution when somatic mutation was applied.

Figure 3.5(a) shows that performance clearly increases as N is increased, as would

be expected with greater sampling of the genetic material available in the genotype.

Even when only 0.001% of the potential antibody repertoire is expressed, some evolu-

tion of the genetic material takes place, though somewhat slowly. When 0.05% of the

repertoire is expressed, evolution is rapid, and approaches the maximum possible fit-

ness of 1.0. There is clearly a trade-off however, between the time required to perform

the evolution at large N against the fitness of the final system.

On the other hand, figure 3.5(b) shows that the average fitness of the evolved li-

braries decreases as the antigen exposure rate K is increased. This result conflicts

directly with the work by Hightower et al., [Hightower et al., 1995], in which they find
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that binary immune systems evolve faster and end up with higher fitness values as the

antigen exposure rate is increased. A possible explanation for this is that the ’opti-

mal’ schedules corresponding to each of the antigens in the universe are so diverse

that especially at low N the expressed antibody repertoire is too general to provide

reasonable solutions. Furthermore, in a binary system, there is a higher probability of

a completely random antibody matching any given antigen than in the integer-based

system modelled here.

Figure 3.5 (c) replicates the findings of [Perelson et al., 1996], in that increasing

the number of points in the genome which are mutated improves fitness sharply over a

narrow range of values of M, as a result of the Baldwin effect. Figure 3.5 (d), which

compares the evolving fitness of the immune system with increasing generations for

experiments that do and do not include somatic mutation, shows that including somatic

mutation results in a more rapid evolution, and results in a higher overall fitness, again,

as predicted in [Perelson et al., 1996].

Therefore, we conclude that the integer-based model with the interaction formed

by the Ag-Ab complex describing a schedule is suitable for evolving immune libraries

from which schedules can be generated. Best results will be achieved using low values

of K, the antigen exposure rate, and high values of N, the antibody expression rate,

and an element of somatic mutation. Given the time constraints introduced when using

large values of N, we elected to set N = 0.005 in remaining experiments described, as

evolution still occurs even at this level. Unless otherwise stated, the antigen exposure

rate was set to 4.

3.7 Evaluation of the Immune Response

The experimental procedure adopted for evaluation of the libraries evolved using the

genetic algorithm consisted of three distinct phases:

1. Measure the quality of the schedules produced from evolved libraries in response

to scenarios described in the AU the library was evolved in.

2. Measure the quality of the schedules produced from evolved libraries in response

to previously unseen scenarios, i.e. generate a set of new antigen universes
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Figure 3.5:

(a) Fitness trajectory of GA experiments in which the antigen exposure rate is held

constant at K = 4, and the antibody expression rate varied.

(b) Fitness trajectory of GA experiments in which the antibody expression rate is held

constant at N=15, and the antigen exposure rate K varied between 2 and 10.

(c) Effect on average tardiness of schedules of increasing the number of genes M that

undergo somatic mutation at each generation of the GA. The antibody expression rate

was fixed at N = 15 and the antigen exposure rate K = 4.

(d) Fitness trajectory of GA experiments in which the somatic mutation rate is varied.

The graphs show that applying somatic mutation accelerates evolution. Parameters

were set as in (c).
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3. Define a measure of robustness of a schedule, and evaluate evolved schedules

against this measure.

Schedules were produced from evolved libraries using the algorithm outlined in fig-

ure 3.4. Preliminary experiments established suitable values for the parameters of this

algorithm. The quality of the schedules generated was compared against a schedule

evolved using the specialised scheduling GA proposed by Fang in [Fang et al., 1993].

The fitness of the respective schedules was compared, as well as the actual sched-

ules themselves. In order to provide a fair comparison, Fang’s genetic algorithm is

run for the same number of generations and using the same parameters and operators

as used in evolving the immune libraries. However, note that a single generation of

SCHED1-IS involves evaluating (K ∗N ∗ p) schedules, where K is the number of anti-

gens the system is exposed to, N is the number of antibodies expressed and p is the

size of the population, whereas Fang’s GA requires evaluating only p schedules per

generation. However, Fang’s GA must be run once for every scheduling problem to

be solved, therefore the total number of generations required to produce solutions to

all problems must be multiplied by Na, the number of antigens in the universe. One

run of SCHED1− IS on the other hand, solves all problems at the same time, and as

typically, K << Na (in the experiments performed K = 4 and Na = 10), the effort may

not differ significantly between the two methods. Furthermore, even if more effort is

initially required to evolve an immune library, once it has evolved, it then contains the

material required to produce new schedules quickly and efficiently so the initial effort

is not wasted. Using Fang’s GA to construct a new schedule requires the whole process

to start from scratch, and therefore a further p∗g schedule evaluations, where g is the

number of generations.

As stated in the introductory section of this chapter, one of the aims of this work is

to produce schedules that are robust, i.e. can absorb changes within the operating en-

vironment. This can be interpreted as producing schedules which cover more than one

contingency — if this is the case, a schedule does not necessarily have to be changed if

the conditions under which it was produced change. Thus, even if the quality of sched-

ules produced from the immune libraries is favourable compared to those produced by

the Fang algorithm, if the schedules are significantly different from each other they
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may cause much disruption if they were to be put into practice.

Therefore, we introduce a measure of similarity of two schedules. Given a schedule

which describes the operation of J jobs on M machines, then we can write a schedule

S as a matrix of m rows and j columns. Each of the m rows represents a machine, and

the row indicates the order in which jobs are processed on that machine. Thus S(i, j)

represents the ith job to occur on the jth machine. An example is shown in figure 3.6.

We suggest that two schedules can be considered similar if jobs are processed on a

machine in the same order in each schedule, regardless of the time that the jobs start or

finish. Thus, if we compare two matrices and count the number of cells in which the

matrices differ, we have a quantatitive means of comparing the similarity of two sched-

ules S and S′. This robustness measure R is defined in equation 3.2. In the problem

described, we have 15 jobs, each of which is to be scheduled on 5 machines. Given

two permutations of 1...n numbers, then it can be shown (appendix A) that the number

of expected coincidences between them is just 1. Thus, in a scheduling problem with j

random jobs on m machines, a random schedule contains j permutations of 1...m, and

so the expected number of places of similarity between two schedules is simply j with

variance j and standard deviation
√

j.

R = ∑
j,m

{
0 i f S( j,m) = S′( j,m)

1 otherwise
(3.2)
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3.7.1 Selecting the Clone rate, Antibody Expression rate and Mu-

tation rate

This section describes a series of experiments which investigated the effect and impor-

tance of the choice of values for N, the number of antibodies expressed, C, the number

of clones produced, and pm, the mutation rate, in producing a response. A set of im-

mune libraries evolved using N = 0.005% and K = 4 was used as the test immune

system, and a response was generated 100 times to each of the 10 antigens present in

the AU that the immune libraries were evolved against. A response was generated 100

times against each antigen using a set of parameters (N,C, pm), and the fitness of the

resulting schedule measured. All results were averaged over the 100 responses. The

patterns that emerged were identical for all antigens — results are shown for the re-

sponse against a single antigen in figure 3.7. The fittest schedules are obtained at low

mutation rates, and at high values of both N and C.

As a result of this, in all further experiments, the values of N and C were each set

to 1000, and pm to 0.2. Given that we used 5 libraries, with component size s = 15, this

is equivalent to expressing approximately 32% of the potential repertoire.

3.7.2 Comparison of tardiness of schedules produced from

SCHED1− IS to those produced by Fang GA

For each antigen-exposure rate, K, tested in section 3.6.3, the best set of immune-

libraries produced in the 10 experiments was used to produce schedules for each of

the 10 antigens in the original antigen universe (p = 0.2) in which the libraries were

evolved, and then for three further antigen universes generated using pu = 0.1, pu = 0.3

and pu = 0.5. This involved applying algorithm 3.4 100 times, using the parameters

determined above, and comparing the average tardiness of the best schedules found to

the tardiness of the corresponding schedule produced via the Fang algorithm. Table 3.1

shows the percentage of the 10 antigens in each universe for which the best schedule

found using the evolved immune-libraries was superior to that found by Fang. The

figures in brackets give the corresponding percentage values for the average tardiness.

Although there is no clear-cut trend with increasing K, for most values of pu there
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Figure 3.7:

(a) Effect of varying the number of initial antibodies generated N during the immune

response on the average tardiness of schedules. C is fixed at 1000, and pm at 0.2

(b) Effect of varying the clone rate C during the immune response on the average tardi-

ness of schedules produced. N is fixed at 100, and pm at 0.2

(c) Effect of varying the mutation rate pm during the immune response on the average

tardiness of schedules produced. N is fixed at 100, and C at 1000
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Antigen Antigen Exposure During

Universe Evolution of AIS

pu 2 4 6 8 10

0.1 20 (50) 80 (90) 20 (50) 70 (80) 60 (80)

0.2 10 (20) 30 (40) 20 (30) 40 (40) 60 (60)

0.3 0 (20) 50 (50) 30 (30) 60 (60) 40 (50)

0.5 0 (0) 40 (30) 10 (0) 40 (20) 0 (0)

Table 3.1: Percentage of test-cases where best and (average) tardiness of AIS schedule

was equal to or less than result found by Fang

is a general tendency for the schedules produced via the immune-libraries to increase

in quality as K increases, despite the fact that the overall evolution of those libraries

is slower (see section 3.6.3). Examination of any trends occurring as the diversity of

the antigen universe increases (i.e. pu) shows that the ability of the immune-libraries

to match the results produced by Fang decreases as pu increases. Even at pu = 0.5

however, using the AIS from K = 8 we are able to match the Fang results in 40% of

cases, which is somewhat surprising, considering the wide diversity of arrival-dates

amongst the antigens in this universe. In general, libraries evolved at a low antigen

exposure (K=2) perform badly. Libraries evolved when K = 4 and K = 8 generally

performed well across all universes.

It is worth noting that in order to produce a schedule using Fang’s specialised GA

requires 20,000 evaluations of schedules (i.e. 100 individuals over 200 generations).

On the other hand, producing schedules from the evolved immune-libraries requires at

most 2000 evaluations:- evaluation of 1000 initial antibodies, followed by evaluation

of 1000 clones. Furthermore, figure 3.7 (a) suggests that the number of antibodies

initially produced could also be significantly reduced, perhaps to 400, as increasing the

number beyond this point does not produce a corresponding increase in performance.
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pu

0.1 0.2 0.3 0.5

AIS 30.11 46.48 41.47 44.31

Fang 43.86 44.58 45.49 46.20

Table 3.2: Average robustness R of schedules in different antigen universes

3.7.3 Robustness of Schedules

In order to analyse the robustness of schedules produced from the immune-libraries

(see section3.7), a schedule was generated from an immune-library evolved using

(N = 0.005,K = 4) for each of the 10 antigens in each universe characterised by

pu ∈ 0.1,0.2,0.3,0.5. A pairwise comparison of each of the 10 schedules in each

universe was performed, using R as the measure of comparison. This was repeated

comparing schedules generated using the Fang algorithm. The average value of R in

each case is given in table 3.2.

Apart from the anomalous case of pu = 0.2, we see an improvement gained by pro-

ducing schedules from the immune-libraries, in that the average value of R is lower

and therefore the schedules more similar. In section 3.7 it was noted that the ex-

pected value of R is j — note that in all cases, the value of R obtained using the

immune-libraries is greater than 2 j!. Moreover, Chebyshev’s inequality suggests that

the probability of getting 40 or more coincidences between two 15-job schedules is

≤ 15/(40− 15)2 = 2.4%, and therefore the probability of obtaining these results by

chance is very low. The difference in R between the library generated schedules and

the Fang schedules decreases as pu increases, and is also very high for high values

of pu. This is probably due to the increased diversity in antigens that is obtained by

mutating each arrival-date with high probability, and therefore the resulting low prob-

ability of producing a single schedule that can cover all cases effectively. (Obviously

a single schedule could be produced to cover all contingencies by only considering the

latest arrival date for every job across the whole antigen universe — this would result

in a schedule with large amounts of idle time however, and possibly several very late

jobs.)
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3.8 Summary of Utility of SCHED1− IS

The experiments just described show some promise as a first attempt at designing a

scheduling system based on immunological principles. In particular, they go some

way towards meeting the goals originally outlined, i.e. that the system should be able

to rapidly and efficiently produce schedules that are satisfactory in quality and robust

to changes in the environment. This is confirmed by the experiments in sections 3.7.2

and 3.7.3. Aside from the scheduling perspective, it also lends further weight to the

claims made originally by Hightower et. al. that selection operating at the organismic

level can provide the selection pressure needed to generate and maintain diversity in an

organisms gene-libraries, as our integer-based model is a more generic representation

of the libraries themselves and the match-function more complex; remember that genes

in the biological immune system are composed from four possible bases — A,D,G T

— rather than the two modelled in Farmer’s original binary artificial immune system,

and the interaction or binding affinity between antigen and antibody is clearly more

complex than simply summing numbers of complementary bits.

However, so far only a cursory investigation has been performed of the use of

such a system for scheduling, using restricted and small antigen universes, in which

only one type of contingency (inconsistency in arrival-dates) has been examined. With

hindsight, when taking a more global view of the overall picture, the model seems to

embody two obvious flaws:

Representation — the information contained in a single library component changes

its meaning according to the components preceding it in an antibody. For ex-

ample, a ’1’ at some position i in the list of instructions for building a sched-

ule means schedule the next operation of job 1. However, the exact identity of

this operation is dependent on how many operations of job 1 have already been

scheduled in the previous (l− i) instructions. This is likely to be a consequence

of using any indirect representation, however it is difficult to envisage how any-

thing other than an indirect representation could be used in a library/component

model as described, if it is essential that combining random components from

libraries always leads to feasible antibodies.
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The Immune Response — even if a suitable set of libraries of components can be

produced, then the problem of how to retrieve antibodies from the immune sys-

tem still exists. Selecting random components and combining them to pro-

duce antibodies results in an antibody search space of size cl . There could

be considerable variation in quality across this space, and hence it could be

counterproductive to spend much effort searching it. In the experiments de-

scribed, the size of the complete antibody search-space was 3125, (55), which

is small compared to the number of schedule evaluations generally required

by a GA to solve such a problem, which is often of the order of 20,000, see

[Fang et al., 1993, Lin et al., 1997]. However, in large problems which require

larger immune systems, the combinatorics may readily become intractable.

In light of these inadequacies, the entire motivation behind trying to produce

immune-libraries that represented repositories of schedule fragments from which ro-

bust schedules could be produced was re-examined. Analysis of data supplied by

real companies relating to their scheduling problems, for example [Hart et al., 1998,

Marshalls Agriculture, 1998], revealed that similar scenarios often crop up over and

over again, and as a result there are known methods for dealing with them. An ex-

perienced scheduler can quickly piece together new schedules using prior knowledge

gained from past experiences. Therefore, the problem faced by a human scheduler is

generally not how to produce a new schedule starting from scratch, or indeed how to

originally design a schedule that is robust to a range of potential conditions, but how to

select and draw on prior experiences to adapt an existing schedule to a new situation.

Therefore, we now propose that addressing the more fundamental question of how

to evolve the contents of the actual immune libraries so that the libraries contain ro-

bust building blocks is inappropriate — a more pertinent question is how can we con-

struct an immune system in which the library components represent a store of prior

experiences. In theory, these experiences can be pieced together and perhaps undergo

adaptation in some manner in order to quickly make new schedules. In fact, this can

be considered directly analogous to the secondary response in the biological immune

system in which a persistent sub-population of memory cells retains information about

previous antigenic attacks — these cells are restimulated either by attack from the
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original antigen, [Jerne, 1973, Tew and Mandel, 1979] or by attack from a related en-

vironmental antigen [Matzinger, 1994a].

3.9 SCHED2− IS — Storing Past Experiences in an Im-

mune Library

Thus a second model is now proposed, based on immunological principles, and by

which a scheduling system might be implemented. This model is referred to as

SCHED2− IS. The model is based on the conjecture that although a variety of con-

ditions may arise that all require a new schedule to be implemented, the conditions

are often predictable and have associated predictable (partial) solutions. Therefore,

the most relevant of the immunological principles to capture within the model appears

to be that of memory, which allows the prior experiences to be maintained. By also

modelling some of the diversity generation processes observed in the biological sys-

tem, it should be possible to enable those cells to adapt in order to recognise new in-

vaders more specifically. We also speculate that although many slight deviations from

the norm arise in a scheduling environment, it is rare to have to radically resched-

ule. Therefore although the biological immune system is able to respond to entirely

new situations owing to its astonishingly effective diversity generating mechanisms, it

is unnecessary to rely on these mechanisms in most of the day to day situations that

occur.

We propose that when scheduling is performed by an experienced human, then he

or she relies on using historical information in order to construct new schedules — this

information may relate to specific past events, or to long or short sequences of past

events, and is commonly described as ’intuition’ — something that is difficult if not

impossible to capture in a computer model. For example, it is not difficult to imagine

some or all of the following thought processes occurring to our experienced scheduler

when faced with a scheduling scenario:

• Job A and Job B can usually be performed in parallel

• Operations a,b,c tend to occur in a group in many schedules, but in different
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permutations

• When machine X breaks down, often task Z can be performed while waiting

• Job C is often late arriving, so process Job D instead

These processes are captured to some extent in the historical schedules themselves;

For example, if we examine the order in which jobs are processed on a specific ma-

chine, or the order in which jobs are selected from the shop-floor for processing, then

it is common to observe patterns occurring across subsets of these processes. Thus,

if a set of common patterns or parts of schedules could be built up using the knowl-

edge encapsulated in past schedules, then these patterns can be used as building blocks

when constructing a new schedule. The simple idea is that building blocks formulated

as a result of past experiences encapsulate past learning and knowledge, and therefore

should be an efficient and rapid way of forming a new schedule. This type of approach

to scheduling also seems more realistic than the typical GA approach which starts from

a random starting point and searches for a new schedule, using no knowledge of past

behaviour.

Thus, in contrast to SCHED1− IS which adopts a bottom-up approach to pro-

ducing schedules, we are now proposing a top-down approach. Figure 3.8 shows the

major differences in the approach taken in each case. In SCHED1− IS, the system

starts with a set of potential scheduling conditions, and generates an evolved immune

system consisting of libraries of partial instructions for creating schedules. In contrast,

SCHED2− IS starts with historical information describing actual past schedules; a set

of building blocks is derived from these schedules, which can then be recombined to

produce new schedules. Thus, although both models ultimately result in a step which

builds new schedules from smaller building blocks, the preliminary steps taken to gen-

erate these building blocks are very different.

3.10 SCHED2− IS - Description of Model

This section describes the new model, SCHED2− IS, which adopts the top-down ap-

proach outlined in figure 3.8. The model must satisfy two aims; firstly, derive a sensible
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Figure 3.8: Comparison of the two proposed models for a scheduling immune system,

SCHED1− IS and SCHED2− IS

set of building blocks, and secondly, be able to recombine those building blocks into

new schedules. What constitutes a useful set of building blocks? In order to answer

this question, we must first consider what exactly it is that those building blocks rep-

resent. It has already been mentioned that there are a number of obvious processes

occurring whilst scheduling in which patterns can be observed. The most obvious, and

that chosen for use in this study is the pattern of job-sequences observed on individual

machines in historical schedules. The approach adopted however does not preclude

other types of pattern; for example distribution of idle times on machines, or the order

in which jobs are placed in the schedule. When considering job-sequences, although it

is likely that some subsets of historical schedules will contain common job-sequences

on certain machines, it is unlikely a common sequence of jobs will be observed in all

schedules. Thus, ideally we wish the building block set to contain as many common

sequences as possible, but at the same time, contain specialist sequences that are only

applicable to certain unique situations that may arise again in the future. The next

section describes one method by which a building block set can be generated. Sec-

tion 3.10.2 then describes the approach taken in SCHED2− IS to recombining these

blocks into schedules. This is followed by some experimental results in which the

performance of the model is thoroughly analysed.
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3.10.1 Deriving the building blocks

As stated above, the proposed model must incorporate a method of producing a set of

diverse building blocks, which includes both specialist blocks — those that represent a

unique pattern occurring in a schedule, and generalist blocks — those which represent

a common pattern occurring in many schedules. The genetic algorithm has been ad-

vocated as a method of searching for a population of structures that jointly perform a

computational task1, for example in a learning classifier system [Holland et al., 1986].

In such problems, the GA must search for a set of individuals which are specialised to

various tasks or niches; collectively the individuals provide a complete solution to the

problem being solved. Depending on the number of individuals in the populations, and

the number of niches in the problem, some of the evolved individuals must generalise

in order to cover more than one peak, whilst others can remain more specialist. In gen-

eral, the difficulty with using a GA to solve such a problem is how to retain sufficient

diversity within the population in order to cover all the niches. Also, GA approaches

tend to suffer from the drawback that it is impossible to track more niches than mem-

bers of the population. Many methods have been suggested, the details of which are

beyond the scope of this thesis. These include crowding [DeJong, 1975], assortative

mating algorithms, [Booker, 1985], and dividing the population into sub-populations,

[Whitely and Starkweather, 1990]. Three methods seemed worthy of further investi-

gation:

3.10.1.1 Fitness Sharing

[Deb and Goldberg, 1989, Goldberg and Richardson, 1987] introduced the notion of

fitness sharing. The idea behind this method is that diversity is maintained in a popula-

tion by punishing individuals that are similar to other individuals within the population,

and is rooted in ecological ideas that in an environment consisting of multiple niches,

there are finite resources available for each niche. The method appears to work well in

some situations but has significant limitations ([Smith et al., 1993]):

• It is necessary to know a priori how many niches there are in the environment
1although the majority of GA applications tend to be directed towards evolving a single population

member that specifies a single optimised solution.
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• It is dependent on a uniform distribution of peaks in the search space

• It requires a comparison of every population member to every other population

member in each generation, i.e. N2 comparisons for a population of size N,

therefore is time-consuming.

For these reasons, the approach did not seem suitable to the task of discovering

schedule building blocks; we do not know how many blocks (i.e. niches) are required,

and they are unlikely to be evenly distributed across the search space. Therefore this

approach was rejected for inclusion in SCHED2− IS.

3.10.1.2 ‘Pitt Approach’

In this approach to classifier systems, described in [DeJong, 9898], a population of

rules is concatenated into a single individual which is then manipulated by a GA.

This allows diversity to be maintained within each rule set but is inherently ineffi-

cient as it manipulates whole rule-sets, rather than populations of rules. Furthermore,

this method also requires that the number of rules (or building blocks in the case of

SCHED2− IS) is pre-judged in order to form an individual chromosome, although a

reasonable ’guess’ will suffice. Therefore, it was also rejected as the engine for dis-

covering building-blocks in SCHED2− IS.

3.10.1.3 An Immune System Model

[Smith et al., 1993] proposed a theoretical model of an immune system which can be

used to evolve a set of antibodies that recognise a range of diverse, binary antigen

strings. This work (verified experimentally in [Forrest et al., 1993]) showed that an im-

mune system model could both detect common patterns (schemas in the binary case) in

a noisy environment and also maintain diversity in that many types of antibody evolved

in niches, each niche responsible for recognising a particular antigen. Its success lies in

the novel fitness scheme introduced, referred to as the diversity algorithm. (This work

has previously been described in detail in chapter 2.) This model has three appealing

features as far as our scheduling system is concerned.
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1. It can solve problems in which the niches are not equally spaced, which is evi-

dently the case in the scheduling domain described.

2. It does not require explicit construction of a sharing function, and therefore does

not rely on any a priori knowledge of the number of niches.

3. it is possible to control the evolution of the antibodies representing the niches to

be either specialist (i.e the antibody only recognised a single specific antigen),

or generalist (i.e the antibody recognised a wide range of antigens) by varying

the parameters of the fitness function proposed.

This model therefore seems ideal for our purposes. However, before adopting it

wholesale, a more careful consideration of the characteristics of the building blocks

we wish to evolve is required. Each antibody or building block will ’match’ a subset of

the historical schedules. The subsets may intersect or be disjoint. Figure 3.9 shows a

simplified view of the situation; a population of antibodies is depicted, and the diagram

shows how they match four antigens, labelled A,B,C and D. The diagram illustrates the

point that we are interested in two particular attributes of the antibody population:

1. Overlap — i.e. how many antigens a given antibody matches. Overlap can be

considered as a measure of how common the pattern represented by the antibody

is in the schedule set.

2. Redundancy — i..e. the number of different antibodies matching an antigen. A

schedule may contain several sequences, each of which is common to different

subset of the remaining schedules, therefore more than one antibody may match

a single antigen.

Although the work of [Smith et al., 1993] implied that their diversity algorithm

would allow these properties to be controlled, their algorithm was re-implemented ex-

actly as described in [Forrest et al., 1993] and a number of tests were carried out using

binary antigen and antibody strings in order to quantify exactly the amount of overlap

and redundancy that would occur using large antibody populations in antigen universes

which varied in size. The aim was to give more insight into whether the algorithm
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Figure 3.9: A Population of Antibodies, showing how they match 4 antigens A,B,C,D
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Figure 3.10: Graphs show the effect of redundancy when using a GA to evolve

antibodies matching binary antigens. The shaded portion of the graph represents

the fraction of unique antibodies found

could be scaled to reproduce these characteristics in a more diverse environment. A

population of 500 antibodies was chosen, each of length 64 bits. The antigens used are

given in table 3.3, based on those described in [Forrest et al., 1993]. The parameters

used for the GA and experiments are identical to that given in [Forrest et al., 1993].

According to Forrest, a match is said to occur if at least m percent of the bits in the

antigen and antibody match, where m is known as the match-threshold. We tested two

values of match-threshold — a low value of 50%, and a higher one of 70%.

Figure 3.10 shows the number of antibodies matching each individual antigen in

the case where there were 9 antigens for both values of m. The shaded fraction of each

bar indicates how many of those antibodies were unique. The figure clearly shows

that at high match-thresholds, small niches of antibodies occur, but that there is a high

proportion of diversity within the niche, i.e. many different antibodies recognise the

same antigen. This is promising for the proposed scheduling system.
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Antigen ID Antigen Definition

1 00000000....00000000

2 11111111....11111111

3 10101010....10101010

4 01010101....01010101

5 11001100....11001100

6 00110011....00110011

7 11101110....11101110

8 00010001....00010001

9 11110000....11110000

Table 3.3: Antigens used to quantify the overlap and redundancy occurring in antibody

populations evolved using the diversity algorithm proposed in [Forrest et al., 1993]

Figure 3.11 shows the amount of overlap in the same populations, by measuring

how many of the antibodies in the final population that match at least one antigen

match more than one antigen. Clearly, if the match-threshold is high, there is very

little overlap between antibodies. This is not particularly convenient for our proposed

scheduling system, in which we wish to determine building blocks that are common to

several schedules, i.e. niches.

Therefore the results of these preliminary investigations pointed to the fact that

Smith’s diversity algorithm would need some modifications before it was suitable for

producing building blocks for a scheduling system, in order to encourage more overlap

as well as maintaining some level of redundancy and niche formation. The implemen-

tation of the modified algorithm is described in full in section 3.11.

3.10.2 Recombining Building Blocks To Form A Schedule

The previous section has described how an immune system model might be used to

evolve a set of short antibodies (job-sequences) that at least partially match a set of

antigens (schedules). The biological immune system responds to immunological chal-

lenges by manufacturing B-Cells using information encoded in its germline DNA. If
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Figure 3.11: Measuring overlap: The graph shows the percentage of antibodies in

the final population of matching antibodies that match more than one antigen. The

left hand figure shows the result for a match-threshold 70%, the right hand figure for

match-threshold 50%.

we consider our evolved antibody population to represent this germline DNA, then in

a similar manner we wish to construct complete schedules using this evolved informa-

tion.

The astonishing diversity that can be produced from a relatively small genetic base

in the biological immune system has already been alluded to earlier in this thesis (re-

member that the human immune system can produce more antibodies than there are

genes in our genome!). Many mechanisms have been proposed by which this may

occur. These include, for example, combinatorial rearrangement of entries from mul-

tiple libraries [Tonegawa, 1983], junctional diversity [Gilfillan et al., 1993], and so-

matic hypermutation and/or gene conversion [Weigert et al., 1970]. The exact nature

of these mechanisms is complex, however they are shown schematically in figure 3.12.

Figure 3.12(a) shows the most straightforward diversity recombination mechanism —

multiple segments of DNA are randomly recombined to form new antibodies. Figure

3.12(b) shows an example of somatic recombination — in this mechanism, imprecise

joining of segments occurs during recombination. Part (c) of this figure illustrates nu-

cleotide addition — when two segments are cut and then joined, extra nucleotides are

sometimes inserted between the joins, leading to further diversification. SCHED2− IS

implements versions of these three mechanisms in order to recombine antibodies in

order to produce complete schedules. It is proposed that this is an efficient method of

producing complete schedules, taking account of historical experiences. For example,
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a) combinatorial gene rearrangement b) Somatic recombination c) Nucleotide addition

Figure 3.12: The figure shows three mechanisms by which the biological immune sys-

tem generates diversity by combining variable gene regions.

(a) Combinatorial gene rearrangement: a large number of genes in the germline can

randomly recombine to form a new protein

(b) Somatic recombination: imperfect recombination of genes sometimes results in new

proteins that are shorter than the original recombining segments

(c) Nucleotide addition: extra nucleotides encoding for additional amino acids are some-

times inserted between two joining segments

assume that the germ-line contains n DNA chunks or antibodies representing a partial

sequence of jobs, each of length l, and that a minimum of s chunks are required to

construct a schedule. At least C =
(n

s

)
possible combinations of these antibodies can

be produced. Now, for a scenario in which j jobs need to be scheduled on a single ma-

chine, then examining all possible sequences of these jobs would result in j! possible

schedules. However, we postulate that Cv, the number of valid schedules in C is� j!

for two reasons:

1. Many of the theoretical
(n

s

)
schedules will contain multiple instances of jobs or

missing jobs, and hence the schedules are illegal and can be discarded.

2. The n partial schedules encapsulate prior knowledge, and hence are guaranteed

to be suitable subsequences, i.e to be the most promising of the l! possible sub-

sequences.

Therefore, if a suitable method can be found of combining the antibodies evolved

using SCHED2− IS, then the complete system should represent an efficient method of
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producing new schedules to react to changing circumstances. The implementation of

these recombination methods is described in section 3.11.

3.11 Implementation of SCHED2− IS

This section now describes the manner in which the model that has just been outlined

was actually implemented. It is followed by a description of experiments that were

performed in order to analyse the model’s performance.

3.11.1 Antigen Representation

As stated in section 3.10, the antibodies produced by SCHED2− IS will represent

patterns occurring in job-sequences on each machine in a set of historical schedules.

Therefore an antigen simply consists of an integer-string defining the sequence of jobs

observed on a single machine. For a problem in which jobs are to be scheduled on m

machines, then m antigens are generated. If there are j jobs to be scheduled, the length

of each antigen is also j.

3.11.2 Antibody Representation

An antibody is represented by a sequence of integers, of length l, where l < j. l

is chosen to be significantly less than j as it is expected that the common patterns

will consist of short sequences of jobs. A wild-card gene was also introduced which

could match all possible jobs; the importance of including a gene which can match

other genes in a non-binary system has been discussed in [Cooke and Hunt, 1995,

Hunt and Cooke, 1996], who proposed an artificial immune system model to recog-

nise promoter sequences in real DNA sequences. They found that the task could not

be accomplished without introducing a wild-card that could match any of the bases

A,C,T,G. For example, consider the following three job sequences:

1 3 2 5 9 8 7 4 6

1 3 2 9 8 5 7 4 6

1 3 2 8 9 4 7 4 6
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If the wild-card gene is allowed, they can be matched by a single antibody

1 3 2 * * * 7 4 6

A further advantage of this approach is that it is impossible to judge a priori the

optimum value for l. If many of the common job-sequences are shorter than the chosen

antibody length l, then a partially matching antibody containing a number of wild-cards

can still have high fitness. An antibody is prevented from containing duplicate jobs,

though it may contain multiple copies of the wild-card allele ‘*’.

3.11.3 The Matching Algorithm

In order to quantify the extent of a match between an antigen and antibody string, a

match function, M must be defined, such that M : Antigen×Antibody→R . Reviewing

the immunological literature suggest many physiologically plausible match-rules, for

example see [Perelson, 1989]. The simplest of these, adopted in [Forrest et al., 1993,

Hightower et al., 1995] in binary immune studies is simply to sum the number of com-

plementary bits between antigen and antibody. [Stadnyk, 1987] introduced a more

complex function that computes the length of each complementary region and then

combines them in a manner which rewards longer regions more highly than short

ones. [Cooke and Hunt, 1995, Hunt et al., 1995] introduced a version of this match-

rule shown in figure 3.13, which was used to quantify matches in non-binary data

(DNA promoter sequences and the publically available cabata case base describing

various features associated with holidays such as type, cost, duration, location etc.).

This function is weighted in favour of contiguous matching regions. Furthermore,

[Farmer et al., 1986] and also [Hunt and Cooke, 1996] suggest using a function in

which a match is allowed to start at any point on the antigen. The function suggested by

Farmer sums all possible matches found in this way, with the rationale that molecules

may be able to interact in more than one way, and thus react more strongly because

they spend more time together than molecules that can only interact in one alignment.

Hunt et. al. take the alternative view that the match-score is equivalent to the maximum

score found when considering all possible alignments.

We choose to use a simple match-function which simply counts the number of
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1. c = number of fields that match between the antibody and antigen

2. For each region consisting of 2 or more contiguous matches, record

their length li

3. M = c + ∑i 2li

Figure 3.13: Match function introduced by [Cooke and Hunt, 1995]
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Figure 3.14: Possible Alignments of an antibody with an antigen, and the resulting

match-score

matching genes between antigen and antibody, but also incorporates the suggestion of

Farmer et al. and Cooke et al. that more than one possible alignment of antigen and

antibody should be considered. The method is as follows:

An antibody is matched against an antigen by aligning the two strings. If the an-

tibody is shorter than the antigen, then a match-score is calculated for every possible

alignment position, where a possible alignment is any alignment in which every gene

of the antibody is aligned with every gene of the antigen. This is illustrated in figure

3.14. The match-score is then calculated by counting the number of matches between

antigen and antibody genes in the alignment. An exact match contributes a score of

5, whereas a wild card match contributes a score of 1. This prevents the evolution

of all antibodies containing only wild-card genes — a similar method was used in

[Cooke and Hunt, 1995]. All possible match-scores are calculated, and the maximum

value found assigned to the antibody.
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1. Select a sample of antigens of size τ at random and without replace-

ment.

2. Select a sample of antibodies of size σ at random and without replace-

ment.

3. Match each antibody in the sample against each antigen, summing the

match-scores obtained for each antigen to give the total match-score for

the antibody.

4. The antibody with the highest total match-score has this score added

to its fitness. The fitness of all other antibodies in the sample remains

unchanged.

5. Repeat the process for typically three times the number of antigens.

Figure 3.15: The modified fitness scheme used to assign fitness to antibodies in the

population

3.11.4 An Emergent Fitness Sharing Function

The results of the preliminary experiments described in section 3.10.1.3 implied that

the fitness scheme proposed by [Forrest et al., 1993] would need some modification in

order to encourage the occurrence of overlapping antibodies in the system. The origi-

nal scheme (similar to the “best-match” strategy used in classifier systems) selected a

single antigen at random from the antigen universe, and matched it against a sample

of the antibody population. In order to encourage overlap, this was replaced by a step

that selected a sample of the antigen population of size τ, at random and without re-

placement, and matched them against a sample of the antibody population. The match-

scores obtained between an antibody and each antigen in the sample are summed to

give a total match-score for the antibody, and therefore reflects its cross-reactivity. The

complete algorithm is given in figure 3.15.
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3.11.5 The Genetic Algorithm

[Forrest et al., 1993] use a genetic algorithm based on GENESIS, [Grefenstette, 1984],

in order to evolve the antibody population. As their work was concerned only with bi-

nary universes, it sufficed to use standard crossover and mutation operators such as

two-point crossover. However, this is not applicable to a scheduling scenario in which

we wish to maintain antibodies which never contain duplicate jobs. Three types of pos-

sible crossover operator were identified, including one novel one designed specifically

for this application:

1. Order-Based Crossover (OX) — introduced by [Davis, 1985], this operator can

be used if the parents are permutations of each other.

2. 2pt-Crossover — if the parents do not have any genes in common, (excluding

wild cards) and the parents differ outside of a randomly chosen cross-segment,

then the standard two-point crossover operator can be applied.

3. Overlap-Crossover — this novel operator can be used if one parent overlaps the

other, as shown in figure 3.16. In this case, parents are first aligned so that the

matching regions line up. Reading from the left-most position, if only one parent

has a gene at a position, then that gene is passed to the child. If both parents have

a gene at a position, then a gene is selected randomly from either parent. This

process is continued, reading from left to right until the child is of the required

length. In figure 3.16, matching regions are underlined and shown in bold, and

genes which can be chosen from either parent are shown in italics.

All three crossover operators are implemented, and used according to the relation-

ship between the parents chosen for crossover, as described above.

A mutation operator is applied that randomly mutates each gene with probability

1/l to another randomly chosen allele, with the caveat that duplicate jobs cannot exist.

Thus, the publically available GENESIS package was modified to accommodate these

changes.
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3 4 5 9 8 7
1 2 3 4 5 91 2 43 65

9 7 6 3 4 2

1 2 43 65
9 1 6 3 4 2

Figure 3.16: Overlap Crossover — the figure shows examples of two overlapping

configurations of parent antibodies and the resulting child antibody in each case

3.11.6 Recombination Operators

Section 3.10.2 described three recombination mechanisms, each closely related to a

feature observed in the natural immune system. The actual implementation of those

mechanisms is now described. The output from the first phase of SCHED2− IS is a set

of antibodies, each of length l. The aim is to construct a schedule for each machine of

length j, starting from a partial schedule of length lp, where lp < j. If lp = 0 then the

schedule is constructed from the beginning, otherwise the schedule is completed from

the point at which the change triggering rescheduling occurred. The three mechanisms

are as follows:

1. Simple Recombination — in this method, an antibody is selected at random

from the subset S1 of the antibody population which contains those antibod-

ies in which every job in the antibody has not yet been scheduled in the partially

completed schedule. The new antibody is concatenated to the end of the partial

schedule.

2. Somatic Recombination — in this method, an antibody is selected from the sub-

set S2 of antibodies, where S2 consists of antibodies that overlap with the current

partially completed schedule. An overlap is said to occur if the first n jobs in the

antibody are equal to the last n jobs in the partially complete schedule, where

n ≤ l, and the remaining (l− n) jobs in the antibody do not occur in the partial

schedule. The partial schedule is thus extended by (l−n) jobs.
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• Until a schedule is complete or cannot be further extended:

– Select a recombination mechanism with probability pr for simple

recombination, psr for somatic recombination and pa for single

job addition

– Calculate the set S of possible antibodies that can be added via the

chosen mechanism

– Choose an antibody at random from S

– Extend the partial schedule using the chosen antibody

Figure 3.17: An algorithm for generating completed schedules from the antibody popu-

lation evolved used SCHED2− IS

3. Single Job Addition — in order that a complete schedule can be built when the

antibody population does not contain at least one instance of each of the j jobs,

a single job can be selected from the subset S3 of all jobs that do not occur in

any of the antibodies. This is then added to the end of the partial schedule.

The procedure for forming a schedule using these mechanisms is shown in figure

3.17.

3.12 Generating Test Data

Experimental test-data was generated in a manner similar to that described in section

3.6.1, using the same benchmark problem jb11. Ten test-scenarios were generated

by mutating the original arrival date for each job with probability pu = 0.2 to another

random date, in the range (0,300). A satisfactory schedule was generated for each sce-

nario using the genetic algorithm described by [Fang et al., 1993]. From each schedule

(which consists of the order and timing of processing of every operation on every ma-

chine) 5 antigens can be generated, where each antigen corresponds to the sequence



Chapter 3. Immune Systems for Scheduling 89

of jobs on one of the 5 machines. Therefore, 5 antigen universes, one for each ma-

chine, are generated, and each universe contains 10 antigens, one derived from each

test-scenario. The universes are treated independently, and thus an independent set of

antibodies discovered for each machine.

3.13 Experimental Results

Experiments were performed to identify good settings for three main parameters; the

antibody sample size σ, the antigen sample size τ, and the length of the antibody l.

These initial experiments also attempted to answer several questions in order to assess

whether the evolved antibodies would be useful pattern recognisers in the context of a

scheduling system, for example:

• How many antigens are matched by at least one antibody ?

• How many unique antibodies are found ?

• What is the average number of antigens matched by an antibody ?

• How many actual jobs are represented in the set of antibody patterns ?

All reported experiments were performed using a population of size 100, with the

length of each antibody in the population equal to 5 jobs, i.e 1/3 the length of the anti-

gen string. The length of each antigen was 15, as each machine required 15 operations

to be scheduled. Every experiment was run for 250 generations and was repeated 10

times. The mutation rate in each case was 1/l = 0.2. Details of the settings for σ
and τ are described under the relevant headings. As a separate set of antibodies are

evolved for each machine, results are reported for only one of the machines, machine

1, however, the reported trends were applicable to all machines.

In the following section, many of the experiments are analysed with reference to a

quantity described as the match-threshold. The match-function M described in section

3.11.3 quantifies the extent of the match between an antibody and an antigen. However,

a qualitative statement regarding whether or not a match has occurred can be made —

a match is only said to occur if the match-score M is greater than or equal to some
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threshold value MT . (A similar phenomenon is observed in natural systems in which

an antibody does not bind to an antigen until the strength of the bond between the two

— the antibody affinity — reaches a certain value). In this case, the match-threshold

is more specifically defined as the number of non wild-card places in which an antigen

and antibody match.

3.13.1 How many antigens are matched by at least one antibody ?

The aim of these experiments is to investigate the amount of overlap occurring in the

antibody population, and also to determine whether or not all antigens are at least

partially recognised. Table 3.4 shows the average number of antigens (from a universe

containing 10 antigens) that were not matched by any antibody, for match-thresholds

MT ranging from 2 to 5. Experiments are performed over a range of values for σ and

τ, the size of the antibody and antigen samples respectively.

For certain combinations of values of (m,σ,τ), it can be seen that no antibodies

match some of the antigens. This is particularly noticeable as the size of τ increases.

This is explained with reference to the fitness function used; for high values of τ,

antibodies that successfully match more than one antigen are rewarded most highly.

However, in many antigen-universes, it may be impossible to detect common patterns

between certain subsets of antigen, and hence the completely generalist antibody may

not exist. Examining the actual antigen universe for machine 1 indicates that for some

subsets of antigen, common schemas do exist. Similarly, low values of σ also encour-

age generalist antibodies to evolve, so we may expect poor performance if the value of

σ is too low for certain antigen universes.

3.13.2 How many unique antibodies are evolved ?

Recalling that the aim of SCHED2− IS is to acquire a collection of antibodies, each

of which represents some commonly occurring pattern in the antigen-universe, then

the more unique patterns we are able to detect, the more useful the antibodies will be

as building blocks for constructing new schedules. Therefore, the final population of

antibodies is examined to determine the exact number of unique antibodies that match
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Match τ=1 τ=4 τ=8

Threshold σ σ σ
5 10 30 5 10 30 5 10 30

2 0.9 0 0.0 2.2 0.9 0.0 3.5 2.5 0.9

3 5.3 2.6 1.6 5.4 3.2 2.0 5.5 4.7 4.1

4 8.7 7.1 5.2 7.8 7.3 6.3 8.6 8.1 8.2

5 9.7 9.5 8.8 9.5 9.5 8.7 9.7 9.6 9.5

Table 3.4: Average number of antigens (out of a possible 10) not matched by any anti-

body

Antibody Sample Antigen Sample Size, τ
Size, σ 2 4 6 8

5 23.8 23.7 20.0 17.7

10 38.6 28.0 24.5 20.5

30 58.4 44.4 24.9 39.7

Table 3.5: The Number of Unique Antibodies in the Final Population for Match

Thresholds ≥ 2

an antigen with a match-score ≥MT , the match-threshold.

Table 3.5 shows the results obtained for MT ≥ 2. It is clear that the number of

unique antibodies decreases as τ is increased, and increases as σ increases. This is

unsurprising — the same arguments outlined in section 3.13.1 apply. Note however it

is not desirable to produce an entire population of unique antibodies, and that having

multiple copies of a matching antibody may ultimately be useful in the recombina-

tion phase when antibodies are selected and combined into schedules. The number of

copies of an antibody in the population is somewhat analogous to a concentration in

biological terms, and is an indication of the probability of picking the antibody when

trying to reconstruct a schedule.
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Figure 3.18: Match Threshold 2 : Number of antibodies matching > 1 antigen for

antibody sample size = 30. The graphs compare the overlap when τ = 2 and τ = 8

3.13.3 Measuring Overlap

The two previous sections have shown that it is possible to evolve a set of unique an-

tibodies, and also that those antibodies tend to match at least one antigen. In order to

measure how much overlap is occurring between those antibodies however, the num-

ber of antigens matched by each antibody in the population is recorded. Figure 3.18

shows the number of antibodies that match n antigens, where n takes values between

1 and 10. The diagram contrasts the results obtained for a match-threshold of 2 and

fixed antibody sample size σ = 30 for various values of τ. Clearly, more antigens are

matched at high values of τ, as expected.

It is interesting to observe how the number of antibodies matching more than 1

antigen increases as the GA runs. The graphs in figure 3.19 illustrate the point. Ex-

periments are performed in which the match-threshold m is varied from 2 to 5, for

populations of antibodies in which the antibody length is varied from m to 5 also.

When the match-threshold is equal to the antibody length, there is a rapid increase in

the number of matching antibodies in the m = 2 case after which the number remains

relatively constant. For m = 3, the number rises steadily. For values of m < l, in each

case, there is an immediate increase at the the start of each run to a level which is main-

tained throughout the remainder of the experiment. The initial rise is more pronounced

when m is significantly less than l.
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Figure 3.19: Number of antibodies matching more than 1 antigen for experiments in

which the threshold for matching was set to 2 and 3



Chapter 3. Immune Systems for Scheduling 94

Antibody Sample Size

5 10 30

Average Number of Jobs Represented 5.6 7.5 9.1

Table 3.6: Average Number of Jobs Represented in Final Population for Given Antibody

Sample Size σ

3.13.4 Identifying the number of jobs appearing in the antibodies

The greater the number of jobs that are represented by the antibodies, the more useful

the patterns will be in constructing new schedules; clearly the antibody building blocks

will cover more parts of the schedule if this is the case. The exact number of jobs

expected to occur in the final antibodies will depend of course on the nature of the

antigen-universe; for some universes, there may only be a few jobs which belong to

common pattern sequences. Recall that for machine 1, there are 15 possible jobs. Table

3.6 compares the number of unique jobs found in matching antibodies for 3 different

values of σ, for match-thresholds≥ 2. For small values of σ, very generalist antibodies

evolve, representing only a few jobs. However, as σ is increased, the number of jobs

represented increases as small clusters of more specialist patterns begin to evolve.

3.13.5 Reconstructing Schedules from the Antibody Population

Schedules are reconstructed from the antibodies evolved using SCHED2− IS using the

algorithm given in figure 3.17. The experiments just described suggest that the evolved

antibodies appear to have good properties in terms of antigen coverage, overlap and

redundancy — however, it is necessary to address the question of whether this set

contains sufficient information to reconstruct good schedules, and if so, how effective

is the proposed recombination algorithm.

It can be noted that for any antigen of length j, all antibodies of some predefined

length l containing at most w wild-cards can be generated using an exhaustive pro-

cedure, without having to resort to using any kind of immune metaphor or genetic

algorithm. For the problem described in which each universe consists of 10 antigens

each containing 15 jobs, this is actually a tractable calculation. Performing the calcu-
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lation to find all antibodies of length 5, that contain at most 3 wild-cards, results in 423

unique antibodies being found. This can be compared to the results shown in table 3.5,

which shows that the maximum number of unique antibodies found in any experiment

using SCHED2− IS is 58 (τ = 2,σ = 30). The evolved antibody set is thus clearly

much smaller than the size of the set generated via exhaustive search. Therefore, ex-

periments were conducted in order to determine the quality of schedule produced from

the antibody set evolved using SCHED2− IS, and then repeated using the complete

antibody set, so that a comparison could be made.

As with the experiments described to evaluate SCHED1− IS, two series of exper-

iments were performed. The first tested whether the schedule present in the original

antigen universe, U(0.2), could be accurately regenerated. The second set of experi-

ments investigated whether schedules in two new universes, U(0.1) and U(0.3) could

be generated from the evolved antibodies.

In all experiments, the recombination algorithm was applied using the set of 58 an-

tibodies generated when τ = 2,σ = 30 which contain a maximum of 3 wild-cards, and

then using the 423 antibodies generated by exhaustive search. In each case, 500 sched-

ules were generated in response to each of the 10 scenarios in the original antigen

universe. Trial investigations of suitable settings for the parameters of the recombi-

nation algorithm suggested that pr = 0.5, psr = 0.4, pa = 0.1 produced satisfactory

results, although an exhaustive search of the parameter space was not performed. All

experiments investigated the quality of reconstructed schedules starting from a partial

schedule of length lp, where lp ≥ 0.

3.13.5.1 Results in familiar antigen universes

The recombination algorithm performed very poorly when lp < 6, in that no schedules

were generated that exactly matched the original ones, using either set of antibodies.

This is not fatal; as originally stated, it is expected that the utility of the system lies in

rescheduling following an unforeseen circumstance, and not in constructing schedules

from scratch, therefore, in a real situation, lp is likely to be greater than 0. Table 3.7

shows the percentage of the 10 original schedules (U(0.2)) that were exactly recon-

structed, and gives results for three values of lp, the length of the partial schedule that
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Length of Partial Schedule

6 7 8 9

SCHED2− IS antibodies 10% 30% 70% 80%

Exhaustively generated antibodies 0% 60% 60% 60%

Table 3.7: Accuracy of schedule reconstruction: The table shows the percentage of the

10 schedules in the original antigen universe (U(0.2)) that were exactly reconstructed

using the recombination algorithm

must be completed. Results are shown using the evolved antibody set (58 antibodies)

and the exhaustively generated set (423 antibodies). For lp = 8 and lp = 9, the best

results are obtained when using the 58 SCHED2− IS antibodies, though note that nei-

ther antibody input set is able to achieve 100% accuracy of reconstruction. However,

when lp = 7, (and hence there are 8! = 40,320 possible combinations of the remaining

jobs to be scheduled), using the larger number of antibodies generated by exhaustive

search results in higher accuracy of reconstruction.

The reliability of schedule reconstruction can also be examined, i.e. the average

number of original schedules that are generated each time the algorithm is run. (Recall

that each pass of the algorithm produces 500 schedules per antigen). These results

are shown in table 3.8. The reliability is rather poor, for both methods of generating

the antibody set, and there is little difference in performance between sets. Further

examination of the reliability with which individual antigens are reconstructed reveals

significant variations, with some appearing to be easy to reconstruct (i.e. at least 20%

of the 500 schedules are accurate), and others much more difficult ( less than 1% of

the 500 schedules accurate).

3.13.5.2 Performance in Unseen Universes

As with SCHED1− IS, two further antigen universes were generated as described in

section 3.6.1 using pu = 0.1 and pu = 0.3. This produces universes identified as U(0.1)

and U(0.3) respectively. Five antigens were generated in each case, and satisfactory

schedules were again found using a GA as before. Schedules were again generated
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Length of Partial Schedule

6 7 8 9

SCHED2− IS antibodies 0.32 1.75 5.53 30.79

Exhaustively generated antibodies 0 4.83 9.92 26.19

Table 3.8: Reliability of schedule reconstruction: The table shows the average number

of times a schedule was accurately reconstructed during one pass of the recombination

algorithm (which generates 500 schedules per antigen).

Antibody Generation Method

SCHED2− IS Exhaustive

Universe-0.1 17.2% 9.45%

Universe-0.3 32.76% 10.17%

Table 3.9: Antibody Recognition Rates in Unseen Universes: The table shows the per-

centage of the antibodies in each set (generated via SCHED2− IS or exhaustively)

that are able to bind to at least one antigen in each unseen universe

using the recombination algorithm applied to two sets of antibodies; those produced by

SCHED2− IS when applied to universe U(0.2), and those found by exhaustive search

of U(0.2) that contained at most 3 wild cards, for values of lp such that 0 ≤ lp ≤ 10.

The results were disappointing — no accurate schedules were generated in any case

for either universe. However, the fault appears to lie with the recombination algorithm

itself — if the abilities of the two antibodies sets to actually match the new antigens are

examined, then it is clear that the antibodies are capable of recognising the entirely new

antigens in these universes. Table 3.9 shows the percentage of each antibody set that

matches at least one of the antigens in the new universes. Clearly, the antibodies do

encapsulate some useful information, i.e. they can bind to previously unseen antigens.

The SCHED2− IS antibody set is superior to that generated by exhaustive search in

this respect. However, the recombination algorithm does not appear capable in its

current form of combining these antibody segments in a useful manner into schedules

that resemble those forming the original antigen universe.
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3.14 Summary of Utility of SCHED2− IS

The previous sections have described the implementation of a new scheduling system

based on a subset of biological immune system principles, extending a model first

proposed by [Forrest et al., 1993]. Analysis of the effectiveness of the new model was

split into two parts; a study of the fitness function used to evolve patterns or building

blocks that could be used to reconstruct schedules, followed by an investigation of

how these blocks could be recombined into schedules using mechanisms inspired by

biological immunology.

The experiments detailed in section 3.13 show that in as far as producing building

blocks that encapsulate useful information about the antigen universe in which they

were evolved, the new model is successful. Extending the fitness function proposed

by Forrest et. al to incorporate matching of multiple antigens (via the τ parameter)

resulted in an algorithm that was capable of being tuned in order to produce antibodies

that occur in schedules found in both familiar and unfamiliar antigen universes. In

particular, the results given in section 3.13.5.2 which examines whether evolved an-

tibodies can bind to antigens in new universes imply that the evolved antibodies are

to some extent capturing some of the essential properties of the historical schedules.

More importantly, this appears to validate the original assertions made in section 3.9

that the historical schedules do actually contain information that can be used to con-

struct new schedules in unforeseen circumstances.

The results also demonstrate that the combination of a genetic algorithm/immune

metaphor in the manner described is a suitable mechanism for performing pattern

recognition in target datasets that consist of non-binary strings, and therefore that the

generic model may be useful in other domains. In order to achieve these results, a

new crossover operator was introduced in combination with a method which selected

from a set of three possible crossover operators, according to the relationship between

the chosen parent antibodies. This approach could be adopted in any domain in which

antigens can be represented by categorical or integer alleles. Thus, as a simple pattern-

recognition system, the model has many potential applications.

However, the second part of the analysis in which an attempt was made to mimic

some of the mechanisms by which the biological immune system constructs antibodies
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was less successful. Section 3.13.5.1 showed that satisfactory performance could be

achieved in familiar universes, but that overall, performance was unreliable, especially

when the partial schedule to be completed was short. It should be noted however that

the reported work only examines one measure of quality of the reconstructed sched-

ules, namely whether the ordering of operations on machines could be exactly recon-

structed. It is possible that if other measures of quality were examined, for example,

the difference in maximum job tardiness in a reconstructed schedule compared to the

original schedule, then a rosier picture would emerge (or vice versa!). However, the

fundamental difficulty with the proposed approach seems to lie in modelling an ap-

propriate combination of recombination mechanisms, and using them with appropriate

frequencies, relative to each other.

Reference to the immunological literature offers few clues in this respect — for

example, [Roitt et al., 1988] describe how even though mammals in general may use at

least five different mechanisms in order to produce diverse antibodies, different species

rely on different subsets of these mechanisms. Thus, sharks rely solely on having very

large numbers of genes which are randomly recombined, whereas chickens have very

small numbers of antibody building blocks and rely heavily on gene-conversion to

produce antibodies. The computational immune system literature has not addressed

this aspect of immunology at all and is clearly an area in which much further research

could be performed.

With regards to this study, further work could be performed in order to explore the

space of parameters over which the model functions more reliably and hence optimise

the choice of parameters, however there will always be an underlying trade-off between

the number of antibodies required to adequately represent possible antigen universes,

and the effort required to recombine them into accurate schedules. Furthermore, as

just noted, the biological literature suggests that the ‘right’ set of parameters might

vary for each problem encountered, which is clearly a major drawback for the system.

If sensible heuristics to cut down the effort required to search the potential space of

schedules that can be produced via these recombination methods cannot be found,

then the object of producing a reduced set of schedule building blocks is somewhat

defeated.
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3.15 Conclusion

In conclusion, some useful general properties regarding the use of immune system

analogies for tackling pattern recognition problems have emerged, from consideration

of both SCHED1− IS and SCHED2− IS. The work described has shown that both

immune system models are appropriate for use with non-binary data, and that combin-

ing the immune metaphor with a genetic algorithm provides a workable mechanism

for discovering patterns in diverse datasets. However, as a practical proposition for

solving real-world scheduling problems, both models exhibit weaknesses. In each

model, the major weakness lies in the methods proposed for combining the evolved

antibody building blocks into complete schedules. Despite having evolved a reduced

set of useful building blocks (whether stored in libraries as in SCHED1− IS or as a

population in SCHED2− IS) the combinatorics of joining those blocks into suitable

schedules quickly becomes intractable, even when the mechanisms used by the bio-

logical immune system itself are modelled. Furthermore, experiments presented here

only consider relatively short schedules; in real life, schedules are likely to be much

longer and more varied, and hence the difficulties will become even more exaggerated.

The biological immune system is able to circumvent these difficulties due to its

implicit massive parallelism; an individual has sufficient genetic material to express

in the order of > 1010 distinct antibodies, and at any one time, a subset of between

107 and 108 antibodies are expressed. These antibodies circulate throughout the body

and are continually replaced if they do not encounter antigen to which they can bind.

Therefore the problem of producing the ‘correct’ antibody to eliminate an invading

antigen is tackled by sheer size and scale. Clearly, this effect cannot be mimicked in a

computational system, even using todays massively parallel computers. This begs the

question therefore as to whether the fundamental approach of evolving useful building

blocks which can be cleverly combined into larger pieces is flawed; if the biological

immune system does indeed offer metaphors which are useful for computational infor-

mation processing, then perhaps these models have concentrated on the ‘wrong’ subset

of the metaphors.

Consider again the list of key features of the immune system important to the field

of information processing outlined by [Dasgupta, 1998] and given in section 1.2, chap-
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ter 1, of this thesis. The foremost aspects of the biological immune system modelled

by SCHED1− IS and SCHED2− IS are memory and learning. Both artificial sys-

tems store memories of past experiences, which they have learned, and can generate

responses to new and novel patterns. In order to do this, they also draw on the diversity

mechanisms apparent in the biological immune system, and make use of various recog-

nition mechanisms. However, several key features of the biological immune system are

not modelled in the two systems described.

Two of the features of the biological immune system which distinguish it from

other biological metaphors which have been borrowed by computer scientists are its

self-regulatory nature, and its inherent ability to operate in a dynamic environment

in a manner which is itself dynamic and adaptable. The systems proposed here are

not in any sense self-regulating; they are controlled via a genetic algorithm with an

explicit fitness function. Furthermore, although the environment in which they are

designed to operate, i.e. a scheduling scenario, is dynamic, the systems themselves

are not dynamic; in each case, a static set of antibody building blocks is evolved, and

the processes governing recombination of these building blocks do not incorporate any

feedback mechanisms which could direct the recombination to currently useful parts of

the space of possible antibodies as in the biological immune system. Another property

not explicitly modelled by either SCHED1− IS and SCHED2− IS is the distributed

nature of the biological immune system, although in theory both of these models could

be implemented in a distributed manner. These factors point to the fact that perhaps

other models of the biological immune system could be derived which incorporate

these important principles. Ultimately, modelling these features may prove that the

immune metaphor can provide something which other biologically based algorithms

cannot, whereas currently, the argument in favour of the AIS is far from emphatic.

Although the introduction to this chapter pointed out many theoretical similarities

between the scheduling environment and that in which the biological immune sys-

tem operates which originally led to the presumption that it would be a suitable area

in which to apply the immune system metaphor, there is also one major difference,

namely the size of the antigen space in which the systems operate. It has been sug-

gested that theoretically there are between 1012 to 1016 possible antigens that could
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invade the biological immune system. This is clearly much larger than the number of

possible scenarios that could realistically arise in a typical scheduling environment,

even when considering very large schedules and the remotest of situations arising.

Thus, given that the important features of the immune system presumably arose in or-

der to allow it to operate in such large environments, perhaps it would be more fruitful

to direct research into computational implementations of immunological metaphors to-

wards application areas in which the environment was larger and more diverse. Those

areas most suited would also have a dynamic nature, as with scheduling, in order to

maximise the utility of the metaphor.

Thus, in the remainder of this thesis, we take a step back from the real-world, and

return to more basic principles, in order to try and derive an immune-based model that

incorporates the fundamental features of the biological immune system, and that can

be applied in environments whose features more closely resemble those of the biolog-

ical world. Two novel models are proposed in the following chapters — the models

are tested with artificially generated binary datasets whose properties can be exactly

controlled, as in the majority of the seminal work on library and population based ar-

tificial immune systems. This allows a more detailed analysis of the performance and

potential of the new models. However, both models theoretically could be extended to

allow more realistic problems to be tackled.



Chapter 4

Applying an Immune System Analogy

to Data-Clustering Problems

4.1 Introduction

The previous chapter on applying immune models to scheduling problems uncovered

some deficiencies of the immuno-genetic approach to modelling aspects of the biolog-

ical immune system. In particular, section 3.15 of chapter 3 referred to some of the im-

portant properties of the biological immune system not modelled by coupling a genetic

algorithm with a library-based or population-based approach to pattern recognition,

namely distributed detection, self-regulation, and dynamic protection. Furthermore,

although the models outlined for scheduling incorporated some elements of proba-

bilistic detection, another of the key features of the biological immune system, this

was not an implicit feature of either model. The conclusion of the preceding chapter

also stated that in order to maximise the utility of the metaphor, then the applications to

which the metaphor was applied should be chosen carefully; ideally an application that

encompasses a domain that is dynamic and potentially contains very large numbers of

data or antigens would prove most suitable.

In this chapter, it is proposed that an ideal testbed, which contains all the desired

properties, is that of data-clustering in large, real databases. The reasons underlying

this are explained in the following sections, which identify the relationship between a

103
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data-clustering system and an artificial immune system. A further system, the Sparse

Distributed Memory, SDM, which has already been shown to be analogous to the AIS

is then introduced in more depth. It is then shown how aspects of the SDM and AIS

can be combined in order to derive a model theoretically capable of performing data-

clustering. Finally, the remainder of the chapter lays the foundations for generating

an artificial data testbed which is used for testing two novel immune-based models,

described in chapters 5 and 6.

4.1.1 Data-Clustering with an Artificial Immune System

Consider a database to represent an antigen universe: a single item of data in the

database represents an antigen that must be recognised by the host system. An antibody

produced by the artificial immune system recognises a set of antigens in the antigen

universe — in a data clustering context, those items recognised by a single antibody can

be considered to form a cluster, and the antibody itself represents a concise description

of that cluster. In biological terms, the affinity or size of the ball of stimulation of

the antibody would determine the size of the cluster. Assuming all antigens in the

universe can be recognised by the antibody set, then the number of antibodies present

determines the generality/specificity of the clusters; a small number of antibodies will

result in few clusters, and therefore each cluster represents a very general description

of the data. As the number of antibodies is increased, the specificity of the cluster

and hence the concept it represents also increases. New data arriving in the data-base

is continuously presented to the system, which triggers the antibody set to adapt to

the new dataset, either by adapting existing antibodies, or creating new ones. This is

exactly analogous to the primary response in the biological immune system.

4.1.2 Data-clustering with a Sparse Distributed Memory

As previously stated in chapter 2, [Smith et al., 1996] showed that immunological

memory belongs to the same class of associative memories as Kanerva’s Sparse Dis-

tributed Memory (SDM). In this work, they argued that the B-Cells and T-Cells of

the immune system perform the same function as the hard locations in an SDM, and
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showed that the hard locations in an SDM provide a sparse coverage of possible ad-

dresses in the same manner as the B-Cells and T-Cells of the immune system provide a

sparse coverage of all possible antigens. Therefore, it ought to be possible to apply this

analogy to data-clustering problems, in the same manner as described in the previous

paragraph.

Thus, in this case we can assume that a hard-location in the SDM recognises a

subset of data-items in a database based on a comparison between the physical address

of the hard-location and the data-item itself. If the measured distance between a hard-

location and a data-item is within the recognition radius of the hard-location, then

recognition of the data occurs, and the data is stored at that location, updating the

counters of the location in the process. All data recognised by a particular hard location

can be considered to lie within the same cluster — the physical address of the hard

location represents a description of the cluster. A benefit of this approach is that the

counters associated with each hard location also contain useful information — for

example in binary systems, the absolute value of each counter can be interpreted as a

probability of the particular bit within any data-item in the cluster being set to 1/0 and

therefore supplies further information which can be used to describe the cluster.

The accuracy with which an SDM has clustered a set of data can be measured by

attempting to read back from the SDM all data stored within it; the recalled data can

then be compared to that actually stored in the database and the average accuracy of

recall will indicate the accuracy with which the data has been clustered. (Note though,

that as this is a form of unsupervised clustering, no labels are associated with each

data-item and hence we are not concerned with determinining whether data has been

correctly assigned to pre-defined classes).

The SDM models one of the features observed in the biological IS and particularly

relevant for data-clustering; it is high likely in any real-world database that clusters

will overlap. The SDM is a distributed system in which data can be stored at more

than one location, and in which more than one location may be involved in recall of

that data. (The locations and recognition radii define the extent to which clusters will

overlap). Thus there is an interaction between hard locations, just as in the biological

immune system the specificity of a biological anti-serum is a function of a number of
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interacting antibodies, and not simply a result of a single antibody reacting exclusively

with the inducing antigen [Roitt et al., 1988]. This feature of biological immune sys-

tems does not appear to have been explored in any of the work reviewed in chapter 2

which shows that there has been a tendency to concentrate on models which produce

an artificial anti-serum containing a set of co-operating but non-interacting antibodies,

[Smith et al., 1993, Potter and De Jong, 2000].

4.1.3 Properties of the SDM/IS Models Relevant to Data Clustering

The previous two sections have identified how both the IS and SDM analogies could

theoretically be applied in a data-clustering context. We now attempt to draw together

the salient features of both models that suggest this, before identifying the drawbacks

in both models that need to be overcome.

• Both the IS and SDM provide sparse coverage of very large input spaces —

this is desirable in a data-clustering environment as we wish to identify small

numbers of clusters in very large datasets.

• The IS and SDM operate using an imprecise recognition mechanism — real data

is likely to be incomplete and/or incorrect, in addition to containing superflu-

ous noise, and therefore a system which can perform recognition under these

conditions is necessary.

• The IS and SDM are distributed systems, and therefore robust to loss of pattern

detectors. As very large datasets are also likely to be distributed, a model based

on an SDM/IS architecture appears suitable.

Other properties also emerge — for example, both the SDM and IS models implic-

itly contain a mechanism for detecting change within an environment, and therefore in

the context of data-clustering, for detecting data which does not belong to an already

identified cluster. For example, in an IS-based clustering model, if a data-item is not

recognised by one of the antibodies defining a cluster, then the data can be flagged

as unusual, perhaps signifying that it is non-representative of the general patterns and

therefore triggering some warning. Imagine for example attempting to cluster data
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collected by a credit-card company relating to card usage. The company is interested

in clustering the data to identify patterns in card usage, but would also like to detect

fraudulent card-usage. If a newly presented data-item does not belong to an already

established cluster, it could identify an attempt at fraudulent usage of the card, which

further human examination could identify,

In the danger model of the IS, expounded by Matzinger in [Matzinger, 1994b],

a dynamically adapting system such as the IS would adapt over time to contain an-

tibodies that recognised both ’normal’ and ’abnormal’ clusters (as opposed to the

negative selection model of [Percus et al., 1993], modelled artificially for example

by [Forrest et al., 1994, Dasgupta and Forrest, 1995, Hofmeyr and Forrest, 2000], in

which the IS only contains antibodies that recognise abnormal data). In an artificial

model adopting the danger approach, and therefore recognising and clustering all data,

the rate and extent to which the antibody set changes gives some indication of the ex-

tent to which the system has to adapt to cluster new data, and therefore could also be

used to identify the occurrence of new and unusual trends in the data. The ’abnormal’

data is clustered, and hence it is straightforward from then on to recognise when new

data falls into one of these clusters. The SDM class of associative memories appears

to fall into the danger-model camp of immune system models, in that it is capable of

recognising and storing all data present in a given environment, and not just data that

falls into either the ’self’ or the ’non-self’ categories.

4.1.4 Inadequacies of the SDM

Although the previous sections have shown that the SDM appears to be an ideal anal-

ogy on which to model a data-clustering system, and that [Smith et al., 1996] have dis-

cussed in detail the close relationship between the immune system there are also some

fundamental differences between the two systems. Moreover, there are several flaws

in the fundamental postulates defining Kanerva’s original SDM that must be modified

to produce a practical system for use in a data-clustering environment.

Three of the original postulates underlying the original SDM are as follows:

1. The number of hard storage locations and their addresses is known from the start,

and only the contents of the locations are modifiable.
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2. The recognition radii are fixed from the start, and it is assumed that each location

has an identical recognition radius

3. The hard storage locations are distributed randomly in the 0,1n address space

These postulates result in a memory which is in inflexible and inadequate for stor-

ing data which is not random and which is subject to change. Clearly this applies

to real-world databases which are obviously non-random. In particular, postulate (3)

which requires the storage locations to be randomly located will not only result in

in a highly inefficient memory but moreover, cannot result in an accurately clustered

database.

Furthermore, the size of real data-sets will vary over time as data is collected and

removed, and also, the contents of the data will change with time. Therefore any

memory which requires a fixed number of static hard locations will also be inadequate

to perform the clustering task. This is clearly a fundamental difference between the

biological immune system and an SDM — in the immune system, antibodies are con-

tinually produced by lymph nodes, and have a finite lifetime. Thus the number of

antibodies circulating throughout the immune system varies with time, and the type of

those antibodies also varies, depending on the current state of the antigen environment.

Therefore, we propose that a new model for performing data-clustering can be de-

vised by integrating some of the dynamic and adaptive features of the immune system

with the simple storage and associative recall ideas of the SDM. The basic premise

underlying the model is that an immune system based on a dynamic SDM can be

constructed, in which the number of hard locations is variable, and the location and

recognition radii of those locations adapts to suit the environment to which the SDM is

exposed at any particular time. Thus, to rephrase this using immunological terminolgy,

the hard-locations in an SDM can be represented by antibodies in an immune system,

and the data which it is hoped to cluster an antigens. The recognition radius in the SDM

is replaced by a threshold mechanism in the immune model, below which binding be-

tween the antibody and the antigen does not occur. This is consistent with the mapping

between the SDM and immune system originally proposed by [Smith et al., 1999] and

described in chapter 2, in table 2.1. For consistency, the immunological terminology

is used throughout the remainder of this thesis.
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The remainder of this thesis describes two different methods by which an im-

munological model can be implemented. In chapter 5.2 we describe a model dubbed

COSDM which uses a co-evolutionary algorithm as the mechanism for driving the

discovery of antibodies and their associated binding thresholds. Chapter 6 adopts an

approach named SOSDM based on simple self-organising algorithms such as that of

[Kohonen, 1982b]. Both approaches are tested on artificially generated binary datasets,

representing both static and non-static data-clustering problems in order to analyse

their performance in detail and establish whether or not the proposed methods provide

a starting point for tackling more complex real-world tasks. The generation of these

datasets is now discussed.

4.2 Problem Description

Both the COSDM and SOSDM algorithms are first tested in a simple test en-

vironment which is identical to that used by [Potter and De Jong, 2000], and in

[Forrest et al., 1993] in a related study, and therefore allows for straightforward com-

parison of the models. The problem is a binary string covering exercise — in its orig-

inal most general form, it consists of finding a set of K binary strings (the match-set)

that match as strongly as possible another set of N binary strings (the target set), where

N� K. Thus, each of K strings in the match-set must contain a pattern(s) common to

a subset of patterns in N in order to cover the set optimally, and therefore represents

a generic description of some subset of N. The task therefore is to discover the best

possible set of K strings — each of the K strings can be considered to represent a clus-

ter in the original dataset, and if there are K clusters present, then K strings need to be

discovered.

4.2.1 Stationary Data

Throughout the remainder of this thesis, three categories of antigen datasets are used

for experimentation with the proposed models and for comparison with the algo-

rithm described by Potter et.al , and from now on referred to as CE-POTTER (Co-

Evolution-POTTER). This method of generating data-sets is described in detail in
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[Potter and De Jong, 2000]. The categories are generated in the following manner:

The first category of data is referred to as half-length data, and datasets generated

in this category contain N antigens, each of length L. The data is generated in equal

proportion from two half-length schemata. Schema-1 has the first L/2 bits fixed to 1,

and the remaining L/2 bits contain wild-cards. In schema-2, the first L/2 bits contain

wild-cards and the remaining L/2 bits are fixed to 1s. Therefore, if L = 32, the two

schema are:

1111111111111111################

################1111111111111111

Thus a dataset generated in this fashion will contain 2 clusters.

The second category of data is referred to as quarter-length schema and datasets

are generated in equal proportion from 4 schemata, and therefore contain 4 clusters.

The length of the defined section in each schema in this case is L/4. Using the same

example as above in which L = 32 the schema will be as follows:

11111111########################

########11111111################

################11111111########

########################11111111

Finally, the third category of data, eighth-length schema, produces datasets gen-

erated in equal proportions from 8 schemata, each with defined length L/8. Thus for

L = 32, the 8 schema which are used to generate 8 clusters are shown below:

1111############################

####1111########################

########1111####################

############1111################

################1111############

####################1111########

########################1111####

############################1111

The length of the defined section in each case is denoted by d.
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4.2.2 Non-Stationary Data

Section 4.2.1 describes how N antigens can be generated from s schema in equal pro-

portions. All experiments using static data are generated from one of the three cate-

gories of data described; half-length schema, quarter-length schema and eighth-length

schema. Each of these three categories contains non-overlapping schema. A more gen-

eral method of generating data is to also generate the schema randomly, by choosing a

random start point along the string and then setting d contiguous bits to 1. All remain-

ing (L−d) bit positions contain wild-cards. Schemas are more likely to overlap in this

case, but this is likely to be a more accurate reflection of real data sets. This method

can easily be adapted to produce non-stationary data sets using the algorithm shown in

figure 4.1. Generating datasets in this manner enables the proposed algorithms to be

evaluated in the context of the following properties of the datasets:

1. The number of clusters present in the dataset

2. The length of the defined section of each cluster

3. The extent of overlap of the clusters

4. The rate of change of the dataset in terms of the number of clusters replaced at

each update, and the rate at which the update occurs.

This will enable some conclusions to be drawn about the suitability of the suggested

approaches for clustering real-world datasets, in which sensible estimates can be made

of the likely rate of change of the data, and also of the characteristics of the dataset.

4.2.2.1 Relevance of Data Generation Approach to Real Datasets

In a real dataset, we would expect to observe clusters of data, in which items within

each cluster share common features. However, it is extremely likely that at least some

of these clusters will not be distinct but will overlap with each other. Therefore, when

designing an artificial dataset in order to test the proposed models it is essential that

the datasets should exhibit at least two characteristics if performance on them is to be

indicative of real-world problems:
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1. Generate s schemas at random, each containing d contiguous defined

bits, and (L−d) wildcards

2. Generate (N/s) antigens from each schema

3. Every U time-steps:

(a) kill of g randomly chosen schemas and their associated antigens

(b) generate g new schemas and (N/s) new antigens from each new

schema

(c) add the new antigens to the dataset

Figure 4.1: A generic algorithm for generating non-static datasets

1. Data should form clusters, in which items within the cluster contain at least one

shared feature, but in general are non-identical

2. Some or all of these clusters may overlap, i.e the data should contain some fea-

tures that are shared by more than one cluster.

Generating antigens from schema in the manner just described fulfills these two

criteria; the defined section of each schema corresponds to a feature in the data, and

generating the remaining portion of each antigen from wild-cards ensures that there is

diversity within the cluster. Moreover, the generic method of generating antigen from

random schema described in section 4.2.2 also ensures that clusters can overlap.

In fact, this has a direct parallel in the biological immune system in which anti-

serum raised against a set of antigen exhibits two phenomena — that of specific re-

actions and of cross-reactivity. The specificity of a biological anti-serum is equal to

the sum of the actions of every antibody in the serum. Consider figure 4.2, taken

from [Roitt et al., 1988], which shows a population of three antibodies; some antibody-

antigen reactions are highly specific — this is shown in figure 4.2(a) in which individ-

ual antibodies are directed against specific epitopes (X ,Y,Z) on three different antigen
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anti−X anti−Y anti−Z

Antigen A

(a) specific reaction

Antigen C

anti−Y anti−Zanti−X

(c) no reaction

X Y Z X’ Y

Antigen B

anti−X anti−Y anti−Z

(b) cross−reaction

Figure 4.2: Anti-serum specificity results from a population of interacting antibodies.

The figure illustrates three phenomena — specific reaction of antibody against individ-

ual antigen, cross-reactivity of antibody against more than one antigen, and no reaction

molecules. On the other hand, if an epitope is common to more than one antigen, for

example epitope Y in figure 4.2(b), the antibody raised against X will cross-react with

antigen Y . This figure also shows that the match between antigen epitope and antibody

paratope does not have to be exact — antibody X is also capable of recognising epitope

X ′. Figure 4.2(c) also illustrates that this anti-serum has no reaction with antigen C, as

no epitopes are able to be recognised. Relating this to a clustering problem, recogni-

tion of individual clusters is equivalent to the specific reaction of an antibody, whilst

the phenomenon of cross-reactivity is modelled by recognition of common features in

overlapping clusters.

The next chapter describes a co-evolutionary approach to evolving an SDM to per-

form data clustering on static and non-static datasets using data generated in the man-

ner just described. Chapter 6 then describes a self-organising SDM and the results of

experiments repeated on similar datasets.



Chapter 5

EA Based Model — COSDM

5.1 Combining Co-evolution with an SDM — COSDM

This chapter describes a new immune system model named COSDM — co-

evolutionary SDM — which exploits the analogy between an SDM and the immune

system to performs data-clustering. We propose to use a genetic algorithm within a co-

evolutionary architecture in order to find a set of antibodies which accurately cluster a

set of data. The immune system formed by these antibodies is analagous to an SDM

made up of a set of hard locations. The size of each antibody’s corresponding ball of

stimulation (i.e. its recognition radius in SDM terminology), and the optimal number

of antibodies required is evolved by the architecture.

The COSDM architecture is based on that described in [Potter and De Jong, 2000]

which is a generalised architecture suitable for finding coadapted subcomponents or

solutions to problems that can be decomposed into simpler subtasks between which

they may be complex interdependencies. A model of this architecture is given in figure

5.1. The architecture models an ecosystem consisting of two or more species — as in

nature the species are genetically isolated and therefore individuals within one species

do not mate with others outside of their species. The species interact with one another

however via a shared domain model, and as such have a cooperative relationship.

Figure 5.1 shows an example of a system which contains three species, each evolv-

ing within its own population via the application of a GA. The diagram shows how

114
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Species 3

Species 2

best representative
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Figure 5.1: Coevolutionary architecture of the Potter model
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the fitness evaluation proceeds from the perspective of one of the three species — to

evaluate an individual from one species, collaborations are formed with representatives

from each of the other species. Thus, in the case of the string covering problem de-

scribed in chapter 4, individuals in each population represent match strings, and each

species contributes one string to the domain model, i.e. the match-set. At any time, the

match-set consists of the string under evaluation, plus the current best string from the

other (N-1) populations. The match strength between a match-string~x and an antigen

string ~y is simply given by summing the number of bits in the same position with the

same value, i,e:

S(~x,~y) =
i=L

∑
i=1

{
1 i f xi = yi

0 otherwise

Then, to compute the match-strength of the set M, and therefore the fitness of

the match-set to be assigned back to an individual, the match-strength is calculated

between each of the N members of the set and each of the K antigens in the target set,

and then the maximum computed strengths with respect to each antigen are averaged:

S(M) =
1
K

K

∑
i=1

max(S(~m1,~ti), ...,S( ~mN,~ti))

The architecture described by Potter lends itself well to implementing an immune

system based on an SDM model that is able to successfully store and retrieve large

amounts of data. Whilst the obvious subtasks in COSDM are to locate the best position

and recognition radius of each antibody, there are also complex interactions between

individual antibodies as counters are summed across the entire immune system in order

to retrieve a piece of data. These interactions are handled well by the cooperative nature

of the architecture.

A model of the adapted architecture, COSDM, is shown in figure 5.2. As in the

original architecture, multiple populations are evolved. In the case of COSDM, each

population in isolation controls the identity and recognition radius of potential anti-

bodies. A complete immune system is formed by each population contributing one

antibody to a serum which is then evaluated in order to determine how accurately it

can store and recall data currently visible to the system. The serum consists of a mem-

ber of the population currently under evaluation, and the best member of each of the
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Figure 5.2: Coevolutionary architecture of the COSDM model

other population. Credit is then assigned back to the population under evaluation, and

the usual mechanisms of selection and reproduction then take place within each pop-

ulation. In the implementation of the model described, populations are evaluated in a

serial fashion, but there is no intrinsic barrier to performing a parallel evaluation.

Potter points out that there are four issues to be addressed in trying to produce an

evolving computational model that provides reasonable opportunities for emergence

of coadapted subcomponents of a larger problem. The properties of the proposed ar-

chitecture that are desirable in the context of evolving an immune system for data

recognition are now discussed. For a detailed explanation of other characteristics of

the architecture, the reader is referred to the original paper, [Potter and De Jong, 2000].

Problem Decomposition When searching for the optimal immune system to store a

large dataset, it is impossible to know a priori how many antibodies are required,

particularly if the data is non-stationary. Therefore, the model should allow for

addition and deletion of antibodies as the adaption takes place. This is simple to
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achieve in the CE-POTTER architecture by adapting the mechanisms for adding

and deleting subcomponents. The method by which this is implemented is de-

scribed further in section 5.2.2.

Interdependent subcomponents As already identified above, the antibodies will ex-

hibit a high degree of interdependency — COSDM is a distributed system in

which antigen bind to many antibodies during both the storage and retrieval

phases. Therefore, an antibody cannot be evolved in isolation. This kind of inter-

dependent relationship is also observed in the biological immune system, where

the specificity of an anti-serum is a function of a number of interacting antibod-

ies and not a result of a single antibody reacting exclusively with the inducing

antigen [Roitt et al., 1988]. The architecture described handles interdependent

components as the evaluation phase evaluates one species in the context of all

the other species by forming the immune system — it is impossible to evaluate

a species in isolation.

Credit assignment When tackling problems that have have been broken down into

subcomponents, the issue of distributing credit to each of the components al-

ways arises. The mechanism described by Potter which is used in order to de-

termine the fitness of members of one species is to evaluate those individuals

in conjunction with the best members of each of the other species, i.e. the in-

dividuals contributing to the serum from the other species remain fixed. The

resulting fitness of the entire serum is then assigned to the individual being eval-

uated alone. This is particularly applicable to credit assignment for the immune

system, where it would be very difficult to determine exactly how much a single

antibody contributed to the overall fitness of the immune system.

Diversity Clearly, the repeated application of an EA to a population will eventually

result in the convergence of that population. As fitness in a population is a result

of collaboration and cooperation between all subcomponents, the architecture

described should enable sufficient diversity to be maintained in each species until

the complete problem has been solved. Furthermore, in a non-stationary system,

there is a requirement to maintain sufficient diversity within the populations to
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radius
recognition
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address

Figure 5.3: Structure of an antibody representing a hard location in an immune system.

Each species in the COSDM consists of p such antibodies. Note that each antibody

has an associated set of counters, one for each address bit, but that the counters are

not evolved.

allow them to adapt to moving datasets. Whether the use of an EA will enable

this to happen remains to be seen at this point.

5.2 Implementation of COSDM

As shown in figure 5.2, the COSDM architecture is assumed to contain n populations,

with each species containing p potential antibodies. An antibody represents a complete

description of a hard location in the immune system, that is it contains L bits represent-

ing the address of the hard locations, and a further R bits representing the recognition

radius, ρ, of the location. Each antibody also has an associated set of counters (inte-

gers) — these are not evolved but are set by storing data in the immune system. An

example antibody is shown in figure 5.3.

The address of a location defined by an antibody c is denoted by V (c), and the

counters by C(c). R bits represent a Gray-coded description of the recognition radius.

The actual algorithm defining the architecture and governing the evolution of each

species is described in pseudo-code in fig 5.4. The key steps are described in more

detail in the following sections.

5.2.1 Calculation of Fitness

Step 2 in figure 5.4 calculates the fitness of each individual antibody in each population,

based on an evaluation of how that antibody i∗ performs in the context of an immune

system formed by itself and the best member of each of the other populations, referred
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1. Randomly generate n populations, each containing p antibodies

2. Calculate the fitness of each member of each populations using the data

currently visible to the system

3. Sort each population by fitness

4. Calculate the mean recall accuracy of the dataset using the immune

system composed of the best member of each species r

5. If r has not improved by at least τ over φ generations, add a new popu-

lation

6. If the best member of any population does not recognise at least ε anti-

gens, and the population has existed for at least λ generations, kill the

population

7. Apply an EA to each population in turn in order to reproduce it

8. Go back to step 2

Figure 5.4: The COSDM algorithm
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to from here on as SDM∗. (Note that at generation 0, when evaluating any single

population, the best member of each of the other non-evaluated populations cannot yet

be calculated, therefore a member of each of these populations is simply chosen at

random to form SDM∗.)

The calculation takes place in two phases. In the first phase, a subset of the antigens

in the dataset of size s, (s≤ N) is stored in the immune system represented by SDM∗.

In the second phase, recall of the entire dataset is performed, using the counter values

now contained in SDM∗.

5.2.1.1 Phase 1: Storage Phase

• Set the counters of each of the ci (1≤ i≤ n) antibodies in SDM∗ to 0s

• Present each antigen in a in subset s to the immune system:

– Calculate the subset of antibodies n′ for which the distance between the

address of the antibody and the antigen, i.e. H(ci,a), is less than the recog-

nition radius of the anibody, ρi, (equation 5.1). H(ci,a) is simply the Ham-

ming Distance between the two strings V (ci) and a.

H(ci,a) =
j=L

∑
j=1

{
1 i f V (ci) j 6= a j

0 otherwise
(5.1)

– For all antibodies in n′, update the counter values at each bit in each anti-

body, according to equation 5.2:

∀ j : (1≤ j ≤ L) :

i f H(ci,a)≤ ρi : C(ci j)→C(ci j) +

{
1 i f a j = 1

−1 i f a j = 0
(5.2)

5.2.1.2 Phase 2: Recall Phase

For each antigen a in the dataset:
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• Calculate the subset of antibodies n′ for which the distance H(ci,a) is less than

or equal to ρi according to equation 5.1.

• Sum the counters of each member of n′ at each of the j bit positions to give σ j(a)

at each position:

These values are then used to calculate the actual recalled bit, a′j for each of the L

bits in the antigen:

a′j =





1 i f σ j > 0

0 i f σ j < 0

(0,1) randomly chosen otherwise

(5.3)

The recalled bit-string a′ can then be compared to the actual antigen originally

stored in the memory a, and the match-score, M calculated. This is simply the number

of bit positions in which a′ = a.

M (a′,a) =
j=L

∑
j=1

{
1 i f a′j = a j

0 otherwise
(5.4)

The mean recalled accuracy of the entire dataset r is then simply the average match-

score obtained for each of the recalled antigens:

Mean recall accuracy r =
1
N

i=N

∑
i=1

M (a′i,ai) (5.5)

Thus the fitness of SDM∗, and hence that of i∗, the individual under evaluation, is

simply equivalent to r.

In equation 5.3, randomly choosing the value of the recalled bit when σ′j = 0 in-

troduces a concept similar to the somatic mutation that is observed in the real immune

system (see chapter 2). However, an alternative approach which would perhaps result

in a more stable system would simply be to copy the bit from the address whenever

σ′j = 0, i.e. a′j = V (ci) j.
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5.2.2 Control of Number of Species

The number of antibodies in the final system is dynamic, that is antibody populations

are added and deleted from the system as becomes necessary. The rate at which this

happens is controlled by 4 parameters;

1. the extinction threshold, et

2. the extinction phase length ep

3. the stagnation threshold φt .

4. the stagnation phase length φp

If the fitness of the immune system composed of the best member of each popu-

lation following reproduction and evaluation of each population does not increase by

at least φt over φp generations, then a new population is added to the system, with

randomly generated members. Similarly, if the best member of a population does not

recognise at least et antigens from the current antigen population, and the population

has been in existence for at least ep generations then that population is removed from

the system. A limit of M populations (and therefore M antibodies in the final immune

system) is imposed on the system to prevent it growing too large ( and therefore too

specialised). This is similar to the Potter model but with two differences. Firstly, the

learning phase parameter has been added in order to give each population an opportu-

nity to evolve. This is particularly important in a non-static environment. Secondly,

the operation of the extinction threshold is modified so that the best antibody in a pop-

ulation must recognise a minimum number of antigens with the caveat that if an anti-

body recognises an antigen that no other antibody from another population recognises,

then the population is allowed to continue existing. In the original model described

in [Potter and De Jong, 2000], an antibody from a population must contribute a mini-

mum proportion of the total fitness of the serum in order to survive. However, as this

quantity cannot be easily isolated in the SDM/immune model, we have modified the

approach.
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5.2.3 The Evolutionary Algorithm

The EA controlling evolution of each population is identical to that described in

[Potter and De Jong, 2000], in order that a fair comparison can be performed. Each

population is of size 50, two-point crossover is applied at a rate of 0.6, and a bit-flipping

mutation operator used at a rate equal to the reciprocal of the chromosome length. Gen-

erational reproduction is applied, using fitness-proportionate selection based on scaled

fitness.

5.3 Overview of Experimental Setup

Three series of experiments were designed to investigate the capability and behaviour

of the system outlined above. The first series of experiments was designed simply to

test the performance of the model on a set of static datasets, in order that its perfor-

mance could be compared to other published algorithms. The second and third series

are concerned with using the model in a non-stationary environment, to see if clusters

can be found and tracked in time-varying data. One series of experiments concerns

data which varies over time in a random manner. The other is concerned with inves-

tigating the performance of the system with datasets in which data appears in cycles,

and is designed to test the ability of the system to react more quickly to antigens it has

previously been exposed to, and therefore the long term memory of the system.

5.3.1 Default Parameters

Unless stated otherwise, a default set of experimental parameters, given in table 5.1 is

used in all experiments. In this table, the parameters marked with at ∗ are taken directly

from [Potter and De Jong, 2000]. Others have either been adapted to suit COSDM or

are unique to the COSDM model. All experiments are run 10 times, and the mean re-

call fitness r measured at the end of 200 generations of COSDM. The maximum value

of recognition radius is set to slightly less than 1/2 the length of the antigen strings

as this has been shown theoretically to be desirable [Kanerva, 1988]. The reasoning

behind this as as follows: two random strings of length L are almost certainly 1/2L
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Parameter Value

Population Size p 50

Crossover 2-point p = 0.6

Mutation bit-flip p = 1/L

Stagnation threshold φt 0.5

Stagnation phase length φp 10

Extinction threshold et 5 antigens

Extinction phase length ep 10 generations

Maximum number of population Mmax 10

Minimum number of population Mmin 2

Maximum recognition radius R 31

Length of antigen L 64

Length of antibody L 64

Table 5.1: COSDM fixed parameters

apart, for large L. If the radius is equal to 1/2L, then too many strings will fall within

each centre. If the radius is much less than 1/2L, then almost nothing will fall within

each centre, thus the radius should be just under 1/2L.

5.3.2 Comparison of results

The algorithm of Potter et. al was re-implemented according to the details described

in [Potter and De Jong, 2000]. This algorithm is referred to as CE-POTTER from here

on. The results given in [Potter and De Jong, 2000] for experiments on static data-

sets containing half, quarter and eighth schema were verified, and the re-implemented

algorithm was then used to repeat experiments performed with COSDM so that results

could be compared.

A second method of comparison used as a benchmark for the COSDM are the

results that would be obtained using the best possible single string generalist in each

experiment. This is to confirm that the strategy of locating multiple niches in the data

is indeed effective (regardless of how those niches are located). In each of the datasets
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Figure 5.5: Comparison of performance of COSDM and CE-POTTER on static datasets

generated from half-schema, quarter-schema and eighth-schema

used in the following experiments, the best possible string generalist would consist of

a string in which all bits were set to 1. This string would match at least d bits of each

antigen, and on average 50% of the remaining bits, therefore would achieve a mean

recall fitness of (d + L−d
2 ) = L+d

2 .

5.4 Experiments using Static Data Sets

An initial series of experiments was performed to establish how the new model

COSDM performed on static data sets compared to other previously published work.

As the number of clusters is known a priori in each of these experiments, and we are

only interested in whether or not we can discover them, we simply evolve an equal

number of populations as clusters in each experiment, i.e both the maximum and min-

imum number of population parameters are fixed to exactly equal the number of clus-

ters.

Figure 5.5 compares the performance of COSDM to CE-POTTER on datasets gen-

erated from half, quarter and eighth schema, containing between 50 and 500 anti-

gens. Although COSDM outperforms CE-POTTER on all datasets generated using

half-schema, its performance on the quarter-schema datasets is comparatively worse

than CE-POTTER when N > 150 and when N > 200 on eighth-schema datasets. In all
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Figure 5.6: The figure shows the average number of antigens in a dataset that are not

recognised by the best immune system evolved using COSDM for each of the three

categories of datasets

cases however, the performance of COSDM exceeds that of the optimal string gener-

alist. Some insight into this is gained from examining the average number of antigens

that are not recognised by the best immune system evolved during COSDM for each

value of N — these results are shown in figure 5.6. For datasets generated from half-

schema antigens, the evolved immune system fails to recognise antigens only when

N is large, and then only occasionally. The situation is different for those datasets

generated from quarter-schema and eighth-schema; in both cases, from N > 100 there

appears to be a steady increase in the number of antigens not recognised, somewhat

surprisingly this is more exaggerated in the quarter-schema experiments. When the

defined schema-length d is small compared to the length L of the schema, there is a

higher probability of matching the random part of the schema and hence it is easier

to locate suitable hard locations. Note however, that in all experiments, the maximum

percentage of antigens remaining unmatched is less than 1% of the total size of the

dataset which is likely to be trivial in a real-world database.
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Finally, the evolved radii of the hard locations are examined for each category of

datasets; for all half-schema experiments, the average radius of the antibodies evolved

by COSDM is either 29 or 30, with no obvious trend with increasing N. The average

radii of all antibodies evolved for quarter-schemas for all values of N is 30, and for

eighth-schema experiments, the evolved average radius varies (again with no obvious

pattern) between 28 and 29. Therefore, there is a tendency in all experiments for

the radius to tend towards the maximum possible, as this allows more antigens to be

recognised. This finding is confirmed by repeating the experiments but allowing 6

bits to define the radius, giving a maximum possible radius of (26− 1) = 63. For

the eighth-schema experiments, no change is observed, for all values of n, i.e. the

number of antigens in the dataset, the radius varies between 28 and 30, and the number

of unrecognised antigen follows the same pattern observed in figure 5.6. However,

for the quarter-schema experiments, for values of n ≥ 350 the radius rises well above

the theoretical maximum upto a value of 45 for n = 500 — this is coupled however

with a corresponding decrease in the number of antigens that are not recognised by the

evolved immune system for all n. Similarly, for half-schema, the evolved radii increase

with increasing n to reach a maximum of 47 at n = 500, and in this case, no antigen

are unrecognised, even at n = 500.

Recall that the mean recall accuracy quantity is an average over all antigens in

the dataset, and therefore antigens which are not recognised by the immune system

have a recall accuracy of zero, and therefore have a large effect on the mean accuracy.

Clearly this results in a trade-off between recognising as many antigens as possible vs

the accuracy with which antigens can be recalled. In the case of the eighth-schema ex-

periments, increasing the number of antigens recognised does not lead to an increase in

the mean accuracy of recall, therefore the radii evolve towards the maximum predicted

by the theory. For quarter-schema datasets however, increasing the number of antigens

recognised produces an increase in mean recall accuracy — even though the antigens

are recalled less accurately than compared to the case when the maximum value radius

is set to 31, the fact that more antigens can be recognised and hence stored in the mem-

ory compensates for this. The same arguments apply to the half-schema datasets in

which of course a randomly generated string would match on average half of the bits
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in each antigen. In conclusion, it would appears better to fix the maximum radius to

be similar to the theoretical maximum of 1/2 the length of the string to enable clusters

defined by a small recognition radius to be recognised accurately.

In summary, COSDM appears to perform satisfactorily in all experiments per-

formed in that it does locate clusters within the data in each case, when compared

to the optimal single string generalist. Its performance degrades as the size of the

dataset increases when COSDM is compared to the model published by Potter et. al.

This is probably due to the inability of the model to locate all antigens in the dataset

— there is no pressure exerted by the fitness function to steer the location of anti-

bodies towards parts of the input space containing unrecognised antigens, therefore it

is conceivable that some antigens remain un-noticed by the algorithm throughout the

entire evolution. This could be addressed in a number of possible ways. One option

would be to include some form of penalty function in the fitness function, based on

the number of unrecognised antigens, however this approach has well documented dif-

ficulties ([Smith and Coit, 1997]). Also, it should be noted that the COSDM model

was run with exactly the same parameters reported by Potter et al, and a search of

the COSDM parameter space was not performed. As the parameters published in

[Potter and De Jong, 2000] are likely to be the result of an extensive optimisation pro-

cess, it is possible that performing such an optimisation with COSDM may improve

its performance.

However on balance, it was felt that the performance of the model was sufficiently

promising that it should be tested in a non-stationary environment, where it has already

been suggested that an immune system metaphor should provide some advantages.

5.5 Experiments Using Random Non-Stationary

Datasets

This section describes experiments performed on random non-stationary data gener-

ated using the method described in section 4.2.2. In all experiments, 100 antigens

are generated from schema of length L = 64. Experiments examined the effect on the

mean recall fitness r of the number of schemas used to generate the data set, s, the
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Number of Schemas s ∈ (2,5,10)

Defined Length d ∈ (8,16,32)

Update Rate U = 50

Number of Schemas replaced 1≤ g≤ s

Table 5.2: Values of parameters tested in random pattern tracking experiments

length of the defined section d, the update-rate U and the number of schemas replaced

at each update g. Values tested are given in table 5.2. Each experiment was repeated

5 times — r was recorded following each of 200 generations. In each group of 5 ex-

periments, the schemas were always generated from the same seed, so that the values

of r could be averaged meaningfully. For information purposes the average overlap

of the defined sections of the entire schema set in each case was calculated; this is

defined as the average number of bits that are equivalent and defined (i.e. set to 1)

in any 2 schemas. Thus, for example, schemas 111### and #111## have an average

defined overlap of 2. These values are given in table 5.3. As expected, as the number

of defined bits increases, the average defined overlap between schemas dramatically

increases. A large defined overlap implies that there will be a large overlap between

clusters, with the consequence that changes in the data should be easier to detect, as

the antibodies within the immune system do not have to move to new parts of the input

space in order to recognise new data.

As the aim of the following experiments is to assess the ability of an adapted

COSDM to track patterns in non-stationary data, the system is allowed to undergo

a tolerization period in which it learns to cluster the patterns in the initial dataset. The

ability of the system to then react to changes in the data can then be measured from this

starting point (rather than from time 0 in which the system contains random antibody

data). The length of the tolerization phase in all experiments is set to 200 generations,

and recording of results begins from this point.
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Number of schemas Defined Length Average Defined

s d Overlap

2 8 1.06

2 16 4.09

2 32 20.61

5 8 1.11

5 16 4.92

5 32 21.22

10 8 1.06

10 16 4.76

10 32 21.55

Table 5.3: The table shows the average defined overlap between the entire schema set

for each set of experiments performed using random non-stationary data

.

5.5.1 Results

Figure 5.7 shows example outputs from experiments in which s = 5, and d = 8,32,

and g = 1,5. The graphs illustrate the overall trends observed in all experiments:

at each antigen update following the tolerization period, there is a rapid drop in r,

immediately followed by a rise in fitness during the next 50 generation period over

which the maximum fitness achieved attains a similar level to that observed before

the change. Higher values of r are achieved when g << s in all cases, but when d is

small (and hence there is very little defined overlap between schemas), there is little

observable difference as g varies.

Further analysis of the results shows an approximately linear relationship between

the magnitude of the drop in fitness following each antigen update and the number of

schemas defining antigens that are replaced for all values of s and d tested. Figure 5.8

shows representative results obtained when d = 16 and s = 5,10. As the number of

antigens replaced increases, it is clear that the system is less likely to be able to cluster

the new data, especially as g→ s. Note however, that even in the extreme case when
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Figure 5.7: Output from experiments in which datasets generated from 5 schema were

updated at intervals of 50 generations by replacing g schema

g = s, the resulting value of r immediately following the antigen update is still very

much greater that the fitness observed at generation 0 when the system is randomly

initialised. A clearer indication of the success of the model in adapting to the new data

is shown by examining the difference ∆ between the maximum value achieved at the

end of the tolerization period r(U0) (generation t=200) and the maximum value of r

achieved following each subsequent update, r(Ui), i.e. ∆ = r(U0)− r(Ui). Figure 5.9

illustrates representative results, showing the value of ∆ for the extreme values of g in

experiments in which d = 16 and s = 5,10. Although the values of ∆ fluctuate above

and below the zero-line, the magnitude of the deviations is very small compared to the

actual value of r achieved at the end of the comparatively long tolerization period:- the

maximum negative deviation is 3.43% of r(U0), and the maximum positive deviation

5.29% of r(U0) across all experiments. Therefore we tentatively conclude that the

COSDM model exhibits some ability to track moving datasets.

5.6 Experiments using Cycling Non-Stationary

Datasets

Earlier discussion of the properties of the biological immune system suggested that

the basis of learning in such systems is attributable to its long-term memory capacity,

which enables it to respond more rapidly and more effectively to subsequent encoun-

ters with antigens. Therefore, it is essential to investigate whether the proposed arti-
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ficial model COSDM exhibits any form of memory retention. This is investigated by

examining the performance of the model in a modified non-stationary environment in

which data is presented to the system in cycles — this enables complete clusters to be

re-introduced to the system at regular intervals, and the response time of COSDM to

these re-entrant clusters can be measured.

5.6.1 Data Generation

Antigen data is generated using a modified version of the generic method for generat-

ing non-stationary data presented in section 4.2.2.

In step 1 of this algorithm, k ∗ s schema are initially generated at random. At any

time t, only s of these schema are used to generate the antigen population. A sliding

window of size s defines which schemas are used; this window is moved w schemas

along the schema list every U generations. The schema list is treated as cyclic and

wraps around when the window reaches the end. Thus, if k = 2 and s = 4, then 8

schemas are initially generated, for example labelled 0,1,2,3,4,5,6,7. If w is equal to

s, then all antigens are replaced at each update; thus at time t = 0, antigens {0,1,2,3}
define the data set. At time U , antigens {4,5,6,7} define the data, at time 2U , antigens

{0,1,2,3} again define the data etc. A more incremental update is achieved by setting

w < s. In this manner when a cluster is re-introduced, it is not necessarily in conjunc-

tion with the same set of other clusters to which the model was originally exposed.

5.6.2 Experimental Results

Experiments were performed in which s = w, where s ∈ (2,5,10), and k initially set to

2. The update parameter U was set to 50, and all schemas were of length L = 64 with

d = 8 defined bits. All experiments displayed similar trends; we present results here

for a representative case in which s = 5 and k = 2. Therefore, at every update, the entire

antigen set is replaced, and the schema set defining those antigens alternates between

two possible sets, set A defined by schemas 0,1,2,3,4 and set B, defined by schemas

5,6,7,8,9. Figure 5.10 shows this results of this experiment, averaged over 5 different

runs. The performance of COSDM is compared to an equivalent experiment using
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Figure 5.10: The figure compares the performance of COSDM on datasets generated

from random schemas, to datasets generated from two schema sets A, B which are

re-introduced at regular intervals. The datasets in each case are generated from 5

schema, each schema containing 8 defined bits.

COSDM in which the entire antigen set is updated from randomly generated schema

at each update, rather than the alternating schema set just described. The figure clearly

shows that COSDM applied to the cycling data set produces better results than when

applied to random moving data sets, suggesting that some kind of memory effect is

being observed. (As in previous experiments a tolerization period of 200 generations

was applied in order to allow the system to learn the initial dataset.)

In order to investigate the period of this memory, i.e. the length of the intervals

between re-introduction of familiar clusters, we repeated the above experiments setting

k to 3, and then 4. We then examined the best fitness achieved for schema set A in

each case during every interval for which COSDM was exposed to this schema set.

These values were averaged, and the mean and standard deviation calculated for each

experiment defined by (s,k). The results are given in table 5.4.

There is little observable difference between the mean values of r obtained as k

varies, and Students t-tests applied with 95% confidence limits show no significant

differences. Therefore, it appears that the COSDM model is able to exhibit some form

of memory for past clusters, and for the values of k tried, the extent of this memory is
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Number of schemas Value of k

s 2 3 4

2 44.63 (0.186) 44.37 (0.274) 44.77 (0.322)

5 43.06 (0.382) 44.21 (0.342) 43.01 (0.405)

10 42.72 (0.266) 42.78 (0.474) 42.79 (0.281)

Table 5.4: The mean and standard deviation (shown in brackets) of the maximum value

of r found for schema set A, for varying combinations of s, the number of schemas from

which the dataset is generated, and k, the multiplier producing the overall schema set

not affected by the size of the intervals between reappearance of clusters.

5.7 Conclusions

A new algorithm, COSDM, has been introduced which uses a genetic algorithm to

evolve the position and radii of the hard locations in a sparse distributed memory. It

was postulated at the beginning of this chapter that this would allow clusters in large,

binary datasets to be identified. A co-evolutionary architecture was used, which it was

hoped would provide a means of automatically determining the number of clusters in

the data, when this is unknown a priori. Furthermore, the architecture was designed

to enable the algorithm to be used in a non-stationary environment, so that it could

theoretically track moving clusters.

The experiments described show that the algorithm shows limited success. First

consider its performance in static environments (although the arguments now presented

apply equally to the non-static experiments also) — the experiments detailed in sec-

tion 5.4 show that although datasets containing 2 clusters are clustered more accurately

than when using the CE-POTTER algorithm, performance of COSDM degrades as the

number of clusters and the size of the datasets increases. Figure 5.6 may explain this;

COSDM fails to recognise increasing numbers of antigens as the size of the dataset

size and number of clusters increases. The fitness function, i.e. r rewards memories

which on average are able to recall data more accurately; however, there is no driv-
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ing force within this function to encourage exploration of the space of hard location

positions. If an item of data is not recognised by the initial randomly generated hard

locations, then there is no pressure, other than random chance, to drive the position of

the antibodies towards those unrecognised antigens. Therefore, although the genetic

algorithm fine-tunes the positioning of those antibodies so that data initially recognised

is more accurately recalled as the algorithm progresses, some items of data remain un-

recognised throughout the algorithm. This effect obviously becomes more apparent as

the size of the datasets, and the number of distinct clusters increases, as the probability

that data will not be recognised by randomly generated antibodies increases. The fact

that the recognition radii tend to converge towards the maximum allowable value rein-

forces this idea — increasing the radii increases the likelihood that an antigen will be

recognised, and therefore its recalled accuracy will contribute to r. The mechanisms

for population creation and deletion provide a possible means for increasing the cov-

erage of the antigen space, although currently population are created only in response

to the value of the fitness of the system becoming static, hence for the reasons outlined

above, this does not drive the system to cover unrepresented parts of the space, other

than by chance.

Potter et al.’s algorithm, CE-POTTER, does not suffer from this effect, as their

fitness function involves a direct competition between the best member of each pop-

ulation; in each competition, there will always be at least one winner, no matter how

poor the recognition between antigen and antibody. Contrast this with COSDM, in

which not only is the ultimately recalled antigen a result of cooperation between the

best member of each population, but some antigens may not be recognised at all, due

to the values of the recognition radii. Finding suitable recognition radii is key; even

if evolution were to prove capable of determining the correct values, the method de-

scribed requires that a maximum value be placed on each radius. Theory described

by [Kanerva, 1988] shows that it is inadvisable to set the radii to greater than half

the length of the strings, otherwise the probability of each antibody recognising every

antigen is too high. On the other hand, although small radii are desirable for accurate

clustering, so that each antibody only recognises a single cluster, then the positions

of the antibodies become crucial; if they are incorrectly placed, then the majority of
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data will be unrecognised. (Recall that the original postulates of the SDM specify that

the storage locations or hard antibodies are randomly distributed in the {0,1}n address

space and that they are given from the start; clearly neither postulate applies in this

context.)

There are a number of ways in which the problem of unrecognised antigens could

be addressed within the constraints of the proposed architecture, many of which rely on

the introduction of some kind of penalty function, as adopted in many applications of

evolutionary algorithms to constrained problems. It is noted from the outset however

that there is a wealth of EA literature documenting the difficulties of penalty based

approaches, for example [Richardson et al., 1989], and opinion still varies on whether

the approach is justified.

Aside from the issue of unrecognised antigens, COSDM is slower than the CE-

POTTER algorithm, which would become a more serious issue as the size of the

databases to which it is applied increases. CE-POTTER requires calculating the match-

score between a member of each population and each antigen at every fitness evalu-

ation; on the other hand, COSDM requires calculating each match-score as in CE-

POTTER to determine if the antigen lies within the recognition radius of the antibody,

then storing the antigen at the antibody if so, and hence updating the counters, and then

finally performing recall of the entire data set, during which counters must be summed

for each antibody recognising the antigen to identify the recalled antigen, which then

has to be compared to the original antigen. Therefore, each fitness evaluation is a time

consuming process.

Despite these flaws, the results of applying COSDM to a non-stationary problem

environment are promising; the algorithm does exhibit the capability to track moving

data, and also exhibits a basic form of memory. These are precisely the properties

of the immune system metaphor that we hoped to encapsulate. This implies that the

SDM component of the model may be of value; however, in the model as it stands,

the potential value of the SDM approach is somewhat outweighed by the difficulties

associated with using an EA to evolve the positions and radii of the antibodys. It has

already been alluded to that choosing the right value for the recognition radii is crucial

— this is a fundamental feature of the original SDM. Therefore, it appeared that in
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order to progress this work, two features of the COSDM model needed to be addressed,

namely that of the engine by which the correct locations of the hard antibodies could

be found, and a method to circumvent the difficulties associated with the recognition

radii. The next chapter presents a new model — SOSDM — which borrow from a

modifed version of Kanerva’s SDM suggested by [Hely et al., 1997] and disregards

the EA in favour of a self-organising metaphor more in keeping with the principles of

the immune system we are attempting to mimic.



Chapter 6

A Self-Organising SDM — SOSDM

6.1 Introduction

The previous chapter concluded that the combination of an EA with an immune sys-

tem metaphor suffered from three major drawbacks; namely, that the evolved immune

systems failed to recognise some antigen altogether, evolving the correct recognition

radii for each antibody was extremely difficult, and that the system was relatively slow

to evolve, owing to the nature of the fitness function. In this chapter, another method

of discovering an SDM immune system capable of adapting to non-stationary data is

described. The new model, self-organising SDM or SOSDM, relies on an important

principle of the biological immune system not yet explored in this thesis — its self-

organising nature.

As previously discussed, the original form of the SDM is essentially a static

memory, with fixed hard locations. COSDM represented hard locations by anti-

bodies, and attempted to evolve the best definition of those antibodies, subject to

the current state of the environment using an evolutionary algorithm. However,

SOSDM views the memory as a truly self-organising system. Initially randomly

placed antibodies self-organise in order that they become distributed throughout the

input antigen data space in a manner which reflects the input antigen data distri-

bution. This seems an entirely logical step — the immune system itself is self-

organising, whilst viewed from the computational angle, there is an abundance of

140
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literature describing algorithms for self-organising systems. Furthermore, a num-

ber of data-clustering algorithms rely on self-organising principles, ([Jain et al., 1999]

for a review), and also as noted in the literature review in chapter 2, attempts have

been made at applying network-based immune system models to data clustering

[De Castro and Von Zuben, 2000b, Timmis and Neal, 2001].

This chapter briefly reviews the basic principles of self-organising systems, and

describes an alternative model of an SDM, before describing how these two approaches

can be combined to produce a model capable of rapidly and efficiently clustering data.

Experiments are performed on the same datasets used to analyse COSDM, so that a

direct comparison of the two systems can be made.

6.2 A Brief Background on Self-Organising Maps

(SOMs)

The SOM in various forms has commonly been used to visualize and interpret large

high-dimensional data sets as well as to perform clustering. The earliest example of

a SOM was proposed by Kohonen, [Kohonen, 1982a] and is commonly used for clus-

tering purposes. Typically, a map consists of a number of units or neurons between

which there is a specific topological relationship. The map or network is trained by

an iterative procedure in which the units in the network are gradually adjusted to re-

flect the clustering of the training data. The training procedure arranges the network

so that units representing centres close together in the input space are also situated

close together on the topological map. The basic learning algorithm follows a two step

procedure which is iterated over many epochs:

1. Determine the unit that is closest to the input data, ’the winner’

2. Adjust the winning unit and its neighbours to be more like the input case, using

a weighted sum of the input case and the unit itself

A time-decaying learning rate is applied to the adjustment to ensure that as time

progresses, the updates become more subtle, and the map eventually stabilises into a
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representation of the input data. The topological ordering is achieved by also updating

units in the neighbourhood of the winner. The size of the neighbourhood also decreases

over time, so that as the map becomes fine-tuned, the size of the neighbourhood even-

tually becomes zero and only the winner is updated.

In the typical Kohonen network, the number of units and topology of the network is

predefined. However, the choice of network structure is difficult, and the need to define

a decay schedule for the various features is problematic [Fritzke, 1997b]. A typical

network produced by the Kohonen algorithm is shown in figure 6.1, taken directly from

[Fritzke, 1997b]). This illustrates the difficulty of choosing a suitable topology that

matches the underlying data distribution. Furthermore, the use of a decay schedule is

one of the key reasons why this type of simple self-organising map has generally been

considered unsuitable for handling non-stationary data distributions. The decaying

network adaption parameter means that as the value of the parameter approaches zero,

the network becomes static and therefore cannot react to any further changes in data.

Another self-organising system that can distribute units according to some given

probability distribution is the neural gas algorithm of Martinetz and Schulten,

[Martinetz and Schulten, 1991]. This algorithm is capable of distributing centres to

reflect underlying data distributions, but does not provide any topological information,

therefore there are no connections between units in the distribution. The algorithm

works by determining the distance in input space between the units in the network and

an input signal, and then adapting the units based on the rank order of these distances.

Like the Kohonen networks, it requires a decay schedule to be defined in advance for

the adaptation parameters, and the number of units must also be pre-defined. However,

it is better able to adapt to data distributions as it does not provide topological infor-

mation. Figure 6.2 again taken from [Fritzke, 1997b] illustrates the application of the

Neural Gas algorithm to the same data distribution as shown in figure 6.1.

In order to overcome some of the problems associated with Kohonen type net-

works that have topological structure, Fritzke has proposed two algorithms for incre-

mentally growing SOMs: growing cell structures, [Fritzke, 1994], and the Growing

Neural Gas (GNG), [Fritzke, 1995]. Both these models provide topological informa-

tion as well as distributing the centres according to the underlying distribution. The
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models present an incremental method of growing a network, in which there is no

need to specify the size of the network, and in which all parameters are constant.

These models therefore are much more suited to finding clusters in data about which

no decisions can be made a priori regarding the likely number of clusters and suitable

topologies. In the GNG algorithm, a growth mechanism for incrementally growing

a network is combined with the topology generation of competive Hebbian learning

[Martinetz and Schulten, 1991]. Starting with very few units, units are inserted suc-

cessively. To determine where to insert such units, local error measures are gathered

during the adaptation process, and each new unit is inserted near the unit with the most

accumulated error. The complete algorithm is given in figure 6.4. The Growing Cell

Structures algorithm is very similar to the GNG model, but differs in that the network

topology is constrained to consist of k-dimensional simplices, where k is some positive

integer, chosen in advance. Thus k = 1 specifies a line, a triange is specified by k = 2

etc.

An example of the application of the GNG algorithm is given in figure 6.3. In

its original forms however, although the GNG is capable of following slowly chang-

ing probability distributions, for example a normal distribution with a slowly drifting

mean, it is unable to handle rapid changes in distribution in a non-stationary environ-

ment, [Fritzke, 1997b]. The problem arises due to units in the network becoming stuck

in former regions of high probability density and from then on becoming ’dead’ units,

with no connections to any other unit in the map. Fritzke proposes a solution to this in

[Fritzke, 1997a] in which he introduces a new on-line criterion for identifying useless

neurons on the network. According to [Fritzke, 1997a]:

... When this criterion is used in the context of the (formerly developed)
growing neural gas network model to guide deletion of units, the result-
ing method is able to closely track non-stationary distributions. Slow
changes of the distribution are handled by adaptation of existing units.
Rapid changes are handled by removal of “useless” neurons and subse-
quent insertion of new units in other places

Each of the above algorithms incorporate features which might potentially be in-

corporated in an immune-SDM based algorithm for data clustering. Clearly, they are

all self-organising, a characteristic which it seems obvious to try and capture in an im-
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mune algorithm given the nature of the biological immune system itself. This thesis is

not concerned with data clustering with topological information, therefore the neural

gas algorithm would seem to provide a basis for a new immune-based self-organising

algorithm. However, as mentioned, it has several drawbacks, such as the need to define

a decay schedule and to predetermine the number of units. Therefore, we propose that

elements of the incremental GNG algorithm might also be incorporated into the new

model. Furthermore, the GNG has already been shown to be capable of adapting to

non-stationary probability distributions which is encouraging.

6.3 Modifying an SDM to function in a non-stationary

environment

In chapter 4 section 4.1.4, the postulates underlying Kanerva’s original SDM were

outlined, and it was explained why these postulates are unsuitable for modelling an

SDM which functions in a non-stationary environment. However, [Hely et al., 1997]

have proposed an alternative model of an SDM — although the model was developed

in order to handle non-random input data more satisfactorily than Kanerva’s original

system, it contains several features which could be adapted to work in a non-stationary

environment. According to [Hely et al., 1997]

the SDM signal model retains the essential characteristics of the original
SDM whilst providing the memory with a greater scope for plasticity and
self-evolution. By removing many of the problematic features of the orig-
inal SDM the new model is not as dependent upon a priori input values.

Their signal-model SDM modifies postulates 1 and 3 of those given in section

4.1.4 and introduces a 4th postulate. Thus the new postulates (taken directly from

[Hely et al., 1997], are given below, with the fundamental changes highlighted in ital-

ics:

1. The storage locations that make up the final memory are not known from the

start. Initially locations are created until there is an excess of storage locations

which then compete for available signal. Storage locations receiving little or no
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Figure 6.1: Kohonen map result for a clustered distribution which is uniform in the

shaded areas. Due to a mismatch between the data distribution and the network topol-

ogy the data distribution is not well represented.

Figure 6.2: Neural Gas result: the distribution of the units reflects the underlying data

distribution. There is no topological information, i.e. there are no neighbourhood con-

nections

Figure 6.3: Result of applying the Growing Neural Gas algorithm: the topology is very

well adapted to the data distribution. The structure consists of two clusters reflecting

the clustered data and all units lie in the regions in which the data actually comes from.
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1. Initialise the set A to contain 2 units, c1 and c2, with reference vectors

chosen randomly according to p(ξ).

Initialise the connection set C ,C ⊂ A×A to the empty set:

2. Generate at random an input signal ξ according to p(ξ).

3. Determine the winner s1 and the second nearest unit s2

4. If a connection between s1 and s2 does not exist already, create it, and

set the age of the connection between s1 and s2 to zero.

5. Add the squared distance between the input signal and the winner to a

local error variable:

6. Adapt the reference vectors of the winner and its direct topological

neighbours by fractions of the total distance to the input signal.

7. Increment the ages of all edges emanating from s1

8. Remove the edges with an age greater than some parameter amax. If this

results in units having no more emanating edges, then remove them as

well.

9. If the number of input signals generated so far is an integer multiple of

a parameter λ, insert a new unit near the unit which has accumulated

most error

10. Decrease the error variables of all units

11. If a stopping criterion has not been meet (e.g. net size or some perfor-

mance measure) continue with step 2

Figure 6.4: Fritzke’s GNG algorithm
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signal are removed. Locations which survive are chosen for the total amount of

signal they receive.

2. The storage locations are very few in comparison with 2n, i.e. the memory is

sparse.

3. Although storage locations are initially randomly distributed in the {0,1}n ad-

dress space, the final distribution of locations depends on the input patterns

presented, and may be non-random.

4. The recognition radius of the original SDM is replaced by a new parameter

which decreases the value of the signal as it spreads out. Locations have real

valued counters to store a copy of the data, weighted by the strength of sig-

nal they receive. The signal does not propagate after it falls below a minimum

strength

The key attractions of this approach as far as SOSDM is concerned is that the

model abandons the recognition radius parameter, which has already been shown to be

problematic, and that it does not rely on locations being randomly distributed through-

out the input space; clearly, the input data in a database is not random. The need for

an explicit recognition radius is removed by distributing each data pattern, i.e. signal,

throughout the memory with decreasing strength. The centre closest to the input data

receives 100% of the signal; thereafter the signal spreads throughout the memory and

some small percentage of the signal, say 5%, is lost at each subsequent location en-

countered. Each location thus receives a weighted copy of the signal, which is used

to update real-valued counters. A ’generate-and-cull’ approach is taken to producing

the final memory. Initially, a new location is created for every input data pattern, with

an address identical to the input data. A ’trial period’ then occurs in which a sample

sample of the input patterns are written to memory, with locations competing for signal

in the manner described. At the end of this period, a ’killing phase’ begins. A further

sample of patterns is written to the memory, only this time, locations which have re-

ceived the least signal are killed off at regular intervals until only approximately 1/2

the original number of locations remain. At this point, the counters are reset and the
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memory is considered stable. The model was shown to exhibit greatly improved effi-

ciency when presented with non-random address patterns when compared to Kanerva’s

original SDM.

However, despite these attractions, the signal model has several drawbacks when

placed in a non-stationary data-clustering context. Firstly, the ’generate-then-cull’ ap-

proach is inappropriate, particularly when considering very large datasets. The pri-

mary reason is that this method does not lend itself well to an adapting environment

— the culling process simply forces the memory to converge onto the current input

space. If that input space changes, another cycle of add-then-cull would be required.

Furthermore, the existence of distinct phases is not very appealing, as this in itself

requires some external mechanism to cause transition between the phases. Secondly,

the method of distributing data across the memory, albeit with decreasing strength is

unsuitable, especially in a memory that contains relatively few hard locations. In small

memories, all centres are likely to receive some proportion of the signal if the pa-

rameters are not chosen extremely carefully — this is exactly the opposite of what is

desired in a clustering system, in which the intent is to isolate clusters. Finally, there

is a large overhead in distributing large amounts of data to many nodes, however, the

signal model seems to require a large number of nodes in order to function correctly.

Thus, the new model SOSDM now described borrows from the underlying philos-

ophy of the Hely signal model of distributing data, but modifies the detail somewhat.

Antigens in the new model can bind to multiple antibodies, but with a binding affin-

ity based on the attraction between an antibody and an antigen relative to all other

antibodies in the system. SOSDM also borrows from the CE-POTTER algorithm in

that antibodies compete for antigens based on their affinity for the antigen data, i.e.

the similarity between the data-item and antibody as given by its address. In order to

tackle the problems associated with the signal model’s generate-and-cull’ approach,

SOSDM adopts a similar approach to growing an SOM as that taken by Fritzke in his

GNG algorithm, in that as the network grows, antibodies are added and deleted only

as necessary in areas of the input space that are misrepresented.

It should be noted that there have also been other attempts to address the shortcom-

ings in Kanerva’s original model, and the choice of Hely’s model as the one to adapt
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was because it seemed to lend itself most obviously to an immune-based model. For

example [Sjödin, 1996] tried to refine the basic model so that it could more efficiently

deal with non-randomly distributed data by adding an extra counter to each location

which counts the number of items stored at the location. A further location is added

covering the entire space — these are then used to determine which locations should

be used in any read attempt from the memory. [Sjödin, 1996] shows that this method

greatly reduces errors in the recalled strings for data that is biased when compared to

the original model, as the new model ignores many locations which are activated but

effectively contain noise.

6.4 Implementation of SOSDM

Pseudo-code outlining the SOSDM algorithm is given in figure 6.5. Firstly, antigens

are distributed to a subset of antibodies, based on the affinity of each antibody for

the antigen in a batch process. Affinity is simply the Hamming Distance between an

antigen and an antibody - the closer the distance, the stronger the affinity between the

two. This results in the counters of the subset of antibodies being updated, according

to the strength of each antigen encounter. After all antigens have been given a chance

to encounter an antibody, the accumulated error of each antibody is calculated. The

error is equivalent to the sum of the distances between each antibody and any antigen

it recognises, weighted by the strength of the encounter. The value of the error is then

used to allow the antibodies to self-organise — antibodies gravitate towards areas of

the space in which they recognise data, the distance and direction of the movement

determined by the accumulated error. Each of these steps is now described in greater

detail.

6.4.1 Notation

The following notation is used to describe the manner in which SOSDM is imple-

mented. Assume an SOSDM is defined by n antibodies (i.e hard locations in an SDM),

each of which is referred to as ci. Each antibody is described by two strings, each of

length L. The first, V (c) denotes the address or location of the antibody, the second
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1. begin with a fixed number of antibodies N, with randomly initialised

positions and counters set to 0.

2. present a subset s(s ≤ N) of the data-set (antigens) visible at time t to

the SOSDM

3. distribute the data in the s to each antibody in the SOSDM, with a

strength proportional to the affinity of the antibody for the data

• update the counters at each antibody according to the binding

affinity of the antigen-antibody encounter

• compute the accumulated error at each antibody

4. update antibody positions — the distance and direction of the move is

determined by the total accumulated error at the antibody

5. update antibody counters

6. add or delete nodes from the memory if necessary

7. go back to step 2

Figure 6.5: The SOSDM algorithm

C(c) consists of L real-valued counters. Thus, V (ci j) specifies the address of bit j in

antibody i and C(ci j) specifies the counter value of bit j in antibody i. The aim of the

SOSDM is to cluster a dataset consisting of N binary antigens, a. Each antigen is of

length L, and ai denotes the value of bit i in antigen a.

6.4.2 Distributing the Data

Data is distributed through the SDM according to the distance A of each antibody c

from an input antigen a. This is simply defined as the Hamming Distance between the

antigen a and the address of the antibody c equation 6.1).
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A(ci,a) =
j=L

∑
j=1

{
1 i f V (c j) = a j

0 otherwise
(6.1)

The affinity of each of the N antibodies for the input antigens is calculated. Fol-

lowing this, the antibody that is closest in distance to the antigen a, denoted by A ∗ can

be determined:

A∗ = max(A(c1,a), ....,A(cN,a)) (6.2)

This value A∗ is then used to determine the strength of the antigen-antibody en-

couter, i.e. the affinity of the antibody for the antigen. From an SDM perspective, this

value determines how much signal from the input data is distributed to each centre.

The affinity of any antibody for an antigen is proportional to the ratio of the distance of

the antibody from the antigen compared to the distance of the ’winning’ antibody from

the antigen, i.e. A(ci,a) to A∗. A further parameter known as the affinity-threshold

t is introduced, such that (0 ≤ t ≤ 1). Antigens are only considered to bind to those

antibodies in which S is greater than this threshold. This is shown in equation 6.3.

Again, from an SDM perspective, this means that only centres where Sc,a > t have

their counters updated due to the incoming signal.

S(c,a) =

{
A

A∗ i f S(c,a)> t

0 otherwise
(6.3)

Binding between an antigen and antibody implies updating the counters at that

antibody. The counter C (ci j) for each bit j at each antibody ci is updated according to

equation 6.4, where γ is equal to 1 if V (ci j) = 1 and to -1 if V (ci j) = 0.

C(ci j) = C (ci j) + γS(c,a) (6.4)

Each time an antibody binds with an antigen, it increments an internal variable

R which relects the total amount of binding exhibited by the antibody, as shown in

equation 6.5:

∀c : R (c) = R (c) + S(c,a) (6.5)
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6.4.3 Calculating the Error at Each Antibody

The self-organising mechanism by which antibodies move around the immune system

is based on a calculation of the total error accumulated at each antibody after all anti-

gens have been distributed to the system. Error is calculated in the following manner;

firstly, each time an antibody binds to some antigen c, the error at each of the j bit

positions for the address of that antibody is updated according to equation 6.6. The

error at each bit position is thus effectively a measure of the difference between the

desired value of the antibody address at position j as given by the value of the antigen

at position j and the actual value of the antibody address, V (ci j).

E(ci j) = E(ci j) + S(ci,a)(a j−V (ci j)) (6.6)

Movement of antibodies only occurs after all antigens have been presented to the

system, which allows the total average error at each antibody, E , to be calculated,

according to equation 6.7. Note that this will always have a value lying between -1 and

1.

E(ci j) = E(ci j)/R (ci) (6.7)

6.4.4 Updating the nodes position and counters

Once all antigens have been presented, self-organisation of the antibodies can take

place. Thus, as shown identified in steps 4 and 5 of the SOSDM algorithm in figure

6.5, the address of each antibody is modified as the antibodies move to parts of the

input space more representative of the antigens they are binding to. The counters

associated with an antibody also move, however they too are modified as the physical

locations of the antibodies move to reflect the new position of the antibody.

The probability with which the position and the counter of each bit j in an antibody

ci are moved is defined according to the absolute value of the average error E(ci j). If

the value of |E(ci j)| is greater than 0.5, then this value determines the probability

with which an address bit is flipped and its counter updated. (The introduction of

the seemingly arbitrary value of 0.5 ensures that the system will eventually stabilize,
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given a static data set, and prevents random movements). Thus, if E(ci j) < 0, then

V (ci j)⇒ 0, and if E(ci j)> 0, then V (ci j)⇒ 1.. Equation 6.8 summarises the effect on

the counters for each bit j in each antibody ci for all antibodies in which |E(ci j)|> 0.5.

A new parameter is introduced — the influence-counter, I . This parameter allows the

amount by which the counters are adjusted to be explicitly controlled.

C(ci j)⇒C(ci j)×
(
1 +
(

I ×E(ci j)
))

(6.8)

Thus, the effect on a counter is that it is increased or decreased by a percentage of

its original value, the amount of which is proportional to the total error accumulated

by the antibody. The effect on the address of bit j is that it is flipped, with a probability

proportional to the average error accumulated at that address location.

In summary, the key features of the SOSDM system involve distributing a sample

of antigen-data to the system, followed by allowing the system to self-organise, in a

manner dependent on the average error accumulated by each antibody. The algorithm

is iterated until it stabilises (given a static set of antigens). Note that when using

SOSDM there is no need to calculate the mean recall accuracy of the system at each

iteration, unlike with COSDM. The value of this parameter does not feedback into the

algorithm and has no bearing on its performance. However, in order for the observer

to evaluate the performance of SOSDM, this quantity must be calculated. The method

by which this is done is now outlined.

6.4.5 Recalling Data from the SOSDM

Exactly as with COSDM, the quality of the SOSDM defined by this model is measured

by the accuracy with which data, i.e. antigens, stored in the memory can subsequently

be recalled, i.e. by r. The recall mechanism is almost identical to that already described

for COSDM in section 5.2.1.2, chapter 5. To recap, when attempting to recall an

antigen a, first the antigen that is retrieved from the memory a′ is calculated, and then

this is compared to the desired antigen, i.e. that which was originally stored in the

memory, a. The process is as follows:

• Calculate the subset of antibodies n′ for which the binding affinity S(ci,a)> t
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• Sum the counters of each member of the subset n′ at each of the j bit positions to

give σ j(a). The value of each counter C(ci j) is weighted by the binding affinity

S(ci,a) during the summation process, as shown in equation 6.9.

σ j = ∑
i∈n′

C(ci j,a)×S(ci,a) (6.9)

Thus, the only differences between this method and that used to measure recall in

COSDM are that the subset n′ is derived from those antibodies in which the binding

affinity S(ci,a) > t, rather than requiring the use of a recognition radius, and that

during the summation process, the counter values are weighted. From here on, the

recall process proceeds exactly as for COSDM, i.e. according to equations 5.3 to 5.5.

Thus, the actual recalled antigen is calculated, compared to the desired antigen, and

the match-score M between the actual and desired antigen derived. The average of the

match-scores over the entire antigen set is used to calculate r.

6.5 Calibrating the SOSDM

This section describes a series of experiments that were performed in order to test and

calibrate the new model. Comparisons are performed to the CE-POTTER algorithm,

as in chapter 5. Extensive testing was performed in order to determine the bounds

in which the model performs satisfactorily, and also the ease with which it could be

calibrated. In the form outlined above, the model requires only 2 parameters to be

set, which compares favourably to any evolutionary algorithm experiments and also

to the number of parameters that must be be set in many of the competitive learning

algorithms described above. Those parameters are the binding affinity threshold, t, and

the influence-counter, I .

6.5.1 Experimental Set-up

Experiments described in the following sections are performed using the static datasets

outlined in chapter 4, section 4.2.1. Therefore, experiments are performed on datasets
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Figure 6.6: Comparison of Potter Algorithm to SOSDM for all experiments

containing 2,4, and 8 clusters, identified as half-schemas, quarter-schemas, and eighth-

schemas respectively. The number of antigens in each dataset is varied from 5 to

500, in steps of 50, and the length of each antigen string is always 64. Unless stated

otherwise, each experiment is repeated 10 times, and the SOSDM algorithm is applied

for 200 iterations. The quality of the immune system representing the data is measured

by the mean recalled accuracy, (see equation 5.5), as in the COSDM experiments. As

with COSDM and CE-POTTER, the number of antibodies in each experiment was

fixed before the experiment began, and remained static throughout each experiment, as

the number of clusters in each dataset is known a priori.

6.5.2 Comparison of SOSDM Performance to that of CE-POTTER

Initial experiments were performed with t = 1.0 and I = 1.0. Thus, antigens can

bind to all antibodies with A = A∗ and to no others. (This is in direct contrast to

the Potter approach in which an antigen can bind to only a single antigen, with ties

broken by age of antibody). The setting for I also ensures that counters are adjusted

maximally. The best recall-accuracy obtained in each of 10 experiments is recorded,

and the results averaged. Figure 6.6 shows a plot of the results — clearly SOSDM

outperforms CE-POTTER for all sizes of antigen datasets and regardless of the number

of clusters. T-tests show that the mean recalled accuracy obtained using SOSDM is

statistically significant in every case when compared to the identical experiment using

CE-POTTER — these results are tabulated in appendix B.

The results may be partially explained by examining the number of antigens that
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Figure 6.7: Examining the number of antigens that bind to more than one antibody

bind to more than one antibody, i.e. belong to more than one cluster — this is shown

graphically in figure 6.7. This shows that as the number of antigens increases, the num-

ber of antibodies binding to an antigen increases. These findings apply to all experi-

ments. In small datasets, it is relatively straightforward for the antibodies to distinguish

between each cluster. For very large datasets however, even though the antigens nom-

inally belong to separate clusters, there is likely to be a large overlap between items in

each cluster, especially as the length of the defined section characterising each cluster

decreases, and the number of antigens generated from that schema increases. Thus,

the memory must generalise in order to accurately recall the large number of data-

items, despite the fact that items nominally belong to a finite set of clusters — this is

achieved by allowing clusters to overlap. This effect is much more clearly apparent in

the quarter-schema and eighth-schema than it is for those using half-schema.

6.5.3 Number of Iterations Required to Find the Best Solution

Table 6.1 shows the mean number of iterations required to produce the best solution for

all experiments, with the corresponding standard deviations. We observe that the mean

values show that the algorithm rapidly converges on a solution, however the algorithm
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Antigens Half Quarter Eighth

Mean SD Mean SD Mean SD

50 15.400000 14.683324 39.700000 52.679429 46.200000 46.322061

100 14.700000 5.618422 37.000000 24.805913 42.600000 41.679198

150 16.700000 11.671904 42.500000 30.613178 75.500000 37.146108

200 27.600000 26.854340 57.200000 30.017773 103.500000 46.980492

250 13.300000 9.866329 46.800000 46.499223 98.800000 47.377444

300 23.700000 18.481522 71.400000 48.339540 110.500000 48.376418

350 13.500000 6.023104 64.700000 56.330473 107.500000 52.816769

400 16.800000 14.226735 79.100000 53.831940 144.500000 36.939139

450 10.400000 8.248906 53.100000 57.085608 148.700000 53.804275

500 18.100000 13.714955 46.700000 40.260402 89.100000 47.799233

Table 6.1: SOSDM: Average/SD of epochs taken to find best solution

is somewhat variable — the standard deviations are very large. Closer examination of

the results showed that in the majority of runs, a good solution was found in very few

iterations, but occasionally, a run required a large number of iterations, thus resulting

in the large standard deviation, Even if this is taken into account, these results compare

very favourably with those obtained by Potter — each iteration of SOSDM requires at

most n∗c calculations of match-score. Potter’s algorithm on the other hand requires n∗
c∗ p where p is the population size controlling each species (or antibody) per iteration,

plus the usual overheads associated with reproduction in an evolutionary algorithm (for

example, crossover, mutation etc.).

6.5.4 Investigating the sensitivity of SOSDM to the influence-

counter parameter

Initial experiments fixed I , the influence-counter parameter to 1.0. This section de-

scribes the effect of varying this parameter. All previous experiments were repeated,

varying I in each case from 0.0 to 1.0 in steps of 0.1. Again the mean recalled ac-

curacy was taken as the measure of quality of the result. Surprisingly, the value of

I appeared to have little effect on the final result. Students t-test was applied to the

mean recalled-accuracy of all possible pairs of experiments (x,y) in each possible ex-
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Number of Antigen Type of Schema

half quarter eighth

50 7 2 4

100 4 1 0

150 5 0 5

200 8 3 4

250 3 6 5

300 0 0 2

350 0 12 0

400 0 3 0

450 0 1 2

500 2 2 4

Table 6.2: The table shows the number of comparisons (out of a total of 55 in each

case) that gave statistically significant differences between the mean recalled accuracy

as I was varied

periment class (A,C) where A = number of antigens, and C = number of clusters, and

x and y identify the value of the influence parameter (with the caveat that x 6= y). Ta-

ble 6.2 shows the number of comparisons which gave statistically significant results,

in that the probability that the means are different is ≥ 0.95. Clearly the table shows

that very few comparisons of I gave statistically significant results. (The total num-

ber of comparisons per experiment class (A,C) is 55). In cases where a statistically

significant difference was observed, then the higher value of I gave improved results,

therefore in future experiments it was determined that I should simply be fixed at 1.0.

6.5.5 Choosing the Binding Affinity Threshold, t

As described in section 6.4.2, the binding affinity threshold t determines if an anti-

gen can bind to an antibody, and if so, how well. High values of t introduce more

competition and therefore encourage antibodies to specialise, whereas low values will

encourage overlap of clusters. Note that a randomly chosen antibody c and antigen a
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Figure 6.8: Examining effect of threshold parameter t on average best fitness across

data set

will be expected to have a binding affinity of S(c,a) ≥ 0.5, as in a binary system on

average 1/2 of the data bits will match the antibody bits, therefore we need only con-

sider thresholds above this value. In practice, it is observed that much higher values

are required if data is not to be distributed to every antibody.

Experiments compared the best recalled accuracy for values of t ranging from 0.8 to

1.0 in steps of 0.02 for 3 datasets. Each dataset contained 200 antigens; set 1 was gen-

erated from half-schemas, set 2 from quarter-schemas and set 3 from eighth-schemas.

Figure 6.8 shows the results of these experiments: as expected, recall-accuracy in-

creases with increasing t, as the ability of the system to generalise is reduced. All 3

experiments show a band over which recall-accuracy rises rapidly, before flattening

off. As a rule-of-thumb, a threshold of t ≥ 0.95 seems a sensible choice.

6.6 Limitations of the Model

This section investigates the limitations of the SOSDM model in terms of its scalability

and with respect to the characteristics of the data-sets it should cluster. In order for it to
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prove ultimately useful using real-world data, the model should perform successfully

with very large data-sets, and also with very long antigens. The latter requirement is

particularly true if we are considering encoding data that occurs naturally in a non-

binary form as a binary antigen string. A database may easily contain one hundred

attributes per record, and encoding a single one of those attributes may require many

bits; encoding a 5 digit US zip-code for example would require 16 bits. Furthermore,

data-sets will vary in both the number of clusters they contain, and the distribution of

data within those clusters. Thus, this section describes experiments which consider the

above factors.

6.6.1 Investigating the effect of cluster size

In the system outlined so far, every antigen will bind to at least one antibody at each

iteration of the algorithm, regardless of the affinity A of the data for the antibodies,

i.e. there must always be an A∗ for each antigen. If all clusters in the dataset contain

roughly equal numbers of items then the recall rate for each cluster will tend to be

roughly similar. However, in real datasets this is unlikely to be the case — clusters

will be unequal in size, and some may be very small compared to others. In this case,

clusters containing very few items will tend to be ’swallowed’ into other clusters as

the antibodies are pulled towards the larger clusters. This will be reflected in a low

accuracy of recall for items in small clusters. This is verified by generating a series of

new datasets in which the clusters are generated in unequal proportions, and repeating

some of the above experiments using both SOSDM and CE-POTTER.

Data is generated by modifying the algorithm described in section 4.2.1 of chapter

4 as follows:

• The total size of each dataset is fixed at 200 antigens

• For each experiment, n clusters are represented by n schemas, each with defined

length d, and the remaining L−d bits represented by wildcards.

• The size of cluster 1 is set to x
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• The size of the other (n−1) clusters is set to be (200− x)/(n−1), i.e. antigens

are equally distributed to each of the remaining clusters.

• Antigens are generated from each schema according to the size of the cluster by

replacing the wild-cards in the schema at random.

Using this method, antigens are generated from half-schema, varying x from 10-

100 in steps of 10, from quarter-schema by varying x from 10-50 in steps of 5, and from

eighth-schema by varying x from 2-25 in steps of 2. 10 experiments were repeated for

each dataset, using both SOSDM and CE-Potter. The best recalled-accuracy for the

entire dataset and for cluster 1 was averaged over the 10 experiments in each case.

The results are shown in figures 6.9, 6.10, and 6.11. An identical trend is observed in

both SOSDM and CE-Potter results — whilst the recall-accuracy of the entire dataset

changes little with the size of cluster 1, there is a noticeable increase in recall-accuracy

of cluster 1 as the size of the cluster approaches that of the other clusters. Moreover,

the accuracy of recall of cluster 1 is often less than the optimal single-string generalist,

described in section 5.3.2. For all values of n, (i.e total number of clusters), the result

obtained by SOSDM intersects this baseline at smaller values of x (i.e. the number

of antigens in the smallest cluster) however. For the half-schema experiments, the

recall-rate is below the baseline until the cluster contains approximately 14% of the

total antigens. The figure drops to 6% for the quarter-schema experiments, whereas in

the case of the eighth-schema experiments, the recalled-accuracy of cluster 1 is always

above the baseline, though it shows the same increase as x increases.

6.6.2 Fitness Proportionate Selection of Data — FPS

In attempt to improve the recall accuracy of small clusters, a new method of selecting

data to be stored in the memory was proposed. In the original SOSDM, all antigens

visible to the SOSDM are stored exactly once in the memory at each iteration of the

algorithm. An alternative approach is to select antigens for storing in the memory at

iteration i according to the difficulty with which the data can was recalled from the

system at iteration i−1. This method is identical to the fitness proportionate selection
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Figure 6.9: Half-Schema: Figure shows average best fitness recorded across entire

dataset, and for smallest cluster only. Comparison is shown for SOSDM/Potter algo-

rithms
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tire dataset, and for smallest cluster only. Comparison is shown for SOSDM/Potter

algorithms
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method common to evolutionary algorithms in which items are selected according to

some measure of fitness:

• Let fi be the fitness value of an individual i and let f̄ be the average fitness of the

population i.e. f̄ = (1/N)
N
∑
1

fi

• The probability of an individual being selected is given by:

pi = fi/
N
∑
1

fi = (1/N)( fi/ f̄ ), since
N
∑
1

fi = N f̄

.

In this case, the fitness of a piece of data is inversely proportional to the accuracy

with which the data is currently recalled. Therefore items which are recalled poorly

have a high fitness and therefore more chance of being selected. A consequence of this

method is that the same piece of data may be selected multiple times for storing in the

memory during one iteration of the algorithm.

In order to implement this method of data selection, the fitness or failure rate fa

for recall of each antigen a at iteration t is calculated as shown in equation 6.10 during

the recall phase 1.

1At iteration 0 of the algorithm when all counters are 0, the failure rate is defined by fa =
(L−M (a))/L



Chapter 6. A Self-Organising SDM — SOSDM 164

CE-POTTER Standard SOSDM SOSDM with FPS

s=10 s=200

Mean recall all data 49.17 50.28 49.82 50.09

Mean recall group 1 41.88 44.24 46.19 45.33

Table 6.3: Comparison of mean recalled accuracy for CE-POTTER, standard SOSDM

and FPS-SOSDM for group 1 schemas and entire dataset

fa(t) = (L− r(a))/L (6.10)

Thus, failure rates calculated following iteration t are used at iteration (t + 1) in

order to select a subset of data of size s for storage.

6.6.2.1 Experimental Results

A series of experiments was performed using a dataset containing 200 antigens gener-

ated from two half-schema. 5% of the dataset was generated using schema-1, and the

remaining 95% using schema-2. The size of subset s selected for storing in the mem-

ory at each iteration was varied from 10 to 200 in steps of 10. After 200 iterations, the

best recalled-accuracy of the entire dataset was measured, and also the best recalled

accuracy of the 5% of antigen generated from schema-1. These results were compared

to the corresponding experiments where all data is stored exactly once in the SOSDM.

In each case, experiments were repeated 100 times. Table 6.3 compares the results for

CE-POTTER, with standard-SOSDM and FPS-SOSDM.

6.6.2.1.1 Average recall of entire dataset Comparing the mean recall-accuracy

for FPS against the standard SOSDM algorithm shows the standard algorithm always

outperforms FPS, and applying Student’s t-test to the results shows that the results

are statistically significant, (see table B.4 in appendix B. The results obtained using

FPS are still better than those obtained by CE-POTTER however, and improve as s

increases.
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Size of subset 1 Size of subset 2 P(means different) Mean Subset 1 Mean Subset 2

10 20 0.970369 46.193636 45.450909

10 90 0.960757 46.193636 45.539091

10 100 0.993885 46.193636 45.297273

10 110 0.991606 46.193636 45.340909

10 120 0.951153 46.193636 45.570000

10 140 0.975882 46.193636 45.458182

10 180 0.967632 46.193636 45.498182

10 200 0.993710 46.193636 45.333636

50 100 0.959255 45.926364 45.297273

50 200 0.955828 45.926364 45.333636

70 100 0.973447 46.004545 45.297273

70 110 0.964623 46.004545 45.340909

70 200 0.971447 46.004545 45.333636

Table 6.4: The table shows the comparisons of subset size used in FPS which produced

a statistically significant difference in mean fitness for the smallest cluster

6.6.2.1.2 Average recall of smallest cluster Examining the mean recall of the

smaller group of schemas however shows the opposite trend; for all values of s the

best result found is better than both standard SOSDM and CE-POTTER. The differ-

ences are statistically significant in each case (see table B.5 in appendix B). Thus,

there is a trade-off between improving fitness of small groups vs fitness of entire data

set. There is no obvious trend in the results as s increases. In comparisons of mean

recalled accuracy of the smallest cluster for a subset size of size s1 to a subset of size

s2, then in only 13/190 cases are there significant differences observed in the recalled

values. The cases where statistical differences were observed are summarised in table

6.4.

6.6.3 Performance of SOSDM vs Size of Dataset

Experiments were performed using datasets ranging in size from 500 antigen to 10,000

antigen in steps of 500. All datasets were generated using 4 quarter-schema, and the

mean recalled accuracy of the entire dataset measured at the end of 200 iterations of
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Figure 6.12: The figure shows how mean recalled accuracy r varies with the size of the

antigen dataset N

the algorithm. Experiments were repeated 50 times in each case. Figure 6.12 shows

the performance of SOSDM vs the size of the dataset, with error-bars showing the

minimum and maximum accuracy over the 50 experiments. Note that although there

is a slight downwards trend in mean recalled accuracy r, the value of r is always sig-

nificantly greater than the result that would be obtained using the best possible string

generalist, which would give r = 40. T-tests show what there is a significant difference

(p> 0.99) in the value of r obtained for N = 1000 and that obtained when N = 10,000.

6.6.4 Performance vs Length of Antigen

A second series of experiments used datasets generated again from quarter-schema,

this time of fixed size N=200 antigens. The length of the antigen L in each dataset was

varied from 40 to 1000 in steps of 40. The best recalled accuracy r was measured at

the end of 200 iterations of SOSDM, and the results averaged over 50 trials. Figure

6.13 shows the results of these experiments; a comparison is made to the mean recall

accuracy that would be expected using the best possible single string generalist for each

value of L. The figure shows a direct correspondence between r and L — again, for

every value of L , the value of r exceeds that expected using the single string generalist
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Figure 6.13: The figure shows how mean recalled accuracy r varies with the length of

antigen L in a dataset of fixed size 200

and this difference increases as L increases.

6.7 Performance of SOSDM in non-stationary environ-

ments

One of the motivations that drove the design of the SOSDM system was that it should

be able to operate in a non-stationary environment, taking inspiration from the bio-

logical immune system. Thus, consider the behaviour of the system in an artificial

non-stationary environment in which the number of clusters remains fixed and known

a priori, but in which the centres of the clusters may move and in which the data within

the clusters is continuously updated. This environment allows many types of dynamic

scenarios to be tested — two possibilities are addressed here:

1. The centre of the clusters remain fixed, but the data in the clusters is gradually

updated, by replacing the original data-items with new data-items, so that the

total number of data-items remains constant.

2. Clusters are randomly replaced by entirely new clusters containing new data.
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Again the total number of data-items in the system remains constant throughout.

(This is an identical scenario to that described in chapter 5 section 5.5).

Experimental details and results are now presented for the behaviour of the

SOSDM system under each of these scenarios. In both scenarios, an update regime

is implemented in the following manner:

• The first update (whether of an entire cluster or of data-items within a cluster)

is made after a fixed interval known as the tolerization period. This allows the

system sufficient time to organise into s state where it accurately represent the

initial dataset.

• Subsequent updates are performed whenever the fitness of the system has re-

turned to within 1% of the maximum fitness recorded immediately prior to the

last update.

The size of the interval between updates (i.e. the number of iterations) indicates

how long it takes the system to respond to the change in data and return to its previous

level of accuracy, therefore is a useful indicator of the performance of the system.

Thus in each experiment, the interval between updates is recorded, and averaged over

5 repeated runs of each experiment.

6.7.1 Update of data within fixed clusters

The experimental procedure adopted is at each update to choose at random one of the

clusters in the system, and replace a randomly chosen fraction of the antigens within

that cluster with new data, which are generated from the schema that identifies the

cluster. The number of antigens replaced at each update is controlled by the variable f ,

which specifies a percentage of the antigens to be replaced. Experiments are performed

using an antigen data-set containing 200 items, each of length 64 bits. The antigen are

generated from 2 distinct schema, each with 32 contiguous bits set to ’1’, the remaining

bits being wild-cards. The length of the tolerization period is set to 100 iterations, and

updates are performed whenever the system returns to within 0.5% of its previous best

fitness. The relationship between the length of the update interval and the fraction of
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antigens updated, f , is investigated by varying f from 10% to 100% in steps of 10, and

allowing the experiment to run for a total of 2000 iterations in each case. The averaged

results are given in table 6.5. The results show that when the description of the clusters

remains unchanged, on average the SOSDM system quickly responds to new data. The

standard deviations are rather large however, as can be seen from the wide variation

in the minimum and maximum number of iterations between each update shown in

this table. Occasionally, SOSDM takes a very large number of intervals to return to

within 0.5% of its previous level of accuracy, though these cases are rare. There is a

general (and expected) trend that the number of intervals between updates increases as

f increases. However, the average interval size is still very small, even when 100%

of the dataset is replaced. It is noteworthy that table 6.5 also shows that in every

experiment, the minimum interval required for the system to return to its previous

level of fitness is only 1 iteration. This is quite surprising, and simply appears due to a

fortuitous combination of the random choice of data to be replaced and the random data

with which it is replaced. More detailed examination of the data would be required to

confirm this. Nevertheless, it illustrates the model’s ability to react rapidly to changes

in data.

6.7.2 Appearance of new clusters

A somewhat harder test of the system is to investigate how it responds to the appear-

ance of entirely new clusters. The number of antibodies in the SOSDM model is fixed

throughout each experiment, as in this case the number of clusters is of course known

a priori. Although this is of course an artificial situation, in some ways it represents an

extreme test of the system — in real life, entire new clusters are unlikely to suddenly

appear at the same time as other clusters suddenly disappear, rather, a more gradual

process would occur. The situation in the real world is likely to fall somewhere in be-

tween the behaviour described here and that described in the previous section, therefore

the extremes are investigated.

For consistency, experiments were repeated exactly as in chapter 5, section 5.5.

Thus 9 sets of experiments were performed, in which data sets were generated using

2,5,10 schemas of length 64 bits, and the defined section of each schema was set to
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f Average Interval Minimum Maximum Standard

(%) between Updates Interval Interval Deviation

10 1.000000 1 1 0.000000

20 1.126316 1 13 1.224677

30 4.833333 1 252 27.442566

40 3.820225 1 130 15.437851

50 30.024390 1 549 81.543790

60 19.873563 1 340 64.113012

70 32.823529 1 401 82.663375

80 29.536232 1 336 75.658956

90 24.122449 1 280 55.245143

100 33.694915 1 296 74.696959

Table 6.5: The table shows the average number of iterations taken for the SOSDM

system to reach its peak fitness value following replacement of f antigens. An interval

records the number of iterations between antigen updates.
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Figure 6.14: The figure shows how the recall accuracy of the SOSDM changes following

a number of antigen updates in which entirely new clusters are introduced. The points

marked * indicate the iteration at which the antigens were updated. The data contains

5 clusters, each containing 40 antigens. One cluster is replaced at each update.

either 8,16 or 32 bits. For each dataset containing c clusters, experiments tested the

ability of SOSDM to respond to replacing 1,2, ..,c clusters at each update, resulting in

a total of 51 experiments. Figure 6.14 shows a typical result of one of the experiments

in which the dataset was generated from 5 schemas each with 8 defined bits, and in

which one cluster was replaced at each update. Full results are given in appendix B,

tables B.6, B.7, B.8. It is difficult to observe clear trends in the results by varying

either the number of clusters in the dataset or the number of defined bits in a cluster.

However, it is possible to observe that in all but one of the experiments, the average

time lag for the system to return to its previous best level of fitness increases as the

number of updates in one experiment increases.

It becomes increasingly difficult for the system to respond as the number of clusters

being replaced increases. This is clearly shown by analysing two situations in which an

identical number of antigens are replaced at each update, but in differing numbers of

clusters. Thus, if we compare an experiment on a data-set generated from 2 schema in

which 1 cluster is replaced with one in which the data-set is generated from 10 schemas

and 5 clusters are replaced, (table 6.6), then it is clear that when the number of defined
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Number of Index of Average Lag Minimum Lag Maximum Lag

Defined Bits Update S=2 S=10 S=2 S=10 S=2 S=10

8 2 159.2 251.8 100 183 216 365

3 276.6 613.4 187 309 364 1304

4 407.0 758.75 280 574 497 941

5 611.0 657.0∗ 372 657 846 657

16 2 100.0 401.0∗ 100 401 100 401

3 138.2 1244.0∗ 100 1244 231 1244

4 128.2 ** 100 ** 165 **

5 268.6 ** 143 ** 348 **

32 2 146.8 187.0 100 132 206 257

3 324.0 361.4 201 307 504 480

4 121.6 300.4 100 248 208 362

5 615.25 307.0 459 198 819 522

* indicates that only one update was observed during 2000 iterations

** indicates that no updates were observed during 2000 iterations

Table 6.6: The table compares the average lag between updates observed when 50%

of the antigen data is updated at each update for data sets in which S = 2 and S =

10. However, when S = 2, this corresponds to replacing 1 cluster, when S = 10 this

corresponds to replacing 5 clusters.

bits in each schema is 8 or 16, it is much more difficult for SOSDM to respond to

replacing 5 clusters. Indeed, in some experiments, the SOSDM never manages to

return to within 1% of its previous best fitness before the limit of 2000 iterations is

reached, and hence only one update is performed. Furthermore, the tables in appendix

B shows that there is little observable difference in the average lag between updates

between experiments in which 1 out of a possible 10 clusters (and therefore 10% of

total data) is updated and those in which 1 out of 2 clusters (and therefore 50% of total

data) is replaced. Therefore, we can conclude that SOSDM seems much more sensitive

to changes in cluster position than changes in data.
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6.7.3 Making the System Truly Dynamic

In order for SOSDM to operate in a truly unsupervised manner in a non-stationary

environment, SOSDM should be able to create and delete antibodies in response to

the data it is exposed to, as generally the number of antibodies required will not be

known a priori. [Fritzke, 1994] notes that a purely incremental approach to generating

a network or model is unsatisfactory in a dynamic environment, as the centres (or anti-

bodies in the SOSDM case) must be able to adapt to changing data, and that therefore,

a model must also contain a mechanism for removing anibodies when appropriate.

Possible ways of achieving this are now considered.

6.7.3.1 Adding Antibodies

The incremental algorithms proposed by Fritzke (e.g. [Fritzke, 1994, Fritzke, 1995]

handles addition of nodes by simply adding new units after presentation of every λ in-

put signals. This is unsatisfactory for SOSDM as we wish the number of antibodies to

correlate with the number of clusters, hence using such an addition mechanism would

work only if combined with an efficient method of removing antibodies. Furthermore,

the choice of λ is also difficult.

The method used in COSDM, (chapter 5), was to add antibodies whenever the

global fitness of the system had stagnated. This approach seems reasonable for

COSDM where the fitness measure of the system has a direct influence on the evo-

lution of the co-evolving populations of potential antibodies; in SOSDM on the other

hand, the global fitness or recall accuracy of the system is incidental — it does not

have any direct influence on the movement of antibodies during the self-organisation

of the system. Therefore, this method appears somewhat of a ’cheat’ and again incurs

high overheads in having to calculate recall accuracy at every iteration.

Therefore, a mechanism is suggested in which stagnation of the system is detected

not in respect to recall accuracy but in terms of movement of antibodies — if no move-

ment of any antibody has happened over a fixed number of generations s (the stagna-

tion threshold) then an antibody is added. The new antibody is generated in a random

position with its counters initialised to zeros.
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6.7.3.2 Deletion

[Fritzke, 1997a] suggests a method of deleting ’dead units’ when trying to track non-

stationary distributions using the GNG algorithm that involves a local utility measure.

In the typical GNG application, it is possible to compute how much the error for some

given input signal ξ would increase if the winning unit s1 were not present, and the

signal instead had to be mapped to the runner-up unit, s2. The increase in error is

then simply ‖ξ−ws2‖2−‖ξ−ws1‖2. This allows the total utility of each unit to be

calculated by summing the utilities over all input signals, and then a unit is removed

whenever its utility falls below some predefined threshold. However, this method does

not transfer well to SOSDM; in the pure GNG algorithm, error is easily calculated as

‖ξ−ws2‖2, but in SOSDM, although the winning antibodies are determined based on

the correlation between the address of the antibody and the data to be stored, the error

in the recall accuracy depends also on the counters stored at the physical address. Sec-

ondly, the recall error can only be calculated once all data has been stored, and hence

there is an extremely high overhead in calculating such a utility measure, especially in

a very large database. For these reasons, the use of a utility function was rejected as a

method of deleting nodes.

The following method of deleting antibodies is suggested :- the sum of the binding

affinities of the antibody with all its binding antigens, R is compared to the total bind-

ing affinity the antibody would exhibit if it had bound to all available antigens; if the

ratio of these quantities is less than some predefined percentage d (the deletion thresh-

old), then the antibody is deleted. However, as in the COSDM model, an antibody is

allowed to exist for at least n epochs after creation in order to give it an opportunity

to survive. Furthermore, a caveat is applied that if an antibody uniquely recognises at

least one antigen, then it is allowed to remain.

6.7.3.3 Results

A series of experiments was performed in which SODSM was used to try and cluster

the half-schema, quarter-schema and eighth-schema data used throughout this thesis.

Each dataset contained 200 antigens, and in each experiment SOSDM was initialised

with 2 antibodies. The stagnation threshold s is set to 10 iterations, and the deletion
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Data No. Antibodies Average No. Average Recall

(original data) Antibodies using SOSDM Accuracy

half-schema 2 2.29 49.41

quarter-schema 4 6.75 44.77

eighth-schema 8 10.06 42.40

Table 6.7: The table shows the average number of antibodies required and correspond-

ing accuracy of recall for clustering data-sets with a dynamic SOSDM algorithm

threshold d was varied as described below. At the end of each experiment, the best re-

call accuracy and the corresponding number of antibodies in the system are recorded.

Each experiment was run 100 times and the results averaged. Initial experiments using

the half-schema data showed that the actual value of the deletion threshold parameter

d was unimportant in terms of the recall accuracy the system achieved and the average

number of antibodies used, however it had a large effect on the number of times anti-

bodies were deleted from the system and then subsequently re-added, hence a careful

choice is necessary in order to make the system efficient. These results are shown in

table B.9, appendix B, which clearly indicates that for this data, a large increase in

the instability of the system occurs when the deletion threshold rises above 0.3. How-

ever, for all values of d, the system always produces its best results when the number

of antibodies is on average 2, as desired. Experiments with the quarter-schema data

and eighth-schema data were performed with d set to 0.25. The average number of

antibodies required to give the best recall is shown in table 6.7.

The number of clusters in each case is sensible — although the original data-sets

were created using 2,4 and 8 schemas and hence nominally contain the correspond-

ing number of clusters, these clusters are somewhat arbitrary. Recall that the data is

created by randomly filling in wild-cards in a set of schemas, therefore the formation

of other clusters is likely, especially when the defined length of the schemas is short.

Thus, with the half-schema data, the data is most accurately recalled using 2 or 3 clus-

ters, closely matching the original schemas, whereas in the eighth-schema data, more

accurate recall is gained by using more than the 8 clusters that the data was generated
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from.

6.8 Conclusions

This chapter has presented a new model for clustering data, combining ideas from im-

munology, self-organising maps, and associative memories. A thorough investigation

of the model’s performance has been carried out, in particular:

• The ease of calibrating the model, i.e. its sensitivity to internal parameters

• The performance of the model on a set of benchmark data

• The limitations of the model with respect to characteristics of the data-sets on

which it operates

• The performance of the model in non-stationary environments

The results have shown that SOSDM outperforms both CE-POTTER and COSDM

on the benchmark data, and that it is straightforward to calibrate. Furthermore, it is

fast and reliable — the benchmark datasets were clustered accurately in fewer than

100 iterations of the controlling algorithm. The performance of the system on data-

sets other than the benchmark data was also promising, in that the system appears to

scale well with both the size of the data-sets and the length of the data items within the

data-sets. The problem of clustering data-sets in which there is an uneven distribution

of data within clusters was also addressed. The results of this investigation showed

that recall of very small clusters could be improved by extending the model to include

Fitness Proportionate Data Selection, FPS, however, this was at the expense of de-

creasing the accuracy of recall of the entire data-set. Encouragingly though, SOSDM

still performs better than both CE-POTTER and COSDM on these data-sets. Clearly

this is something that needs to be addressed more fully in the future, as real data-sets

are unlikely to contain data evenly distributed between clusters. A possible alternative

to FPS would be to utilise Dynamic Subset Selection of data-items, a method proposed

by Gathercole in [Gathercole and Ross, 1994]. In this paper, Gathercole et. al suggest
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a method for selecting training examples during evolution of a classification function-

tree using Genetic Programming. Cases are selected on the premise that it is of benefit

to focus attention on those cases which are currently difficult, i.e. are currently mis-

classified, and also on those cases which have not been looked at for several iterations.

Thus cases are selected for training with a bias that is based on both the difficulty and

’age’ of the case. However, both this method and FPS suffer from the drawback that

they effectively implement a type of supervised learning, whereas ideally an immune

system based model would be truly unsupervised. Furthermore, they both require the

recall accuracy of each item to be calculated following every iteration — this is not

always desirable and adds a considerable time overhead, especially if the data-set is

large.

Experiments performed in dynamic environments showed that SOSDM rapidly

adapts to data that is changing within fixed clusters, being able to return to its pre-

vious levels of accuracy within a few iterations. It responds less well to the appearance

of entirely new clusters, though as previously noted, this is an unlikely scenario in a

real-world situation. Certainly new clusters will appear over the course of time, how-

ever it is likely to be a slow and gradual process. Furthermore, the quality of the

response is somewhat dependent on the characteristics of the dataset. One radical so-

lution would be to periodically restart the algorithm from scratch using the current

data; this is feasible given the short time-scales required to run the algorithm, however

it has the major disadvantage that all historical information contained in the counters

is lost. New methods of dealing with the formation of new clusters will be tackled in

the future, and are likely to be closely related to the mechanisms incorporated in the

algorithm for adding and deleting antibodies dynamically.

Currently the system incorporates simple mechanisms for determining when to

delete and add antibodies. The addition mechanism is fairly crude in that it detects

stagnation of the system simply by monitoring movement of the antibodies, and then

adds a new antibody in a random position. This could be made more sophisticated

by adding the new antibody in a part of the input space which is not well represented

by the current system, for example by interpolating between the antibodies with the

largest accumulated error, as in Fritzke’s GNG algorithm. The criterion for determin-
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ing whether an antibody should be added could also be improved. A simple suggestion

would be to add a new antibody if it is determined that the distance between some anti-

gen and the closest antibody is greater than some constant d. However, an alternative

proposal which it is intended to follow up in the future would be to cause antibodies

which only exhibit weak binding (due to data appreaing far away) to emit a distress

signal. On the other hand, antibodies binding strongly to antigens could emit a content-

ment signal. Monitoring the overall level of distress in the system could then prompt

creation of a new antibody within the system. This has a direct analogy with the danger

model proposed by [Matzinger, 1994b] in which it is claimed that cells emit a danger

signal when faced with invading and dangerous pathogens. Furthermore, this system is

not particularly information-intensive and hence is appealing from the computational

perspective.

In summary, SOSDM appears promising as a model for clustering data, both sta-

tionary and non-stationary. It has addressed the problems inherent in COSDM of deal-

ing with fixed, pre-determined radii and of potentially failing to recognise proportions

of the data, and performs very well on the benchmark datasets. It has also been shown

to be scalable. Though improvements need to be made to the mechanisms which allow

it to operate in a non-stationary environment, the experiments have shown that in its

current state, it is capable of clustering moving data-sets with some success, even in

extreme conditions. Finally, the model itself has moved closer to embodying the basic

principles of the immune system, in that it is self-organising and unsupervised.
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Conclusion

7.1 Overview

This chapter summarises the work presented in the preceding six chapters. It addresses

the question of to what extent the original aims of the thesis have been met, and dis-

cusses the usefulness of the immunological metaphor in the context of other similar

systems. Finally, some suggestions for future work are presented.

7.2 Were the aims achieved ?

The aim of this thesis as stated in the introductory chapter was to assess whether

the immune metaphor provided features which distinguished it from other biological

metaphors, and to attempt to categorise the types of problem area where application of

the metaphor might prove advantageous. In order to do this, two application areas were

examined, those of scheduling and data-clustering (both stationary and non-stationary).

For both problem domains, two different models were developed, incorporating a num-

ber of immunological principles. The success of each model in its relevant problem

domain has been discussed in detail at the end the chapter in which each model was

introduced. In this section, some general conclusions are drawn regarding the design

of each model.

Table 7.1 lists the distinguishing properties of the immune system, as described by

179
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Artificial Immune System

SCHED1-IS SCHED2-IS COSDM SOSDM

Recognition yes yes yes yes

Feature-Extraction yes yes yes yes

Diversity yes yes no yes

Learning yes yes yes yes

Memory yes yes yes yes

Distributed detection no no possible possible

Self-regulation no no no yes

Threshold-mechanism no yes yes yes

Co-stimulation no no no no

Dynamic protection no no yes yes

Probabilistic detection yes yes yes yes

Table 7.1: The table identifies which of the distinguishing features of the biological

immune system are present in each of the models developed in this thesis

[Dasgupta, 1998] and presented in chapter 1. For each of the four new AIS models

developed in this thesis, the table identifies which of the distinguishing features of the

biological immune system are present in each model. Each model is now discussed in

turn in more detail with reference to this table.

7.2.1 Scheduling Models, SCHED1-IS and SCHED2-IS

The SCHED1− IS and SCHED2− I algorithms both involve two distinct phases in

schedule production. In the first phase, schedule building blocks are derived (via an

evolving immune library in the case of SCHED1− IS and by finding blocks that match

existing schedules in the case of SCHED2− IS). In the second phase, the building

blocks are combined to produce new schedules (randomly for SCHED1− IS and using

mechanisms based on immunological principles in the case of SCHED2− IS).

In SCHED1− IS, there is no direct analogy of the usual recognition process that

occurs between an antibody and an antigen — an indirect recognition process occurs
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however when the schedule builder produced as a result of combining segments from

the evolved libraries is used to form a schedule based on the conditions defined by

the antigen. The quality of the actual schedule produced as a result of binding the

schedule-builder with the antigen defines the strength of the recognition process. Dur-

ing the evolution of the schedule fragments in SCHED2− IS, the recognition process

is explicit; schedule fragments are directly matched against existing schedules in order

to generate the building blocks from which new schedules can later be derived.

Both models exhibit feature detection, the features detected being useful fragments

of schedule, or schedule builder. Both models also exhibit diversity, in that a small

number of schedule fragments can result in a large number of schedules, owing to

the combinatoric manner in which fragments are used to produce entire schedules.

Learning is also apparent in both models — in each case, a genetic algorithm is used

to learn which schedule fragments are required to make up the immune system. The

models thus also utilise memory, which is simply the store of schedule building blocks.

Neither SCHED1− IS or SCHED2− IS provide distributed detection in the same

manner as the biological immune system which must provide physically distributed

detection in order to detect invaders entering any part of the body. However, it could

be argued that they are robust to individual points of failure within each system; as each

system consists of multiple schedule fragments, loss of individual fragments does not

render either system useless. Therefore, they exhibit the properties that distributed de-

tection confers. Similarly, neither SCHED1−IS nor SCHED2−IS are self-regulating.

Use of a genetic algorithm with an associated fitness function is clearly an external

regulatory mechanism and hence the systems cannot be considered to be in any sense

self-regulating.

SCHED1− IS does not contain any kind of threshold mechanism — a schedule

can always be produced by combining an antibody, i.e. a schedule-builder, with an

antigen (the scheduling conditions) and although the quality of resulting schedule feeds

back into the fitness function of the genetic algorithm, it does not prevent ’binding’,

(i.e. formation of a schedule) occurring. On the other hand, an explicit threshold

mechanism is incorporated in SCHED2− IS, below which a match does not occur.

Co-stimulation, i.e. the presence of a ’second signal’ reinforcing the match between
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antigen and antibody is not utilised in either SCHED1− IS or SCHED2− IS. As

both systems are essentially static, i.e. once a set of schedule fragments has been

produced it remains constant, there is little need for such a mechanism. However,

such a mechanism might prove useful if the models were adapted such that the set of

schedule fragments was continuously adapted, so that fragments which do not prove

useful in generating good schedules were gradually replaced by new fragments. In this

case, co-stimulation would be provided to indicate that a schedule fragment contributed

to producing a good schedule and thus prolong its ’life’ in the set of all fragments. The

fact that both scheduling models are static systems also means that there is no feature in

these models that has a direct analogy with the dynamic protection feature observed in

the natural immune system, which increases the cover provided by the immune system

over time.

Probabilistic Detection in the natural immune system implies that a lymphocyte

can bind with several kinds of structurally related antigen. Due to the absence of

a threshold-mechanism for SCHED1− IS, any antibody can bind with any antigen,

though the resulting objective function for the schedule may be low. For SCHED2−IS,

probabilistic detection is implicit; a schedule fragment can match a set of antigens

owing to the presence of wild-cards within each fragment, and does not match other

antigens at all due to the use of a matching threshold.

7.2.2 Data-Clustering Models, COSDM and SOSDM

COSDM and SOSDM are both based on the concept of the Sparse Distributed Memory,

but are hybridised with other methodologies in order to provide an adaptive system.

Thus, COSDM is a hybrid of an SDM and a genetic algorithm, whereas SOSDM is

a hybrid of an SDM and a self-organising map. In chapter 1 of this thesis, it was

stated that one of the questions that this thesis hoped to address was “to what end does

the immunological metaphor provide an analogy that cannot be provided by another

less seductive labelling” therefore this section addresses the point as to whether it is

justifiable to refer to the hybridised systems presented as ’immune systems’.

Any basic introduction to biological immunology almost always begins with a

discussion of the respective roles of antibodies and antigens, therefore clearly these
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features must be able to be identified in COSDM and SOSDM as a first step to call-

ing them immune systems. The two preceding chapters have shown that for a data-

clustering system these roles can be identified. In both COSDM and SOSDM, data

can be considered as antigen, and also in both systems, the ’centres’ defining the SDM

play the role of antibodies, therefore the systems contain the essential core compo-

nents. Therefore, it seems reasonable to argue that if these components are there,

and that the systems exhibit the defining features of the immune system as given by

[Dasgupta, 1998] then it is justifiable in referring to COSDM and SOSDM as im-

mune systems. [Smith et al., 1999] has already shown that an SDM is a member of

the same class of associative memories as immune memory, however, this fact alone

is not sufficient to justify calling an SDM-based system an immune system — a com-

parison of table 7.1 and table 2.1 in chapter 2 shows that there are features exhibited

by the immune system that are not observed in Smith’s mapping between the SDM

and the immune system. The relationship between each of the features in table 7.1 and

COSDM/SOSDM is now discussed.

Both the COSDM and SOSDM models clearly incorporate a recognition mecha-

nism — antibodies bind to antigen only when the affinity between the two is consid-

ered to be sufficiently high. In the case of COSDM, this involves the use of a threshold

mechanism, i.e. the recognition radius, which directly determines whether the anti-

body recognises the antigen or not. In SOSDM, the concept of the recognition radius

is replaced by the affinity-threshold, which effectively acts as a threshold mechanism

in that it determines whether any binding at all can take place. The difference between

the models is that in SOSDM, antigens are always distributed to at least one antibody,

whereas in COSDM, the threshold mechanism can prevent recognition of an antigen

by any of the antibodies. In both cases, recognition is clearly probabilistic — an exact

match between an antibody and an input data item (antigen) is not required in order for

recognition to occur.

Both COSDM and SOSDM perform feature extraction — by performing clustering

of the data, the system is indirectly detecting features in the data. In each system,

an antibody describes the feature present in the cluster its represent by virtue of its

description (i.e. address) and its associated set of counters.
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Diversity as described in [Dasgupta, 1998] is the usage of a combinatoric process

in order to generate a diverse set of lymphocytes that can bind to any antigen, whether

known or unknown. COSDM does not exhibit true diversity, as discussed in chapter

5 — if suitable recognition radii cannot be found, then it is possible for a COSDM

system to fail to recognise some antigens. SOSDM on the other hand does not utilise

a combinatoric mechanism to confer diversity, but achieves the same result via a com-

petition between antibodies for recognising an antigen, which always results in the

antigen being recognised by at least one antibody, therefore an SOSDM model will

always recognise both known and unknown antigen.

Both clustering algorithms are capable of learning, in order to find the best antibod-

ies to accurately describe the clusters present in the data. In COSDM this is achieved

via a genetic algorithm, in SOSDM by using a similar learning algorithm to that found

in self-organising maps. By definition, the models exhibit memory — they are exam-

ples of associative, content-addressable memories. Furthermore, they both have the

potential for offering distributed detection. Antibodies can be physically distributed

across servers, and the systems are robust to loss of one or more of the antibodies

without adversely affecting performance, as in each case, antigens can be bound by

more than one type of antibody.

Co-stimulation is not modelled by COSDM or SOSDM. In principle, it could be

included in both models to reinforce addition of new antibodies when the system be-

comes static. Both models however exhibit dynamic protection, in that the systems can

respond to dynamic changes in the environment. This is due to the ability of the anti-

bodies to ’move’, i.e. adapt their definition, in response to changes in the environment.

Both systems exhibit probabilistic detection. The dynamic manner in which anti-

bodies are added to the system in both COSDM and SOSDM result in new antibodies

being added at random positions in the systems, and thus confers an element of prob-

abilistic detection.

Finally and most importantly, SOSDM embodies one of the most important princi-

ples of the biological immune system listed in table 7.1, that it is self-regulatory. This

feature is not displayed by COSDM which by use of a genetic algorithm to control its

evolution requires an external fitness function.
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In addition, COSDM and SOSDM also incorporate some other biological features

not mentioned in table 7.1. Binding of antigens to specific antibodies based on the

attraction of the antibody for the antigen is consistent with the idea of shape-space,

first introduced as an abstract concept by [Perelson and Oster, 1979]. In this model,

antibodies and antigens are considered as points in a ’shape-space’, and antibodies

within the affinity cut-off for clonal selection by an antigen form a ball in the shape-

space known as the ball of stimulation. [Perelson and Oster, 1979] attempted to make

the shape-space quantitative by representing antibodies and antigen with real-valued

coordinates, however an alternative to this kind of Euclidean shape-space is the Ham-

ming shape-space used by for example [Farmer et al., 1986, Hightower et al., 1995,

Perelson et al., 1996]. Thus, in COSDM, the size of the shape-space is directly de-

termined by the recognition radius of each location, and the corresponding quantity

can be calculated in SOSDM by determining the maximum distance between an anti-

body and an antigen recognised by it. Furthermore, due to its self-organising nature,

SOSDM also exhibits the meta-dynamic behaviour observed in immune-networks and

discussed in chapter 2. Every time the antigen data is presented to the system, the

definition of the antibodies may be perturbed, but the system eventually settles into a

stable representation of the current input data, representing the core clusters.

Thus, of the four models presented in this thesis, SOSDM comes closest to mod-

elling all of the features of the real immune system. Everyone of the features listed

in table 7.1 is apparent in the model, ( or could potentially be added) and it con-

tains the core components of an immune system, i.e. antigens and antibodies, and

the ability of one species to recognise the other. Therefore, it seems justified to la-

bel the system as an immune system. Furthermore, the next section shows the hybrid

SOSDM/COSDM systems encapsulates precisely the properties that are required of a

data-clustering system, and can offer some advantages over standard clustering algo-

rithms, and that therefore approaching the design of the system from an immunological

perspective has proved beneficial.
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7.3 Is Immunology a Useful Metaphor ?

In the 14th century, William of Occam, a logician and Franciscan friar is said to have

remarked “Entia non sunt multiplicanda praeter necessitatem”, or “Entities should

not be multiplied more than necessary”. This guiding principle, known as Occam’s

Razor, is usually interpreted as meaning ’the most simple explanation is the one to be

preferred’. Thus, with this in mind, it is necessary to consider whether, in the context of

the work presented in this thesis, the immune system has proved a useful metaphor, or

whether the same problems could have been tackled by other methods. In this section,

we examine some of the systems to which immune systems have been compared, to

see if they could have been applied to the problems considered.

7.3.1 Other approaches to scheduling

In [Farmer et al., 1986], the analogy between the immune system and classifier sys-

tems was discussed in detail. The idea of the classifier system was first introduced by

Holland in [Holland et al., 1986], and there exist many variations of the basic system.

However, in its simplest form, it consists of a number of classifiers, which are sim-

ply rules comprising of a condition and an action. If the condition part of any rule is

matched by a message from the environment, then the rule bids to be able to fire and

hence execute its action. Each bid is a fraction of the rule’s associate strength — the

winning rule gets to fire and executes its action, and then may earn some reward from

the external environment. This reward is paid to the winning rule, though in some

more elaborate systems, the winning rules also pay some of their strength to those

rules which made it possible for them to fire, in a kind of ’trickle-down information

economy’. New classifiers are generated either at random, or using a GA, which peri-

odically runs in order to generate new rules and replace existing ones of low strength.

The paper by Farmer illustrates the analogy in detail. Could the type of scheduling

problem described in chapter 3 be tackled by a classifier system approach, rather than

using the immune metaphor ?

First note that the analogy as described by Farmer applies to immune-networks,

and not necessarily to the type of immune model presented in chapter 3. In this chap-
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ter, scheduling problems were solved by recombining evolved ’segments’ of sched-

ules, with the rationale that the schedule segments (whether stored in libraries as in

SCHED1− IS or in a population as in SCHED2− IS) captured prior useful experi-

ences, and therefore reduced the size of the potential search space. When formulating

the problem in this way, it is difficult to see how the problem could be mapped onto a

classifier system approach. However, there are potential approaches to re-scheduling

that could benefit from use of a classifier system. For example, if the ’condition’ part

of the classifier was used to match the current state of the scheduling environment, i.e.

the jobs yet to be scheduled, information pertaining to arrival-dates and due-dates, and

current machine usage, then the associated action of the rule could specify a heuristic

to be applied in order to select the next job to be scheduled. This kind of approach has

already been adopted in work in which the author has been involved, [Ross et al., 2002]

for solving bin-packing problems, and could easily be extended to scheduling. Clearly,

an immune-system analogy is also relevant here, the important functions exhibited by

the classifier in this example are its ability to match (imprecisely) information in the

environment, to learn suitable associated heuristics, and also to adapt as the envi-

ronment changes. These functions are of course exhibited by the immune system —

though it would be straightforward to use the metaphor to find ’rules’ that matched the

environment, some further thought would have to be applied in order to find a suitable

method for associating the matching rules with the correct heuristic.

Another approach which immune-systems have been compared to is that of case-

based-reasoning systems (CBR), first discussed by [Hunt et al., 1995]. A CBR system

relies on having a representative database of cases which is efficiently organised and

has suitable mechanisms for retrieving the cases. The manner in which memory is

organised and the way in which cases are retrieved is crucial, and yet can be very ap-

plication dependent. It is often difficult to identify the most suitable organisation prior

to actually developing and experimenting with the system, which results in long de-

velopment times and can severely restrict the usefulness of the approach. However,

[Hunt et al., 1995] argue that the immune system exhibits exactly the properties re-

quired of a CBR system: the immune system is inherently case-based, it relies on a

content addressable memory, it contains a general pattern matching mechanism, and
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most importantly, the memory is self-organising. In addition, the immune system pos-

sesses the ability to ’forget’ cases which are no longer useful, therefore improving the

efficiency of the system.

[Hunt et al., 1995] compared an immune-network to several other forms of case-

memory, namely linear memories, hierarchical memories, nested memories, decision-

trees, and knowledge-guided indexing. The analysis showed when compared to these

memories, only the immune system has a structured memory, is inherently incremen-

tally adaptable, can automatically create its memory structure without a memory ’de-

signer’ identifying the appropriate structure, is inherently self-organising and provides

an implicit mechanism for case-forgetting. Furthermore, when considering retrieval

mechanisms, the immune system can focus search towards similar cases and can han-

dle noisy or missing data. None of the previously mentioned forms of memory exhibit

both these properties. However, the immune system has one potential drawback in that

it is not deterministic, and does not necessarily return the same result given the same

inputs. This is in contrast to the other forms of memory considered.

Is then, a CBR system a suitable methodology for tackling scheduling problems

? Certainly, in the problem described in chapter 3, a database of previous cases, i.e.

schedules, could be built up. Straightforward matching algorithms could be utilised to

match partial schedules and environmental conditions to cases in the databases, as in

general we would only be dealing with integer representations. Thus, it is conceivable

that a CBR approach might be adopted in some circumstances. However, a CBR ap-

proach has a major drawback in that it is not possible to produce entirely new schedules

from such a system, that do not resemble existing cases in the database. This is not true

of an immune system approach in which the building blocks from which schedules are

built can be recombined in many ways to produce novel schedules which are appropri-

ate for the current conditions. Thus, this fact might prove a significant advantage for

an immune-system rather than CBR approach in this case.

7.3.2 Other Approaches to Data-Clustering

In [Timmis et al., 1999], the author compares the performance of an immune-network

algorithm for clustering with a simple clustering technique known as Single Linkage
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Clustering and a Kohonen Network on Fisher’s Iris data set. He concludes that “the

AIS provides a more diverse representation of the data than the other two methods

which is useful for classifying unseen data and variations on unseen data, and that

in addition, the AIS is effective at allowing the user to explore the evolved network to

gain a fuller understanding of the makeup of the dataset, thus aiding the data-mining

and analysis process.”. Therefore, it is necessary to consider whether either a self-

organising map approach, as typified by the Kohonen network, could have been used

to cluster the artificial data-sets described in chapter 4 and tested with the COSDM and

SOSDM models.

The Kohonen network can clearly be applied to cluster static data sets, although

[Timmis et al., 1999] found that it was unable to discover the three distinct classes

present in the Fisher data set, whereas his AIS algorithm was able to correctly identify

three separate clusters. However, due to the arguments outlined in chapter 2, section

2.3, it is unsurprising that the Kohonen algorithm could not correctly cluster this data

— an unsupervised clustering algorithm could not correctly classify this data due to

the geometric intermingling of the data classes. However, despite this, it is clear that

Timmis’s AINE algorithm does visually produce three distinct clusters whereas the

Kohonen algorithm does not, therefore it is of benefit in discovering general features

in data-sets, even if the classification accuracy is not 100%.

The Kohonen algorithm in its original form is not suitable for clustering

non-stationary data, although extensions to it have been suggested, for example

[Abrantes and Marques, 1998] give a framework for clustering dynamic image and

video data based on the Kohonen algorithm. Other algorithms for clustering dy-

namic data also exist; Fritzke’s Growing Neural Gas algorithm was described in chap-

ter 6, and as mentioned, has been applied to cluster slowly changing distributions,

[Fritzke, 1997a]. It would be interesting to examine how this algorithm performs on

the data used in this thesis — this work will be performed in the future. A point to note

however is that clustering algorithms such as GNG and Kohonen rely on calculating

the Euclidean distance between vectors in order to cluster them — the data-sets de-

scribed in chapter 4 consist of binary data, and hence it might be more appropriate to

modify these algorithms to use Hamming distance as a measure of similarity between
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vectors.

However, the SOSDM based on a combination of ideas from the immune-system

and Sparse Distributed Memories may offer some advantages over the standard cluster-

ing algorithms. The most obvious advantage is that SOSDM is an associative memory,

as well as a means of clustering data. Thus, data can be stored and retrieved from

the memory if necessary, and new data easily be categorised on presentation to the

memory. An important feature of the SOSDM not provided by the other clustering

techniques is that the combination of the address and counters defining the centre of

each hard location in the SOSDM provides a concise description of the cluster itself;

this information is not available from either the GNG or Kohonen algorithms. The

method also provides a mechanism for identifying anomalous data, either by moni-

toring the system for appearance of new hard locations and hence clusters, or track-

ing large movements in existing clusters. A further point to consider is also that the

SOSDM algorithm allows data to belong to more than one cluster — in real databases,

clusters will rarely be able to be completely isolated, therefore this feature may be

useful.

Finally, [Dasgupta, 1997] has made clear the relationship between immune sys-

tems and neural networks. A neural network is not a suitable tool for clustering data,

though could be used to perform anomaly detection in data by training the network

with examples of items from known clusters. This obviously requires previous classi-

fication of the data into clusters. However, the idea is mentioned here as a recurrent

network could provide a means of performing anomaly detection in a non-stationary

environment with continuously adapting weights.

In summary, the models presented in this thesis do suggest that the immune

metaphor might provide features not apparent in other more established techniques

for tackling both scheduling problems and dynamic data-clustering problems. It seems

clear that the way forward is not to attempt to adhere strictly to biological principles

when building artificial models, but to use them as inspiration for suitable computa-

tional techniques, modifying principles and adding new ones where necessary. This is

not a drawback — many successful neural network applications are built on the back

of the back-propagation algorithm, yet it is clear that this algorithm is not utilised by
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nature in biological neural systems. Thus, immunology can provide a useful addition

to the computer-scientists armoury of metaphors for solving complex problems, and

the field is deserving of further attention.

7.4 Suggestions for Future Work

It would seem most fruitful to extend the SOSDM model, as noted above, it embod-

ies most of the principles of the biological immune system and the experimentation

performed so far with it indicates its potential value. An obvious extension would be

to add a visualisation mechanism to the system, so that the topology of the memory

could be observed, for example as in the work by [Timmis, 2000b]; whilst a two di-

mensional map would have no meaning in terms of the x-y coordinates of points on

the map, it would be useful to observe the relationships between clusters and between

points within the clusters. Along similar lines, it would be useful for the system to

be able to report information concerning movement of the centres over time, which

would indicate movement of trends in the data more explicitly. If the system is to be

used to perform anomaly detection or to classify new items of data, then further report-

ing mechanisms must be added; thus, warnings could be produced when either a new

centre is added or an existing centre moves significantly when performing anomaly

detection, or the centre recognising a data-item should be reported when classifying

new data-items.

Another area in which the algorithm could be improved is the manner by which

new centres are added and deleted. This would make the system more useful when

clustering data sets in which no sensible guesses can be made about the number of

clusters likely to be present, and would also improve the pattern-tracking capabilities

of the system. A possible way that this could be implemented would be to introduce a

’detector lifetime’ as in [Hofmeyr and Forrest, 2000] which would result in centres not

recognising new data over a long period of time being removed.

Finally, in order for the SOSDM to ultimately prove useful in clustering real-world

data, a method must be formulated for representing non-binary data. The original

method in which counters are updated and are used to retrieve items from the memory
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is suitable only for binary representations, therefore, a mechanism must be found for

modifying this algorithm, or alternatively for mapping real-valued data into binary

form so that the original algorithm can be used.



Appendix A

Coincidences in permutations and

schedules

Thanks to [Ross, 2002] for providing this proof.

Given two permutations of the numbers 1...n, what is the expected number of coin-

cidences between them. A coincidence is when the numbers in position i are the same.

Without loss of generality, you can suppose that the first permutation is 1..n itself,

so the question is then as follows: given a random permutation, what is the expected

number of instances in which position i contains i ?

Let the random variable f (P) be the number of coincidences in permutation P. If

fk(P) is the random variable which is 0 or 1 according to whether position k contains

k then

f (P) =
n

∑
k=1

fk(P)

because the fk(P) are independent (the fact that position k contains k cannot affect

whether other positions i contain i). So, in expectation,

E( f (P)) =
n

∑
k=1

E( fk(P))

but E( fk(P)) = 1/n because (n− 1)! permutations out of n! contain k in position

k. Thus

E( f (P)) = 1

193
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Thus, no matter how long the permutation, you expect just one item to be in its

place!

What is the variance of f ? Consider E( f 2)):

E( f 2) =
n

∑
j=1

n

∑
k=1

E( f j)E( fk)

=
n

∑
j=1

∑
k=1

E( f j fk)

=
n

∑
j=1

E( f 2
j ) + 2 ∑

1≤ j≤k≤n
E( f j fk)

But f j is just 0 or 1, so f 2
j = f j, so E( f 2

j ) = E( f j) = 1/n. Also, E( f j fk) is the

probability that a permutation has both j and k in place, namely, (n−2)!/n! = 1/n(n−
1). Therefore,

E( f 2) = 1 + 2× (n(n−1)/2)×1/n(n−1) = 2

and the variance of f is therefore E( f 2)−E( f )2 = 2−1−1.
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Experimental results obtained using

SOSDM

Antigens Probability that true means differ CE-Potter SO-SDM

50 0.999773 49.446000 50.142000

100 0.999836 48.872000 49.496000

150 0.999999 48.828667 49.417333

200 0.999883 48.710000 49.328500

250 1.000000 48.860000 49.220400

300 0.999999 48.577333 49.147666

350 0.999993 48.520000 49.062286

400 0.999996 48.512250 49.081250

450 0.995579 48.334889 48.929778

500 0.999992 48.434400 48.983600

Table B.1: T-tests comparing CE-Potter and SOSDM for Half-Schema Experiments

195
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Antigens Probability that true means differ CE-Potter SO-SDM

50 0.999998 43.872000 45.016000

100 1.000000 43.073000 44.201000

150 1.000000 42.568667 43.528666

200 1.000000 42.401500 43.567000

250 1.000000 42.528400 43.402800

300 1.000000 42.301333 43.251333

350 0.999991 42.394000 43.134286

400 1.000000 42.458000 43.143500

450 1.000000 42.273555 43.142889

500 1.000000 42.273555 43.142889

Table B.2: T-tests comparing CE-Potter and SOSDM for Quarter-Schema Experiments

Antigens Probability that true means differ CE-Potter SO-SDM

50 0.999863 43.966000 44.826000

100 1.000000 42.246000 43.150000

150 1.000000 41.776000 42.619333

200 1.000000 41.439500 42.228000

250 1.000000 41.058400 41.728400

300 1.000000 40.868333 41.494000

350 0.999999 40.762571 41.254286

400 0.999999 40.578000 41.053250

450 0.999991 40.586222 40.895333

500 0.999997 40.465600 40.821400

Table B.3: T-tests comparing CE-Potter and SOSDM for Eighth-Schema Experiments
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subset size p means differ Data stored in SOSDM at each epoch

for FPS Standard SOSDM FPS

10 1.000000 50.275636 49.820636

20 1.000000 50.275636 49.868091

30 1.000000 50.275636 49.919455

40 1.000000 50.275636 49.978864

50 1.000000 50.275636 49.965364

60 1.000000 50.275636 49.983727

70 1.000000 50.275636 50.000455

80 1.000000 50.275636 50.039227

90 1.000000 50.275636 50.017182

100 1.000000 50.275636 50.038636

110 1.000000 50.275636 50.044545

120 1.000000 50.275636 50.023000

130 1.000000 50.275636 50.023636

140 1.000000 50.275636 50.071591

150 1.000000 50.275636 50.068000

160 1.000000 50.275636 50.063773

170 1.000000 50.275636 50.078273

180 1.000000 50.275636 50.089773

190 1.000000 50.275636 50.081455

200 1.000000 50.275636 50.087364

Table B.4: Table shows the probability that the mean fitness across entire dataset ob-

tained using FPS is statistically different than the mean fitness obtained when all data

is stored at each epoch
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subset size p means differ Data stored in SOSDM at each epoch

for FPS All data FPS

10 1.000000 44.238182 46.193636

20 0.999552 44.238182 45.450909

30 0.999974 44.238182 45.674545

40 0.999999 44.238182 45.889091

50 1.000000 44.238182 45.926364

60 0.999985 44.238182 45.686364

70 1.000000 44.238182 46.004545

80 0.999987 44.238182 45.639091

90 0.999944 44.238182 45.539091

100 0.998712 44.238182 45.297273

110 0.999276 44.238182 45.340909

120 0.999964 44.238182 45.570000

130 0.999976 44.238182 45.653636

140 0.999778 44.238182 45.458182

150 0.999979 44.238182 45.624545

160 0.999979 44.238182 45.586364

170 0.999998 44.238182 45.689091

180 0.999867 44.238182 45.498182

190 0.999984 44.238182 45.605455

200 0.999441 44.238182 45.333636

Table B.5: Table shows the probability that the mean fitness of smallest cluster using

FPS is statistically different than the mean fitness obtained when all data is stored at

each epoch
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Number of Index of Average Minimum Maximum

defined bits update Lag Lag Lag

8 2 159.200000 100 216

3 276.600000 187 364

4 407.000000 280 497

5 611.000000 372 846

16 2 100.000000 100 100

3 138.200000 100 231

4 128.200000 100 165

5 268.600000 143 348

32 2 146.800000 100 206

3 324.000000 201 504

4 121.600000 100 208

5 615.250000 459 819

Table B.6: Data sets containing 2 clusters: Average lag between updates
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Number of Index of Average Minimum Maximum

defined bits update Lag Lag Lag

8 2 196.400000 143 243

3 250.600000 196 321

4 333.800000 210 372

5 389.600000 238 567

16 2 143.400000 115 180

3 154.600000 119 211

4 180.800000 100 259

5 255.000000 169 317

32 2 304.000000 214 394

3 264.500000 125 404

4 144.000000 143 145

5 100.000000 100 100

Table B.7: Data sets containing 5 clusters: Average lag between updates

Number of Index of Average Minimum Maximum

defined bits update Lag Lag Lag

8 2 183.600000 137 283

3 303.200000 236 476

4 468.200000 307 678

5 509.750000 354 635

16 2 228.000000 191 255

3 475.200000 379 597

4 807.500000 586 979

32 2 178.000000 119 218

3 158.000000 100 213

4 211.200000 162 257

5 150.400000 121 175

Table B.8: Data sets containing 5 clusters: Average lag between updates
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Deletion Average Average Average Average

Threshold No. Centres Recall Accuracy No. Centres Deleted No. Centres added

0.1 2.41 49.46 1.84 2

0.2 2.25 49.43 1.92 2

0.3 2.61 49.72 7.68 2

0.4 2.52 49.70 7.73 8

0.5 2.54 49.69 7.73 8

0.6 2.62 49.83 7.61 8

0.7 2.67 49.74 7.67 8

0.8 2.50 49.70 7.72 8

0.9 2.65 49.85 7.58 8

1.0 2.59 49.70 7.72 8

Table B.9: Variation in recall accuracy and in the number of centres added and deleted

with deletion threshold
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