Immunology as a Metaphor for Computational

Information Processing: Fact or Fiction ?

Emma Hart

Doctor of Philosophy
Artificial Intelligence Applications Institute
Division of Informatics
University of Edinburgh
2002

Abstract

The biological immune system exhibits powerful information processing capabil-
ities, and therefore is of great interest to the computer scientist. A rapidly expanding
research area has attempted to model many of the features inherent in the natural im-
mune system in order to solve complex computational problems. This thesis examines
the metaphor in detail, in an effort to understand and capitalise on those features of
the metaphor which distinguish it from other existing methodologies. Two problem
domains are considered — those of scheduling and data-clustering. It is argued that
these domains exhibit similar characteristics to the environment in which the biological
immune system operates and therefore that they are suitable candidates for application
of the metaphor. For each problem domain, two distinct models are developed, incor-
porating a variety of immunological principles. The models are tested on a number of
artifical benchmark datasets. The success of the models on the problems considered

confirms the utility of the metaphor.

Acknowledgements

My grateful thanks to Professor Peter Ross for his invaluable help and guidance through-
out the duration of this project. Also to my husband Jim, firstly for proof-reading this
thesis, but most of all for his encouragement and support, and belief that it was possible

to finish this work and simultaneously look after our two young daughters!

Declaration

I declare that this thesis was composed by myself, that the work contained herein is
my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Emma Hart)

To Lucy and Holly

Table of Contents

1 Introduction

1.1
1.2
1.3

2.2

2.3
24
2.5
2.6
2.7

Immunology
Some Key Concepts and their Relevance to Information Processing . .
Overview of Application Areas
1.3.1 Scheduling
1.32 DataClustering vt

1.4 Aims and Contributions of Thesis

1.5 Guide to Remainderof Thesis
2 Background

2.1 BasicImmunology

2.1.1 The Network Hypothesis
2.1.2 Clonal Selection
Artificial Immune Systemso
2.2.1 Negative Selection Based Models
2.2.2 Models based on Evolutionary Algorithms
2.2.3 A Summary of EA Based Models
Network Models for Machine Learning
Supervised Learning Using An Artificial Immune Model
Immune Algorithms for Scheduling
Artificial Immune Systems for Dynamic Problems

Sparse Distributed Memories and their Relationship to Immunological

O 00 1 W Ut W N

2.7.1 Kanerva’smodel 41

2.7.2 Correspondence between SDM and Immunological Memory . 42
2.8 Conclusion 45
Immune Systems for Scheduling 46
3.1 Introduction L 46
3.2 Other Approaches to Robust Scheduling 47
3.3 Definition of the Job-Shop Scheduling Problem -JSSP 48
3.4 Definition of an Immune-Based Scheduling System 49
35 SCHED1—IS ettt 52
35.1 Choiceof ISModel 52
3.5.2 Representation of antibodies and gene-libraries in SCHED1 — IS 53
3.5.3 Representationof an Antigen. 54
3.54 Evolution of the Gene Libraries 56
3.5.5 Evaluating the IS Produced — Inducing an Immune Response 58
3.6 Experimental Approach 59
3.6.1 ExperimentalData 60
3.6.2 Common parameterso 60
3.6.3 Verification of the Hightower Model 61
3.7 Evaluation of the Immune Response 62

3.8
39
3.10

3.11

3.7.1 Selecting the Clone rate, Antibody Expression rate and Muta-
tionrate 66

3.7.2 Comparison of tardiness of schedules produced from SCHED]1 —

IS to those produced by Fang GA 66
3.7.3 Robustness of Schedules 69
Summary of Utility of SCHED1 —1S 70
SCHED?2 — IS — Storing Past Experiences in an Immune Library . . 72
SCHED2 —1S - Descriptionof Model 73
3.10.1 Deriving the building blocks 75
3.10.2 Recombining Building Blocks To Form A Schedule 79
Implementation of SCHED2 —1S 82
3.11.1 Antigen Representation. 82

vi

3.11.2 Antibody Representation
3.11.3 The Matching Algorithm
3.11.4 An Emergent Fitness Sharing Function
3.11.5 The Genetic Algorithm
3.11.6 Recombination Operators
3.12 Generating TestData
3.13 Experimental Results
3.13.1 How many antigens are matched by at least one antibody ? . .
3.13.2 How many unique antibodies are evolved ?
3.13.3 MeasuringOverlap
3.13.4 Identifying the number of jobs appearing in the antibodies . .
3.13.5 Reconstructing Schedules from the Antibody Population . . .
3.14 Summary of Utility of SCHED2 —1IS

3.15 Conclusion e e

Applying an Immune System Analogy to Data-Clustering Problems

4.1 Introduction
4.1.1 Data-Clustering with an Artificial Inmune System
4.1.2 Data-clustering with a Sparse Distributed Memory
4.1.3 Properties of the SDM/IS Models Relevant to Data Clustering
4.1.4 Inadequaciesofthe SDM

4.2 Problem Description L oo
42.1 StationaryData oL
422 Non-Stationary Data

EA Based Model — COSDM

5.1 Combining Co-evolution withan SDM — COSDM

5.2 Implementation of COSDM
5.2.1 Calculationof Fitness
5.2.2 Control of Number of Species
5.2.3 The Evolutionary Algorithm

5.3 Overview of Experimental Setup

Vii

106

5.3.1 Default Parameters 124

5.3.2 Comparisonofresults 125
5.4 Experiments using Static DataSets 126
5.5 Experiments Using Random Non-Stationary Datasets 129
551 Results 131
5.6 Experiments using Cycling Non-Stationary Datasets 132
5.6.1 DataGeneration 134
5.6.2 Experimental Results 134
577 Conclusions 136
A Self-Organising SDM — SOSDM 140
6.1 Introduction 140
6.2 A Brief Background on Self-Organising Maps (SOMs) 141
6.3 Modifying an SDM to function in a non-stationary environment . . . 144
6.4 Implementationof SOSDM 149
6.4.1 Notation 149
6.4.2 Distributingthe Data 150
6.4.3 Calculating the Error at Each Antibody 152
6.4.4 Updating the nodes position and counters 152
6.4.5 Recalling Data fromthe SOSDM 153
6.5 Calibratingthe SOSDM 154
6.5.1 Experimental Set-up 154
6.5.2 Comparison of SOSDM Performance to that of CE-POTTER . 155
6.5.3 Number of Iterations Required to Find the Best Solution . . . 156

6.5.4 Investigating the sensitivity of SOSDM to the influence-counter
parameter L. 157
6.5.5 Choosing the Binding Affinity Threshold,z 158
6.6 Limitationsof theModel 159
6.6.1 Investigating the effect of clustersize 160
6.6.2 Fitness Proportionate Selection of Data—FPS 161
6.6.3 Performance of SOSDM vs Size of Dataset 165
6.6.4 Performance vs Length of Antigen 166

viii

6.7 Performance of SOSDM in non-stationary environments 167

6.7.1 Update of data within fixed clusters 168

6.7.2 Appearance of new clusters L. 169

6.7.3 Making the System Truly Dynamic 173

6.8 Conclusions 176

7 Conclusion 179
7.1 OVervIew oo e e 179

7.2 Were the aimsachieved ? 179
7.2.1 Scheduling Models, SCHEDI-IS and SCHED2-IS 180

7.2.2 Data-Clustering Models, COSDM and SOSDM 182

7.3 Is Immunology a Useful Metaphor ? 186
7.3.1 Other approaches to scheduling 186

7.3.2 Other Approaches to Data-Clustering 188

7.4 Suggestions for Future Work 0oL 191

A Coincidences in permutations and schedules 193
B Experimental results obtained using SOSDM 195
Bibliography 202

2.1
22
2.3
24
2.5
2.6
2.7
2.8
29
2.10
2.11
2.12

3.1
3.2
33
34
35

3.6
3.7

3.8
39

List of Figures

"’Lock and Key’ recognition between antigen and antibody 11
Jerne’s Idiotypic Network Hypothesis 13
B-Cell Clonal Selection 14
Maintenance of an antigen memory in an idiotypic network 17
The Lifecycle of a Detector 20
Expressing an antibody from an artificial immune system 24
Mapping from B-Cell Genome to activation threshold and antibody . . 26
The aiNET algorithm 34
Immune Algorithm for Production Scheduling 37
The CLONALG algorithm [De Castro and Von Zuben, 2000a] 39
Writing datatothe SDM 43
Reading data fromthe SDM 43
A stylised model of an Artificial Immune System for scheduling . . . 50
Example of a SCHED1 — IS individual 55
Algorithm for computing the fitness of each individual in SCHED1 — IS 57
Algorithm for simulation of the immune-response 58
Verifying that SCHED1 — IS exhibits the same characteristics as the

binary IS proposed by Hightower 63
Comparing two schedules 65

Effect on schedule tardiness of varying the parameters of the immune

response algorithm L oo 67
Comparison of SCHED1 — 1S and SCHED2 —1S 74
Matching antigens by an antibody population 78

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17

3.18

3.19

4.1
4.2

5.1
5.2
5.3
54
5.5

5.6

5.7
5.8
59
5.10

6.1
6.2

Effect of redundancy in antibody population 78
Measuring antibody overlapo 80
Biological diversity generating mechanisms 81
Match function introduced by [Cooke and Hunt, 1995] 84
Calculating alignments and match-score 84
A modified fitness scheme Lo 85
Overlap Crossover i 87
An algorithm for generating completed schedules from the antibody

population evolved used SCHED2 —1S 88
Number of antibodies matching > 1 antibody for antibody sample size

=30 . . 92
Number of antibodies matching more than 1 antigen for experiments

in which the threshold for matching was setto2and 3. 93
A generic algorithm for generating non-static datasets 112

Anti-serum specificity results from a population of interacting antibodies 113

Coevolutionary architecture of the Potter model 115
Coevolutionary architecture of the COSDM model 117
Structure of an antibody representing a hard location inan SDM . . . 119
The COSDM algorithm 120
Comparison of performance of COSDM and CE-POTTER on static

datasets 126
The average number of antigens in a dataset that are not recognised by

the best immune system Lo 127
Experiments with non-stationary data 132
Drop in fitness following antigen updates 133
Drop in fitness vs index of antigen change 133
Comparison of COSDM performance of random moving datasets to

cyclic moving datasets 135
Kohonen Map for a clustered distribution 145
Neural Gas for a clustered distribution 145

Xi

6.3
6.4
6.5
6.6
6.7
6.8

6.9

6.10
6.11
6.12
6.13

6.14

Growing Neural Gas for a Clustered Distribution 145
Fritzke’s GNG algorithm 146
The SOSDM algorithm 150
Comparison of Potter Algorithm to SOSDM for all experiments . . . 155

Examining the number of antigens that bind to more than one antibody 156

Examining effect of threshold parameter # on average best fitness across

dataset 159
Results for Half-Schema Cluster Experiments 162
Results for Quarter-Schema Cluster Experiments 162
Results for Half-Schema Cluster Experiments 163
Variation in mean recalled accuracy with the size of the antigen dataset 166

Variation in mean recalled accuracy with the length of the antigens in
thedataset 167

Variation in mean recall accuracy following introduction of new clusters 171

Xii

2.1

3.1

3.2
33
34
3.5
3.6

3.7
3.8
39

5.1
5.2
53
54

6.1
6.2
6.3

List of Tables

Structural and functional correspondence between immunological mem-
oryand SDM 44

Percentage of test-cases where best and (average) tardiness of AIS

schedule was equal to or less than result found by Fang 68
Average robustness R of schedules in different antigen universes . . . 69
Antigen Definitions L Lo 79
Schedules not matched by any antibody 91
The Number of Unique Antibodies in the Final Population 91
Average Number of Jobs Represented in Final Population for Given
Antibody Sample Sizeco 94
Accuracy of Schedule Reconstruction 96
Reliability of Schedule Reconstruction 97
Antibody Recognition Rates in Unseen Universes 97
COSDM fixed parameters 125
Values of parameters tested in random pattern tracking experiments . 130
Average Defined Overlap of the Schema Set 131
Variation in the mean recall accuracy with number of schemas 136
SOSDM: Average/SD of epochs taken to find best solution 157
Effect of influence parameter on mean recall accuracy 158
Comparison of mean recalled accuracy for CE-POTTER, standard SOSDM
and FPS-SOSDM 164

Xiii

6.4

6.5

6.6

6.7

7.1

B.1

B.2

B.3

B.4

B.5

B.6
B.7
B.8
B.9

Experiments which produced a significant difference in mean recall
accuracy forsmall clusters L. 165
average number of iterations taken for the SOSDM system to reach its
peak fitness value following replacement of f antigens 170

Average lag between updates observed when 50% of the antigen data

isupdated ateachupdate 172
Clustering data-sets with a dynamic SOSDM algorithm 175
Immunological features present in the developed models 180

T-tests comparing CE-Potter and SOSDM for Half-Schema Experiments 195
T-tests comparing CE-Potter and SOSDM for Quarter-Schema Exper-
IMents 196
T-tests comparing CE-Potter and SOSDM for Eighth-Schema Experi-
MENLS ot e e e e e e e 196
Probability that the mean fitness obtained using FPS is significantly
different than storing alldata 197
Table shows the probability that the mean fitness of smallest cluster

using FPS is statistically different than the mean fitness obtained when

all data is stored ateachepoch 198
Data sets containing 2 clusters: Average lag between updates 199
Data sets containing 5 clusters: Average lag between updates 200
Data sets containing 5 clusters: Average lag between updates 200
Effect of deletion threshold on performance 201

Xiv

Chapter 1
Introduction

The study of biological systems has long proved inspirational to the computer scientist
as a means of solving complex computational problems, with many attempts to mimic
the mechanisms inherent in the natural world. For example, early neural network pio-
neers attempted to model the circuitry and processing thought to be found in the brain;
the field of evolutionary algorithms was inspired by Darwininan studies of natural evo-
lution; ant colony optimization algorithms are modelled on the behaviours exhibited
by real ants, and more recently, the concept of DNA computing has arisen, inspired by
the processes that govern life itself. The driving force behind such research is two-fold:
the use of biologically inspired metaphors can result in new computer technologies and
novel methods of problem solving, and conversely, computing can provide new tools
and techniques for exploring biological concepts from an alternative prospective.

The field of artificial immune systems (AlLS) is also inspired by a biological
metaphor — in 1986 the theoretical immunologist, J.D. Farmer, first suggested
a possible relationship between biological immunology and computing in a pa-
per which compared natural immune systems, adaptation and machine learning
([Farmer et al., 1986]). Since then, the field has expanded rapidly, with numerous pa-
pers published by computer scientists applying AIS to a diverse set of topics ranging
from computer security [Forrest et al., 1994] to behaviour arbitration for autonomous
mobile robots [Ishiguro et al., 1996]. A dip into the biological journals reveals a
similar number of computational models of immunological phenomena, for example
[Weinand, 1990, Perelson, 1989, Celada and Seiden, 1992]. In light of the increasing

1

Chapter 1. Introduction 2

amount of research in this area, it thus seems pertinent to examine the immune system
metaphor in relation to information processing in more detail, and to ask which are
the features of the natural immune system that really distinguish it from other biolog-
ical metaphors, and to attempt to categorise the types of problem area in which this

particular metaphor might provide an advantage over others.

1.1 Immunology

There are four main causes of death to the human being — injury, infection, degenera-
tive disease and cancer. Of these, only the former two regularly kill their victims before
they reach child bearing age, and as such are a potential source of lost genes. The im-
mune system is an example of a mechanism which may help to ensure the survival of
those genes, and has evolved over time in order to protect us from infectious organ-
isms existing in the environment. Thanks to the immune system, infections in a normal
individual caused by microbes such as viruses, bacteria, fungi and parasites are gener-
ally short lived and leave little permanent damage. The immune response broadly falls
into two categories — the innate or non-specific response, and the adaptive or specific
response. The innate response is provided by a number of non-specific chemicals such
as lysozyme which destroys the outer surface of many bacteria, non-specific chemical
effectors such as macrophages and simple barrier mechanism such as the skin. On the
other hand, the adaptive response is highly specific for particular pathogens (antigens),
and furthermore, it improves with each subsequent exposure to the pathogen. It can
therefore can be said to 'remember’ specific pathogens. It is with this adaptive aspect
of the immune system that artificial models are generally concerned. The adaptive re-
sponse consists of two major phases — a recognition phase followed by a reaction to
eliminate the pathogens, and is achieved via a class of immune cells collectively known
as lymphocytes. Recognition is generally accepted to require the immune system to be
able to distinguish between the body’s own cells (self) and foreign pathogens, (non-
self), though recently some immunologists have controversially rejected this theory
and proposed that in fact the job of the immune system is only to distinguish dan-

gerous non-self from self ([Matzinger, 1994a, Matzinger, 1994b]. As far as computer

Chapter 1. Introduction 3

scientists are concerned however, the task essentially remains one of recognition fol-
lowed by an action such as elimination, and it is the mechanisms by which the natural
immune system achieves these aims that make the system so attractive to the topic of

information processing.

1.2 Some Key Concepts and their Relevance to Infor-

mation Processing

The immune system can be considered to be a remarkably efficient and powerful in-
formation processing system which operates in a highly parallel and distributed man-
ner. It operates in a dynamic and unpredictable environment in which it is necessary
to react to changes in a timely manner — this is achieved partly through imprecise
but efficient recognition mechanisms and by utilising memories of past experiences
to provide useful pointers to the correct course of action. It contains several features
that make it appealing from a computational point of view. These are summarised
below. The list attempts to correlate features of immune system with the well-known
terminology of information processing. The information is adapted from that given in
[Dasgupta, 1998]:

e Recognition: The immune system can recognise and classify different patterns
and generate selective responses. In the natural immune system, recognition
is achieved via inter-cellular binding, the strength of which is determined by
molecular shape and electrostatic charge. One view is that during the recogni-
tion process, the immune system is solving the problem of self-nonself discrim-

ination.

e Feature extraction: Features are extracted from pathogens by antigen present-
ing cells or APCs which extract features from them and present them on their
surface. This serves two purposes, that of a filter and a lens. The filter removes

noise and the lens focuses attention.

e Diversity: The immune system can utilise a combinatoric process to generate

a diverse set of pathogen recognising molecules, and ensures that at least some

Chapter 1. Introduction 4

lymphocytes can bind to any antigen, whether known or unknown.

e Learning: The immune system learns by experience the structure of specific
antigens, following the first exposure (primary response) of the system to a new
antigen. The main mechanism for learning is via altering the concentrations of

lymphocytes during the primary response phase.

e Memory: It has been shown that when the immune system has been activated,
a few lymphocytes become special “'memory cells’ which are then content-
addressable. The longevity of these cells is dynamic and requires continued
stimulation from residual antigens. A balance is achieved between economy and

performance by maintaining a minimal but sufficient memory of the past.

e Distributed detection: The immune system is inherently distributed throughout
the body — lymphocytes constantly circulate throughout the blood, lymphoid

organs and tissue spaces.

e Self-regulation: There is no central organ coordinating the immune response and
therefore the mechanisms are self-regulatory, although not necessarily stable in

the sense of converging to a time-independent state.

o Threshold Mechanism: An immune response and the subsequent proliferation of
immune cells only takes place above a certain matching threshold, related to the

strength of chemical binding.

e Co-Stimulation: Activation of immune cells is regulated through co-stimulation
in which ’helper’ T-Cells deliver a second signal, to ensure tolerance and to

distinguish between harmless and dangerous invaders.

e Dynamic protection: The processes governing generation of high-affinity im-
mune cells dynamically balance exploration vs exploitation in adaptive immu-
nity. This dynamic protection increases the cover provided by the immune sys-

tem over time.

e Probabilistic detection: Detection of antigens is approximate, therefore a lym-

phocyte can bind with several different kinds of structurally related antigen.

Chapter 1. Introduction 5

Thus, the immune system contains a number of general mechanisms which poten-
tially can be copied or adapted in computer systems. From the perspective of infor-
mation processing, it is unnecessary to attempt to replicate all of these aspects of the
natural immune system in a computer model, rather they should be used as general
guidelines in designing a system. Indeed, as becomes clear in the literature review of
chapter 2, in practice most AIS applications only implement some modified subset of
these features. Perhaps more importantly, it should be noted that several of these fea-
tures are apparent in other biologically inspired systems — the IS has been compared
to artificial neural networks ([Dasgupta, 1997], to sparse distributed memories (SDM)
[Smith et al., 1999], to classifier systems [Farmer et al., 1986] and to case-based rea-
soning systems [Hunt et al., 1995]. Therefore, a question that deserves more attention
is to what end does the immunological metaphor provide analogies that cannot be pro-
vided by another less seductive labelling. One of the aims of this thesis is to attempt to
isolate the unique features of the immune system that seem most relevant and identify

the types of problem areas to which they could profitably be applied.

1.3 Overview of Application Areas

The above discussion suggests that potential application areas for the application of
the immune system metaphor are those in which we are seeking robust and "good
enough’ solutions to problems occurring in dynamic environments that allow a system
to continue functioning satisfactorily. These features are characteristic of a number of
real-world problem domains. However in this thesis two particular areas are chosen
as being particularly suitable; scheduling and data-clustering. As will be seen in the
next section when the analogy is made explicit, the problems faced by the immune
system of recognising and eliminating harmful invaders on a relatively short timescale

are very similar to those faced in the two identified domains.

1.3.1 Scheduling

Consider a typical real-world manufacturing scenario in which assembling a finished

product for delivery to a customer requires the manufacturing of several individual

Chapter 1. Introduction 6

parts or subcomponents of the product before they can be assembled into the final
article. The rate of production of the products and hence ultimately the cost of pro-
ducing them is controlled by a schedule — however, creation of a suitable schedule is
well-known to be a highly complex problem. Many factors must be taken into con-
sideration when producing a schedule, for example the costs associated with storing
the raw materials required to manufacture the products, the common need to produce
expensive products on a ’just-in-time’ basis, and the set-up times associated with using
machines. Even when an attempt is made to take these factors are taken into account,
the fact cannot be ignored that a factory is by definition operating in a dynamic and un-
predictable environment:- machines break down, employees get sick, materials arrive
late, and customer demands change rapidly. Some of these events occur frequently,
and can be more or less predicted to some extent (for example, materials from a cer-
tain supplier may often arrive late), whereas others occur on a much more ad-hoc
basis and cannot be foreseen. An ’ideal’ schedule therefore, if there is such a thing, is
not necessarily one which optimises some measurable criterion such as make-span or
maximum tardiness, but one which has some built-in flexibility that can absorb some
unpredictable event without disrupting the planned schedule. At the same time, the
schedule should still deliver some acceptable level of quality when measured against
some pre-determined criteria.

Thus, it can be seen that the task of producing robust schedules has a direct analogy
with the task faced by the immune system . Both operate in a dynamic and unpre-
dictable environment — the immune system must mount an efficient and immediate
antibody response against invaders if it is to survive — similarly, in order to minimise
costs, a useful scheduling system should be able to mount a response to environmen-
tal changes by rapidly altering schedules so that minimum disruption is caused. The
antibodies produced by the immune system do not have to perfectly match the invad-
ing pathogens in order to eliminate them, similarly the new schedules produced by the
scheduling system to not have to be optimal, just good enough’ for the scheduling to
continue with the least interruption. Futhermore, both systems can utilise a memory of
past events in order to produce an efficent response, but are also required to be capable

of responding to entirely new situations. It therefore seems plausible that some or all

Chapter 1. Introduction 7

of the characteristics of the immune system may be adapted to implement a scheduling

system.

1.3.2 Data Clustering

Modern technology makes it incredibly straightforward for companies to gather vast
amounts of data concerning individuals and their habits on a daily basis, for example
through the use of credit cards or supermarket loyalty cards. Interpreting such huge
quantities of data, and identifying clusters and trends within it is a mammoth task,
especially as the data may be rapidly changing. Data-clustering can be defined as “the
unsupervised classification of patterns (observations, data items or feature vectors)
into groups (clusters)” [Jain et al., 1999], and is performed in the hope that implicit
previously unknown and potentially useful knowledge can be extracted from the data.
It is a large field in its own right, and there are many documented approaches. The
reader is referred to [Jain et al., 1999] for a recent and detailed survey.

However, the immune metaphor may provide a novel and alternative approach.
Both the immune system and a data-clustering system have to operate in very large
input spaces. In the immune system, a lymphocyte recognises a set of antigens, due
to its imprecise matching characteristics; that set can be considered to be equivalent to
a cluster within a database. The lymphocyte that recognises all the items in a cluster
thus provides a concise description of the cluster itself. The number of lymphocytes
present and the specificity of the recognition process provides a mechanism for con-
trolling the number of clusters present, and hence provides a method of controlling
how specifically (or generally) the clusters are described. The fact that recognition is
imprecise is important — data in a database is likely to contain much noise and re-
dundant information, therefore some kind of imprecise recognition mechanism will be
essential.

The natural immune system can react to unseen pathogens either by producing
new lymphocytes using its inbuilt diversity generating mechanisms or by adapting ex-
isting lymphocytes via mutation mechanisms. Similarly, when new data arrives in the
database, the centres and sizes of the clusters may need to move and adapt in order

to recognise the new data. New cluster centres may be created and old ones may

Chapter 1. Introduction 8

disappear over the course of time, the key point being that the system can respond
dynamically to the state of the database at a given moment in time.

The natural immune system is very efficient at recognising the sudden appearance
of harmful invaders; a data-clustering system should be able to recognise the appear-
ance of anomalous data in the database. This feature would automatically result from
an immune based model — data-items belonging to existing clusters would be recog-
nised by existing lymphocytes in the system’s memory, whereas data belonging to new
clusters would trigger creation of an entirely new lymphocyte. This event could trigger
a warning to an external observer of the system, signifying that the new item is non-
representative of the general patterns. Imagine for example attempting to cluster data
collected by a credit-card company relating to card usage. The company is interested
in clustering the data to identify patterns in card usage, but would also like to detect
fraudulent card-usage. If a newly presented data-item does not belong to an already
established cluster, it could identify an attempt at fraudulent usage of the card, which
further human examination could verify.

Finally, the distributed nature of the immune system architecture is attractive,
given the fact that very large datasets are also likely to be distributed. This disserta-
tion presents two new immune system based models for tackling non-stationary data-

clustering problems, that attempt to take advantage of the immune metaphors.

1.4 Aims and Contributions of Thesis
The main contributions of this dissertation are as follows:

1. Development of two AIS models for performing job-shop scheduling, both based

on the use of evolutionary algorithms.

2. Analysis of the models, and empirical testing and comparison of them on bench-

mark job-shop scheduling data.

3. Development of two models for performing clustering in non-stationary
databases based on combining immune system metaphors with that of another

class of associative memories, SDM.

Chapter 1. Introduction 9

4. Analysis and testing of both models on an artificially generated test-bed of non-

stationary data.

1.5 Guide to Remainder of Thesis

Chapter 2 introduces some basic immunology for computer scientists. This is fol-
lowed by a review of a number of very different models of artificial immune systems,
which identifies the features of the natural immune system each model contains, and
discusses the types of application to which each has been applied. Chapter 3 contains
a detailed description of the scheduling domain and presents two AIS models for solv-
ing job-shop scheduling problems, including detailed experimental results. In Chapter
4, the data-clustering domain is described, and an artificial test-bed for experimenting
with AIS models is introduced. Chapter 5 presents an AIS which is evolved using a
co-evolutionary genetic algorithm, and describes the results of extensive experimenta-
tion. An improved AIS for performing data-clustering that is self-organising is then

presented in Chapter 6, with new results. The dissertation is concluded in Chapter 7.

Chapter 2
Background

This chapter begins with a brief introduction to immunology, necessary to set the scene
for the remainder of the thesis. It is of course a vast topic, and only the most rele-
vant features are covered here. For a more detailed overview, the interested reader is
referred to an introductory immunology text such as [Roitt et al., 1988]. This intro-
duction is followed by a review and comparison of existing AIS implementations, and
an overview of existing literature in the application of immune systems to the chosen
domains of scheduling and data-clustering. Finally, there is a discussion of the rela-
tionship of the immune system to a class of associative memories known as Sparse

Distributed Memories.

2.1 Basic Immunology

This section presents some basic immunological concepts which are central to the
adaptive immune response. As already stated, it is with this aspect of the immune sys-
tem that most artificial systems are concerned. Key to all adaptive responses is a class
of cells known as lymphocytes which specifically recognise individual pathogens, re-
gardless of the location of those pathogens, whether in blood, tissue fluids or actually
inside host cells. Lymphocytes fall into two categories, T-Cells (Thymus dependent),
and B-Cells, (Bone marrow dependent). The function of the B-Cell is to attack extra-

cellular pathogens by releasing antibodies, i.e. specific molecules which recognise and

10

Chapter 2. Background 11

paratope
\
epitope
¥/ \
recognition
antigen antibody

Figure 2.1: "Lock and Key’ recognition between antigen and antibody

bind to target antigens. Antigens can be either a molecule on the surface of a pathogen,
or a toxin produced by the pathogen. The antibodies have a distinct molecular struc-
ture, that of a flexible Y-shape, and recognise the shape of particular antigen via a
mechanism often likened to a lock and key, as shown in figure 2.1. The portion of the
antigen that is recognised by the antibody (and therefore acts as the lock) is known as
the epitope (antigen determinant), and the portion of the antibody analogous to the key
that recognises the antigen determinant is known as the paratope.

T-Cells have a wider range of functions. One group of T-Cells interacts with the B-
Cells to help them divide, differentiate and make antibodies. Another group interacts
with phagocytic cells (which bind to micro-organisms and internalise them) to help
them destroy intra-cellular pathogen. These two groups are known as helper T-cells.
The third kind recognises cells infected by viruses and destroys them. In general,
most implementations of artificial immune systems have concentrated on mimicking
the functionality of B-Cells and ignored the role of T-Cells, though some aspects of
helper T-Cells are modelled in some systems, for example [Carter, 2000].

There is much immunological evidence to verify the existence of the basic cells
involved in the immune response, however opinion as to the process by which these
cells are able to mount a response falls into two distinct camps. One camp favours
a process known as clonal selection, the other argues for the existence of an immune
network. As both approaches have potential significance for artificial models of the

immune system, they are now presented.

Chapter 2. Background 12

2.1.1 The Network Hypothesis

Studies have shown that each antibody has a specific antigen determinant known as
the idiotope — this gives rise to a possibility first articulated by Jerne in [Jerne, 1973]
that antibodies can recognise other antibodies as well as antigens, resulting in a large,
self-regulating and mutually reinforcing network of antibodies.

This is shown in figure 2.2. In this diagram, the idiotope of B-Celll, ID] stimu-
lates B-Cell2, and the two become connected via the paratope of B-Cell2, P2. Thus,
ID1 is acting as an antigen from the viewpoint of B-Cell2, and this causes B-Cell2
to suppress the antibodies produced by B-Celll. On the other hand, /D3 acts as an
antigen from the viewpoint of B-Cell1, and is recognised by BCellls paratope, P1, and
thus /D3 stimulates B-Celll to produce antibodies. Hence, a large chain of suppres-
sion and stimulation can be set up between B-Cells, resulting in a self-organising and
self-regulatory network. Importantly, the network is not fixed, but varies continuously
according to the dynamical changes in the environment. This is known as the mera-
dynamics of the system [Varela and Coutinho, 1988], and is realised by incorporating
newly generated cells into the network and removing useless ones. The new cells are
generated when cells in the existing network are stimulated and proliferate, resulting in
some mutant species, and also owing to gene-recombination in the bone marrow. De-
spite these dynamic perturbations, an underlying core network of B-Cells is thought
to be maintained by the immune system, representative of the antigens to which it has
been exposed. The network remains stable due to the suppression mechanisms which

prevent the over-stimulation of B-Cells.

2.1.2 Clonal Selection

The clonal selection theory considers that each lymphocyte, whether B-Cell or T-Cell,
is capable of recognising essentially one kind of antigen. When an infectious agent
is encountered, a few of the many circulating B-Cells recognise it. Those cells are
then induced to proliferate rapidly until within a few days there are sufficient num-
ber of them to mount an adequate response. This process by which an antigen se-

lects for and generates the specific clones of its own antigen-binding cells is known

Chapter 2. Background 13

.. epitope
antigen
=S
N paratope / ’
\\\ / 3
N 1d2
idiotope P2
“ antibody 2

_______ = suppression
—— = stimulation

/4antib0dy g

7

Figure 2.2: Jerne’s Idiotypic Network Hypothesis

as clonal selection and is illustrated in figure 2.3, which is adapted from that given in
[Roitt et al., 1988].

Those lymphocytes that are stimulated by binding to specific antigen begin to un-
dergo cell-division by expressing new receptors which signal proliferation. Several cy-
cles of division occur, before some of the proliferating B-Cells eventually mature into
plasma cells which are capable of producing antibodies specific to the antigen. Others
mature into memory cells, which retain the immunological memory of the stimulating
antigen and are then available for re-stimulation should re-infection with the antigen
occur at a later date. Thus, the memory cells confer long lasting immunity on the
system. During proliferation, some of the daughter cells may undergo somatic muta-
tion which can increase the specificity of the antibody for the antigen — this effect is
discussed in more detail later in this chapter in section 2.2.2.1. Clearly this overview
represents an extreme simplification of the actual processes that occur during prolif-
eration of the antibodies, in particular it omits the role of helper T-Cells which assist

in the proliferation of B-Cells. Nevertheless, the detail provided is sufficient to al-

Chapter 2. Background

antigen selection

e
2

)

ONOONORBNONO

lasma cells |

T

A AN AT AN A WA

production of antibody 2

Figure 2.3: B-Cell Clonal Selection

I

memory cells

14

Chapter 2. Background 15

low the main processes apparent in the biological immune system to be captured and
implemented in an artificial system.

It is unnecessary for computer scientists to be drawn into a debate about which
of the two hypotheses presented as alternatives for the mechanism by which the real
Immune system operates is correct. Simply, it is sufficient to note that both hypothe-
ses contain important properties that have potential analogies as far as information
processing is concerned, and that therefore any combination of these ideas may be
modelled in a computational immune system when applying the metaphor to fields

such as scheduling and data-clustering.

2.2 Artificial Immune Systems

The seminal work that kick-started the field of Artificial Immune Systems was a paper
by Farmer and Perelson [Farmer et al., 1986] in 1986. This paper introduced a dynamic
model of the immune system based on Jerne’s network hypothesis that was simple
enough to simulate on a computer. An antibody is represented as pair of binary strings
(p,e) signifying the paratope and epitope. A simplifying assumption is made that each
antibody consists of exactly one paratope and one epitope although in reality this is
not the case. Reaction between antibodies (and between antibodies and antigens) is
simulated via complementary matching of strings. The method in which matching is
implemented attempts to model several features of the biological system. Firstly, exact
matches are not required for reaction to take place and secondly, strings are allowed to
match in more than one alignment, with the strength of the match proportional to the
sum of all possible matches. This is an attempt to model the fact that molecules can
interact in more than one way, and if so, react more strongly as they spend more time
together than those molecules that can only interact in one alignment. A threshold is
introduced, as in the natural IS, below which reaction is not considered to take place.
From a microscopic point of view, when two antibodies interact, the antibody with
the paratope reproduces some fixed number of times, whilst the antibody with the epi-
tope is eliminated with some fixed probability. This is controlled by the degree of

complementarity between the paratope and epitope. Simulation of the microscopic

Chapter 2. Background 16

dynamics is avoided in the model by use of differential equations for the concentra-
tions. If there are N antibody types, with concentrations x1,x2,...,xy then the system

is simulated via the following differential equation:

N N N
X',‘:C ijix,-xj—kl Zmijxixj+2mjixiyj —kzx,- (2.1)
j=1 J=1 Jj=1

The first term represents the stimulation of the paratope of antibody i by the epitope
of antibody j. The second term represents the suppression of antibodies of type i when
their epitopes are recognised by the paratopes of type j. Both terms assume that the
probability of a collision between an antibody of type i and j is proportional to the
product of the concentrations of these antibodies x;x;. The third term captures the
fact the system is driven by the presence of antigens, of concentration y;. In these
three terms, the match specificities m;; take into account what reactions occur and how
strongly. Finally, the last term models the tendency of antibodies to die in the absence
of any interactions. The parameter c is a rate constant which depends on the number of
collisions per unit time, and the rate of antibody production stimulated by a collision.
ki represents a possible inequality between stimulation and suppression and k» is a
further rate constant which can be varied. An essential element of the model is that
the list of antibody and antigen types is dynamic — new antibodies are generated by
applying crossover and mutation operators to the paratopes and epitopes of existing
antibodies, and antigens are generated either randomly or by design.

Farmer also postulates that the idiotypic network formed in this model provides
a mechanism for allowing antigen to be remembered for long periods of time, bear-
ing in mind that in some cases, antigens in the biological immune system can be re-
membered over time periods comparable to the lifespan of the organism. Consider
figure 2.4 adapted from [Farmer et al., 1986]. Paratope p; recognises epitope e;—1 for
i=1,2,...,n. If by chance p; recognises e, in addition to e(then a cycle is formed,
and e, must resemble eg. If the antigen is eliminated, then the existence of the cycle
maintains the concentration of those antibodies that recognised the antigen and thus
provides a memory of the antigen.

Thus, this model incorporates many of the features of the natural immune system.

The preliminary paper by Farmer does not report any application of the model to a

Chapter 2. Background 17

Antigen

Figure 2.4: Formation of a cycle allowing antigen with epitope e¢g to be remembered.

The arrows denote recognition via the matching algorithm

pattern recognition system, its primary intention being to learn more about the internal
operation of the immune system in real systems. However, they note “...generalised
versions of the model may be capable of performing artificial intelligence tasks”.
Gibert and Routen [Gibert and Routen, 1994] adopted this approach and attempted
to apply it to create a content-addressable auto-associative memory. Inputs to their
system are black and white pictures of 64x64 pixels which are analogous to antigens.
The aim was to present the antigen to the system, initiate a response during which a
memory of the antigen would be created, then observe the existence of the memory by
initiating a secondary response via injection of the same or similar antigen. However,
they report that they were unable to satisfy the simultaneous requirements of remem-
bering patterns whilst maintaining system stability. They suggest two variations of the
model. In the first, they attempted to forcibly create recognition loops in the network
to enable the maintenance by the network of clones responding to the antigen, and thus
provide a memory of the antigen. However, they show subsequently that this proves
unstable, in that clones would proliferate continuously and lead to collapse of the sys-
tem. They modified this system to increase suppression of clones, which resulted in a
stable system, in which memory cells were maintained by the network but tended to
dissipate slowly and eventually disappear. However, the system responded poorly, in

that it did not show good quality output, particularly after a secondary response.

2.2.1 Negative Selection Based Models

A whole class of implementations of artificial immune systems focus on modelling

the generally accepted self/non-self discrimination ability of the biological immune

Chapter 2. Background 18

system. The basic principles behind all of these models are as follows (modified from

Dasgupta [Dasgupta and Forrest, 1999])

e Define self as a multiset S of strings of length / over a finite alphabet, a collection

which we wish to process or monitor

e Generate a set R of detectors, each of which fails to match any string in S. (A

partial matching rule may be applied)

e Monitor S for changes by continually matching the detectors against S. If any

detector ever matches, a change or deviation must have occurred.

This basic algorithm has been employed extensively in computer security applica-
tions. [Forrest et al., 1994] applied the analogy to computer virus detection, to host-
based intrusion detection[Forrest et al., 1997a], and to making computers robust to
wide-spread attacks, [Forrest et al., 1997b]. [Hofmeyr and Forrest, 2000] describe a
further system for protecting local area networks (LANs) from network-based attacks.
The key to each of these applications clearly lies in defining ’self’ in each case. For
example, in Hofmeyr’s work on LAN security, self is defined as a set of datapath triples
defining TCP connections logged to the network. These were collected over a period
of 50 days, which after filtering out noisy traffic sources such as web-servers, resulted
in a set of 1.5 million datapaths.

The negative detection algorithm has also been applied by Dasgupta in
[Dasgupta and Forrest, 1996, Dasgupta, 1996] to detecting anomalies in time series
data. In this case, the aim is to detect temporal changes in the cutting force patterns
obtained from machine tool data, and thus predict when a machine is likely to break. In
this case, self is defined by first collecting raw sensory data from machines in normal
operation over a moving time window and mapping this real-valued data into a binary
form (essentially by normalising each analog value with respect to a defined range and
discretising it into bins — each data point is assigned the integer corresponding to the
bin within which it falls).

In [Hofmeyr and Forrest, 2000], Hofmeyr describes a general immune framework
called ARTIS, based on the principle of negative selection, which embodies many of

the characteristics of the biological immune system. In this system, a set of detectors is

Chapter 2. Background 19

maintained at each of n nodes in a distributed system. The detectors in each set detect
non-self and are created and maintained as shown in figure 2.5 which is taken directly
from [Hofmeyr and Forrest, 2000]. In this diagram, a detector consists of a randomly
created bit-string. New detectors remain immature during a tolerization period 7' in
which they are exposed to self (or at worst to an environment which consists mainly
of self). If any randomly generated detector matches anything during this period it
is killed and is replaced by a new randomly generated detector. If it survives T, it
becomes mature but naive, and lives for a further fixed number of time-steps. The
number of matches it accumulates is monitored, and if this number exceeds a certain
threshold 7, it becomes activated. Once activated, if it receives some co-stimulation
from an outside source to confirm that what is matched was truly non-self, then it
becomes a memory detector and lives indefinitely, and from then onwards only requires
a single match for activation. If it does not receive co-stimulation, it dies.

Thus, according to Hofmeyr, the immunological principles embodied in ARTIS are

as follows:

o It is distributed; different detector sets can be placed on different nodes
e Having different detectors at different nodes confers diversity

e The system is robust, as a loss of some detectors on one node does not result in

a complete absence of protection
o If the self set is typical of normal behaviour, then policy is implicitly specified.
e As detection is localized and needs no communication, the system is scalable

e The system is adaptable to changes in normal behaviour owing to its use of

tolerization and finite detector lifetimes.

However, several objections can be raised to the use of this model. Firstly, it is nec-
essary to generate a set of detectors which do not recognise any string in self. The time
complexity of this is proportional to the number of times a detector must be regener-

ated until it is valid. [Forrest et al., 1994] show that the number of retries required to

Chapter 2. Background 20

Detector
Set

Detector
Lifecycle

randomly created

01011101014......... 1011101

no match during
tolerization period

match anything during mature & naive
ew

tolerization period
thresheld

don’t exceed activation
threshold dyring lifetime

co—stinqulation

no co-stimulation

match

Figure 2.5: The lifecycle of a detector in ARTIS (taken from
[Hofmeyr and Forrest, 2000])

Chapter 2. Background 21

generate a valid detector V (d) is a geometric random variable with parameter P(V (d))

and so the expected number of trials p until success is given by

1
Ele)= (1—pu)ISg]

where Sg, is the self set and pys the probability of a match between a candidate detector

(2.2)

and a self string. The number of retries is thus exponential with the size of the self set.
Helman in [Helman and Forrest, 1994] has proposed an alternative generation algo-
rithm which runs in linear time with the size of self, based on a dynamic programming
technique, and [D’haeseleer, 1995] further proposes a greedy algorithm, however these
algorithms are not general and only apply to problems in which matching is achieved
via a specific matching rule, based on the number of common contiguous matching
bits between the detector string and the self-string. Thus, the application of the neg-
ative selection model may be limited to domains in which detectors can be generated
in a suitable time-frame, and further more to applications in which self can be easily
defined.

The second objection and perhaps more fundamental concern is that a system based
on negative selection implicitly assumes that the problem domain can be divided into
two distinct sets of event, ‘'normal’ and ’abnormal’. In reality, this is not the case, as
the categorisation of some events may be ambiguous, depending on circumstances, and
hence cannot be correctly classified. ARTIS in particular is built on the assumption that
the boundaries between self and non-self can be implicitly inferred by observing the
behaviour of the system and assuming that self occurs more frequently than non-self,
or that there is some period of time during which self can be collected separately from
non-self. Moreover, although the system is adaptable to changes in self, it is unclear
that in reality this would be true if those changes occurred on anything but a very slow
time-scale.

The final limitation arises from the fact that the system requires the intervention of
a human operator to provide the co-stimulation required to convert a mature detector
into a memory detector, and hence the system is not completely autonomous, a feature

which is of course desirable.

Chapter 2. Background 22

Nevertheless, of all the implementations of artificial immune systems described in
the literature, ARTIS perhaps bears most resemblance to a real immune system and
has been shown to be capable of performing network intrusion detection. To empha-
sise the generality of the architecture, [Hofmeyr and Forrest, 2000] also suggest further
applications to which the framework could be applied, namely mobile agent security,

epidemiological monitoring and detection of fraudulent financial transactions.

2.2.2 Models based on Evolutionary Algorithms

A class of artificial immune systems has emerged from the evolutionary algorithm
(EA) community, due to the observation that an EA could act as an excellent tool for
evolving sets of antibodies. Three different models that rely on an EA as the underlying

engine for producing antibodies are described below.

2.2.2.1 A Library Based Model

The immune systems variable V-region genes contain numerous gene segments,
the individual function of which can only be seen when each segment is joined
to others to construct one of a large number of possible antibody molecules. It
is speculated ([Leder, 1991]) that the human immune system contains seven ’li-
braries’, each containing differing numbers of gene segments and that random se-
lection of a component from each library produces an antibody molecule. As there
are many theoretical combinations of these components, an immune system can gen-
erate a large number of unique antibodies from a limited genetic source. Hightower
[Hightower et al., 1995] and Perelson [Perelson et al., 1996] present an abstract model
of such a library bases system. Again using a binary representation as suggested by
Farmer in [Farmer et al., 1986] their system uses a haploid chromosome to encode [
libraries, each of which contains ¢ gene segments. A gene segment is simply a binary
string in each case of length n. An antibody is produced by combining a randomly se-
lected component from each library, as show in figure 2.6, and is thus of length n x c.
Thus an immune system containing / libraries, each with ¢ components, can be used
to format ¢! different antibodies. The complete set of antibodies that can be formed

is known as the potential antibody repertoire. 1f the components in each library are

Chapter 2. Background 23

genetically dissimilar, then the scope for producing a set of antibodies that together
match a wide range of antigens is increased.

Hightower et al. use a genetic algorithm to evolve the composition of the binary
immune libraries, i.e. the genotype for a task in which the expressed antibodies (the
phenotype) must recognise a set of binary strings. The fitness of an individual (i.e.
the entire genetic library) is determined by its overall ability to recognise antigen
molecules. Fitness is determined by generating a set of expressed antibodies from
an individual, and testing how well that set recognises a set of antigens. Each antigen
receives an antigen score which is the maximum of all the match-scores computed be-
tween the antigen and the expressed antibodies. The overall fitness of the individual
is then found by combining the antigen scores, and averaging them. An alternative
scheme is to assign the fitness of the individual equal to the lowest antigen score, with
the rationale that an individuals fitness is effectively limited by that of the antigen it is
least equipped to recognise. Despite the fact the fitness pertains only to phenotypic in-
formation, Hightower et al show that a GA is able to effectively organise the structure
of the antibody libraries in order to perform this task.

Perelson [Perelson et al., 1996] uses this immunological model combined with a
GA to investigate actual biological phenomena such as clonal selection and the Bald-
win effect. The latter effect was first observed by Baldwin [Baldwin, 1896] over 100
years ago and is the notion that useful characteristics can be passed down to a future
generation without genetic propagation. The learning occurs by a process known as
somatic mutation in which stimulated antibodies produce daughter cells, in which one
or more genes become mutated. The daughter cells thus have varying abilities to recog-
nise a single antigen. Certain key mutations can lead to a significantly increased recog-
nition ability, however, these key mutations are not written back to the genome libraries
and hence cannot directly be passed onto future offspring. [Perelson et al., 1996] find
that evolution of the genetic libraries can be accelerated by incorporating this type of
learning into the model.

To summarise the features provided by this model, its strengths lie in the ability to
use a straightforward genetic algorithm acting on a binary representation to evolve a

small set of genetic libraries capable of providing a wide range of diversity. The most

Chapter 2. Background 24

Library 1 Library 2 Library 3
‘Al ‘AZ A3 ‘A4‘ ‘Bl ‘BZ B3 ‘B4 ‘ ‘Cl ‘C2 ‘C3 ‘C4 ‘

3 chosen segments

m one expressed antibody

Figure 2.6: Expressing an antibody from an artificial immune system

interesting observation to emerge from this work is the fact that selection pressure
acting only on the phenotype is capable of acting on the genotype. This suggests that
the model might be extended to more complex fitness functions and applications in
which it is straightforward to calculate some measure of phenotypic fitness of a single
antibody but more difficult to quantify the fitness of the entire immune system as a
whole. So far however, the model appears only to have been used in studies of natural

immunological processes, and not extended to other domains.

2.2.2.2 Emergent Fitness Sharing

The library based model just discussed uses one bit string to represent an entire im-
mune system. An alternative approach is taken by [Smith et al., 1993] who propose a
population based algorithm in which a genetic algorithm is used to produce and main-
tain multiple subpopulations of antibodies within the complete population. Therefore,
an immune system in this case is represented by the entire population manipulated
by the genetic algorithm, rather than a single individual in the population as in High-
tower’s work. An important difference between Smith’s model and the library-based
model that arises from this is that in Smith’s model the bit string represents both the
genes that code for an antibody and the phenotypic expression of the antibody itself,
and thus is a further simplification of the natural immune system.

The algorithm proposed in [Smith et al., 1993] to evolve and maintain a diverse

population of antibody niches is known as emergent fitness sharing.

Chapter 2. Background 25

1. Choose an antigen at random.

2. Choose a sample of size ¢ of the antibody population, at random and without

replacement.

3. Each antibody in the sample is matched against the chosen antigen, using a

match-function M to compute its match-score.

4. The antibody in the sample with the highest match score has its match score

added to its fitness. The fitness of all other antibodies remains unchanged.

5. Repeat from step (1) for typically three times the number of antigens.

Interactions between strings are defined by a matching function which rewards
more specific matches over less specific ones in an effort to capture the immune sys-
tems ability to distinguish non-self from self — this is accomplished by ensuring that
the recognition is specific.

Using this model, they show that their binary immune system is capable of detect-
ing common patterns in a noisy environment, and that using the GA with the emergent
fitness sharing function, it is possible to maintain diversity within the antibody popu-
lation. Thus their immune system captures one of the essential characteristics of the
natural immune system that it is capable of recognising an enormous number of for-
eign pathogens using limited genetic resources. They also show that like the natural
immune system, their model can perform feature detection. This is made evident by
performing experiments in which the GA evolves an antibody population of identical
antibodies which can match multiple antigens by detecting common schema. This kind
of common feature detection is very useful to the natural immune system, for example
it learns to recognise certain bacteria by identifying a common polysaccaride contained
in the cell walls of many different types of bacteria. Finally, their experiments show
that within the antibody population, multiple peaks corresponding to recognition of
different antigens can be maintained, and that the size of those peaks is proportional
to the bias within the antigen population. This is somewhat reminiscent of clonal se-
lection within the immune system, in which the lymphocytes that best recognise an

antigen are proliferated and hence increase in number.

Chapter 2. Background 26

Genome

threshold pattern mask
‘ 01001000 ‘ 10010101000111110000010110 ‘ 11111100111100000000001100

N s

Activation Threshold Antibody

‘ 0.28 ‘ ‘ 10010 1##000 1 #HH##HHHHHO 1 ## ‘

Figure 2.7: Mapping from B-Cell Genome to activation threshold and antibody (taken
directly from [Potter and De Jong, 1998]

2.2.2.3 A Co-evolutionary Immune System

Another system comprising of an evolutionary algorithm working in conjunction
with a binary representation of an immune system is described by Potter et al in
[Potter and De Jong, 1998] and [Potter and De Jong, 2000]. In this model, an antibody
representation is chosen which attempts to capture more closely a feature of the natural
immune system in that it contains some antibodies which only recognise very specific
antigen, and others that are more wide-ranging in their matching ability. The repre-
sentation enables a spectrum of antibodies to be modelled, ranging in specificity from
those that only bind to single antigen to those that match whole families of antigen
sharing common characteristics.

The representation is shown in figure 2.7. As in Hightower’s work, there is a map-
ping from genotype to phenotype to specify an antibody. The first 8 bits of the genome
map to a real-valued activation threshold. The remaining part consists of a pattern
and a map from which an antibody is generated. A mask bit of 1 generates a schema
value equal to the corresponding bit in the pattern, a mask bit of zero produces a don’t
care’ symbol in the antibody which matches anything. The mapping is many-to-one,
i.e. many genotypes may result in the same phenotype. This is intended to represent
another feature observed in real immune systems that many dissimilar chains of amino
acids may fold into the same basic three-dimensional shape, and hence recognise sim-
ilar antigen.

Rather than use the emergent fitness sharing algorithm just described in order to
resolve the problem of preserving diversity within an antibody population, they pro-

pose the use of a co-evolutionary genetic algorithm in which individuals from multiple

Chapter 2. Background 27

non-interbreeding subpopulations collaborate to solve the target problem. The fitness
of a B-Cell (and hence its antibody) is calculated by adding it to a ’serum’ consisting of
the best B-Cells from each of the other populations. The serum is then presented with
a set of both self and non-self 'molecules’ — the fitness of the serum is defined as the
number of non-self or foreign molecules recognised by all the antibodies in the serum
minus the number of self molecules recognised. Thus each B-Cell gains a reward
that summarises how well it collaborates with other B-Cells to cover the collection of
foreign molecules.

This system was applied to a concept learning problem, that of discriminating be-
tween the concepts ’Republican’ and 'Democrat’ by examining the voting records of
members of the U.S House of Representatives. The performance of their immune sys-
tem was compared to that of a symbolic inductive learning system AQ15, and the re-
sults showed that the immune system not only capable of learning the concepts, i.e. its
predictive accuracy was equal to that of AQ15, but that the description of the concepts
it produced was significantly more concise than that of AQ15.

The co-evolutionary architecture of this model in theory gives the potential for dis-
tributing the co-evolving populations to different nodes or machines, and hence confers
robustness on the system, as there is no longer a single point of failure, and to this ex-
tent it is perhaps more faithful to the natural immune system model than the models
of Hightower and Forrest described in the previous two sections. The model also con-
tains other of the key characteristics of the natural immune system given in chapter 1,
section 1.2, namely that the method of representing B-Cells from which antibodies can
be derived allows feature extraction to be performed, and the utilisation of a thresh-
old mechanism for detecting matching. Furthermore, the co-evolutionary architecture
allows diversity to be maintained across the system. However, as the authors them-
selves point out in [Potter and De Jong, 1998], the model is of course an extremely

loose model of an actual invertebrate immune system.

2.2.3 A Summary of EA Based Models

This section has presented several different models of immune system that incorporate

an EA of one kind or another as a mechanism for evolving antibody sets with the

Chapter 2. Background 28

desired properties. Each of the models described operates in a binary antigen universe,
and all the models exhibit a common subset of the features of the natural immune
system, namely they perform recognition via probabilistic detection of pathogens, are
capable of maintaining diversity, are able to learn the structure of the antigenic universe
to which they are exposed, and to some extent are able to perform feature extraction.
All the models draw inspiration from at least some features observed in the real system,
for example the matching functions employed by Potter, Hightower, Forrest and Smith
are all based on actual immunological observations.

None of the EA-based models explicitly makes use of the concept of memory de-
tectors, although in the work reviewed none of the system had been applied to prob-
lems in which the environment is dynamic, hence the need to use memory detectors is
perhaps unnecessary. On the contrary, in all the systems just described detectors are
evolved to meet a specific goal, and once attained, the evolution is stopped. Thus, it
could be argued that the memory detectors are merely the set of detectors or libraries
that result from the evolution process. However, if detectors were required to be gener-
ated continuously as in ARTIS, an evolutionary approach could run into problems, due
to the time-scales required to perform the evolution. There are two other key features
of the natural system not exhibited by any of the EA models — self-regulation and co-
stimulation. By definition, an EA must have a fitness function controlling evolution,
and hence this can be considered analogous to having a central control function. Co-
evolution, or the presence of a 2nd signal confirming the nature of the detection, is not
incorporated into any of these models. Nevertheless, the EA seems to provide a sensi-
ble starting point for an artificial immune system, certainly in a binary universe, as it
does provide a feasible method of searching the detector-space for suitable detectors,

rather than randomly generating them as in ARTIS.

2.3 Network Models for Machine Learning

A number of implementations of artificial immune systems rely on the immune net-
work metaphor. As previously mentioned, the network model of the immune system

is disputed by some theoretical immunologists, never the less, significant progress has

Chapter 2. Background 29

been made in applying the idea to problems in machine learning. Two influential net-
work models can be identified in the literature today — these are described in some
detail, however first some of the background work that led to these models is briefly
reviewed.

One of the earliest applications of the network idea to a machine learning prob-
lem was given by Cooke and Hunt, [Cooke and Hunt, 1995], who developed an AIS to
classify sequences of DNA as promoter-containing or promoter-negative. This work
attempted to closely adhere to the biological model — thus, for example it modelled
B-Cells containing gene libraries and messenger RNA from which antibodies could
be produced via a transcription mechanism, and it utilised matching rules weighted
in favour of contiguous matching regions. B-Cells were stimulated according to the
algorithm given by Farmer in equation 2.1, and clones of B-Cells produced via so-
matic hypermutation. New clones were then integrated into the network. Whilst the
work yielded some promising results, it was unable to perform as well as a previously
published neural network approach to classifying the data. The model was improved
in [Hunt and Cooke, 1996] in an attempt to build an immune system capable of case-
based reasoning. The idea was that each B-Cell in the network would represent a case,
and similar cases would be linked together via the network which was self-organising
in nature. The system contained both specific and generalised cases, attempting to
mimic the way that the natural system can generalise over infections. This model still
exhibited some major limitations as far as application to real-world complex data-sets.
In particular, many problems were associated with building the immune network — if
the network was randomly initialised, it took a long time to build useful patterns within
the network, and there was an extremely high overhead associated with insertion and
deletion of nodes into and from the network, especially as the size of the network
grew. Furthermore, attempting to mimic the method by which matching occurs in the
real immune system proved too simplistic, and only applicable to binary data strings.
Further work described in [Hunt et al., 1999] resulted in a new system named Jisys
which addressed these problems and was used to detect patterns in a database contain-
ing information relating to mortgage fraud.

Building on the foundations laid by Hunt at. al, a sequence of improvements pre-

Chapter 2. Background 30

sented in [Timmis et al., 2000] has led to the emergence of a system originally named
RLAIS, Resource Limited Artificial Immune System, and now renamed AINE, de-
scribed in [Timmis and Neal, 2001]. This represents one of the most sophisticated and
successful network models in the current literature. Timmis claims:
this system is a major step forward in making artificial immune systems a
viable contender for effective unsupervised machine learning and allows

for not just a one shot learning mechanism but a continual learning model
to be developed

AINE introduces the concept of the Artificial Recognition Ball, or ARB. A network
consists of a number of linked ARBs, with links representing similarity between them.
Similarity is calculated on the basis of the Euclidean distance either between two ARB
cells or between a cell and an antigen. The network initially consists of a cross-section
of the data to be learnt, with the remainder of the training data comprising the antigen
set. The system contains a fixed number of B-Cells — the ARBs compete for the ability
to represent these B-Cells, according to their current stimulation level. Stimulation of
an ARB is determined by three factors; the primary stimulation of the ARB by antigen
(i.e. the data), ps; the affinity of an ARB for its neighbours in the network, nn; and
finally by how much is is suppressed by its neighbours, ns. The calculation of the exact
stimulation level s/ is given in equation 2.3, where a is the number of antigens an ARB
has been exposed to, pd, is the distance between the ARB and the xth antigen in the

normalized data-space, and dis, is the distance of the xth neighbour from the ARB.

a n n

sl=ps+nn—ns=Y (1-pdy)+ Y (1—disy) =) (disy) (2.3)
x=0 x=0 x=0

B-Cells are allocated to ARBs, depending on their stimulation level, regardless of
how many B-Cells are actually available. Then, the weakest B-Cells are systemati-
cally removed until the number of B-Cells allocated is exactly equal to the maximum
available. This introduces competition between ARBs and provides a mechanism for
achieving population control. Remaining ARBs are cloned and mutated according to
their stimulation level, and the clones are integrated into the network if their affin-
ity to other ARBs in the network is below some fixed threshold. This gives rise to a

meta-dynamical system which eventually stabilises into a network that represents the

Chapter 2. Background 31

patterns within the data. The network is visualised in order to observe clusters. The
algorithm was applied to the classic Fisher Iris dataset, and resulted in the three known
clusters clearly appearing within the network within twelve iterations of the algorithm.
Although the network undergoes perturbations, the clusters are still visible after three
hundred iterations. The system requires tuning of three parameters: the threshold gov-
erning insertion of cells into the network, the number of resources allowed, and muta-
tion rate which controls diversity. More details concerning setting and effects of these
parameters are given in [Timmis, 2000a, Knight and Timmis, 2001].

Timmis claims that the mechanisms used by the algorithm were inspired by phe-
nomena observed in the natural immune system. Thus, he suggests that it is reasonable
to assume that the natural system must contain a finite number of B-Cells and cannot
undergo exponential growth in the the number of B-Cells, and therefore it is reason-
able to limit the resources within the artificial model. It is also suggested that the
behaviour of AINE simulates the metadynamics of the immune network discussed in
section 2.1.1 — AINE maintains a core network describing the training data, no matter
how many times the training data is presented, although perturbations occur from iter-
ation to iteration. Finally, the concept of ARBs is consistent with a view expounded
by Perelson that the biological system consists of a finite number of antibodies which
are representative of an infinite number of antigens based on a notion of shape space.
This is the idea that each antibody can recognise all antigens that occur in a volume V,
surrounding the antibody, and that if an infinite number of antigens can be placed in
each volume V, then a finite number of antibodies can recognise all antigen.

A fundamental point that must be addressed in relation to this model (and other
related network models) is to consider how far its performance may be limited by its
use of Euclidean distance between points as a measure of their similarity. For example,
consider the Fisher Iris Data used by Timmis to test the AINE network. Closer exam-
ination of this data reveals that in the usual set of 100 measurements used in training,
the 8th item belongs to one class, whilst the 91st item belongs to another. However,
when the Euclidean distance between all pairs of points is examined, the 8th item is
closest to the 91st item, despite the items belonging to different classes. Therefore, a

clustering algorithm based on Euclidean distance between points without any kind of

Chapter 2. Background 32

supervision could not correctly classify these items. In order to separate these items,
some warping of the dimensions must be undertaken, which cannot be performed with-
out supervision. No information could be found in the literature as to the percentage of
items in the Fisher set correctly classified by the AINE algorithm, therefore despite the
appearance of three distinct clusters within the data in the diagrams given for example
in [Timmis and Neal, 2001], it would be interesting to compare the number of items
correctly classified to that produced by other more established methods.

The second influential network model is a system named aiNet, due to
De Castro and Von Zuben, and described in [De Castro and Von Zuben, 2000b,
De Castro and Von Zuben, 2001]. The system was designed with the goals of data
clustering and of filtering redundant data. In this model, the immune network is con-
sidered as an edge-weighted graph, not necessarily fully connected, composed of a
set of nodes (cells) and node pairs (edges) which are assigned a weight or connec-
tion strength. The network is evolutionary in the sense that evolution strategies are
used to control the network dynamics and plasticity, and also connectionist once a ma-
trix of connection strengths is defined to measure the affinities between the network
cells. As in the AINE model described above, network cells compete for antigenic
recognition, and those successful undergo cell proliferation, whilst antibody-antibody
recognition results in network suppression. Similarity in this system is also calculated
on the basis of Euclidean distance between cells. The exact algorithm is given in fig-
ure 2.8 — steps (1(a)i-1(a)vii) simulate the clonal selection and affinity maturation
processes occurring in the natural immune system, steps 1(a)(viii)-1(a)(x) and steps
1(b)-1(c) simulate the metadynamics of the immune network. Note that steps 1(a)(ix)
and 1(a)(x) introduce both clonal suppression and network suppression elements to
the algorithm. The model contains rather a large number of parameters, and also has a
high computational cost per iteration (of the order O(p?)). Furthermore, it is difficult
to determine sensible stopping criteria.

The network outputs consist of a matrix of memory cell coordinates and a matrix
of inter-cell affinities. The network structure is analysed by calculating the minimum
spanning tree of the network — this allows the clusters in the data to be identified and

also a means of determining which network cell belongs to which cluster. Results are

Chapter 2. Background 33

reported on the application of aiNet to two problems — a simple data-set consisting
of 5 linearly separable clusters, and the well known two-donut problem. For the first
problem, clusters are correctly identified, and the algorithm produces a 66% compres-
sion rate. For the donut problem, again correct classification is achieved alongside a
reduction in the dataset size of 92%.

In summary, aiNet and AINE both draw heavily on the immune network metaphor
in order to produce systems which are well adapted to clustering real-valued data, and
incorporate many of the characteristics of the immune system outlined in section 1.2
of chapter 1. Their drawbacks lie mainly in the high overhead of maintaining the
dynamical network by inserting and removing nodes, which may prove a significant
deterrent to applying the network to rapidly changing datasets. This is obviously an
intrinsic disadvantage of any network based model. Another factor to note is that
secondary visualisation processes have to be applied to interpret the networks produced
and it is not straightforward to determine the class of a new item of data. Finally, as
already noted above, the use of Euclidean distance as a similarity measure may limit
the ultimate effectiveness of network based models. It seems possible that artificial
data-sets could be constructed to serve as a counter-example in which data could not

be clustered by either the AINE or aiNet algorithms.

2.4 Supervised Learning Using An Artificial Immune
Model

The network models just presented that perform data-clustering are unsupervised
learning systems — this thesis is also concerned with unsupervised data-clustering.
However, it is worth examining the features present in a supervised learning system
proposed by [Carter, 2000]. This supervised learning algorithm based on an immune
system analogy performs pattern recognition and classification. The system is known
as Immunos — 81, and uses abstractions of T-Cells, B-Cells, antibodies and their inter-
actions. Artificial T-Cells control the creation of B-Cell populations or clones, which
compete for recognition of unknown data-items. The clone with the highest affinity

for the data is then said to recognise and thus classify the unknown data.

Chapter 2. Background 34

1. At each iteration step, do:

(a) For each antigen i, do:

1.

1l

iil.

1v.

V1.

vii.

viil.

1X.

Determine its affinity to all the network cells according to a distance met-
ric in shape-space, d;;
Select the n (or n% of the) highest affinity network cells;

Reproduce (clone) these n selected cells. The number of progeny of each
cell, N, being proportional to their affinity: the higher the affinity, the

larger the clone size;

Increase the affinity of these N, cells to antigen i, by reducing the distance

between them (corresponding to greedy search)
Calculate the affinity of these improved cells with antigen i

Re-select 1% of the most improved (highest affinity) cells and put them
into a partial matrix M, of memory cells

Eliminate those cells whose affinity is inferior to threshold d (affinity
threshold), yielding a reduction in the size of the M}, matrix

Calculate the network cell-cell (Ab-Ab) affinity, s;;

Eliminate those cells whose affinity s;; is inferior to threshold s, leading

to another possible reduction in M), (clonal suppression);

. Concatenate the original network cell matrix with the partial matrix of

memory cells (C — [C;Mp])

(b) Determine the whole network inter-cell affinities and eliminate those cells

whose affinity with each other is inferior to threshold s (network suppression)

(c) Replace r% of the worst individuals by novel randomly generated ones

2. Test some defined stopping criterion and stop if necessary

Figure 2.8: The aiNet algorithm (taken from [De Castro and Von Zuben, 2000b])

Chapter 2. Background 35

Immunos — 81 embodies the biological concepts of T-Cells (in contrast to most AIS
models reviewed in this chapter), B-Cells, learning, and recognition. T-Cells are used
to control the production of B-Cells within the system, and learn the primary structure
of antigens, that is in this case the type and sequence of variables in the antigen data. B-
Cells in the system perform ’instance recognition’, i.e. they recognise specific features
of each individual antigen. The system does not explicitly represent a concept of self,
neither does it simulate idiotypic interactions between B-Cells. Furthermore, it does
not contain any pre-formed T or B-Cells, they are created as the system runs.

The system was tested on two standard machine-learning data-sets, consisting of
eight nominal and six continuous variables. The first data set known as the Cleveland
data-set consisted of 303 records from patients with suspected coronary artery disease.
This was used as a training set prior to presenting the system with 200 unknown patient
cases. Correct classification of the unknown data was produced in 80.3% of cases,
and when cross-validation runs on the original Cleveland data set were performed,
performance ranged from a high of 96% to a low of 63.2%. These figures compared
very well with other machine learning techniques, the closest competitor being a k-

nearest neighbour classifier.

2.5 Immune Algorithms for Scheduling

As stated in the introductory chapter, one of the themes of this thesis is to explore
the use of an immune metaphor in the context of scheduling. An extensive search
of the literature revealed some other applications of artificial systems to this broad
domain. [Fukuda et al., 1999, Mori et al., 1997] describe a general framework for an
autonomous distributed system to control semiconductor production. Their system
consisted of multiple agents, corresponding to features of the immune system, to con-
trol production. Thus, the framework consisted of four types of agent, detector agents,
mediator agents, inhibitor agents and restoration agents, which interacted with each
other and with a production line, Detector agents,corresponding to B-Cells in the im-
mune system, were used to detect specific malfunctions in the system. Mediator agents

mimic the behaviour of lymphokines which are secreted by T-Cells in the immune sys-

Chapter 2. Background 36

tem to activate B-Cells. The function of these agents was to activate an inhibitor agent
to inhibit firing. The inhibitor agents corresponded to B-Cells killing antigens, and the
restoration agent (corresponding to helper T-Cells in the biological system) served a
purpose similar to the detector agents. The framework has not been tested in practical
applications but the authors claim that the framework could enable decision making
in real-time and tolerance to a changing environment. A similar agent-based immune
system was described by [Russ et al., 1999] for performing task allocation in computer
systems, in order to make a system capable of adapting to a changing environment.

Of more interest to the type of scheduling that it is proposed to tackle in this thesis is
work by [Mori et al., 1998] and [Costa et al., 2002]. Mori et al describe an AIS which
is used as an optimisation algorithm to solve a multi-objective scheduling problem.
The problem they discuss is as follows: orders can be split into several jobs of suitable
batch sizes. Each job is then processed on a sequence of machines. Thus, two sub-
problems exist: the first is a job-splitting problem in which each order consisting of
splittable jobs must be split into optimal batch sizes, and the second is then a standard
job-shop scheduling problem which determines the sequence that each job is processed
on each machine.

Mori et al propose an immune algorithm that mimics the idea of an immune net-
work as proposed by [Jerne, 1973], in combination with somatic recombination and
mutation in order to maintain diversity in the antibody population. Their system pro-
duces schedules for single problems in which a set of objective functions is optimized,
and therefore does not consider building in robustness and flexibility into the schedule
to cope with unpredictable events, as discussed in section 1.3.1 of Chapter 1. However,
the authors propose that their system could be adapted in future to cope with dynam-
ical environments in which orders of jobs are changed or the objective functions vary
dynamically.

The immune network consists of two types of antibody — one which encodes batch
sizes (as integers), and a second which encodes the job priority, and is a permutation of
integers. An antigen represents the conditions of the problem, such as the order quan-
tity and objective functions. Affinity between two antibodies is defined by measuring

the informative entropy between the antibodies — this quantity is a measure of the

Chapter 2. Background 37

recognition of antigen
(schedule conditions/
objective functions)

l

production of antibody
population from memory

cells

——

calculation of affinity
‘Ab-Ag affinity (antigen—antibody dhd
= solution quality antibody—-antibody)

]

Optimal solution
found ?

¢ STOP

Proliferation and

Differentiation into
memory cell

suppression of antibody

creation of new
antibodies via

genetic reproduction

L]

Figure 2.9: Immune Algorithm for Production Scheduling

diversity between the antibodies, measured by comparing allele values at each locus.
Affinity between an antibody and antigen is simply the value of the objective function
given by solving the problem defined by the antigen using the batch-sizes and sequence
defined by the antibody. Antibodies proliferate and are suppressed depending on their
concentrations and affinities for other antibodies in the network and for the antigen.
Those antibodies with high affinity for antigen (and therefore representing low cost so-
lutions) proliferate — however, if the concentration of an antibody becomes excessive,
its proliferation is suppressed, in order to enable exploratory search as well as focusing
on local minima. If an antibody is suppressed until it is eliminated, new replacement
antibodies are generated by genetic reproduction operators such as crossover and mu-
tation. When a good solution has been found, it is stored in the memory cells so that
it can be immediately retrieved if the same antigen is presented in the future. The
operation of the system is shown in figure 2.9.

Compared to a straightforward ’generate and test” method, the immune algorithm
provided better results with respect to waiting time, which is claimed to be due to the

immune algorithm’s ability to search the global space of solutions. Essentially, the

Chapter 2. Background 38

immune system is being utilised as an optimisation algorithm in these cases. Although
the algorithm itself is faithful to the network model of immunology, the manner in
which it is applied to the problem area does not take full advantage of the potential of
the analogy for tackling practical features of scheduling problems.

[Costa et al., 2002] introduce an immune algorithm for make-span minimisation on
parallel processors. This algorithm is also an optimisation algorithm, in that it finds
an optimal solution to a single, specific scheduling problem, and does not consider the
question of producing solutions which are robust to changes in the environment. How-
ever, the algorithm is described for completeness. The immune system is based on the
CLONALG algorithm due to De Castro, [De Castro and Von Zuben, 2000a]. A simpli-
fied version of this algorithm is shown in figure 2.10. Antibodies consisting of strings
of integers represent feasible solutions to the scheduling problem, and the affinity of
each antibody is given by %
lem, and M (k) the make-span of the antibody under consideration. The process is run

where LB is a derived lower bound for the prob-

until no improvement in the best solution can be found. The algorithm was tested on
390 instances of generated problems in which each instance had i processors on which
to schedule j jobs, with the processing time of each job obeying a uniform distribution
in the range [1,k]. They compared their results to tabu search, simulated annealing,
local search, and a number of heuristics. Their results were encouraging, showing that
the immune based algorithm was effective in dealing with instances characterised by
jobs with long processing times on a small number of machines, especially when com-
pared to single-solution strategies. It is claimed that these superior results are due to
the ability of the immune system approach to maintain diversity within a population of

candidate solutions.

2.6 Artificial Immune Systems for Dynamic Problems

One of the key characteristics of the immune system is its ability to function in
a dynamic environment. In this section, applications of artificial immune sys-
tems which directly exploit this analogy are considered. [Gaspar and Collard, 1999,

Gaspar and Collard, 2000] have applied an immune system analogy to producing a

Chapter 2. Background 39

1. Create a population of k antibodies representing feasible solutions to the problem
2. For each generation do:

e For each antibody do:

— decode the antibody

— determine the antibody affinity

determine the number of clones of each antibody

determine the number of mutations of each antibody

do cloning and mutation

For each clone do:

— decode the clone
— determine the clone affinity

— 1f Affinity(clone) > Affinity(antibody), replace antibody with clone

3. whilst stopping criteria not met

Figure 2.10: The CLONALG algorithm [De Castro and Von Zuben, 20003a]

Chapter 2. Background 40

system to perform time-dependent optimisation. They consider a canonical benchmark
problem, in which the fitness of a solution is defined by its similarity to an arbitrary
bit-string which represents the current optimum and changes regularly. The problem
can be parameterised with respect to the continuousness of transitions, the transition
period, and transition range, and hence makes a suitable benchmark. Gaspar et al
propose an immune based algorithm capitalising on the biological immune systems
adaptive nature. An antigen represents the current optimum, which must be matched
by B-Cells. Their system, named Sais, features both a primary (reactive) response and
a secondary response, mimicking memory. The system starts with a random popula-
tion of B-Cells, each able to detect a given antigen. At each generation, three operators
are applied to the population; evaluation, clonal selection and recruitment. The evalu-
ation phase results in an exogenic activation for each B-Cell, based on the Hamming
Distance between the B-Cell and the current optimum, and an endogenic activation
based on the number of different types of B-Cells in the population and the current
density of the B-Cell itself in the current population. This tends to force convergence
of the system towards a set of equally represented categories. The Clonal Selection
phase produces intermediary populations of both exo-activated and and endo-activated
B-Cells, by applying a selection operator according to their activation level, and in the
case of exo-activated cells, applying somatic hypermutation. Cells from both interme-
diary populations are then combined into a new population in the recruitment phase,
again using a selection process. Results show that Sais is capable of handling the dy-
namic optimisation problem described. The authors attribute its success to the fact that
their system is reactive in the sense that it can discover new optima, but also that it can
preserve diversity (unlike, for example, straightforward genetic algorithms) so that it
can remain reactive over time. The model is loosely based on the idiotypic networks
presented in the previous sections, however is clearly an over-simplified model of the
immune system itself. Nevertheless, it captures some of the essential mechanisms by
which the immune system operates in a dynamic, complex environment, and exhibits
analogies of the primary and secondary responses due its maintenance of multiple cat-
egories of B-Cells within the population. This work also reinforces the notion that an

artificial immune system may be a convenient metaphor to work with in non-stationary

Chapter 2. Background 41

environments.

The preceding sections have presented an overview of the main techniques used to
implement artificial immune systems. Furthermore, a detailed summary of the litera-
ture relating to the topics of interest in this thesis has been given. The field is expanding
rapidly however, and there are many more examples of AIS in the literature than could
be described in this thesis. The interested reader is referred to a detailed bibliography
containing 293 references produced by [Dasgupta et al., 2002] — this bibliography
contains a wide variety of applications, implemented using variations on one or more

of the techniques described in this chapter.

2.7 Sparse Distributed Memories and their Relation-

ship to Immunological Memory

Smith et. al have shown that immunological memory is a member of a class of sparse
and distributed associative memories. Another type of memory typical of this class is
Kanerva’s Sparse Distributed Memory, or SDM [Kanerva, 1988]. The work presented
in chapters 5 and 6 of this thesis draws heavily on the analogy between the SDM and
the immune system, and hence a brief description of the SDM is now presented to
outline the underlying concepts so that the correspondence between the two types of
memory can be made clear. A more detailed discussion of the properties of the SDM

is provided later in this thesis in chapters 4 and 6.

2.7.1 Kanerva’s model

The SDM is a form of memory which can be written to by providing an address and
data, and then read from by providing an address and getting an output. The SDM is
specifically designed to function with enormous address spaces, in which it would be
impossible to physically instantiate all of the possible address locations. For exam-
ple, SDM can cope with addresses of 1000 bits, and therefore 2!%% potential address-
data locations. An SDM instantiates a small and random subset of these locations,

which are referred to as hard locations, and are said to sparsely cover the input space

Chapter 2. Background 42

[Kanerva, 1988].

Each hard location has an associated set of counters, one for each bit. Whenever an
address is presented to memory, the Hamming Distance between the address and each
of the hard locations is calculated. All hard locations that are within some threshold
distance R, referred to as the recognition radius, of the address become active — this
subset is called the access circle of the address. The method in which read and write
operations are performed is shown in figures 2.11 and 2.12.

In order to write an item of input data to the memory, each bit of input data is stored
at every location in the access circle: if the ith input bit is 1, then the itk counter at each
hard location in the access circle is incremented by 1, if the ith input bit is 0, then the
ith counter at each hard location in the access circle is decremented by 1.

To read an item from the memory, the sum of the ith counter value of each of
the hard locations in the access circle is calculated, for each bit: if the sum of the ith
counters is positive, the ith output bit is 1, if the sum of the ith counters is negative, the
ith output bit is 0.

The SDM has several appealing properties. The data is distributed independently
to many hard locations, thus it is robust to the loss of individual hard locations and
exhibits a graceful degradation of response. Furthermore, the mechanism by which
data is retrieved is imprecise, therefore data can be retrieved even if a read address is
corrupted and hence slightly different from a prior write address, due to the associative
nature of the recall. The associative behaviour results from the overlapping of access
circles — if the access circle of a read address overlaps that of the write address, then

all locations within the overlap are activated, and thus give associative recall.

2.7.2 Correspondence between SDM and Immunological Memory

Smith et al discuss the correspondence between SDM and immunological memory
(IM) in great detail in [Smith et al., 1999]. This section reiterates their argument to
illustrate the close relationship between the two systems. Table 2.1, reproduced from
[Smith et al., 1999] summaries the correspondence between the two memories.

Both IM and the SDM perform recognition by means of detectors; in the case

of SDM, the recognition is of addresses, via hard locations. In IM, the recognition

Chapter 2. Background 43

input data

annnnnn
Hamming Selected
hard locations Distance counters
i lo 11| s3] -1|8 |34
tjofjt|1fo]o L3 | 410 -2
b)
oo |t |11 |1 6| 242|213
olt1lolololo -1 s | 2| 2|3 |2

update counters
at selected locations 1 1 3 -4 10 -2

Figure 2.11: Writing a piece of data to the SDM with a recognition radius R = 2: a) The
input data is presented to the memory. b) The Hamming Distance D between the data
and each hard location is calculated, and those locations in which D < R are selected.
¢) The counters at each bit of the selected locations are updated according to the input

data

input data

Hamming
——— Selected

hard locations Distance counters

1 1 0 1 1 1

b 1 0 1 1 0 0

0 0 1 1 1 1

0 1 0 0 0 0

sum counters
o at selected locations -
e nnnnnn

Figure 2.12: Reading a piece of data from the SDM with a recognition radius R = 2: a)
The input address is presented to the memory. b) The Hamming Distance D between
the data and each hard location is calculated, and those locations in which D < R are
selected. c) The counters at each bit of the selected locations are summed d) Bits in

which the sum > 0 output 1, bits where the sum is < 0 output 0

Chapter 2. Background 44

Immunological Memory | Sparse Distributed Memory
Antigen Address
B/T Cell (Antibody) Hard Location
Ball of Stimulation Access Circle
Affinity Hamming Distance
Response/Tolerance Data
Primary Response Write and Read
Secondary Response Read
Cross-Reactive Response Associative Recall

Table 2.1: Structural and functional correspondence between immunological memory
and SDM. The table is taken directly from [Smith et al., 1999]

is of antigens, by B/T cells which produce antibodies. In both cases the potential
recognition space is huge, and therefore both systems can only sparsely cover their
respective input spaces with detectors. Thus, in both systems, recognition can only
be imprecise, and thus detectors become activated if they are within some threshold
distance of the input. In IM, the threshold is determined by the binding affinity between
antigen and antibody, in SDM the threshold is determined with respect to Hamming
Distance. In either case, a subset of detectors becomes active on presentation of an
input, in the case of IM, this is called the ball of stimulation of the antigen, in SDM it
is referred to as the access circle.

Both systems store information associated with each input. In the case of SDM,
the information is simply contained in the bit-strings comprising the input data. In IM,
the equivalent information stored is determined by the immune response itself, i.e. the
mechanism by which the immune system responds to an antigen and the types of cells
invoked to perform that mechanism.

Both systems perform associative recall. In an SDM, if a noisy or corrupt input
datum activates a set of detectors that overlap with those activated by a prior input,
then detectors from the prior input will contribute to the output. In IM, a mutant strain

of an antigen plays the same role as the noisy input in SDM, and a previously activated

Chapter 2. Background 45

antibody will contribute to the response.
Thus, it should be clear from the preceding discussion that the SDM and immune
system analogies are interchangeable, and that elements from both models could theo-

retically be incorporated into any new AIS model.

2.8 Conclusion

This chapter has presented a broad overview of some basic immunology and of the
diverse range of artificial models of the immune system currently described in the lit-
erature. The models range in nature from those that attempt to closely model biological
phenomena, to those that simply use the metaphor as loose inspiration for a computa-
tional system. All of the systems described exhibit a subset of the features of the real
immune system described in chapter 1. The remainder of this thesis introduces four
new models based on the immune analogy, which also attempt to capture the salient
characteristics of the immune system. The problems domains to which they are applied

have been chosen to capitalise on these characteristics as much as possible.

Chapter 3

Immune Systems for Scheduling

3.1 Introduction

The previous chapters have outlined the properties of the biological immune system
that would seem important in an information processing context in some detail, and
provided an overview of a number of computational implementations of systems which
incorporate various subsets of these properties. The discussion of these properties (in
both biological and artificial terms) implies that the immune system metaphor would
lend itself most readily to those type of real-world applications which operate in dy-
namic and unpredictable environments, in which it is necessary to react to changes
in a timely manner and in which memory of past experiences provides useful point-
ers as to the correct course of action. The biological immune system is not perfect;
not every potential pathogen can be recognised by every individual, and those that are
recognised often recognised imprecisely. Despite this, the system as a whole functions
sufficiently well for the human race to have survived for many thousands of years. This
suggests that potential application areas for the application of the metaphor are those
in which we are not seeking to find optimal solutions or answers to some problem,
but more simply robust and *good enough’ solutions that allow the system to continue
operating.

Some example application areas fitting these aspirations have already been de-

scribed in chapter 2. In the introductory chapter, it was suggested that another ob-

46

Chapter 3. Immune Systems for Scheduling 47

vious application area in which many of the characteristics describing the environment
in which the IS operates are paralleled is that of scheduling. This analogy was made
explicit in section 1.3.1 of chapter 1. Here, it was noted that an ’ideal’ schedule is
not necessarily one which optimises some measurable criterion such as make-span or
maximum tardiness, but one which has some built-in flexibility that can absorb some
unpredictable event without disrupting the planned schedule. Also, it was made clear
that the schedule must still deliver some acceptable level of quality when measured
against some pre-determined criteria. This chapter first provides an overview of cur-
rent approaches to the re-scheduling problem identified in the (non-immune system)
literature. The job-shop scheduling problem is then properly defined so that the anal-
ogy between a scheduling system and the immune system can be made explicit (section

3.4). Two approaches to immunology based scheduling are then described.

3.2 Other Approaches to Robust Scheduling

The type of real problem described in the introduction has received much attention
over the years from many areas of the academic community, initially from the the
Operations Research community and later from Artificial Intelligence, using a wide
and varied list of techniques. The real-world scenario described is often typified by
the job-shop scheduling problem, of which there exist many benchmark examples on
which algorithms can be compared, (for example [Beasley, 1990]). These problems
are generally NP-hard and cannot be solved to optimality — however, a great deal of
attention has been paid to attempting to produce schedules that are as close to optimal
schedules as possible, in the sense that some objective is minimised. In the majority of
cases however, such *optimal’ schedules are often extremely fragile — a minor change
in conditions can render the schedule useless. This has no practical value in a real
world situation, in which if any rescheduling is required, it is often desirable to produce
a new schedule which resembles the old one. For example, a new schedule which
differs significantly from the original one may result in having to recall employees from
holiday or changing set-ups on machines, both of which have economic implications.

A review of the literature indicates that comparatively little attention has been paid

Chapter 3. Immune Systems for Scheduling 48

to this problem of rescheduling. There appear to be two possible approaches:

1. Reschedule from scratch from the point at which a breakdown occurs, thus con-

sidering a completely new scheduling problem.

2. Produce a schedule in the first place that is capable of absorbing changes in the

environment.

The approach outlined in (1) above has been adopted by [Bierwirth et al., 1995,
Fang et al., 1993], using genetic algorithms. Approach (2) was taken by
[Wu et al., 1999] though this work is in respect to making schedules robust to dis-
turbances in operation processing times, and does not consider other possible events
that may perturb the original schedule. This work employed a graph-theoretic ap-
proach combined with a branch-and-bound algorithm. [Herrmann, 1999] used a co-
evolutionary algorithm to tackle a similar problem in which the algorithm converges to
the worst case and therefore most robust scenario. [Jensen and Hansen, 1999] propose
anew method of creating robust solutions to job-shop problems that produces solutions
which are robust to breakdowns of machines.

In this chapter, a new method of producing robust schedules to job-shop schedul-
ing problems is proposed which falls into category (2) above. Thus, it is proposed
that an immune system analogy can be used to construct schedules in a manner which
produces schedules that are resilient to changes in the environment. The use of the
immune system analogy also results in a scheduling system that contains sufficient
“building blocks’ to potentially construct schedules that cover a wide range of contin-

gencies.

3.3 Definition of the Job-Shop Scheduling Problem -
JSSP

In a typical job-shop scheduling problem (JSSP) j jobs are required to be scheduled
on m machines. A single plan defines the (j*m) operations that must occur. Each

operation has a fixed processing time p j,,. Each job is expected to arrive at the factory

Chapter 3. Immune Systems for Scheduling 49

at time A;, and must be completed by due-date D;. A machine can only process one
job at a time, and preemption of any operation on any machine is not allowed. In both
models proposed in this chapter, we only consider contingencies involving unexpected
arrival dates of jobs into the factory — deviations in arrival date can result in jobs
having to be stored ready for processing for long periods of time if they arrive early, or
cause delays in processing of other jobs if they arrive late. However, the methodology
described is sufficiently generic that other contingencies such as deviations in due-
dates or processing times could be incorporated straightforwardly.

There are many objectives by which the quality of a schedule can be measured,
based on either completion time or due-date. Those based on completion time, for
example the total production time (makespan), are rarely of commercial interest as the
exact details of a problem are not known from the start and they do not have a clear
end. In the case of job-shop scheduling, it is more sensible to consider objectives based
on the date by which individual jobs are supposed to be completed. In this work we opt
to use the measure of maximum tardiness, T4, with the implication that a schedule’s
cost is directly related to the latest job that completes after its due-date. If each job j
completes at time C;, then the maximum tardiness of the schedule is defined as shown
in equation 3.1, and means that the cost of a schedule is directly related to the amount

of time that the latest job completes after its due-date.

Tnax = max(0,C; — D) (3.1)

Other due-date based objectives, such as weighted tardiness or number of tardy

jobs are simply variations on this theme.

3.4 Definition of an Immune-Based Scheduling System

A stylised model of the environment in which an immune-based scheduling system
might operate is shown in figure 3.1. The relationship between the standard immuno-

logical terms and a scheduling environment is defined below:

Antigen — a set of conditions describing a possible scenario in the factory for which

a schedule must be produced, i.e. each antigen defines one possible set of arrival

Chapter 3. Immune Systems for Scheduling

Antigen A
3 Job 1: arrive 10 due 20 3
3 Job 2: arrive 20 due 25 3
. Job 3: arrive 11 due 30 |

Antibody X

Ag-Ab complex

Antigen D
Antigen C

Antigen B

EAntibody Y

Figure 3.1: A stylised model of an Artificial Immune System for scheduling

50

Chapter 3. Immune Systems for Scheduling 51

dates and due-dates under which a schedule must be produced.

Antigen Universe — a set of antigens representing a sample of the possible scenarios

and contingencies that may occur.
Antibody — a set of instructions for constructing a schedule.

Ag-Ab Complex — combination of an antibody and antigen produces an Ag-Ab com-
plex which in this case represents a complete schedule, with start times and finish
times for each operation. The schedule is produced using the instructions given

by the antibody and the information supplied by the antigen.

Match-Score — the match-score represents the strength of the Ag-Ab complex, i.e.
in a scheduling scenario the maximum number of time units a job is late in
the schedule produced as a result of matching antibody and antigen. A perfect
schedule has a match-score of 0 — the higher the match-score, the worse the

schedule.

Thus, the scheduling immune system model contains a set of antibodies defining
possible methods for creating schedules, and a set of antigens, representing a sample of
the potential situations that may arise. The number of antibodies is small compared to
the number of potential situations, therefore each antibody should match (to a greater
or lesser extent) a subset of the antigens in the universe. Thus, there are three obvious

and important questions to address when designing such an immune system:

1. How can one represent both antigens and antibodies ?

2. What are the building blocks from which the immune system assembles antibod-

ies, and how are they generated ?

3. How are antibodies assembled from these building blocks ?

The next section proposes a model — SCHED]1 — IS, based on immunological
principles, that can accomplish these tasks, and discusses the reasoning behind the

design choices that were made.

Chapter 3. Immune Systems for Scheduling 52

3.5 SCHED1-1S

3.5.1 Choice of IS Model

Having established precisely those features of the biological immune system which
we wish to incorporate into an immune-based scheduling system, returning to the
published literature showed that there were two obvious candidates of artificial IS
models on which a system could be based. The first of these models, proposed in
[Hightower et al., 1995], was described in detail in chapter 2, and a further model due
to [Oprea and Forrest, 1998] is described below. Although both model binary uni-
verses in which bit-strings represent both antibodies (genotypically and phenotypi-
cally) and antigens, in principle, both could be extended to include more complex
representations.

To recap, [Hightower et al., 1995] described a binary model of the immune system
which was used to study the effects of evolution on the genetic encoding for antibody
molecules, which showed that robust pattern recognisers can be learned with a surpris-
ingly small amount of information. In this model, each individual in a population ma-
nipulated via a genetic algorithm represents the genetic specification for the antibody
libraries of one immune system. Bit strings were used to represent both the genotype
— libraries of gene segments — and the antibody molecules of the phenotype. Fur-
ther work ([Perelson et al., 1996]) provided insight into how and why the natural IS
evolved as it did.

Oprea in [Oprea and Forrest, 1998, Oprea and Forrest, 1999] describes a simplified
version of the Hightower model which was used as part of a detailed study on the
sources and evolutionary significance of diversity in the biological immune system.
In this model, one individual’s genome consists of a single library containing a set of
complete antibodies — i.e. the single antibody library represented by an individual can
be viewed as exactly the antibody repertoire. It is claimed in [Oprea and Forrest, 1999]
that this does not affect the generality of the model and adding more libraries would
not affect the results. The aim of the work was to investigate the type of antibody
repertoire that might evolve in relation to a given pathogenic environment.

We opted to extend the more general approach taken by [Hightower et al., 1995],

Chapter 3. Immune Systems for Scheduling 53

using multiple libraries, as it appeared to fit the scheduling analogy and philosophy
we were trying to create more closely; in a scheme containing multiple libraries, each
library can be viewed as holding a piece of a schedule “jigsaw”. Selecting different
pieces from each library and combining them into a whole schedule allows for the
creation of many different schedules. In contrast, if Oprea’s approach were adopted,
a library would contain completed schedules, therefore the whole library is simply

offering a limited selection of alternative schedules, and thus is less flexible.

3.5.2 Representation of antibodies and gene-libraries in
SCHED1 —1S

Having elected to represent the scheduling system as a series of libraries of compo-
nents which are randomly selected from, and recombined into a complete schedule,
the immediate difficulty to be faced is exactly how to represent the schedule; the rep-
resentation must be of a form that can be broken down into random fragments that
can be recombined in a manner which always guarantees a feasible representation of a
schedule.

As mentioned previously, the majority of AIS models operate in a binary universe.
[Nakano, 1991] have described a binary representation to encode schedules for aca-
demic job-shop problems. However, a complex effort was required to design such an
encoding, and its use in a GA context needed specialised repair operators to retain the
ability to decode chromosomes as feasible schedules, therefore the representation is
not suitable for use in the library-based model we propose.

However, an indirect representation of a schedule in which the representation en-
codes the method for constructing a schedule rather than the schedule itself offers ob-
vious advantages, in that it can generally be manipulated by standard genetic operators
without loss of meaning. A search of the relevant GA literature revealed one such rep-
resentation which possessed the ideal properties. This representation was proposed in
[Fang et al., 1993] and consists of a string of length j X m integers which is interpreted
as follows:

If the string is represented as “abcd...” then place the 1st untackled task of
the ath uncompleted job into the schedule in the first place where it will

Chapter 3. Immune Systems for Scheduling 54

fit, then place the first untackled task of the bth uncompleted job into the
schedule etc.”.

This representation was found to be very successful in tackling a wide range of
scheduling problems at the time of publication, though since this work was completed
it has been superseded by an alternative indirect representation proposed by the au-
thor of this dissertation in [Hart and Ross, 1998]. However, it remains suitable for the
purposes of building and evaluating an immune system model. Clearly, a string repre-
senting a set of schedule building instructions in this manner can be broken down into
sub-fragments which can be combined in any manner.

Thus, SCHED1 — IS is composed of a set of / libraries, each containing ¢ compo-
nents. Each component is a string of s genes, subject to the constraint that s x [= j x m,
i.e. so the length of the expressed antibody must be equal to the number of operations.
Each of the s genes has a value in the range (0— (j—1)). ¢ can be varied independently.

This is shown in figure 3.2.

3.5.3 Representation of an Antigen

An antigen describes a set of expected arrival dates and due-dates for each job in the
shop and hence each antigen represents one of the contingencies we wish to deal with.

Therefore, each antigen is simply an ordered list of dates represented by integers:

Arrive Due

Jobl: 10 20
Job2: 5 11
Job3: 15 17

Note that information regarding the sequence in which each job visits each ma-
chine is separately maintained as this information is constant in the system. The anti-
gens therefore represent only the variable information in the system. Of course, if the
sequencing of jobs was also considered to be variable in the system, then the antigens

could also represent this information.

Chapter 3. Immune Systems for Scheduling 55

Immune system

¢ components in
each library

BY

9]

o

N

(W]

—_

(\9)

N
(O8]) (9]
INER RN 5
) N N

library 1 library 2 library 3

(356 4|1 23 4]l4 5 5 4]

indirect schedule representation
constructed from the library components

Figure 3.2: The figure shows an example of the immune system represented in
SCHED1 —IS. The immune system consists of [libraries, each containing ¢ compo-
nents. Randomly selecting one component from each library and concatenating them

produces an indirect, feasible representation of a schedule

Chapter 3. Immune Systems for Scheduling 56

3.5.4 Evolution of the Gene Libraries

A genetic algorithm is used to evolve a set of immune libraries as shown in figure
3.2 in exactly the same manner as [Hightower et al., 1995]. Each individual in the
population represents a complete set of libraries, i.e. an entire immune system. As in
[Hightower et al., 1995], a haploid representation is used in which the total number of
genes in each individual is (I x ¢ x s). Each AIS in the initial population is generated
by assigning a random value to each gene. The fitness of an individual is determined
by its overall ability to produce schedules which optimise 7}, across all the potential
scenarios described in the antigen universe, i.e. against all potential antigen encounters.

The procedure by which fitness is calculated is a modified version of that given in
[Hightower et al., 1995], as described in chapter 2, section 2.2.2.1. A set of antibodies
(schedules) are expressed from an individual by combining one component from each
library (see section 3.5.2 of this chapter) and then exposed to the antigen universe.
For each antibody-antigen encounter, a schedule is constructed, and the quality of the
schedule in terms of 7,,,, measured. Each antigen receives an antigen-score which
is the minimum, i.e. the best, of all the values of 7,,,, measured for that antigen.
The overall fitness of an individual is computed by averaging all the antigen-scores;
this assumes the survival probability of an individual depends on all the pathogenic
challenges it encounters. An alternative approach would be to take the view that in fact
the survival probability is dependent on the extent to which it is able to deal with the
most difficult encounters, and therefore its fitness is characterized by the worst value
of T},qax found during an antigen encounter. The exact algorithm for computing fitness
is given in figure 3.3.

After a match-score for an antibody has been calculated, the antibody is mutated at
random in M positions, and the match-score recalculated. If the match-score improves,
then the original antibody is assigned this new match-score. The mutations are not

written back to the gene library.

Chapter 3. Immune Systems for Scheduling

1. Express N antibodies at random from each individual

2. Select K antigens at random, with replacement, from the antigen uni-

verse.
3. For each of the K antigens selected:
e Using the arrival-dates defined by antigen K;, produce N sched-
ules, using the N expressed antibodies.

e Calculate T;,,, for the each of the N schedules

e Apply somatic mutation to each antibody and re-calculate the

value T, . for each schedule.

e Assign antigen K; an antigen-score equal to the best (i.e. lowest)

value of (T, T),,) found

4. Average the K antigen-scores to give an overall fitness for the individual

Figure 3.3: Algorithm for computing the fitness of each individual in SCHED1 — IS

57

Chapter 3. Immune Systems for Scheduling 58

1. Express N antibodies at random from a set of evolved libraries

2. For a given antigen A, calculate the quality of the schedule generated

(Tnax) by applying the instructions encoded in each of the N antibodies
3. Select the antibody Ab* with the best value of T},
4. Produce C clones of Ab*, by mutating each gene with probability p,,.

5. Calculate the new value of T;,,, for each clone, and return the best, C*.

Figure 3.4: Algorithm for simulation of the immune-response. This algorithm produces

a schedule in response to a change in scheduling conditions

3.5.5 Evaluating the IS Produced — Inducing an Immune Re-

sponse

[Hightower et al., 1995] showed that the method just described allows a genetic al-
gorithm to optimise complex genetic information, even though selection pressure is
acting on the phenotype which expresses incomplete genotypic information. However,
we are concerned with producing a practical scheduling system. This means that once
a set of immune libraries has been evolved, we must be able to generate high qual-
ity schedules from those libraries in response to a new scheduling scenario quickly
and efficiently. Thus, we must model and evaluate the biological immune-response.
This has been discussed in detail in chapter 2 where the process of clonal selection
[Burnet, 1959] was described. Activated B-Cells (i.e. those which best recognise an
antigen) proliferate, growing into a clone of cells. As clones grow, the immune system
turns on a mutation mechanism that generates mutations in the genes that code for the
antibody. These point mutations occur at very high frequency. This process (known
as somatic mutation) when coupled with selection, results in B-Cells that have very
high affinity matches with antigen. This process is directly modelled in the response

mechanism, which is outlined in figure 3.4.

Chapter 3. Immune Systems for Scheduling 59

3.6 Experimental Approach

SCHEDI1 — IS is heavily based on the model proposed by [Hightower et al., 1995,
Perelson et al., 1996]. As all previous experiments with this model have been con-
ducted using binary match-functions based on the simple binary universes first sug-
gested by [Farmer et al., 1986] we first needed to verify that the proposed model using
integer values for genes and a match-function based on evaluating the schedule pro-
duced by combining antigen and antibody actually underwent a process of evolution;
1.e. the overall fitness of the immune-systems evolved after 200 generations was greater
than those of the random initial population. We also wished to confirm the three find-

ings of the Hightower work, namely;

1. The greater the antigen expression rate, the faster the learning

2. The larger the expressed antibody repertoire, the faster the learning and the

higher final fitness of the evolved population

3. Somatic mutation accelerates evolution and illustrates the Baldwin effect.

As aresult of attempting to confirm these findings, we would also be able to deduce
sensible values for the system parameters, particularly N and K.

However, even if we show that evolution does take place in the proposed system,
the actual values of fitness achieved following evolution do not give any indication as to
whether or not the system has any practical value. This can only be gauged by inducing
an immune response from the evolved system, and testing whether or not schedules can
be produced which provide satisfactory solutions to scenarios that were defined in the
world in which the libraries evolved, and also in response to completely new scenarios.
Therefore, although a brief series of experiments is performed in order to confirm that
the SCHED1 — IS system can evolve, the majority of this work is directed towards
evaluating the immune systems produced, in order to quantify how they perform in a
scheduling environment.

The data that was used is now described in section 3.6.1, followed by a description

of parameters that were common to all experiments performed.

Chapter 3. Immune Systems for Scheduling 60

3.6.1 Experimental Data

Antigen universes, (AUs), were generated based on a set of benchmark scheduling
problems given by Morton&Pentico in [Morton and Pentico, 1993]. These problems
have been commonly used in a large number of scheduling studies. Results are re-
ported here for the problem known as jbl1.ss, which was selected as being typical of
a medium-sized problem from this set. This problem contains 15 jobs, to be processed
on 5 machines, and is known to have an optimal solution where no job arrives late.
Each AU generated contained 10 antigens — an antigen was generated by mutating
the original arrival date for each job with probability p, to another random date, in
the range (0,300), subject to the condition that the new arrival date was at least pt
days before the due-date of the job, where pr was the minimum processing time re-
quired to complete the job. (Note that this method does not guarantee that the resulting

conditions can lead to an optimum schedule where no job is tardy.)

3.6.2 Common parameters

In all experiments, a population of 100 random individuals was generated, with each
individual characterised by (/ = 5,c =5) and therefore s = 15 (as the total length of an
antibody produced from an individual must equal the number of operations, 75). Thus,
a total of ¢/ = 3125 antibodies can be formulated from a single immune system. These
values were chosen after considerable experimentation with combinations of ¢ and /.
The value of ¢ can be increased independently of / and s, however, clearly there is a
trade-off between the amount of diversity that can be achieved within the system, and
the amount of time required to evolve the system, given that selection pressure acts
only on the phenotype. A similar trade-off exists in balancing / and s — the length s of
the segment represents a common sequence of instructions for building a schedule. The
likelihood of finding common sequences decreases as s increases, but the size of the
search space increases exponentially as s decreases (and therefore / increases). The
values of c¢,/,s reported here appeared to be a satisfactory compromise that allowed
evolution to take place over a tractable amount of time, yet still produce satisfactory

results.

Chapter 3. Immune Systems for Scheduling 61

All genes were randomly initialised with values in the range (0-14) as there were
15 jobs. The genetic algorithm used a generational reproduction strategy, with recom-
bination performed by tournament selection of size 5, and uniform crossover. Each
experiment was run for 200 generations, and repeated 10 times. All antigen universes
contained 10 antigens and unless stated otherwise were generated by setting p, = 0.2.
Setting the tournament size to 5 exerts a high selection pressure, however given the
nature of the fitness function, this was found to produce better results than when using

a smaller tournament size.

3.6.3 Verification of the Hightower Model

Figure 3.5 shows the results of an initial series of experiments that were performed
to verify that our model did indeed exhibit the characteristics expected (see section
3.6). All experiments were repeated 10 times, and the best fitness found averaged.
Firstly, the antigen exposure rate was held constant at K = 2 (20% of the potential
pathogen repertoire) whilst the antibody expression rate was varied. Next, the antibody
expression rate was fixed at N = 15 (0.005% of ¢!), and the antigen exposure rate
varied between 20% and 100% of the potential number of antigens. Finally, some
experiments were performed to confirm that somatic mutation could accelerate the
evolution process. The optimal number of genes to undergo somatic mutation was
varied and the resulting fitness of the immune systems measured, as well as the fitness
trajectories over the course of the evolution when somatic mutation was applied.

Figure 3.5(a) shows that performance clearly increases as N is increased, as would
be expected with greater sampling of the genetic material available in the genotype.
Even when only 0.001% of the potential antibody repertoire is expressed, some evolu-
tion of the genetic material takes place, though somewhat slowly. When 0.05% of the
repertoire is expressed, evolution is rapid, and approaches the maximum possible fit-
ness of 1.0. There is clearly a trade-off however, between the time required to perform
the evolution at large N against the fitness of the final system.

On the other hand, figure 3.5(b) shows that the average fitness of the evolved li-
braries decreases as the antigen exposure rate K is increased. This result conflicts

directly with the work by Hightower et al., [Hightower et al., 1995], in which they find

Chapter 3. Immune Systems for Scheduling 62

that binary immune systems evolve faster and end up with higher fitness values as the
antigen exposure rate is increased. A possible explanation for this is that the ’opti-
mal’ schedules corresponding to each of the antigens in the universe are so diverse
that especially at low N the expressed antibody repertoire is too general to provide
reasonable solutions. Furthermore, in a binary system, there is a higher probability of
a completely random antibody matching any given antigen than in the integer-based
system modelled here.

Figure 3.5 (c) replicates the findings of [Perelson et al., 1996], in that increasing
the number of points in the genome which are mutated improves fitness sharply over a
narrow range of values of M, as a result of the Baldwin effect. Figure 3.5 (d), which
compares the evolving fitness of the immune system with increasing generations for
experiments that do and do not include somatic mutation, shows that including somatic
mutation results in a more rapid evolution, and results in a higher overall fitness, again,
as predicted in [Perelson et al., 1996].

Therefore, we conclude that the integer-based model with the interaction formed
by the Ag-Ab complex describing a schedule is suitable for evolving immune libraries
from which schedules can be generated. Best results will be achieved using low values
of K, the antigen exposure rate, and high values of N, the antibody expression rate,
and an element of somatic mutation. Given the time constraints introduced when using
large values of N, we elected to set N = 0.005 in remaining experiments described, as
evolution still occurs even at this level. Unless otherwise stated, the antigen exposure

rate was set to 4.

3.7 Evaluation of the Inmune Response
The experimental procedure adopted for evaluation of the libraries evolved using the
genetic algorithm consisted of three distinct phases:

1. Measure the quality of the schedules produced from evolved libraries in response

to scenarios described in the AU the library was evolved in.

2. Measure the quality of the schedules produced from evolved libraries in response

to previously unseen scenarios, i.e. generate a set of new antigen universes

Chapter 3. Immune Systems for Scheduling 63

oor—— 7 7 T 1 T T T T 04
08 o b 035
n =156 (0.05%) » K=2
0.7 i K=4
03 K=6
0.6 v oas K=8
202 -
zos B g K=1
£ £ 02
o4 .
03 - n=31001%) - 0.15
02 F B 0.1
ol n= 15, 005%)) R e
e s ‘ ‘) ‘ n=30401%) .
0 1 1 1 1 1 1 1 1 1
4 0
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Generations Generations
(a) (b)
14 0.22
02 A
12 1 I8 q
10 016 1 Experiments with M=5 .)
ny matic mufation 0.14 somatic mutation | B
@ M=z 10 i
E3 N Bl it Iy it il I Nl A $oa2
=}
2 o1
g6 P
g 0.08 - o
2
£ 4 0.06 No somatic mutation
0.04 b
0.02 -
I I I I I I I I I
0 1 1 1 1 1 1 1 0 y
0 5 10 15 20 25 30 35 40 0 20 40 60 80 1,00 120 140 160 180 20
Number of positions undergoing mutation M) Generations
(c) (d

(a) Fitness trajectory of GA experiments in which the antigen exposure rate is held
constant at K = 4, and the antibody expression rate varied.

(b) Fitness trajectory of GA experiments in which the antibody expression rate is held
constant at N=15, and the antigen exposure rate K varied between 2 and 10.

(c) Effect on average tardiness of schedules of increasing the number of genes M that
undergo somatic mutation at each generation of the GA. The antibody expression rate
was fixed at N = 15 and the antigen exposure rate K = 4.

(d) Fitness trajectory of GA experiments in which the somatic mutation rate is varied.
The graphs show that applying somatic mutation accelerates evolution. Parameters

were set as in (c).

Chapter 3. Immune Systems for Scheduling 64

3. Define a measure of robustness of a schedule, and evaluate evolved schedules

against this measure.

Schedules were produced from evolved libraries using the algorithm outlined in fig-
ure 3.4. Preliminary experiments established suitable values for the parameters of this
algorithm. The quality of the schedules generated was compared against a schedule
evolved using the specialised scheduling GA proposed by Fang in [Fang et al., 1993].
The fitness of the respective schedules was compared, as well as the actual sched-
ules themselves. In order to provide a fair comparison, Fang’s genetic algorithm is
run for the same number of generations and using the same parameters and operators
as used in evolving the immune libraries. However, note that a single generation of
SCHEDI-IS involves evaluating (K * N * p) schedules, where K is the number of anti-
gens the system is exposed to, N is the number of antibodies expressed and p is the
size of the population, whereas Fang’s GA requires evaluating only p schedules per
generation. However, Fang’s GA must be run once for every scheduling problem to
be solved, therefore the total number of generations required to produce solutions to
all problems must be multiplied by N,, the number of antigens in the universe. One
run of SCHED1 — IS on the other hand, solves all problems at the same time, and as
typically, K << N, (in the experiments performed K =4 and N, = 10), the effort may
not differ significantly between the two methods. Furthermore, even if more effort is
initially required to evolve an immune library, once it has evolved, it then contains the
material required to produce new schedules quickly and efficiently so the initial effort
is not wasted. Using Fang’s GA to construct a new schedule requires the whole process
to start from scratch, and therefore a further p x g schedule evaluations, where g is the
number of generations.

As stated in the introductory section of this chapter, one of the aims of this work is
to produce schedules that are robust, i.e. can absorb changes within the operating en-
vironment. This can be interpreted as producing schedules which cover more than one
contingency — if this is the case, a schedule does not necessarily have to be changed if
the conditions under which it was produced change. Thus, even if the quality of sched-
ules produced from the immune libraries is favourable compared to those produced by

the Fang algorithm, if the schedules are significantly different from each other they

Chapter 3. Immune Systems for Scheduling 65

job order job order

Al 73254 Al3l1]2 5 4

v B 25431 v B 25431
S 12345 S 12345
§D54321 §D541
El 13245 El13245

Figure 3.6: Comparison of two schedules — cells in which the two schedules differ are
shaded

may cause much disruption if they were to be put into practice.

Therefore, we introduce a measure of similarity of two schedules. Given a schedule
which describes the operation of J jobs on M machines, then we can write a schedule
S as a matrix of m rows and j columns. Each of the m rows represents a machine, and
the row indicates the order in which jobs are processed on that machine. Thus S; j
represents the ith job to occur on the jth machine. An example is shown in figure 3.6.

We suggest that two schedules can be considered similar if jobs are processed on a
machine in the same order in each schedule, regardless of the time that the jobs start or
finish. Thus, if we compare two matrices and count the number of cells in which the
matrices differ, we have a quantatitive means of comparing the similarity of two sched-
ules S and S’. This robustness measure R is defined in equation 3.2. In the problem
described, we have 15 jobs, each of which is to be scheduled on 5 machines. Given
two permutations of 1...n numbers, then it can be shown (appendix A) that the number
of expected coincidences between them is just 1. Thus, in a scheduling problem with j
random jobs on m machines, a random schedule contains j permutations of 1...m, and
so the expected number of places of similarity between two schedules is simply j with

variance j and standard deviation /.

1 otherwise

0 if St =S
R = Z { lf (Jm) (j,m) (32)
j.m

Chapter 3. Immune Systems for Scheduling 66

3.7.1 Selecting the Clone rate, Antibody Expression rate and Mu-

tation rate

This section describes a series of experiments which investigated the effect and impor-
tance of the choice of values for NV, the number of antibodies expressed, C, the number
of clones produced, and p,,, the mutation rate, in producing a response. A set of im-
mune libraries evolved using N = 0.005% and K = 4 was used as the test immune
system, and a response was generated 100 times to each of the 10 antigens present in
the AU that the immune libraries were evolved against. A response was generated 100
times against each antigen using a set of parameters (N,C, p,,), and the fitness of the
resulting schedule measured. All results were averaged over the 100 responses. The
patterns that emerged were identical for all antigens — results are shown for the re-
sponse against a single antigen in figure 3.7. The fittest schedules are obtained at low
mutation rates, and at high values of both N and C.

As a result of this, in all further experiments, the values of N and C were each set
to 1000, and p,, to 0.2. Given that we used 5 libraries, with component size s = 15, this

is equivalent to expressing approximately 32% of the potential repertoire.

3.7.2 Comparison of tardiness of schedules produced from
SCHED]1 — IS to those produced by Fang GA

For each antigen-exposure rate, K, tested in section 3.6.3, the best set of immune-
libraries produced in the 10 experiments was used to produce schedules for each of
the 10 antigens in the original antigen universe (p = 0.2) in which the libraries were
evolved, and then for three further antigen universes generated using p, =0.1, p, =0.3
and p, = 0.5. This involved applying algorithm 3.4 100 times, using the parameters
determined above, and comparing the average tardiness of the best schedules found to
the tardiness of the corresponding schedule produced via the Fang algorithm. Table 3.1
shows the percentage of the 10 antigens in each universe for which the best schedule
found using the evolved immune-libraries was superior to that found by Fang. The
figures in brackets give the corresponding percentage values for the average tardiness.

Although there is no clear-cut trend with increasing K, for most values of p, there

Chapter 3. Immune Systems for Scheduling 67

5] IS

Maximum Tardiness

Maximum Tardiness

=N

I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000 9
Number of antibodies initially produced

=

I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 100
Number of clones of best antibody produced

(a) (b)

9
3

-]

Maximum Tardiness

IS

Clone Mutation Rate

(c)

Figure 3.7:

(a) Effect of varying the number of initial antibodies generated N during the immune
response on the average tardiness of schedules. C is fixed at 1000, and p,, at 0.2

(b) Effect of varying the clone rate C during the immune response on the average tardi-
ness of schedules produced. N is fixed at 100, and p,, at 0.2

(c) Effect of varying the mutation rate p,, during the immune response on the average
tardiness of schedules produced. N is fixed at 100, and C at 1000

Chapter 3. Immune Systems for Scheduling 68

Antigen Antigen Exposure During
Universe Evolution of AIS
Du 2 4 6 8 10

0.1 20 (50) | 80 (90) | 20 (50) | 70 (80) | 60 (80)
0.2 10 (20) | 30 (40) | 20 (30) | 40 (40) | 60 (60)
0.3 0(20) |50 (50) | 30 (30) | 60 (60) | 40 (50)
0.5 0 40 (30) | 10(0) | 40(20) | 0(0)

Table 3.1: Percentage of test-cases where bestand (average) tardiness of AlS schedule

was equal to or less than result found by Fang

is a general tendency for the schedules produced via the immune-libraries to increase
in quality as K increases, despite the fact that the overall evolution of those libraries
is slower (see section 3.6.3). Examination of any trends occurring as the diversity of
the antigen universe increases (i.e. p,) shows that the ability of the immune-libraries
to match the results produced by Fang decreases as p, increases. Even at p, = 0.5
however, using the AIS from K = 8 we are able to match the Fang results in 40% of
cases, which is somewhat surprising, considering the wide diversity of arrival-dates
amongst the antigens in this universe. In general, libraries evolved at a low antigen
exposure (K=2) perform badly. Libraries evolved when K = 4 and K = 8 generally
performed well across all universes.

It is worth noting that in order to produce a schedule using Fang’s specialised GA
requires 20,000 evaluations of schedules (i.e. 100 individuals over 200 generations).
On the other hand, producing schedules from the evolved immune-libraries requires at
most 2000 evaluations:- evaluation of 1000 initial antibodies, followed by evaluation
of 1000 clones. Furthermore, figure 3.7 (a) suggests that the number of antibodies
initially produced could also be significantly reduced, perhaps to 400, as increasing the

number beyond this point does not produce a corresponding increase in performance.

Chapter 3. Immune Systems for Scheduling 69

Pu
0.1 0.2 0.3 0.5

AIS | 30.11 | 46.48 | 41.47 | 44.31
Fang | 43.86 | 44.58 | 45.49 | 46.20

Table 3.2: Average robustness R of schedules in different antigen universes

3.7.3 Robustness of Schedules

In order to analyse the robustness of schedules produced from the immune-libraries
(see section3.7), a schedule was generated from an immune-library evolved using
(N = 0.005,K = 4) for each of the 10 antigens in each universe characterised by
pu € 0.1,0.2,0.3,0.5. A pairwise comparison of each of the 10 schedules in each
universe was performed, using R as the measure of comparison. This was repeated
comparing schedules generated using the Fang algorithm. The average value of R in
each case is given in table 3.2.

Apart from the anomalous case of p, = 0.2, we see an improvement gained by pro-
ducing schedules from the immune-libraries, in that the average value of R is lower
and therefore the schedules more similar. In section 3.7 it was noted that the ex-
pected value of R is j — note that in all cases, the value of R obtained using the
immune-libraries is greater than 2j!. Moreover, Chebyshev’s inequality suggests that
the probability of getting 40 or more coincidences between two 15-job schedules is
< 15/(40 — 15)> = 2.4%, and therefore the probability of obtaining these results by
chance is very low. The difference in R between the library generated schedules and
the Fang schedules decreases as p, increases, and is also very high for high values
of p,. This is probably due to the increased diversity in antigens that is obtained by
mutating each arrival-date with high probability, and therefore the resulting low prob-
ability of producing a single schedule that can cover all cases effectively. (Obviously
a single schedule could be produced to cover all contingencies by only considering the
latest arrival date for every job across the whole antigen universe — this would result
in a schedule with large amounts of idle time however, and possibly several very late
jobs.)

Chapter 3. Immune Systems for Scheduling 70

3.8 Summary of Utility of SCHEDI1 — IS

The experiments just described show some promise as a first attempt at designing a
scheduling system based on immunological principles. In particular, they go some
way towards meeting the goals originally outlined, i.e. that the system should be able
to rapidly and efficiently produce schedules that are satisfactory in quality and robust
to changes in the environment. This is confirmed by the experiments in sections 3.7.2
and 3.7.3. Aside from the scheduling perspective, it also lends further weight to the
claims made originally by Hightower et. al. that selection operating at the organismic
level can provide the selection pressure needed to generate and maintain diversity in an
organisms gene-libraries, as our integer-based model is a more generic representation
of the libraries themselves and the match-function more complex; remember that genes
in the biological immune system are composed from four possible bases — A,D,G T
— rather than the two modelled in Farmer’s original binary artificial immune system,
and the interaction or binding affinity between antigen and antibody is clearly more
complex than simply summing numbers of complementary bits.

However, so far only a cursory investigation has been performed of the use of
such a system for scheduling, using restricted and small antigen universes, in which
only one type of contingency (inconsistency in arrival-dates) has been examined. With
hindsight, when taking a more global view of the overall picture, the model seems to

embody two obvious flaws:

Representation — the information contained in a single library component changes
its meaning according to the components preceding it in an antibody. For ex-
ample, a ’1’ at some position i in the list of instructions for building a sched-
ule means schedule the next operation of job 1. However, the exact identity of
this operation is dependent on how many operations of job 1 have already been
scheduled in the previous (I — i) instructions. This is likely to be a consequence
of using any indirect representation, however it is difficult to envisage how any-
thing other than an indirect representation could be used in a library/component
model as described, if it is essential that combining random components from

libraries always leads to feasible antibodies.

Chapter 3. Immune Systems for Scheduling 71

The Immune Response — even if a suitable set of libraries of components can be
produced, then the problem of how to retrieve antibodies from the immune sys-
tem still exists. Selecting random components and combining them to pro-
duce antibodies results in an antibody search space of size ¢/. There could
be considerable variation in quality across this space, and hence it could be
counterproductive to spend much effort searching it. In the experiments de-
scribed, the size of the complete antibody search-space was 3125, (5°), which
is small compared to the number of schedule evaluations generally required
by a GA to solve such a problem, which is often of the order of 20,000, see
[Fang et al., 1993, Lin et al., 1997]. However, in large problems which require

larger immune systems, the combinatorics may readily become intractable.

In light of these inadequacies, the entire motivation behind trying to produce
immune-libraries that represented repositories of schedule fragments from which ro-
bust schedules could be produced was re-examined. Analysis of data supplied by
real companies relating to their scheduling problems, for example [Hart et al., 1998,
Marshalls Agriculture, 1998], revealed that similar scenarios often crop up over and
over again, and as a result there are known methods for dealing with them. An ex-
perienced scheduler can quickly piece together new schedules using prior knowledge
gained from past experiences. Therefore, the problem faced by a human scheduler is
generally not how to produce a new schedule starting from scratch, or indeed how to
originally design a schedule that is robust to a range of potential conditions, but how to
select and draw on prior experiences to adapt an existing schedule to a new situation.

Therefore, we now propose that addressing the more fundamental question of how
to evolve the contents of the actual immune libraries so that the libraries contain ro-
bust building blocks is inappropriate — a more pertinent question is how can we con-
struct an immune system in which the library components represent a store of prior
experiences. In theory, these experiences can be pieced together and perhaps undergo
adaptation in some manner in order to quickly make new schedules. In fact, this can
be considered directly analogous to the secondary response in the biological immune
system in which a persistent sub-population of memory cells retains information about

previous antigenic attacks — these cells are restimulated either by attack from the

Chapter 3. Immune Systems for Scheduling 72

original antigen, [Jerne, 1973, Tew and Mandel, 1979] or by attack from a related en-

vironmental antigen [Matzinger, 1994a].

3.9 SCHED?2 — IS — Storing Past Experiences in an Im-

mune Library

Thus a second model is now proposed, based on immunological principles, and by
which a scheduling system might be implemented. This model is referred to as
SCHED?2 —IS. The model is based on the conjecture that although a variety of con-
ditions may arise that all require a new schedule to be implemented, the conditions
are often predictable and have associated predictable (partial) solutions. Therefore,
the most relevant of the immunological principles to capture within the model appears
to be that of memory, which allows the prior experiences to be maintained. By also
modelling some of the diversity generation processes observed in the biological sys-
tem, it should be possible to enable those cells to adapt in order to recognise new in-
vaders more specifically. We also speculate that although many slight deviations from
the norm arise in a scheduling environment, it is rare to have to radically resched-
ule. Therefore although the biological immune system is able to respond to entirely
new situations owing to its astonishingly effective diversity generating mechanisms, it
is unnecessary to rely on these mechanisms in most of the day to day situations that
occur.

We propose that when scheduling is performed by an experienced human, then he
or she relies on using historical information in order to construct new schedules — this
information may relate to specific past events, or to long or short sequences of past
events, and is commonly described as ’intuition’ — something that is difficult if not
impossible to capture in a computer model. For example, it is not difficult to imagine
some or all of the following thought processes occurring to our experienced scheduler

when faced with a scheduling scenario:

e Job A and Job B can usually be performed in parallel

e Operations a,b,c tend to occur in a group in many schedules, but in different

Chapter 3. Immune Systems for Scheduling 73

permutations
o When machine X breaks down, often task Z can be performed while waiting

e Job C is often late arriving, so process Job D instead

These processes are captured to some extent in the historical schedules themselves;
For example, if we examine the order in which jobs are processed on a specific ma-
chine, or the order in which jobs are selected from the shop-floor for processing, then
it is common to observe patterns occurring across subsets of these processes. Thus,
if a set of common patterns or parts of schedules could be built up using the knowl-
edge encapsulated in past schedules, then these patterns can be used as building blocks
when constructing a new schedule. The simple idea is that building blocks formulated
as a result of past experiences encapsulate past learning and knowledge, and therefore
should be an efficient and rapid way of forming a new schedule. This type of approach
to scheduling also seems more realistic than the typical GA approach which starts from
a random starting point and searches for a new schedule, using no knowledge of past
behaviour.

Thus, in contrast to SCHEDI1 — IS which adopts a bottom-up approach to pro-
ducing schedules, we are now proposing a fop-down approach. Figure 3.8 shows the
major differences in the approach taken in each case. In SCHED]1 — IS, the system
starts with a set of potential scheduling conditions, and generates an evolved immune
system consisting of libraries of partial instructions for creating schedules. In contrast,
SCHED?2 — IS starts with historical information describing actual past schedules; a set
of building blocks is derived from these schedules, which can then be recombined to
produce new schedules. Thus, although both models ultimately result in a step which
builds new schedules from smaller building blocks, the preliminary steps taken to gen-

erate these building blocks are very different.

3.10 SCHED?2 — IS - Description of Model

This section describes the new model, SCHED?2 — IS, which adopts the top-down ap-

proach outlined in figure 3.8. The model must satisfy two aims; firstly, derive a sensible

Chapter 3. Immune Systems for Scheduling 74

| tigens
new schedules ; anfigens —+ (antibodies
' (completed schedules)

| |

library of partial
' instructions
! for building schedues

library of partial
i completed schedules :

antigens |
8 + ! new schedules
(scheduling scenarios) |

SCHEDI-IS | SCHED2-IS

Figure 3.8: Comparison of the two proposed models for a scheduling immune system,
SCHED1 —1IS and SCHED2 — IS

set of building blocks, and secondly, be able to recombine those building blocks into
new schedules. What constitutes a useful set of building blocks? In order to answer
this question, we must first consider what exactly it is that those building blocks rep-
resent. It has already been mentioned that there are a number of obvious processes
occurring whilst scheduling in which patterns can be observed. The most obvious, and
that chosen for use in this study is the pattern of job-sequences observed on individual
machines in historical schedules. The approach adopted however does not preclude
other types of pattern; for example distribution of idle times on machines, or the order
in which jobs are placed in the schedule. When considering job-sequences, although it
is likely that some subsets of historical schedules will contain common job-sequences
on certain machines, it is unlikely a common sequence of jobs will be observed in all
schedules. Thus, ideally we wish the building block set to contain as many common
sequences as possible, but at the same time, contain specialist sequences that are only
applicable to certain unique situations that may arise again in the future. The next
section describes one method by which a building block set can be generated. Sec-
tion 3.10.2 then describes the approach taken in SCHED?2 — IS to recombining these
blocks into schedules. This is followed by some experimental results in which the

performance of the model is thoroughly analysed.

Chapter 3. Immune Systems for Scheduling 75

3.10.1 Deriving the building blocks

As stated above, the proposed model must incorporate a method of producing a set of
diverse building blocks, which includes both specialist blocks — those that represent a
unique pattern occurring in a schedule, and generalist blocks — those which represent
a common pattern occurring in many schedules. The genetic algorithm has been ad-
vocated as a method of searching for a population of structures that jointly perform a
computational task!, for example in a learning classifier system [Holland et al., 1986].
In such problems, the GA must search for a set of individuals which are specialised to
various tasks or niches; collectively the individuals provide a complete solution to the
problem being solved. Depending on the number of individuals in the populations, and
the number of niches in the problem, some of the evolved individuals must generalise
in order to cover more than one peak, whilst others can remain more specialist. In gen-
eral, the difficulty with using a GA to solve such a problem is how to retain sufficient
diversity within the population in order to cover all the niches. Also, GA approaches
tend to suffer from the drawback that it is impossible to track more niches than mem-
bers of the population. Many methods have been suggested, the details of which are
beyond the scope of this thesis. These include crowding [DeJong, 1975], assortative
mating algorithms, [Booker, 1985], and dividing the population into sub-populations,
[Whitely and Starkweather, 1990]. Three methods seemed worthy of further investi-

gation:

3.10.1.1 Fitness Sharing

[Deb and Goldberg, 1989, Goldberg and Richardson, 1987] introduced the notion of
fitness sharing. The idea behind this method is that diversity is maintained in a popula-
tion by punishing individuals that are similar to other individuals within the population,
and is rooted in ecological ideas that in an environment consisting of multiple niches,
there are finite resources available for each niche. The method appears to work well in

some situations but has significant limitations ([Smith et al., 1993]):

e [t is necessary to know a priori how many niches there are in the environment

lalthough the majority of GA applications tend to be directed towards evolving a single population
member that specifies a single optimised solution.

Chapter 3. Immune Systems for Scheduling 76

e [t is dependent on a uniform distribution of peaks in the search space

e [t requires a comparison of every population member to every other population
member in each generation, i.e. N2 comparisons for a population of size N,

therefore is time-consuming.

For these reasons, the approach did not seem suitable to the task of discovering
schedule building blocks; we do not know how many blocks (i.e. niches) are required,
and they are unlikely to be evenly distributed across the search space. Therefore this

approach was rejected for inclusion in SCHED2 — IS.

3.10.1.2 ‘Pitt Approach’

In this approach to classifier systems, described in [DeJong, 9898], a population of
rules is concatenated into a single individual which is then manipulated by a GA.
This allows diversity to be maintained within each rule set but is inherently ineffi-
cient as it manipulates whole rule-sets, rather than populations of rules. Furthermore,
this method also requires that the number of rules (or building blocks in the case of
SCHED?2 — IS) is pre-judged in order to form an individual chromosome, although a
reasonable "guess’ will suffice. Therefore, it was also rejected as the engine for dis-
covering building-blocks in SCHED?2 — IS.

3.10.1.3 An Immune System Model

[Smith et al., 1993] proposed a theoretical model of an immune system which can be
used to evolve a set of antibodies that recognise a range of diverse, binary antigen
strings. This work (verified experimentally in [Forrest et al., 1993]) showed that an im-
mune system model could both detect common patterns (schemas in the binary case) in
a noisy environment and also maintain diversity in that many types of antibody evolved
in niches, each niche responsible for recognising a particular antigen. Its success lies in
the novel fitness scheme introduced, referred to as the diversity algorithm. (This work
has previously been described in detail in chapter 2.) This model has three appealing

features as far as our scheduling system is concerned.

Chapter 3. Immune Systems for Scheduling 77

1. It can solve problems in which the niches are not equally spaced, which is evi-

dently the case in the scheduling domain described.

2. It does not require explicit construction of a sharing function, and therefore does

not rely on any a priori knowledge of the number of niches.

3. it is possible to control the evolution of the antibodies representing the niches to
be either specialist (i.e the antibody only recognised a single specific antigen),
or generalist (i.e the antibody recognised a wide range of antigens) by varying

the parameters of the fitness function proposed.

This model therefore seems ideal for our purposes. However, before adopting it
wholesale, a more careful consideration of the characteristics of the building blocks
we wish to evolve is required. Each antibody or building block will *'match’ a subset of
the historical schedules. The subsets may intersect or be disjoint. Figure 3.9 shows a
simplified view of the situation; a population of antibodies is depicted, and the diagram
shows how they match four antigens, labelled A,B,C and D. The diagram illustrates the

point that we are interested in two particular attributes of the antibody population:

1. Overlap — i.e. how many antigens a given antibody matches. Overlap can be
considered as a measure of how common the pattern represented by the antibody

1s in the schedule set.

2. Redundancy — i..e. the number of different antibodies matching an antigen. A
schedule may contain several sequences, each of which is common to different
subset of the remaining schedules, therefore more than one antibody may match

a single antigen.

Although the work of [Smith et al., 1993] implied that their diversity algorithm
would allow these properties to be controlled, their algorithm was re-implemented ex-
actly as described in [Forrest et al., 1993] and a number of tests were carried out using
binary antigen and antibody strings in order to quantify exactly the amount of overlap
and redundancy that would occur using large antibody populations in antigen universes

which varied in size. The aim was to give more insight into whether the algorithm

Chapter 3. Immune Systems for Scheduling 78

antigens

Figure 3.9: A Population of Antibodies, showing how they match 4 antigens A,B,C,D

500

Match Threshold = 50% Match Threshold = 70%

Number of Matching Antibodies
Number of Matching Antibodies

" i ——

Iden:ity of Am[i’gen ' ’ ’ Idel:tity r)fAniigen ' !
Figure 3.10: Graphs show the effect of redundancy when using a GA to evolve
antibodies matching binary antigens. The shaded portion of the graph represents

the fraction of unique antibodies found

could be scaled to reproduce these characteristics in a more diverse environment. A
population of 500 antibodies was chosen, each of length 64 bits. The antigens used are
given in table 3.3, based on those described in [Forrest et al., 1993]. The parameters
used for the GA and experiments are identical to that given in [Forrest et al., 1993].
According to Forrest, a match is said to occur if at least m percent of the bits in the
antigen and antibody match, where m is known as the match-threshold. We tested two
values of match-threshold — a low value of 50%, and a higher one of 70%.

Figure 3.10 shows the number of antibodies matching each individual antigen in
the case where there were 9 antigens for both values of m. The shaded fraction of each
bar indicates how many of those antibodies were unique. The figure clearly shows
that at high match-thresholds, small niches of antibodies occur, but that there is a high
proportion of diversity within the niche, i.e. many different antibodies recognise the

same antigen. This is promising for the proposed scheduling system.

Chapter 3. Immune Systems for Scheduling 79

Antigen ID | Antigen Definition
1 00000000....00000000
2 I111111t...11111111
3 10101010....10101010
4 01010101....01010101
5 11001100....11001100
6 00110011....00110011
7 11101110....11101110
8 00010001....00010001
9 11110000....11110000

Table 3.3: Antigens used to quantify the overlap and redundancy occurring in antibody

populations evolved using the diversity algorithm proposed in [Forrest et al., 1993]

Figure 3.11 shows the amount of overlap in the same populations, by measuring
how many of the antibodies in the final population that match at least one antigen
match more than one antigen. Clearly, if the match-threshold is high, there is very
little overlap between antibodies. This is not particularly convenient for our proposed
scheduling system, in which we wish to determine building blocks that are common to
several schedules, i.e. niches.

Therefore the results of these preliminary investigations pointed to the fact that
Smith’s diversity algorithm would need some modifications before it was suitable for
producing building blocks for a scheduling system, in order to encourage more overlap
as well as maintaining some level of redundancy and niche formation. The implemen-

tation of the modified algorithm is described in full in section 3.11.

3.10.2 Recombining Building Blocks To Form A Schedule

The previous section has described how an immune system model might be used to
evolve a set of short antibodies (job-sequences) that at least partially match a set of
antigens (schedules). The biological immune system responds to immunological chal-

lenges by manufacturing B-Cells using information encoded in its germline DNA. If

Chapter 3. Immune Systems for Scheduling 80

k=3

Number of antigens mafched - 14% Numer of Antigens Matche:

O 1 antigen tigens
tigens

4 an
5an
6 antigens
7 an
8 an

O 2 antigens

tigens
tigens

ENOOCO

Figure 3.11: Measuring overlap: The graph shows the percentage of antibodies in
the final population of matching antibodies that match more than one antigen. The
left hand figure shows the result for a match-threshold 70%, the right hand figure for
match-threshold 50%.

we consider our evolved antibody population to represent this germline DNA, then in
a similar manner we wish to construct complete schedules using this evolved informa-
tion.

The astonishing diversity that can be produced from a relatively small genetic base
in the biological immune system has already been alluded to earlier in this thesis (re-
member that the human immune system can produce more antibodies than there are
genes in our genome!). Many mechanisms have been proposed by which this may
occur. These include, for example, combinatorial rearrangement of entries from mul-
tiple libraries [Tonegawa, 1983], junctional diversity [Gilfillan et al., 1993], and so-
matic hypermutation and/or gene conversion [Weigert et al., 1970]. The exact nature
of these mechanisms is complex, however they are shown schematically in figure 3.12.
Figure 3.12(a) shows the most straightforward diversity recombination mechanism —
multiple segments of DNA are randomly recombined to form new antibodies. Figure
3.12(b) shows an example of somatic recombination — in this mechanism, imprecise
joining of segments occurs during recombination. Part (c¢) of this figure illustrates nu-
cleotide addition — when two segments are cut and then joined, extra nucleotides are
sometimes inserted between the joins, leading to further diversification. SCHED2 — IS
implements versions of these three mechanisms in order to recombine antibodies in
order to produce complete schedules. It is proposed that this is an efficient method of

producing complete schedules, taking account of historical experiences. For example,

Chapter 3. Immune Systems for Scheduling 81

vi | [v2 | [v3 vi | [v
] [[] | [] |
a) combinatorial gene rearrangement b) Somatic recombination c) Nucleotide addition

Figure 3.12: The figure shows three mechanisms by which the biological immune sys-
tem generates diversity by combining variable gene regions.

(a) Combinatorial gene rearrangement: a large number of genes in the germline can
randomly recombine to form a new protein

(b) Somatic recombination: imperfect recombination of genes sometimes results in new
proteins that are shorter than the original recombining segments

(c) Nucleotide addition: extra nucleotides encoding for additional amino acids are some-

times inserted between two joining segments

assume that the germ-line contains » DNA chunks or antibodies representing a partial
sequence of jobs, each of length [/, and that a minimum of s chunks are required to
construct a schedule. At least C = (’;) possible combinations of these antibodies can
be produced. Now, for a scenario in which j jobs need to be scheduled on a single ma-
chine, then examining all possible sequences of these jobs would result in j! possible
schedules. However, we postulate that C,, the number of valid schedules in C is < j!

for two reasons:

1. Many of the theoretical (2‘) schedules will contain multiple instances of jobs or

missing jobs, and hence the schedules are illegal and can be discarded.

2. The n partial schedules encapsulate prior knowledge, and hence are guaranteed
to be suitable subsequences, i.e to be the most promising of the /! possible sub-

sequences.

Therefore, if a suitable method can be found of combining the antibodies evolved

using SCHED?2 — IS, then the complete system should represent an efficient method of

Chapter 3. Immune Systems for Scheduling 82

producing new schedules to react to changing circumstances. The implementation of

these recombination methods is described in section 3.11.

3.11 Implementation of SCHED?2 — IS

This section now describes the manner in which the model that has just been outlined
was actually implemented. It is followed by a description of experiments that were

performed in order to analyse the model’s performance.

3.11.1 Antigen Representation

As stated in section 3.10, the antibodies produced by SCHED?2 — IS will represent
patterns occurring in job-sequences on each machine in a set of historical schedules.
Therefore an antigen simply consists of an integer-string defining the sequence of jobs
observed on a single machine. For a problem in which jobs are to be scheduled on m
machines, then m antigens are generated. If there are j jobs to be scheduled, the length

of each antigen is also j.

3.11.2 Antibody Representation

An antibody is represented by a sequence of integers, of length /, where [< j. [
is chosen to be significantly less than j as it is expected that the common patterns
will consist of short sequences of jobs. A wild-card gene was also introduced which
could match all possible jobs; the importance of including a gene which can match
other genes in a non-binary system has been discussed in [Cooke and Hunt, 1995,
Hunt and Cooke, 1996], who proposed an artificial immune system model to recog-
nise promoter sequences in real DNA sequences. They found that the task could not
be accomplished without introducing a wild-card that could match any of the bases

A,C,T,G. For example, consider the following three job sequences:

132598746
132985746
132894746

Chapter 3. Immune Systems for Scheduling 83

If the wild-card gene is allowed, they can be matched by a single antibody
132 *** 746

A further advantage of this approach is that it is impossible to judge a priori the
optimum value for /. If many of the common job-sequences are shorter than the chosen
antibody length /, then a partially matching antibody containing a number of wild-cards
can still have high fitness. An antibody is prevented from containing duplicate jobs,

though it may contain multiple copies of the wild-card allele “*’.

3.11.3 The Matching Algorithm

In order to quantify the extent of a match between an antigen and antibody string, a
match function, M must be defined, such that M : Antigen X Antibody — ® . Reviewing
the immunological literature suggest many physiologically plausible match-rules, for
example see [Perelson, 1989]. The simplest of these, adopted in [Forrest et al., 1993,
Hightower et al., 1995] in binary immune studies is simply to sum the number of com-
plementary bits between antigen and antibody. [Stadnyk, 1987] introduced a more
complex function that computes the length of each complementary region and then
combines them in a manner which rewards longer regions more highly than short
ones. [Cooke and Hunt, 1995, Hunt et al., 1995] introduced a version of this match-
rule shown in figure 3.13, which was used to quantify matches in non-binary data
(DNA promoter sequences and the publically available cabata case base describing
various features associated with holidays such as type, cost, duration, location etc.).
This function is weighted in favour of contiguous matching regions. Furthermore,
[Farmer et al., 1986] and also [Hunt and Cooke, 1996] suggest using a function in
which a match is allowed to start at any point on the antigen. The function suggested by
Farmer sums all possible matches found in this way, with the rationale that molecules
may be able to interact in more than one way, and thus react more strongly because
they spend more time together than molecules that can only interact in one alignment.
Hunt et. al. take the alternative view that the match-score is equivalent to the maximum
score found when considering all possible alignments.

We choose to use a simple match-function which simply counts the number of

Chapter 3. Immune Systems for Scheduling 84

1. ¢ = number of fields that match between the antibody and antigen

2. For each region consisting of 2 or more contiguous matches, record

their length /;

3. M=c+Y;2k

Figure 3.13: Match function introduced by [Cooke and Hunt, 1995]

anigen (123456789) Match-Score
34678 0
34678 0
antibody 346738 10
34678 15
34678 0

Figure 3.14: Possible Alignments of an antibody with an antigen, and the resulting

match-score

matching genes between antigen and antibody, but also incorporates the suggestion of
Farmer et al. and Cooke et al. that more than one possible alignment of antigen and
antibody should be considered. The method is as follows:

An antibody is matched against an antigen by aligning the two strings. If the an-
tibody is shorter than the antigen, then a match-score is calculated for every possible
alignment position, where a possible alignment is any alignment in which every gene
of the antibody is aligned with every gene of the antigen. This is illustrated in figure
3.14. The match-score is then calculated by counting the number of matches between
antigen and antibody genes in the alignment. An exact match contributes a score of
5, whereas a wild card match contributes a score of 1. This prevents the evolution
of all antibodies containing only wild-card genes — a similar method was used in
[Cooke and Hunt, 1995]. All possible match-scores are calculated, and the maximum

value found assigned to the antibody.

Chapter 3. Immune Systems for Scheduling 85

1. Select a sample of antigens of size T at random and without replace-

ment.

2. Select a sample of antibodies of size ¢ at random and without replace-

ment.

3. Match each antibody in the sample against each antigen, summing the
match-scores obtained for each antigen to give the total match-score for

the antibody.

4. The antibody with the highest total match-score has this score added
to its fitness. The fitness of all other antibodies in the sample remains

unchanged.

5. Repeat the process for typically three times the number of antigens.

Figure 3.15: The modified fitness scheme used to assign fitness to antibodies in the

population

3.11.4 An Emergent Fitness Sharing Function

The results of the preliminary experiments described in section 3.10.1.3 implied that
the fitness scheme proposed by [Forrest et al., 1993] would need some modification in
order to encourage the occurrence of overlapping antibodies in the system. The origi-
nal scheme (similar to the “best-match” strategy used in classifier systems) selected a
single antigen at random from the antigen universe, and matched it against a sample
of the antibody population. In order to encourage overlap, this was replaced by a step
that selected a sample of the antigen population of size T, at random and without re-
placement, and matched them against a sample of the antibody population. The match-
scores obtained between an antibody and each antigen in the sample are summed to
give a total match-score for the antibody, and therefore reflects its cross-reactivity. The

complete algorithm is given in figure 3.15.

Chapter 3. Immune Systems for Scheduling 86

3.11.5 The Genetic Algorithm

[Forrest et al., 1993] use a genetic algorithm based on GENESIS, [Grefenstette, 1984],
in order to evolve the antibody population. As their work was concerned only with bi-
nary universes, it sufficed to use standard crossover and mutation operators such as
two-point crossover. However, this is not applicable to a scheduling scenario in which
we wish to maintain antibodies which never contain duplicate jobs. Three types of pos-
sible crossover operator were identified, including one novel one designed specifically

for this application:

1. Order-Based Crossover (OX) — introduced by [Davis, 1985], this operator can

be used if the parents are permutations of each other.

2. 2pt-Crossover — if the parents do not have any genes in common, (excluding
wild cards) and the parents differ outside of a randomly chosen cross-segment,

then the standard two-point crossover operator can be applied.

3. Overlap-Crossover — this novel operator can be used if one parent overlaps the
other, as shown in figure 3.16. In this case, parents are first aligned so that the
matching regions line up. Reading from the left-most position, if only one parent
has a gene at a position, then that gene is passed to the child. If both parents have
a gene at a position, then a gene is selected randomly from either parent. This
process is continued, reading from left to right until the child is of the required
length. In figure 3.16, matching regions are underlined and shown in bold, and

genes which can be chosen from either parent are shown in italics.

All three crossover operators are implemented, and used according to the relation-
ship between the parents chosen for crossover, as described above.

A mutation operator is applied that randomly mutates each gene with probability
1/1 to another randomly chosen allele, with the caveat that duplicate jobs cannot exist.
Thus, the publically available GENESIS package was modified to accommodate these

changes.

Chapter 3. Immune Systems for Scheduling 87

123456 1234509
345987
123456
=° 916342
976342

Figure 3.16: Overlap Crossover — the figure shows examples of two overlapping

configurations of parent antibodies and the resulting child antibody in each case

3.11.6 Recombination Operators

Section 3.10.2 described three recombination mechanisms, each closely related to a
feature observed in the natural immune system. The actual implementation of those
mechanisms is now described. The output from the first phase of SCHED?2 — 1S is a set
of antibodies, each of length /. The aim is to construct a schedule for each machine of
length j, starting from a partial schedule of length [,,, where [, < j. If [, = O then the
schedule is constructed from the beginning, otherwise the schedule is completed from
the point at which the change triggering rescheduling occurred. The three mechanisms

are as follows:

1. Simple Recombination — in this method, an antibody is selected at random
from the subset S of the antibody population which contains those antibod-
ies in which every job in the antibody has not yet been scheduled in the partially
completed schedule. The new antibody is concatenated to the end of the partial

schedule.

2. Somatic Recombination — in this method, an antibody is selected from the sub-
set > of antibodies, where S, consists of antibodies that overlap with the current
partially completed schedule. An overlap is said to occur if the first # jobs in the
antibody are equal to the last n jobs in the partially complete schedule, where
n < 1, and the remaining (/ — n) jobs in the antibody do not occur in the partial

schedule. The partial schedule is thus extended by (/ —n) jobs.

Chapter 3. Immune Systems for Scheduling 88

e Until a schedule is complete or cannot be further extended:

— Select a recombination mechanism with probability p, for simple
recombination, py, for somatic recombination and p, for single

job addition

— Calculate the set S of possible antibodies that can be added via the

chosen mechanism
— Choose an antibody at random from §

— Extend the partial schedule using the chosen antibody

Figure 3.17: An algorithm for generating completed schedules from the antibody popu-
lation evolved used SCHED2 — IS

3. Single Job Addition — in order that a complete schedule can be built when the
antibody population does not contain at least one instance of each of the j jobs,
a single job can be selected from the subset S3 of all jobs that do not occur in

any of the antibodies. This is then added to the end of the partial schedule.

The procedure for forming a schedule using these mechanisms is shown in figure
3.17.

3.12 Generating Test Data

Experimental test-data was generated in a manner similar to that described in section
3.6.1, using the same benchmark problem jbh11. Ten test-scenarios were generated
by mutating the original arrival date for each job with probability p, = 0.2 to another
random date, in the range (0,300). A satisfactory schedule was generated for each sce-
nario using the genetic algorithm described by [Fang et al., 1993]. From each schedule
(which consists of the order and timing of processing of every operation on every ma-

chine) 5 antigens can be generated, where each antigen corresponds to the sequence

Chapter 3. Immune Systems for Scheduling 89

of jobs on one of the 5 machines. Therefore, 5 antigen universes, one for each ma-
chine, are generated, and each universe contains 10 antigens, one derived from each
test-scenario. The universes are treated independently, and thus an independent set of

antibodies discovered for each machine.

3.13 Experimental Results

Experiments were performed to identify good settings for three main parameters; the
antibody sample size o, the antigen sample size T, and the length of the antibody /.
These initial experiments also attempted to answer several questions in order to assess
whether the evolved antibodies would be useful pattern recognisers in the context of a

scheduling system, for example:

e How many antigens are matched by at least one antibody ?
e How many unique antibodies are found ?
e What is the average number of antigens matched by an antibody ?

e How many actual jobs are represented in the set of antibody patterns ?

All reported experiments were performed using a population of size 100, with the
length of each antibody in the population equal to 5 jobs, i.e 1/3 the length of the anti-
gen string. The length of each antigen was 15, as each machine required 15 operations
to be scheduled. Every experiment was run for 250 generations and was repeated 10
times. The mutation rate in each case was 1/[= 0.2. Details of the settings for ¢
and 7T are described under the relevant headings. As a separate set of antibodies are
evolved for each machine, results are reported for only one of the machines, machine
1, however, the reported trends were applicable to all machines.

In the following section, many of the experiments are analysed with reference to a
quantity described as the match-threshold. The match-function M described in section
3.11.3 quantifies the extent of the match between an antibody and an antigen. However,
a qualitative statement regarding whether or not a match has occurred can be made —

a match is only said to occur if the match-score M is greater than or equal to some

Chapter 3. Immune Systems for Scheduling 90

threshold value M7. (A similar phenomenon is observed in natural systems in which
an antibody does not bind to an antigen until the strength of the bond between the two
— the antibody affinity — reaches a certain value). In this case, the match-threshold
is more specifically defined as the number of non wild-card places in which an antigen

and antibody match.

3.13.1 How many antigens are matched by at least one antibody ?

The aim of these experiments is to investigate the amount of overlap occurring in the
antibody population, and also to determine whether or not all antigens are at least
partially recognised. Table 3.4 shows the average number of antigens (from a universe
containing 10 antigens) that were not matched by any antibody, for match-thresholds
M7 ranging from 2 to 5. Experiments are performed over a range of values for ¢ and
T, the size of the antibody and antigen samples respectively.

For certain combinations of values of (m,G,7), it can be seen that no antibodies
match some of the antigens. This is particularly noticeable as the size of T increases.
This is explained with reference to the fitness function used; for high values of =,
antibodies that successfully match more than one antigen are rewarded most highly.
However, in many antigen-universes, it may be impossible to detect common patterns
between certain subsets of antigen, and hence the completely generalist antibody may
not exist. Examining the actual antigen universe for machine 1 indicates that for some
subsets of antigen, common schemas do exist. Similarly, low values of ¢ also encour-
age generalist antibodies to evolve, so we may expect poor performance if the value of

o is too low for certain antigen universes.

3.13.2 How many unique antibodies are evolved ?

Recalling that the aim of SCHED?2 — IS is to acquire a collection of antibodies, each
of which represents some commonly occurring pattern in the antigen-universe, then
the more unique patterns we are able to detect, the more useful the antibodies will be
as building blocks for constructing new schedules. Therefore, the final population of

antibodies is examined to determine the exact number of unique antibodies that match

Chapter 3. Immune Systems for Scheduling 91

Match 1=1 T= =8

Threshold o c c

S |10[30 5 (1030 5 | 10| 30
2 09| 0 |001(22]09]00(35|25|09
3 53126 |16(54(32]20|55(47 4.1
4 871715278 |73|63]|86]8.1]8.2
5 97195|88|95[95(87 979695

Table 3.4: Average number of antigens (out of a possible 10) not matched by any anti-
body

Antibody Sample | Antigen Sample Size, T
Size, © 2 4 6 8

5 23.8 | 23.7 | 20.0 | 17.7

10 38.6 | 28.0 | 24.5 | 20.5

30 584 1444|249 | 39.7

Table 3.5: The Number of Unique Antibodies in the Final Population for Match
Thresholds > 2

an antigen with a match-score > M7, the match-threshold.

Table 3.5 shows the results obtained for My > 2. It is clear that the number of
unique antibodies decreases as T is increased, and increases as G increases. This is
unsurprising — the same arguments outlined in section 3.13.1 apply. Note however it
is not desirable to produce an entire population of unique antibodies, and that having
multiple copies of a matching antibody may ultimately be useful in the recombina-
tion phase when antibodies are selected and combined into schedules. The number of
copies of an antibody in the population is somewhat analogous to a concentration in
biological terms, and is an indication of the probability of picking the antibody when

trying to reconstruct a schedule.

Chapter 3. Immune Systems for Scheduling 92

0 |- Antigen Exposure Rate =2 1 o Antigen Exposure Rate = 8

Number of antibodies
Number of antibodies

é

A

3 4 5 . 6 7 8
Number of antigens matched

L o L P
1 2 3 4 5 6 7 8 9 10 1

Number of antigens matched

Figure 3.18: Match Threshold 2 : Number of antibodies matching > 1 antigen for

antibody sample size = 30. The graphs compare the overlap when Tt =2 and T =8

3.13.3 Measuring Overlap

The two previous sections have shown that it is possible to evolve a set of unique an-
tibodies, and also that those antibodies tend to match at least one antigen. In order to
measure how much overlap is occurring between those antibodies however, the num-
ber of antigens matched by each antibody in the population is recorded. Figure 3.18
shows the number of antibodies that match n antigens, where n takes values between
1 and 10. The diagram contrasts the results obtained for a match-threshold of 2 and
fixed antibody sample size ¢ = 30 for various values of T. Clearly, more antigens are
matched at high values of T, as expected.

It is interesting to observe how the number of antibodies matching more than 1
antigen increases as the GA runs. The graphs in figure 3.19 illustrate the point. Ex-
periments are performed in which the match-threshold m is varied from 2 to 5, for
populations of antibodies in which the antibody length is varied from m to 5 also.
When the match-threshold is equal to the antibody length, there is a rapid increase in
the number of matching antibodies in the m = 2 case after which the number remains
relatively constant. For m = 3, the number rises steadily. For values of m < [, in each
case, there is an immediate increase at the the start of each run to a level which is main-
tained throughout the remainder of the experiment. The initial rise is more pronounced

when m is significantly less than /.

Chapter 3. Immune Systems for Scheduling 93

Match Threshold =2

110 T T T T T T T T T
n AB Length =5
-
T ST TTITTITATITIIIITIITIIIT
o
e
.J: 90 - —
s |
< |
G 80 -]
8 AB Length =3
B 70 .
= AB Length =2
2 60 -
AB Length =4
50 | | | | | | | | |
0 5 10 15 20 25 30 35 40 45 50
Generations
Match Threshold = 3
100 T T T T T T T T T
N 90 l r Y \)),‘ , NN I‘ V ’\\’)) ’“\‘\‘”‘/‘\M‘“\\M"Iw,l,’y“‘lﬂ“'\“\"ﬁ”\r/,‘\“{i
O '/’ lmI “\‘ i Ty VAL l"\’/ ‘1"5.:” IN M s { ! i . I ’
S 80 0 ‘
o B
D70 | :
= 60 | AB Length =35 T
< | g
50 - i
57| ABLength=4
40 -
_8 ;
30 L —
g
S0 F N\ i
Z. 0 AB Length =3 i
0 1 1 | | | | L 1 1
0 50 100 150 200 250 300 350 400 450 500
Generations

Figure 3.19: Number of antibodies matching more than 1 antigen for experiments in

which the threshold for matching was set to 2 and 3

Chapter 3. Immune Systems for Scheduling 94

Antibody Sample Size
5110 30
Average Number of Jobs Represented 56|75 9.1

Table 3.6: Average Number of Jobs Represented in Final Population for Given Antibody

Sample Size ¢

3.13.4 Identifying the number of jobs appearing in the antibodies

The greater the number of jobs that are represented by the antibodies, the more useful
the patterns will be in constructing new schedules; clearly the antibody building blocks
will cover more parts of the schedule if this is the case. The exact number of jobs
expected to occur in the final antibodies will depend of course on the nature of the
antigen-universe; for some universes, there may only be a few jobs which belong to
common pattern sequences. Recall that for machine 1, there are 15 possible jobs. Table
3.6 compares the number of unique jobs found in matching antibodies for 3 different
values of G, for match-thresholds > 2. For small values of G, very generalist antibodies
evolve, representing only a few jobs. However, as G is increased, the number of jobs

represented increases as small clusters of more specialist patterns begin to evolve.

3.13.5 Reconstructing Schedules from the Antibody Population

Schedules are reconstructed from the antibodies evolved using SCHE D2 — IS using the
algorithm given in figure 3.17. The experiments just described suggest that the evolved
antibodies appear to have good properties in terms of antigen coverage, overlap and
redundancy — however, it is necessary to address the question of whether this set
contains sufficient information to reconstruct good schedules, and if so, how effective
is the proposed recombination algorithm.

It can be noted that for any antigen of length j, all antibodies of some predefined
length [containing at most w wild-cards can be generated using an exhaustive pro-
cedure, without having to resort to using any kind of immune metaphor or genetic
algorithm. For the problem described in which each universe consists of 10 antigens

each containing 15 jobs, this is actually a tractable calculation. Performing the calcu-

Chapter 3. Immune Systems for Scheduling 95

lation to find all antibodies of length 5, that contain at most 3 wild-cards, results in 423
unique antibodies being found. This can be compared to the results shown in table 3.5,
which shows that the maximum number of unique antibodies found in any experiment
using SCHED?2 — IS is 58 (T = 2,06 = 30). The evolved antibody set is thus clearly
much smaller than the size of the set generated via exhaustive search. Therefore, ex-
periments were conducted in order to determine the quality of schedule produced from
the antibody set evolved using SCHED?2 — IS, and then repeated using the complete
antibody set, so that a comparison could be made.

As with the experiments described to evaluate SCHED1 — IS, two series of exper-
iments were performed. The first tested whether the schedule present in the original
antigen universe, U (0.2), could be accurately regenerated. The second set of experi-
ments investigated whether schedules in two new universes, U (0.1) and U (0.3) could
be generated from the evolved antibodies.

In all experiments, the recombination algorithm was applied using the set of 58 an-
tibodies generated when T = 2,6 = 30 which contain a maximum of 3 wild-cards, and
then using the 423 antibodies generated by exhaustive search. In each case, 500 sched-
ules were generated in response to each of the 10 scenarios in the original antigen
universe. Trial investigations of suitable settings for the parameters of the recombi-
nation algorithm suggested that p, = 0.5, ps, = 0.4, p, = 0.1 produced satisfactory
results, although an exhaustive search of the parameter space was not performed. All
experiments investigated the quality of reconstructed schedules starting from a partial

schedule of length /,,, where [, > 0.

3.13.5.1 Results in familiar antigen universes

The recombination algorithm performed very poorly when /,, < 6, in that no schedules
were generated that exactly matched the original ones, using either set of antibodies.
This is not fatal; as originally stated, it is expected that the utility of the system lies in
rescheduling following an unforeseen circumstance, and not in constructing schedules
from scratch, therefore, in a real situation, I, is likely to be greater than 0. Table 3.7
shows the percentage of the 10 original schedules (U (0.2)) that were exactly recon-

structed, and gives results for three values of [, the length of the partial schedule that

Chapter 3. Immune Systems for Scheduling 96

Length of Partial Schedule
6 7 8 9

SCHED?2 — IS antibodies 10% | 30% | 70% | 80%

Exhaustively generated antibodies | 0% | 60% | 60% | 60%

Table 3.7: Accuracy of schedule reconstruction: The table shows the percentage of the
10 schedules in the original antigen universe (U (0.2)) that were exactly reconstructed

using the recombination algorithm

must be completed. Results are shown using the evolved antibody set (58 antibodies)
and the exhaustively generated set (423 antibodies). For /[, = 8 and [, = 9, the best
results are obtained when using the 58 SCHE D2 — IS antibodies, though note that nei-
ther antibody input set is able to achieve 100% accuracy of reconstruction. However,
when [, =7, (and hence there are 8! = 40,320 possible combinations of the remaining
jobs to be scheduled), using the larger number of antibodies generated by exhaustive
search results in higher accuracy of reconstruction.

The reliability of schedule reconstruction can also be examined, i.e. the average
number of original schedules that are generated each time the algorithm is run. (Recall
that each pass of the algorithm produces 500 schedules per antigen). These results
are shown in table 3.8. The reliability is rather poor, for both methods of generating
the antibody set, and there is little difference in performance between sets. Further
examination of the reliability with which individual antigens are reconstructed reveals
significant variations, with some appearing to be easy to reconstruct (i.e. at least 20%
of the 500 schedules are accurate), and others much more difficult (less than 1% of

the 500 schedules accurate).

3.13.5.2 Performance in Unseen Universes

As with SCHED]1 — IS, two further antigen universes were generated as described in
section 3.6.1 using p, = 0.1 and p,, = 0.3. This produces universes identified as U(0.1)
and U(0.3) respectively. Five antigens were generated in each case, and satisfactory

schedules were again found using a GA as before. Schedules were again generated

Chapter 3. Immune Systems for Scheduling 97

Length of Partial Schedule
6 7 8 9

SCHED?2 — IS antibodies 0.32 | 1.75 | 5.53 | 30.79

Exhaustively generated antibodies | 0 | 4.83 | 9.92 | 26.19

Table 3.8: Reliability of schedule reconstruction: The table shows the average number
of times a schedule was accurately reconstructed during one pass of the recombination
algorithm (which generates 500 schedules per antigen).

Antibody Generation Method
SCHED2 —1S | Exhaustive
Universe-0.1 17.2% 9.45%
Universe-0.3 32.76% 10.17%

Table 3.9: Antibody Recognition Rates in Unseen Universes: The table shows the per-
centage of the antibodies in each set (generated via SCHED?2 — IS or exhaustively)

that are able to bind to at least one antigen in each unseen universe

using the recombination algorithm applied to two sets of antibodies; those produced by
SCHED?2 — IS when applied to universe U (0.2), and those found by exhaustive search
of U(0.2) that contained at most 3 wild cards, for values of [p such that 0 <[, < 10.
The results were disappointing — no accurate schedules were generated in any case
for either universe. However, the fault appears to lie with the recombination algorithm
itself — if the abilities of the two antibodies sets to actually match the new antigens are
examined, then it is clear that the antibodies are capable of recognising the entirely new
antigens in these universes. Table 3.9 shows the percentage of each antibody set that
matches at least one of the antigens in the new universes. Clearly, the antibodies do
encapsulate some useful information, i.e. they can bind to previously unseen antigens.
The SCHED?2 — IS antibody set is superior to that generated by exhaustive search in
this respect. However, the recombination algorithm does not appear capable in its
current form of combining these antibody segments in a useful manner into schedules

that resemble those forming the original antigen universe.

Chapter 3. Immune Systems for Scheduling 98

3.14 Summary of Utility of SCHED2 — IS

The previous sections have described the implementation of a new scheduling system
based on a subset of biological immune system principles, extending a model first
proposed by [Forrest et al., 1993]. Analysis of the effectiveness of the new model was
split into two parts; a study of the fitness function used to evolve patterns or building
blocks that could be used to reconstruct schedules, followed by an investigation of
how these blocks could be recombined into schedules using mechanisms inspired by
biological immunology.

The experiments detailed in section 3.13 show that in as far as producing building
blocks that encapsulate useful information about the antigen universe in which they
were evolved, the new model is successful. Extending the fitness function proposed
by Forrest ef. al to incorporate matching of multiple antigens (via the T parameter)
resulted in an algorithm that was capable of being tuned in order to produce antibodies
that occur in schedules found in both familiar and unfamiliar antigen universes. In
particular, the results given in section 3.13.5.2 which examines whether evolved an-
tibodies can bind to antigens in new universes imply that the evolved antibodies are
to some extent capturing some of the essential properties of the historical schedules.
More importantly, this appears to validate the original assertions made in section 3.9
that the historical schedules do actually contain information that can be used to con-
struct new schedules in unforeseen circumstances.

The results also demonstrate that the combination of a genetic algorithm/immune
metaphor in the manner described is a suitable mechanism for performing pattern
recognition in target datasets that consist of non-binary strings, and therefore that the
generic model may be useful in other domains. In order to achieve these results, a
new crossover operator was introduced in combination with a method which selected
from a set of three possible crossover operators, according to the relationship between
the chosen parent antibodies. This approach could be adopted in any domain in which
antigens can be represented by categorical or integer alleles. Thus, as a simple pattern-
recognition system, the model has many potential applications.

However, the second part of the analysis in which an attempt was made to mimic

some of the mechanisms by which the biological immune system constructs antibodies

Chapter 3. Immune Systems for Scheduling 99

was less successful. Section 3.13.5.1 showed that satisfactory performance could be
achieved in familiar universes, but that overall, performance was unreliable, especially
when the partial schedule to be completed was short. It should be noted however that
the reported work only examines one measure of quality of the reconstructed sched-
ules, namely whether the ordering of operations on machines could be exactly recon-
structed. It is possible that if other measures of quality were examined, for example,
the difference in maximum job tardiness in a reconstructed schedule compared to the
original schedule, then a rosier picture would emerge (or vice versa!). However, the
fundamental difficulty with the proposed approach seems to lie in modelling an ap-
propriate combination of recombination mechanisms, and using them with appropriate
frequencies, relative to each other.

Reference to the immunological literature offers few clues in this respect — for
example, [Roitt et al., 1988] describe how even though mammals in general may use at
least five different mechanisms in order to produce diverse antibodies, different species
rely on different subsets of these mechanisms. Thus, sharks rely solely on having very
large numbers of genes which are randomly recombined, whereas chickens have very
small numbers of antibody building blocks and rely heavily on gene-conversion to
produce antibodies. The computational immune system literature has not addressed
this aspect of immunology at all and is clearly an area in which much further research
could be performed.

With regards to this study, further work could be performed in order to explore the
space of parameters over which the model functions more reliably and hence optimise
the choice of parameters, however there will always be an underlying trade-off between
the number of antibodies required to adequately represent possible antigen universes,
and the effort required to recombine them into accurate schedules. Furthermore, as
just noted, the biological literature suggests that the ‘right’ set of parameters might
vary for each problem encountered, which is clearly a major drawback for the system.
If sensible heuristics to cut down the effort required to search the potential space of
schedules that can be produced via these recombination methods cannot be found,
then the object of producing a reduced set of schedule building blocks is somewhat

defeated.

Chapter 3. Immune Systems for Scheduling 100

3.15 Conclusion

In conclusion, some useful general properties regarding the use of immune system
analogies for tackling pattern recognition problems have emerged, from consideration
of both SCHED1 — IS and SCHED?2 — IS. The work described has shown that both
immune system models are appropriate for use with non-binary data, and that combin-
ing the immune metaphor with a genetic algorithm provides a workable mechanism
for discovering patterns in diverse datasets. However, as a practical proposition for
solving real-world scheduling problems, both models exhibit weaknesses. In each
model, the major weakness lies in the methods proposed for combining the evolved
antibody building blocks into complete schedules. Despite having evolved a reduced
set of useful building blocks (whether stored in libraries as in SCHED1 — IS or as a
population in SCHED?2 — IS) the combinatorics of joining those blocks into suitable
schedules quickly becomes intractable, even when the mechanisms used by the bio-
logical immune system itself are modelled. Furthermore, experiments presented here
only consider relatively short schedules; in real life, schedules are likely to be much
longer and more varied, and hence the difficulties will become even more exaggerated.

The biological immune system is able to circumvent these difficulties due to its
implicit massive parallelism; an individual has sufficient genetic material to express
in the order of > 10! distinct antibodies, and at any one time, a subset of between
107 and 103 antibodies are expressed. These antibodies circulate throughout the body
and are continually replaced if they do not encounter antigen to which they can bind.
Therefore the problem of producing the ‘correct’ antibody to eliminate an invading
antigen is tackled by sheer size and scale. Clearly, this effect cannot be mimicked in a
computational system, even using todays massively parallel computers. This begs the
question therefore as to whether the fundamental approach of evolving useful building
blocks which can be cleverly combined into larger pieces is flawed; if the biological
immune system does indeed offer metaphors which are useful for computational infor-
mation processing, then perhaps these models have concentrated on the ‘wrong’ subset
of the metaphors.

Consider again the list of key features of the immune system important to the field

of information processing outlined by [Dasgupta, 1998] and given in section 1.2, chap-

Chapter 3. Immune Systems for Scheduling 101

ter 1, of this thesis. The foremost aspects of the biological immune system modelled
by SCHEDI1 — IS and SCHED? — IS are memory and learning. Both artificial sys-
tems store memories of past experiences, which they have learned, and can generate
responses to new and novel patterns. In order to do this, they also draw on the diversity
mechanisms apparent in the biological immune system, and make use of various recog-
nition mechanisms. However, several key features of the biological immune system are
not modelled in the two systems described.

Two of the features of the biological immune system which distinguish it from
other biological metaphors which have been borrowed by computer scientists are its
self-regulatory nature, and its inherent ability to operate in a dynamic environment
in a manner which is itself dynamic and adaptable. The systems proposed here are
not in any sense self-regulating; they are controlled via a genetic algorithm with an
explicit fitness function. Furthermore, although the environment in which they are
designed to operate, i.e. a scheduling scenario, is dynamic, the systems themselves
are not dynamic; in each case, a static set of antibody building blocks is evolved, and
the processes governing recombination of these building blocks do not incorporate any
feedback mechanisms which could direct the recombination to currently useful parts of
the space of possible antibodies as in the biological immune system. Another property
not explicitly modelled by either SCHED1 — IS and SCHED?2 — IS is the distributed
nature of the biological immune system, although in theory both of these models could
be implemented in a distributed manner. These factors point to the fact that perhaps
other models of the biological immune system could be derived which incorporate
these important principles. Ultimately, modelling these features may prove that the
immune metaphor can provide something which other biologically based algorithms
cannot, whereas currently, the argument in favour of the AIS is far from emphatic.

Although the introduction to this chapter pointed out many theoretical similarities
between the scheduling environment and that in which the biological immune sys-
tem operates which originally led to the presumption that it would be a suitable area
in which to apply the immune system metaphor, there is also one major difference,
namely the size of the antigen space in which the systems operate. It has been sug-

gested that theoretically there are between 10! to 10'® possible antigens that could

Chapter 3. Immune Systems for Scheduling 102

invade the biological immune system. This is clearly much larger than the number of
possible scenarios that could realistically arise in a typical scheduling environment,
even when considering very large schedules and the remotest of situations arising.
Thus, given that the important features of the immune system presumably arose in or-
der to allow it to operate in such large environments, perhaps it would be more fruitful
to direct research into computational implementations of immunological metaphors to-
wards application areas in which the environment was larger and more diverse. Those
areas most suited would also have a dynamic nature, as with scheduling, in order to
maximise the utility of the metaphor.

Thus, in the remainder of this thesis, we take a step back from the real-world, and
return to more basic principles, in order to try and derive an immune-based model that
incorporates the fundamental features of the biological immune system, and that can
be applied in environments whose features more closely resemble those of the biolog-
ical world. Two novel models are proposed in the following chapters — the models
are tested with artificially generated binary datasets whose properties can be exactly
controlled, as in the majority of the seminal work on library and population based ar-
tificial immune systems. This allows a more detailed analysis of the performance and
potential of the new models. However, both models theoretically could be extended to

allow more realistic problems to be tackled.

Chapter 4

Applying an Immune System Analogy

to Data-Clustering Problems

4.1 Introduction

The previous chapter on applying immune models to scheduling problems uncovered
some deficiencies of the immuno-genetic approach to modelling aspects of the biolog-
ical immune system. In particular, section 3.15 of chapter 3 referred to some of the im-
portant properties of the biological immune system not modelled by coupling a genetic
algorithm with a library-based or population-based approach to pattern recognition,
namely distributed detection, self-regulation, and dynamic protection. Furthermore,
although the models outlined for scheduling incorporated some elements of proba-
bilistic detection, another of the key features of the biological immune system, this
was not an implicit feature of either model. The conclusion of the preceding chapter
also stated that in order to maximise the utility of the metaphor, then the applications to
which the metaphor was applied should be chosen carefully; ideally an application that
encompasses a domain that is dynamic and potentially contains very large numbers of
data or antigens would prove most suitable.

In this chapter, it is proposed that an ideal testbed, which contains all the desired
properties, is that of data-clustering in large, real databases. The reasons underlying

this are explained in the following sections, which identify the relationship between a

103

Chapter 4. Applying an Immune System Analogy to Data-Clustering Problems 104

data-clustering system and an artificial immune system. A further system, the Sparse
Distributed Memory, SDM, which has already been shown to be analogous to the AIS
is then introduced in more depth. It is then shown how aspects of the SDM and AIS
can be combined in order to derive a model theoretically capable of performing data-
clustering. Finally, the remainder of the chapter lays the foundations for generating
an artificial data testbed which is used for testing two novel immune-based models,

described in chapters 5 and 6.

4.1.1 Data-Clustering with an Artificial Inmune System

Consider a database to represent an antigen universe: a single item of data in the
database represents an antigen that must be recognised by the host system. An antibody
produced by the artificial immune system recognises a set of antigens in the antigen
universe — in a data clustering context, those items recognised by a single antibody can
be considered to form a cluster, and the antibody itself represents a concise description
of that cluster. In biological terms, the affinity or size of the ball of stimulation of
the antibody would determine the size of the cluster. Assuming all antigens in the
universe can be recognised by the antibody set, then the number of antibodies present
determines the generality/specificity of the clusters; a small number of antibodies will
result in few clusters, and therefore each cluster represents a very general description
of the data. As the number of antibodies is increased, the specificity of the cluster
and hence the concept it represents also increases. New data arriving in the data-base
is continuously presented to the system, which triggers the antibody set to adapt to
the new dataset, either by adapting existing antibodies, or creating new ones. This is

exactly analogous to the primary response in the biological immune system.

4.1.2 Data-clustering with a Sparse Distributed Memory

As previously stated in chapter 2, [Smith et al., 1996] showed that immunological
memory belongs to the same class of associative memories as Kanerva’s Sparse Dis-
tributed Memory (SDM). In this work, they argued that the B-Cells and T-Cells of

the immune system perform the same function as the hard locations in an SDM, and

Chapter 4. Applying an Immune System Analogy to Data-Clustering Problems 105

showed that the hard locations in an SDM provide a sparse coverage of possible ad-
dresses in the same manner as the B-Cells and T-Cells of the immune system provide a
sparse coverage of all possible antigens. Therefore, it ought to be possible to apply this
analogy to data-clustering problems, in the same manner as described in the previous
paragraph.

Thus, in this case we can assume that a hard-location in the SDM recognises a
subset of data-items in a database based on a comparison between the physical address
of the hard-location and the data-item itself. If the measured distance between a hard-
location and a data-item is within the recognition radius of the hard-location, then
recognition of the data occurs, and the data is stored at that location, updating the
counters of the location in the process. All data recognised by a particular hard location
can be considered to lie within the same cluster — the physical address of the hard
location represents a description of the cluster. A benefit of this approach is that the
counters associated with each hard location also contain useful information — for
example in binary systems, the absolute value of each counter can be interpreted as a
probability of the particular bit within any data-item in the cluster being set to 1/0 and
therefore supplies further information which can be used to describe the cluster.

The accuracy with which an SDM has clustered a set of data can be measured by
attempting to read back from the SDM all data stored within it; the recalled data can
then be compared to that actually stored in the database and the average accuracy of
recall will indicate the accuracy with which the data has been clustered. (Note though,
that as this is a form of unsupervised clustering, no labels are associated with each
data-item and hence we are not concerned with determinining whether data has been
correctly assigned to pre-defined classes).

The SDM models one of the features observed in the biological IS and particularly
relevant for data-clustering; it is high likely in any real-world database that clusters
will overlap. The SDM is a distributed system in which data can be stored at more
than one location, and in which more than one location may be involved in recall of
that data. (The locations and recognition radii define the extent to which clusters will
overlap). Thus there is an interaction between hard locations, just as in the biological

immune system the specificity of a biological anti-serum is a function of a number of

Chapter 4. Applying an Immune System Analogy to Data-Clustering Problems 106

interacting antibodies, and not simply a result of a single antibody reacting exclusively
with the inducing antigen [Roitt et al., 1988]. This feature of biological immune sys-
tems does not appear to have been explored in any of the work reviewed in chapter 2
which shows that there has been a tendency to concentrate on models which produce
an artificial anti-serum containing a set of co-operating but non-interacting antibodies,
[Smith et al., 1993, Potter and De Jong, 2000].

4.1.3 Properties of the SDM/IS Models Relevant to Data Clustering

The previous two sections have identified how both the IS and SDM analogies could
theoretically be applied in a data-clustering context. We now attempt to draw together
the salient features of both models that suggest this, before identifying the drawbacks

in both models that need to be overcome.

e Both the IS and SDM provide sparse coverage of very large input spaces —
this is desirable in a data-clustering environment as we wish to identify small

numbers of clusters in very large datasets.

e The IS and SDM operate using an imprecise recognition mechanism — real data
is likely to be incomplete and/or incorrect, in addition to containing superflu-
ous noise, and therefore a system which can perform recognition under these

conditions is necessary.

e The IS and SDM are distributed systems, and therefore robust to loss of pattern
detectors. As very large datasets are also likely to be distributed, a model based

on an SDM/IS architecture appears suitable.

Other properties also emerge — for example, both the SDM and IS models implic-
itly contain a mechanism for detecting change within an environment, and therefore in
the context of data-clustering, for detecting data which does not belong to an already
identified cluster. For example, in an IS-based clustering model, if a data-item is not
recognised by one of the antibodies defining a cluster, then the data can be flagged
as unusual, perhaps signifying that it is non-representative of the general patterns and

therefore triggering some warning. Imagine for example attempting to cluster data

Chapter 4. Applying an Immune System Analogy to Data-Clustering Problems 107

collected by a credit-card company relating to card usage. The company is interested
in clustering the data to identify patterns in card usage, but would also like to detect
fraudulent card-usage. If a newly presented data-item does not belong to an already
established cluster, it could identify an attempt at fraudulent usage of the card, which
further human examination could identify,

In the danger model of the IS, expounded by Matzinger in [Matzinger, 1994b],
a dynamically adapting system such as the IS would adapt over time to contain an-
tibodies that recognised both ’normal’ and ’abnormal’ clusters (as opposed to the
negative selection model of [Percus et al., 1993], modelled artificially for example
by [Forrest et al., 1994, Dasgupta and Forrest, 1995, Hofmeyr and Forrest, 2000], in
which the IS only contains antibodies that recognise abnormal data). In an artificial
model adopting the danger approach, and therefore recognising and clustering all data,
the rate and extent to which the antibody set changes gives some indication of the ex-
tent to which the system has to adapt to cluster new data, and therefore could also be
used to identify the occurrence of new and unusual trends in the data. The *abnormal’
data is clustered, and hence it is straightforward from then on to recognise when new
data falls into one of these clusters. The SDM class of associative memories appears
to fall into the danger-model camp of immune system models, in that it is capable of
recognising and storing all data present in a given environment, and not just data that

falls into either the ’self” or the 'non-self’ categories.

4.1.4 Inadequacies of the SDM

Although the previous sections have shown that the SDM appears to be an ideal anal-
ogy on which to model a data-clustering system, and that [Smith et al., 1996] have dis-
cussed in detail the close relationship between the immune system there are also some
fundamental differences between the two systems. Moreover, there are several flaws
in the fundamental postulates defining Kanerva’s original SDM that must be modified
to produce a practical system for use in a data-clustering environment.

Three of the original postulates underlying the original SDM are as follows:

1. The number of hard storage locations and their addresses is known from the start,

and only the contents of the locations are modifiable.

Chapter 4. Applying an Immune System Analogy to Data-Clustering Problems 108

2. The recognition radii are fixed from the start, and it is assumed that each location

has an identical recognition radius

3. The hard storage locations are distributed randomly in the 0, 1" address space

These postulates result in a memory which is in inflexible and inadequate for stor-
ing data which is not random and which is subject to change. Clearly this applies
to real-world databases which are obviously non-random. In particular, postulate (3)
which requires the storage locations to be randomly located will not only result in
in a highly inefficient memory but moreover, cannot result in an accurately clustered
database.

Furthermore, the size of real data-sets will vary over time as data is collected and
removed, and also, the contents of the data will change with time. Therefore any
memory which requires a fixed number of static hard locations will also be inadequate
to perform the clustering task. This is clearly a fundamental difference between the
biological immune system and an SDM — in the immune system, antibodies are con-
tinually produced by lymph nodes, and have a finite lifetime. Thus the number of
antibodies circulating throughout the immune system varies with time, and the type of
those antibodies also varies, depending on the current state of the antigen environment.

Therefore, we propose that a new model for performing data-clustering can be de-
vised by integrating some of the dynamic and adaptive features of the immune system
with the simple storage and associative recall ideas of the SDM. The basic premise
underlying the model is that an immune system based on a dynamic SDM can be
constructed, in which the number of hard locations is variable, and the location and
recognition radii of those locations adapts to suit the environment to which the SDM is
exposed at any particular time. Thus, to rephrase this using immunological terminolgy,
the hard-locations in an SDM can be represented by antibodies in an immune system,
and the data which it is hoped to cluster an antigens. The recognition radius in the SDM
is replaced by a threshold mechanism in the immune model, below which binding be-
tween the antibody and the antigen does not occur. This is consistent with the mapping
between the SDM and immune system originally proposed by [Smith et al., 1999] and
described in chapter 2, in table 2.1. For consistency, the immunological terminology

is used throughout the remainder of this thesis.

Chapter 4. Applying an Immune System Analogy to Data-Clustering Problems 109

The remainder of this thesis describes two different methods by which an im-
munological model can be implemented. In chapter 5.2 we describe a model dubbed
COSDM which uses a co-evolutionary algorithm as the mechanism for driving the
discovery of antibodies and their associated binding thresholds. Chapter 6 adopts an
approach named SOSDM based on simple self-organising algorithms such as that of
[Kohonen, 1982b]. Both approaches are tested on artificially generated binary datasets,
representing both static and non-static data-clustering problems in order to analyse
their performance in detail and establish whether or not the proposed methods provide
a starting point for tackling more complex real-world tasks. The generation of these

datasets is now discussed.

4.2 Problem Description

Both the COSDM and SOSDM algorithms are first tested in a simple test en-
vironment which is identical to that used by [Potter and De Jong, 2000], and in
[Forrest et al., 1993] in a related study, and therefore allows for straightforward com-
parison of the models. The problem is a binary string covering exercise — in its orig-
inal most general form, it consists of finding a set of K binary strings (the match-ser)
that match as strongly as possible another set of N binary strings (the farget set), where
N > K. Thus, each of K strings in the match-set must contain a pattern(s) common to
a subset of patterns in N in order to cover the set optimally, and therefore represents
a generic description of some subset of N. The task therefore is to discover the best
possible set of K strings — each of the K strings can be considered to represent a clus-
ter in the original dataset, and if there are K clusters present, then K strings need to be

discovered.

4.2.1 Stationary Data

Throughout the remainder of this thesis, three categories of antigen datasets are used
for experimentation with the proposed models and for comparison with the algo-
rithm described by Potter et.al , and from now on referred to as CE-POTTER (Co-
Evolution-POTTER). This method of generating data-sets is described in detail in

Chapter 4. Applying an Immune System Analogy to Data-Clustering Problems 110

[Potter and De Jong, 2000]. The categories are generated in the following manner:
The first category of data is referred to as half-length data, and datasets generated
in this category contain N antigens, each of length L. The data is generated in equal
proportion from two half-length schemata. Schema-1 has the first L/2 bits fixed to 1,
and the remaining L/2 bits contain wild-cards. In schema-2, the first L/2 bits contain
wild-cards and the remaining L/2 bits are fixed to 1s. Therefore, if L = 32, the two

schema are:

IT11I111I1 111D 1 et
A HE A A HA11111011100211000

Thus a dataset generated in this fashion will contain 2 clusters.

The second category of data is referred to as quarter-length schema and datasets
are generated in equal proportion from 4 schemata, and therefore contain 4 clusters.
The length of the defined section in each schema in this case is L/4. Using the same

example as above in which L = 32 the schema will be as follows:

INDRRNONE S i i sssdsdsi
FHEHEHEHLILILI L I
igdEE I E I INNONRNNE LIS
FHEH AR 111011010

Finally, the third category of data, eighth-length schema, produces datasets gen-
erated in equal proportions from 8 schemata, each with defined length L/8. Thus for

L =32, the 8 schema which are used to generate 8 clusters are shown below:

NS Esssisssssisdsdssisdiadd;
AL LI LA AR AR R AR AR R AR A
AR AA A LILI AR AR AR A RA RS ARAS
FHEFEH AL LI L R S
HEHE R L LI L
A A AR AR AR L LIRS
igdaddsdsdsisiaiai i s IR EEs
igdaddsdsdsisisiai it s st NN

The length of the defined section in each case is denoted by d.

Chapter 4. Applying an Immune System Analogy to Data-Clustering Problems 111

4.2.2 Non-Stationary Data

Section 4.2.1 describes how N antigens can be generated from s schema in equal pro-
portions. All experiments using static data are generated from one of the three cate-
gories of data described; half-length schema, quarter-length schema and eighth-length
schema. Each of these three categories contains non-overlapping schema. A more gen-
eral method of generating data is to also generate the schema randomly, by choosing a
random start point along the string and then setting d contiguous bits to 1. All remain-
ing (L —d) bit positions contain wild-cards. Schemas are more likely to overlap in this
case, but this is likely to be a more accurate reflection of real data sets. This method
can easily be adapted to produce non-stationary data sets using the algorithm shown in
figure 4.1. Generating datasets in this manner enables the proposed algorithms to be

evaluated in the context of the following properties of the datasets:

1. The number of clusters present in the dataset
2. The length of the defined section of each cluster
3. The extent of overlap of the clusters

4. The rate of change of the dataset in terms of the number of clusters replaced at

each update, and the rate at which the update occurs.

This will enable some conclusions to be drawn about the suitability of the suggested
approaches for clustering real-world datasets, in which sensible estimates can be made

of the likely rate of change of the data, and also of the characteristics of the dataset.

4.2.2.1 Relevance of Data Generation Approach to Real Datasets

In a real dataset, we would expect to observe clusters of data, in which items within
each cluster share common features. However, it is extremely likely that at least some
of these clusters will not be distinct but will overlap with each other. Therefore, when
designing an artificial dataset in order to test the proposed models it is essential that
the datasets should exhibit at least two characteristics if performance on them is to be

indicative of real-world problems:

Chapter 4. Applying an Immune System Analogy to Data-Clustering Problems 112

1. Generate s schemas at random, each containing d contiguous defined
bits, and (L — d) wildcards

2. Generate (N/s) antigens from each schema
3. Every U time-steps:

(a) kill of g randomly chosen schemas and their associated antigens

(b) generate g new schemas and (N/s) new antigens from each new

schema

(c) add the new antigens to the dataset

Figure 4.1: A generic algorithm for generating non-static datasets

1. Data should form clusters, in which items within the cluster contain at least one

shared feature, but in general are non-identical

2. Some or all of these clusters may overlap, i.e the data should contain some fea-

tures that are shared by more than one cluster.

Generating antigens from schema in the manner just described fulfills these two
criteria; the defined section of each schema corresponds to a feature in the data, and
generating the remaining portion of each antigen from wild-cards ensures that there is
diversity within the cluster. Moreover, the generic method of generating antigen from
random schema described in section 4.2.2 also ensures that clusters can overlap.

In fact, this has a direct parallel in the biological immune system in which anti-
serum raised against a set of antigen exhibits two phenomena — that of specific re-
actions and of cross-reactivity. The specificity of a biological anti-serum is equal to
the sum of the actions of every antibody in the serum. Consider figure 4.2, taken
from [Roitt et al., 1988], which shows a population of three antibodies; some antibody-
antigen reactions are highly specific — this is shown in figure 4.2(a) in which individ-

ual antibodies are directed against specific epitopes (X,Y,Z) on three different antigen

Chapter 4. Applying an Immune System Analogy to Data-Clustering Problems 113

(a) specific reaction (b) cross—reaction (¢) no reaction
anti-X anti-Y anti-Z anti-X anti-Y ﬁ n "

Antigen A Antigen B Antigen C

Figure 4.2: Anti-serum specificity results from a population of interacting antibodies.
The figure illustrates three phenomena — specific reaction of antibody against individ-

ual antigen, cross-reactivity of antibody against more than one antigen, and no reaction

molecules. On the other hand, if an epitope is common to more than one antigen, for
example epitope Y in figure 4.2(b), the antibody raised against X will cross-react with
antigen Y. This figure also shows that the match between antigen epitope and antibody
paratope does not have to be exact — antibody X is also capable of recognising epitope
X'. Figure 4.2(c) also illustrates that this anti-serum has no reaction with antigen C, as
no epitopes are able to be recognised. Relating this to a clustering problem, recogni-
tion of individual clusters is equivalent to the specific reaction of an antibody, whilst
the phenomenon of cross-reactivity is modelled by recognition of common features in
overlapping clusters.

The next chapter describes a co-evolutionary approach to evolving an SDM to per-
form data clustering on static and non-static datasets using data generated in the man-
ner just described. Chapter 6 then describes a self-organising SDM and the results of

experiments repeated on similar datasets.

Chapter 5

EA Based Model — COSDM

5.1 Combining Co-evolution with an SDM — COSDM

This chapter describes a new immune system model named COSDM — co-
evolutionary SDM — which exploits the analogy between an SDM and the immune
system to performs data-clustering. We propose to use a genetic algorithm within a co-
evolutionary architecture in order to find a set of antibodies which accurately cluster a
set of data. The immune system formed by these antibodies is analagous to an SDM
made up of a set of hard locations. The size of each antibody’s corresponding ball of
stimulation (i.e. its recognition radius in SDM terminology), and the optimal number
of antibodies required is evolved by the architecture.

The COSDM architecture is based on that described in [Potter and De Jong, 2000]
which is a generalised architecture suitable for finding coadapted subcomponents or
solutions to problems that can be decomposed into simpler subtasks between which
they may be complex interdependencies. A model of this architecture is given in figure
5.1. The architecture models an ecosystem consisting of two or more species — as in
nature the species are genetically isolated and therefore individuals within one species
do not mate with others outside of their species. The species interact with one another
however via a shared domain model, and as such have a cooperative relationship.

Figure 5.1 shows an example of a system which contains three species, each evolv-

ing within its own population via the application of a GA. The diagram shows how

114

Chapter 5. EA Based Model — COSDM

Species 2

Population
Species 1 individual
EA fitness -
best representative
Population
Domain
model

Species 3

best representative
p

Population

Figure 5.1: Coevolutionary architecture of the Potter model

Chapter 5. EA Based Model — COSDM 116

the fitness evaluation proceeds from the perspective of one of the three species — to
evaluate an individual from one species, collaborations are formed with representatives
from each of the other species. Thus, in the case of the string covering problem de-
scribed in chapter 4, individuals in each population represent match strings, and each
species contributes one string to the domain model, i.e. the match-set. At any time, the
match-set consists of the string under evaluation, plus the current best string from the
other (N-1) populations. The match strength between a match-string X and an antigen
string ¥ is simply given by summing the number of bits in the same position with the
same value, 1,e:

i=L ; L — v
smzx{l von

i—1 1 0 otherwise

Then, to compute the match-strength of the set M, and therefore the fitness of
the match-set to be assigned back to an individual, the match-strength is calculated
between each of the N members of the set and each of the K antigens in the target set,

and then the maximum computed strengths with respect to each antigen are averaged:
1 K
S(M) = E Zmax(S(iﬁl,ti), ...,S(I’l’l—)N,ll‘))
i=1

The architecture described by Potter lends itself well to implementing an immune
system based on an SDM model that is able to successfully store and retrieve large
amounts of data. Whilst the obvious subtasks in COSDM are to locate the best position
and recognition radius of each antibody, there are also complex interactions between
individual antibodies as counters are summed across the entire immune system in order
to retrieve a piece of data. These interactions are handled well by the cooperative nature
of the architecture.

A model of the adapted architecture, COSDM, is shown in figure 5.2. As in the
original architecture, multiple populations are evolved. In the case of COSDM, each
population in isolation controls the identity and recognition radius of potential anti-
bodies. A complete immune system is formed by each population contributing one
antibody to a serum which is then evaluated in order to determine how accurately it
can store and recall data currently visible to the system. The serum consists of a mem-

ber of the population currently under evaluation, and the best member of each of the

Chapter 5. EA Based Model — COSDM 117

SDM

store/retrieve data J A species representative

Do L — 111110000 29
| Lo ./ location radius

Database

of one representative from
each species

form "serum" consisting
fithess

—_—— — — — e — oy

|
species/population | species 1 species 2 species 3 |
being evaluated | EA
|
! |
| ~
| best Ilnember
> |
| ; , ,
| population population population |

Figure 5.2: Coevolutionary architecture of the COSDM model

other population. Credit is then assigned back to the population under evaluation, and
the usual mechanisms of selection and reproduction then take place within each pop-
ulation. In the implementation of the model described, populations are evaluated in a
serial fashion, but there is no intrinsic barrier to performing a parallel evaluation.
Potter points out that there are four issues to be addressed in trying to produce an
evolving computational model that provides reasonable opportunities for emergence
of coadapted subcomponents of a larger problem. The properties of the proposed ar-
chitecture that are desirable in the context of evolving an immune system for data
recognition are now discussed. For a detailed explanation of other characteristics of

the architecture, the reader is referred to the original paper, [Potter and De Jong, 2000].

Problem Decomposition When searching for the optimal immune system to store a
large dataset, it is impossible to know a priori how many antibodies are required,
particularly if the data is non-stationary. Therefore, the model should allow for

addition and deletion of antibodies as the adaption takes place. This is simple to

Chapter 5. EA Based Model — COSDM 118

achieve in the CE-POTTER architecture by adapting the mechanisms for adding
and deleting subcomponents. The method by which this is implemented is de-

scribed further in section 5.2.2.

Interdependent subcomponents As already identified above, the antibodies will ex-
hibit a high degree of interdependency — COSDM is a distributed system in
which antigen bind to many antibodies during both the storage and retrieval
phases. Therefore, an antibody cannot be evolved in isolation. This kind of inter-
dependent relationship is also observed in the biological immune system, where
the specificity of an anti-serum is a function of a number of interacting antibod-
ies and not a result of a single antibody reacting exclusively with the inducing
antigen [Roitt et al., 1988]. The architecture described handles interdependent
components as the evaluation phase evaluates one species in the context of all
the other species by forming the immune system — it is impossible to evaluate

a species in isolation.

Credit assignment When tackling problems that have have been broken down into
subcomponents, the issue of distributing credit to each of the components al-
ways arises. The mechanism described by Potter which is used in order to de-
termine the fitness of members of one species is to evaluate those individuals
in conjunction with the best members of each of the other species, i.e. the in-
dividuals contributing to the serum from the other species remain fixed. The
resulting fitness of the entire serum is then assigned to the individual being eval-
uated alone. This is particularly applicable to credit assignment for the immune
system, where it would be very difficult to determine exactly how much a single

antibody contributed to the overall fitness of the immune system.

Diversity Clearly, the repeated application of an EA to a population will eventually
result in the convergence of that population. As fitness in a population is a result
of collaboration and cooperation between all subcomponents, the architecture
described should enable sufficient diversity to be maintained in each species until
the complete problem has been solved. Furthermore, in a non-stationary system,

there is a requirement to maintain sufficient diversity within the populations to

Chapter 5. EA Based Model — COSDM 119

ry1jrjo{1;{0}1;y0;010)1|1]0O0

address recognition >
radius

Figure 5.3: Structure of an antibody representing a hard location in an immune system.
Each species in the COSDM consists of p such antibodies. Note that each antibody
has an associated set of counters, one for each address bit, but that the counters are

not evolved.

allow them to adapt to moving datasets. Whether the use of an EA will enable

this to happen remains to be seen at this point.

5.2 Implementation of COSDM

As shown in figure 5.2, the COSDM architecture is assumed to contain »n populations,
with each species containing p potential antibodies. An antibody represents a complete
description of a hard location in the immune system, that is it contains L bits represent-
ing the address of the hard locations, and a further R bits representing the recognition
radius, p, of the location. Each antibody also has an associated set of counters (inte-
gers) — these are not evolved but are set by storing data in the immune system. An
example antibody is shown in figure 5.3.

The address of a location defined by an antibody c is denoted by V(c), and the
counters by C(c). R bits represent a Gray-coded description of the recognition radius.
The actual algorithm defining the architecture and governing the evolution of each
species 1is described in pseudo-code in fig 5.4. The key steps are described in more

detail in the following sections.

5.2.1 Calculation of Fitness

Step 2 in figure 5.4 calculates the fitness of each individual antibody in each population,
based on an evaluation of how that antibody i* performs in the context of an immune

system formed by itself and the best member of each of the other populations, referred

Chapter 5. EA Based Model — COSDM 120

1. Randomly generate n populations, each containing p antibodies

2. Calculate the fitness of each member of each populations using the data

currently visible to the system
3. Sort each population by fitness

4. Calculate the mean recall accuracy of the dataset using the immune

system composed of the best member of each species 7

5. If 7 has not improved by at least T over ¢ generations, add a new popu-

lation

6. If the best member of any population does not recognise at least € anti-
gens, and the population has existed for at least A generations, kill the

population
7. Apply an EA to each population in turn in order to reproduce it

8. Go back to step 2

Figure 5.4: The COSDM algorithm

Chapter 5. EA Based Model — COSDM 121

to from here on as SDM*. (Note that at generation 0, when evaluating any single
population, the best member of each of the other non-evaluated populations cannot yet
be calculated, therefore a member of each of these populations is simply chosen at
random to form SDM*.)

The calculation takes place in two phases. In the first phase, a subset of the antigens
in the dataset of size s, (s < N) is stored in the immune system represented by SDM™.
In the second phase, recall of the entire dataset is performed, using the counter values

now contained in SDM™.

5.2.1.1 Phase 1: Storage Phase

e Set the counters of each of the ¢; (1 <i < n) antibodies in SDM* to Os
e Present each antigen in a in subset s to the immune system:

— Calculate the subset of antibodies n’ for which the distance between the
address of the antibody and the antigen, i.e. H(c;,a), is less than the recog-
nition radius of the anibody, p;, (equation 5.1). H(c;,a) is simply the Ham-

ming Distance between the two strings V (¢;) and a.

H(cj,a) = Z (5.1

=110 otherwise

“{1 if Vie);#a

— For all antibodies in n’, update the counter values at each bit in each anti-

body, according to equation 5.2:

1 if a;=1
ifa=l g,
—1 if aj= 0

5.2.1.2 Phase 2: Recall Phase

For each antigen a in the dataset:

Chapter 5. EA Based Model — COSDM 122

e Calculate the subset of antibodies n’ for which the distance H(c;,a) is less than

or equal to p; according to equation 5.1.

e Sum the counters of each member of n’ at each of the j bit positions to give 6 ;(a)

at each position:

These values are then used to calculate the actual recalled bit, a;~ for each of the L

bits in the antigen:

1 if ;>0
a; = 0 if ©;<0 (5.3)
(0,1) randomly chosen otherwise

The recalled bit-string a’ can then be compared to the actual antigen originally
stored in the memory a, and the match-score, M calculated. This is simply the number
of bit positions in which a’ = a.

1 if d;=aj

0 otherwise

j=L
M (da) =Y (5.4)
j=1
The mean recalled accuracy of the entire dataset 7 is then simply the average match-

score obtained for each of the recalled antigens:

1 i=N
Meanrecall accuracyr = N Z M (a.,a;) (5.5)
i=1

Thus the fitness of SDM™*, and hence that of i*, the individual under evaluation, is
simply equivalent to 7.

In equation 5.3, randomly choosing the value of the recalled bit when G;- =0 in-
troduces a concept similar to the somatic mutation that is observed in the real immune
system (see chapter 2). However, an alternative approach which would perhaps result
in a more stable system would simply be to copy the bit from the address whenever

/ : ! __ .
0, =0,ie d;=V(c);

Chapter 5. EA Based Model — COSDM 123

5.2.2 Control of Number of Species

The number of antibodies in the final system is dynamic, that is antibody populations
are added and deleted from the system as becomes necessary. The rate at which this

happens is controlled by 4 parameters;

1. the extinction threshold, e,
2. the extinction phase length e,
3. the stagnation threshold ¢;.

4. the stagnation phase length ¢,

If the fitness of the immune system composed of the best member of each popu-
lation following reproduction and evaluation of each population does not increase by
at least ¢, over ¢, generations, then a new population is added to the system, with
randomly generated members. Similarly, if the best member of a population does not
recognise at least e; antigens from the current antigen population, and the population
has been in existence for at least e, generations then that population is removed from
the system. A limit of M populations (and therefore M antibodies in the final immune
system) is imposed on the system to prevent it growing too large (and therefore too
specialised). This is similar to the Potter model but with two differences. Firstly, the
learning phase parameter has been added in order to give each population an opportu-
nity to evolve. This is particularly important in a non-static environment. Secondly,
the operation of the extinction threshold is modified so that the best antibody in a pop-
ulation must recognise a minimum number of antigens with the caveat that if an anti-
body recognises an antigen that no other antibody from another population recognises,
then the population is allowed to continue existing. In the original model described
in [Potter and De Jong, 2000], an antibody from a population must contribute a mini-
mum proportion of the total fitness of the serum in order to survive. However, as this
quantity cannot be easily isolated in the SDM/immune model, we have modified the

approach.

Chapter 5. EA Based Model — COSDM 124

5.2.3 The Evolutionary Algorithm

The EA controlling evolution of each population is identical to that described in
[Potter and De Jong, 2000], in order that a fair comparison can be performed. Each
population is of size 50, two-point crossover is applied at a rate of 0.6, and a bit-flipping
mutation operator used at a rate equal to the reciprocal of the chromosome length. Gen-
erational reproduction is applied, using fitness-proportionate selection based on scaled

fitness.

5.3 Overview of Experimental Setup

Three series of experiments were designed to investigate the capability and behaviour
of the system outlined above. The first series of experiments was designed simply to
test the performance of the model on a set of static datasets, in order that its perfor-
mance could be compared to other published algorithms. The second and third series
are concerned with using the model in a non-stationary environment, to see if clusters
can be found and tracked in time-varying data. One series of experiments concerns
data which varies over time in a random manner. The other is concerned with inves-
tigating the performance of the system with datasets in which data appears in cycles,
and is designed to test the ability of the system to react more quickly to antigens it has

previously been exposed to, and therefore the long term memory of the system.

5.3.1 Default Parameters

Unless stated otherwise, a default set of experimental parameters, given in table 5.1 is
used in all experiments. In this table, the parameters marked with at * are taken directly
from [Potter and De Jong, 2000]. Others have either been adapted to suit COSDM or
are unique to the COSDM model. All experiments are run 10 times, and the mean re-
call fitness ¥ measured at the end of 200 generations of COSDM. The maximum value
of recognition radius is set to slightly less than 1/2 the length of the antigen strings
as this has been shown theoretically to be desirable [Kanerva, 1988]. The reasoning

behind this as as follows: two random strings of length L are almost certainly 1/2L

Chapter 5. EA Based Model — COSDM 125

Parameter Value
Population Size p 50
Crossover 2-point p=0.6
Mutation bit-flip p=1/L
Stagnation threshold O, 0.5
Stagnation phase length op 10
Extinction threshold e 5 antigens
Extinction phase length ep 10 generations
Maximum number of population | M,y 10
Minimum number of population | M, 2
Maximum recognition radius R 31
Length of antigen L 64
Length of antibody L 64

Table 5.1: COSDM fixed parameters

apart, for large L. If the radius is equal to 1/2L, then too many strings will fall within
each centre. If the radius is much less than 1/2L, then almost nothing will fall within

each centre, thus the radius should be just under 1/2L.

5.3.2 Comparison of results

The algorithm of Potter et. al was re-implemented according to the details described
in [Potter and De Jong, 2000]. This algorithm is referred to as CE-POTTER from here
on. The results given in [Potter and De Jong, 2000] for experiments on static data-
sets containing half, quarter and eighth schema were verified, and the re-implemented
algorithm was then used to repeat experiments performed with COSDM so that results
could be compared.

A second method of comparison used as a benchmark for the COSDM are the
results that would be obtained using the best possible single string generalist in each
experiment. This is to confirm that the strategy of locating multiple niches in the data

is indeed effective (regardless of how those niches are located). In each of the datasets

Chapter 5. EA Based Model — COSDM 126

COSDM: half-schema CO-POTTER: half-schema

w
S

IS
£

IS
>

| —COSDM: quarter—schema

S

CO-POTTER: quarter—schema

Mean recall accuracy

IS
S

w / ,
CO-POTTER: eighth-schema | /
Il L Il Il Il Il Il
MSU 200 250 300 350 400 450 500
COSDM: eighth—schema

Size of antigen dataset

Figure 5.5: Comparison of performance of COSDM and CE-POTTER on static datasets
generated from half-schema, quarter-schema and eighth-schema

used in the following experiments, the best possible string generalist would consist of
a string in which all bits were set to 1. This string would match at least d bits of each
antigen, and on average 50% of the remaining bits, therefore would achieve a mean

recall fitness of (d +£54) = &4,

5.4 Experiments using Static Data Sets

An initial series of experiments was performed to establish how the new model
COSDM performed on static data sets compared to other previously published work.
As the number of clusters is known a priori in each of these experiments, and we are
only interested in whether or not we can discover them, we simply evolve an equal
number of populations as clusters in each experiment, i.e both the maximum and min-
imum number of population parameters are fixed to exactly equal the number of clus-
ters.

Figure 5.5 compares the performance of COSDM to CE-POTTER on datasets gen-
erated from half, quarter and eighth schema, containing between 50 and 500 anti-
gens. Although COSDM outperforms CE-POTTER on all datasets generated using
half-schema, its performance on the quarter-schema datasets is comparatively worse
than CE-POTTER when N > 150 and when N > 200 on eighth-schema datasets. In all

Chapter 5. EA Based Model — COSDM 127

B 3 T T T T T T T T

2]

o —

=

en

S 251 .
g quarter—schema

= 2 T -
0]

20 ‘\

=

< L5 . .
ks .-~ eighth—schema

o .

] [N -
Ra) 1 g ,

E ///

=) o ,

a AR Y ,/

o 05 o half-schema 7
< A \

s R A

(D) A

> |z = | | | | | | |

< 750 100 150 200 250 300 350 400 450 50

Size of antigen dataset

Figure 5.6: The figure shows the average number of antigens in a dataset that are not
recognised by the best immune system evolved using COSDM for each of the three

categories of datasets

cases however, the performance of COSDM exceeds that of the optimal string gener-
alist. Some insight into this is gained from examining the average number of antigens
that are not recognised by the best immune system evolved during COSDM for each
value of N — these results are shown in figure 5.6. For datasets generated from half-
schema antigens, the evolved immune system fails to recognise antigens only when
N is large, and then only occasionally. The situation is different for those datasets
generated from quarter-schema and eighth-schema; in both cases, from N > 100 there
appears to be a steady increase in the number of antigens not recognised, somewhat
surprisingly this is more exaggerated in the quarter-schema experiments. When the
defined schema-length d is small compared to the length L of the schema, there is a
higher probability of matching the random part of the schema and hence it is easier
to locate suitable hard locations. Note however, that in all experiments, the maximum
percentage of antigens remaining unmatched is less than 1% of the total size of the

dataset which is likely to be trivial in a real-world database.

Chapter 5. EA Based Model — COSDM 128

Finally, the evolved radii of the hard locations are examined for each category of
datasets; for all half-schema experiments, the average radius of the antibodies evolved
by COSDM is either 29 or 30, with no obvious trend with increasing N. The average
radii of all antibodies evolved for quarter-schemas for all values of N is 30, and for
eighth-schema experiments, the evolved average radius varies (again with no obvious
pattern) between 28 and 29. Therefore, there is a tendency in all experiments for
the radius to tend towards the maximum possible, as this allows more antigens to be
recognised. This finding is confirmed by repeating the experiments but allowing 6
bits to define the radius, giving a maximum possible radius of (2° — 1) = 63. For
the eighth-schema experiments, no change is observed, for all values of n, i.e. the
number of antigens in the dataset, the radius varies between 28 and 30, and the number
of unrecognised antigen follows the same pattern observed in figure 5.6. However,
for the quarter-schema experiments, for values of n > 350 the radius rises well above
the theoretical maximum upto a value of 45 for n = 500 — this is coupled however
with a corresponding decrease in the number of antigens that are not recognised by the
evolved immune system for all n. Similarly, for half-schema, the evolved radii increase
with increasing n to reach a maximum of 47 at n = 500, and in this case, no antigen
are unrecognised, even at n = 500.

Recall that the mean recall accuracy quantity is an average over all antigens in
the dataset, and therefore antigens which are not recognised by the immune system
have a recall accuracy of zero, and therefore have a large effect on the mean accuracy.
Clearly this results in a trade-off between recognising as many antigens as possible vs
the accuracy with which antigens can be recalled. In the case of the eighth-schema ex-
periments, increasing the number of antigens recognised does not lead to an increase in
the mean accuracy of recall, therefore the radii evolve towards the maximum predicted
by the theory. For quarter-schema datasets however, increasing the number of antigens
recognised produces an increase in mean recall accuracy — even though the antigens
are recalled less accurately than compared to the case when the maximum value radius
is set to 31, the fact that more antigens can be recognised and hence stored in the mem-
ory compensates for this. The same arguments apply to the half-schema datasets in

which of course a randomly generated string would match on average half of the bits

Chapter 5. EA Based Model — COSDM 129

in each antigen. In conclusion, it would appears better to fix the maximum radius to
be similar to the theoretical maximum of 1/2 the length of the string to enable clusters
defined by a small recognition radius to be recognised accurately.

In summary, COSDM appears to perform satisfactorily in all experiments per-
formed in that it does locate clusters within the data in each case, when compared
to the optimal single string generalist. Its performance degrades as the size of the
dataset increases when COSDM is compared to the model published by Potter et. al.
This is probably due to the inability of the model to locate all antigens in the dataset
— there is no pressure exerted by the fitness function to steer the location of anti-
bodies towards parts of the input space containing unrecognised antigens, therefore it
is conceivable that some antigens remain un-noticed by the algorithm throughout the
entire evolution. This could be addressed in a number of possible ways. One option
would be to include some form of penalty function in the fitness function, based on
the number of unrecognised antigens, however this approach has well documented dif-
ficulties ([Smith and Coit, 1997]). Also, it should be noted that the COSDM model
was run with exactly the same parameters reported by Potter et al, and a search of
the COSDM parameter space was not performed. As the parameters published in
[Potter and De Jong, 2000] are likely to be the result of an extensive optimisation pro-
cess, it is possible that performing such an optimisation with COSDM may improve
its performance.

However on balance, it was felt that the performance of the model was sufficiently
promising that it should be tested in a non-stationary environment, where it has already

been suggested that an immune system metaphor should provide some advantages.

5.5 Experiments Using Random Non-Stationary

Datasets

This section describes experiments performed on random non-stationary data gener-
ated using the method described in section 4.2.2. In all experiments, 100 antigens
are generated from schema of length L = 64. Experiments examined the effect on the

mean recall fitness 7 of the number of schemas used to generate the data set, s, the

Chapter 5. EA Based Model — COSDM 130

Number of Schemas s €(2,5,10)
Defined Length d e (8,16,32)
Update Rate U =50
Number of Schemas replaced 1<g<s

Table 5.2: Values of parameters tested in random pattern tracking experiments

length of the defined section d, the update-rate U and the number of schemas replaced
at each update g. Values tested are given in table 5.2. Each experiment was repeated
5 times — 7 was recorded following each of 200 generations. In each group of 5 ex-
periments, the schemas were always generated from the same seed, so that the values
of 7 could be averaged meaningfully. For information purposes the average overlap
of the defined sections of the entire schema set in each case was calculated; this is
defined as the average number of bits that are equivalent and defined (i.e. set to 1)
in any 2 schemas. Thus, for example, schemas 111### and #111## have an average
defined overlap of 2. These values are given in table 5.3. As expected, as the number
of defined bits increases, the average defined overlap between schemas dramatically
increases. A large defined overlap implies that there will be a large overlap between
clusters, with the consequence that changes in the data should be easier to detect, as
the antibodies within the immune system do not have to move to new parts of the input
space in order to recognise new data.

As the aim of the following experiments is to assess the ability of an adapted
COSDM to track patterns in non-stationary data, the system is allowed to undergo
a tolerization period in which it learns to cluster the patterns in the initial dataset. The
ability of the system to then react to changes in the data can then be measured from this
starting point (rather than from time O in which the system contains random antibody
data). The length of the tolerization phase in all experiments is set to 200 generations,

and recording of results begins from this point.

Chapter 5. EA Based Model — COSDM 131

Number of schemas | Defined Length | Average Defined
s d Overlap
2 8 1.06
2 16 4.09
2 32 20.61
5 8 1.11
5 16 4.92
5 32 21.22
10 8 1.06
10 16 4.76
10 32 21.55

Table 5.3: The table shows the average defined overlap between the entire schema set

for each set of experiments performed using random non-stationary data

5.5.1 Results

Figure 5.7 shows example outputs from experiments in which s =5, and d = 8,32,
and g = 1,5. The graphs illustrate the overall trends observed in all experiments:
at each antigen update following the tolerization period, there is a rapid drop in 7,
immediately followed by a rise in fitness during the next 50 generation period over
which the maximum fitness achieved attains a similar level to that observed before
the change. Higher values of 7 are achieved when g << s in all cases, but when d is
small (and hence there is very little defined overlap between schemas), there is little
observable difference as g varies.

Further analysis of the results shows an approximately linear relationship between
the magnitude of the drop in fitness following each antigen update and the number of
schemas defining antigens that are replaced for all values of s and d tested. Figure 5.8
shows representative results obtained when d = 16 and s = 5,10. As the number of
antigens replaced increases, it is clear that the system is less likely to be able to cluster

the new data, especially as g — s. Note however, that even in the extreme case when

Chapter 5. EA Based Model — COSDM 132

Defined length: 8 bits Defined length: 32 bits
T T T ; T T T

; |

5 schemas replaced

s
S

PN

506
T

@

SN
T T
YA

3
T T

1 schema replaced \ 1 schema replaced

8
T

Mean recall accuracy
& &

Mean recall accuracy
=
B

5 schemas replaced

T
IS
5

=
&
T

&

.
o 100 200 300 . 400 500 600 700) 100 200 300 {00 500 600 7C
Generation Generation

Figure 5.7: Output from experiments in which datasets generated from 5 schema were

updated at intervals of 50 generations by replacing g schema

g = s, the resulting value of 7 immediately following the antigen update is still very
much greater that the fitness observed at generation 0 when the system is randomly
initialised. A clearer indication of the success of the model in adapting to the new data
is shown by examining the difference A between the maximum value achieved at the
end of the tolerization period 7(Up) (generation t=200) and the maximum value of 7
achieved following each subsequent update, 7(U;), i.e. A =7(Uy) —7(U;). Figure 5.9
illustrates representative results, showing the value of A for the extreme values of g in
experiments in which d = 16 and s = 5,10. Although the values of A fluctuate above
and below the zero-line, the magnitude of the deviations is very small compared to the
actual value of 7 achieved at the end of the comparatively long tolerization period:- the
maximum negative deviation is 3.43% of 7(Uy), and the maximum positive deviation
5.29% of 7(Up) across all experiments. Therefore we tentatively conclude that the

COSDM model exhibits some ability to track moving datasets.

5.6 Experiments using Cycling Non-Stationary

Datasets

Earlier discussion of the properties of the biological immune system suggested that
the basis of learning in such systems is attributable to its long-term memory capacity,
which enables it to respond more rapidly and more effectively to subsequent encoun-

ters with antigens. Therefore, it is essential to investigate whether the proposed arti-

Chapter 5. EA Based Model — COSDM 133

Experiments with antigen generated from 5 schemas Experiments with antigen generated from 10 schemas
14 T T T T 1.2 T T T T T
13| Defined Length: 16 g 11 Defined Length: 16 — B
g0 g) . |
2 g Z 09 E
Sur g A £
£ = S 08 1
alf 2 b g
S & o 07 g
Sool & 4 2
A o6 4
08 1 05 m
07 4 04 i

I I I I 03 I I I I
2 3 4 5 6 2 4 6 8 10

Number of schemas replaced Number of schemas replaced

>

Figure 5.8: The figure shows the magnitude of the drop in fitness following each antigen

update for experiments in which d = 16, and s = 5, 10

Schemas:5 Defined Length: 16

2 T T T T 2 T T

ol 1 schema replaced] 5| 5 schemas replaced |

1 1 1 7
A A
B u—‘—(_h—u B _u |

0 2 4 6 8 10 0 2 4 6 8 10
Index of antigen update Index of antigen update
Schemas: 10 Defined Length: 16
2 T T 2
1 schema replaced s 10 schemas replaced
15 E 2 1
1 q r)
A A
B r—»—,—‘_[—‘ | B |
0r —] oF 4
05] 05 1 4
_ I I I I I -1 L ; L . ’
0 2 4 6 8 10

o Index of antigen update
Index of antigen update

Figure 5.9: A vs index of antigen change for experiments in which d = 16, and s =5, 10.

The extreme cases of g = 1 and g = s are shown in each case

Chapter 5. EA Based Model — COSDM 134

ficial model COSDM exhibits any form of memory retention. This is investigated by
examining the performance of the model in a modified non-stationary environment in
which data is presented to the system in cycles — this enables complete clusters to be
re-introduced to the system at regular intervals, and the response time of COSDM to

these re-entrant clusters can be measured.

5.6.1 Data Generation

Antigen data is generated using a modified version of the generic method for generat-
ing non-stationary data presented in section 4.2.2.

In step 1 of this algorithm, k * s schema are initially generated at random. At any
time ¢, only s of these schema are used to generate the antigen population. A sliding
window of size s defines which schemas are used; this window is moved w schemas
along the schema list every U generations. The schema list is treated as cyclic and
wraps around when the window reaches the end. Thus, if Kk =2 and s = 4, then 8
schemas are initially generated, for example labelled 0,1,2,3,4,5,6,7. If w is equal to
s, then all antigens are replaced at each update; thus at time ¢ = 0, antigens {0, 1,2,3}
define the data set. Attime U, antigens {4,5,6,7} define the data, at time 2U, antigens
{0,1,2,3} again define the data etc. A more incremental update is achieved by setting
w < s. In this manner when a cluster is re-introduced, it is not necessarily in conjunc-

tion with the same set of other clusters to which the model was originally exposed.

5.6.2 Experimental Results

Experiments were performed in which s = w, where s € (2,5, 10), and & initially set to
2. The update parameter U was set to 50, and all schemas were of length L = 64 with
d = 8 defined bits. All experiments displayed similar trends; we present results here
for a representative case in which s = 5 and k = 2. Therefore, at every update, the entire
antigen set is replaced, and the schema set defining those antigens alternates between
two possible sets, set A defined by schemas 0,1,2,3,4 and set B, defined by schemas
5,6,7,8,9. Figure 5.10 shows this results of this experiment, averaged over 5 different

runs. The performance of COSDM is compared to an equivalent experiment using

Chapter 5. EA Based Model — COSDM 135

44

Mean recall accuracy

a k : / Cycling schema sets |

Randomly generated schema

405 ! ! ! ! ! ! ! ! !
200 250 300 350 400 450 500 550 600 650 70

Generation

Figure 5.10: The figure compares the performance of COSDM on datasets generated
from random schemas, to datasets generated from two schema sets A, B which are
re-introduced at regular intervals. The datasets in each case are generated from 5

schema, each schema containing 8 defined bits.

COSDM in which the entire antigen set is updated from randomly generated schema
at each update, rather than the alternating schema set just described. The figure clearly
shows that COSDM applied to the cycling data set produces better results than when
applied to random moving data sets, suggesting that some kind of memory effect is
being observed. (As in previous experiments a tolerization period of 200 generations
was applied in order to allow the system to learn the initial dataset.)

In order to investigate the period of this memory, i.e. the length of the intervals
between re-introduction of familiar clusters, we repeated the above experiments setting
k to 3, and then 4. We then examined the best fitness achieved for schema set A in
each case during every interval for which COSDM was exposed to this schema set.
These values were averaged, and the mean and standard deviation calculated for each
experiment defined by (s, k). The results are given in table 5.4.

There is little observable difference between the mean values of 7 obtained as k
varies, and Students t-tests applied with 95% confidence limits show no significant
differences. Therefore, it appears that the COSDM model is able to exhibit some form

of memory for past clusters, and for the values of k tried, the extent of this memory is

Chapter 5. EA Based Model — COSDM 136

Number of schemas Value of k&
s 2 3 4
2 44.63 (0.186) | 44.37 (0.274) | 44.77 (0.322)
5 43.06 (0.382) | 44.21 (0.342) | 43.01 (0.405)
10 42.72 (0.266) | 42.78 (0.474) | 42.79 (0.281)

Table 5.4: The mean and standard deviation (shown in brackets) of the maximum value
of ¥ found for schema set A, for varying combinations of s, the number of schemas from
which the dataset is generated, and k, the multiplier producing the overall schema set

not affected by the size of the intervals between reappearance of clusters.

5.7 Conclusions

A new algorithm, COSDM, has been introduced which uses a genetic algorithm to
evolve the position and radii of the hard locations in a sparse distributed memory. It
was postulated at the beginning of this chapter that this would allow clusters in large,
binary datasets to be identified. A co-evolutionary architecture was used, which it was
hoped would provide a means of automatically determining the number of clusters in
the data, when this is unknown a priori. Furthermore, the architecture was designed
to enable the algorithm to be used in a non-stationary environment, so that it could
theoretically track moving clusters.

The experiments described show that the algorithm shows limited success. First
consider its performance in static environments (although the arguments now presented
apply equally to the non-static experiments also) — the experiments detailed in sec-
tion 5.4 show that although datasets containing 2 clusters are clustered more accurately
than when using the CE-POTTER algorithm, performance of COSDM degrades as the
number of clusters and the size of the datasets increases. Figure 5.6 may explain this;
COSDM fails to recognise increasing numbers of antigens as the size of the dataset
size and number of clusters increases. The fitness function, i.e. 7 rewards memories

which on average are able to recall data more accurately; however, there is no driv-

Chapter 5. EA Based Model — COSDM 137

ing force within this function to encourage exploration of the space of hard location
positions. If an item of data is not recognised by the initial randomly generated hard
locations, then there is no pressure, other than random chance, to drive the position of
the antibodies towards those unrecognised antigens. Therefore, although the genetic
algorithm fine-tunes the positioning of those antibodies so that data initially recognised
is more accurately recalled as the algorithm progresses, some items of data remain un-
recognised throughout the algorithm. This effect obviously becomes more apparent as
the size of the datasets, and the number of distinct clusters increases, as the probability
that data will not be recognised by randomly generated antibodies increases. The fact
that the recognition radii tend to converge towards the maximum allowable value rein-
forces this idea — increasing the radii increases the likelihood that an antigen will be
recognised, and therefore its recalled accuracy will contribute to 7. The mechanisms
for population creation and deletion provide a possible means for increasing the cov-
erage of the antigen space, although currently population are created only in response
to the value of the fitness of the system becoming static, hence for the reasons outlined
above, this does not drive the system to cover unrepresented parts of the space, other
than by chance.

Potter et al.’s algorithm, CE-POTTER, does not suffer from this effect, as their
fitness function involves a direct competition between the best member of each pop-
ulation; in each competition, there will always be at least one winner, no matter how
poor the recognition between antigen and antibody. Contrast this with COSDM, in
which not only is the ultimately recalled antigen a result of cooperation between the
best member of each population, but some antigens may not be recognised at all, due
to the values of the recognition radii. Finding suitable recognition radii is key; even
if evolution were to prove capable of determining the correct values, the method de-
scribed requires that a maximum value be placed on each radius. Theory described
by [Kanerva, 1988] shows that it is inadvisable to set the radii to greater than half
the length of the strings, otherwise the probability of each antibody recognising every
antigen is too high. On the other hand, although small radii are desirable for accurate
clustering, so that each antibody only recognises a single cluster, then the positions

of the antibodies become crucial; if they are incorrectly placed, then the majority of

Chapter 5. EA Based Model — COSDM 138

data will be unrecognised. (Recall that the original postulates of the SDM specify that
the storage locations or hard antibodies are randomly distributed in the {0, 1}” address
space and that they are given from the start; clearly neither postulate applies in this
context.)

There are a number of ways in which the problem of unrecognised antigens could
be addressed within the constraints of the proposed architecture, many of which rely on
the introduction of some kind of penalty function, as adopted in many applications of
evolutionary algorithms to constrained problems. It is noted from the outset however
that there is a wealth of EA literature documenting the difficulties of penalty based
approaches, for example [Richardson et al., 1989], and opinion still varies on whether
the approach is justified.

Aside from the issue of unrecognised antigens, COSDM is slower than the CE-
POTTER algorithm, which would become a more serious issue as the size of the
databases to which it is applied increases. CE-POTTER requires calculating the match-
score between a member of each population and each antigen at every fitness evalu-
ation; on the other hand, COSDM requires calculating each match-score as in CE-
POTTER to determine if the antigen lies within the recognition radius of the antibody,
then storing the antigen at the antibody if so, and hence updating the counters, and then
finally performing recall of the entire data set, during which counters must be summed
for each antibody recognising the antigen to identify the recalled antigen, which then
has to be compared to the original antigen. Therefore, each fitness evaluation is a time
consuming process.

Despite these flaws, the results of applying COSDM to a non-stationary problem
environment are promising; the algorithm does exhibit the capability to track moving
data, and also exhibits a basic form of memory. These are precisely the properties
of the immune system metaphor that we hoped to encapsulate. This implies that the
SDM component of the model may be of value; however, in the model as it stands,
the potential value of the SDM approach is somewhat outweighed by the difficulties
associated with using an EA to evolve the positions and radii of the antibodys. It has
already been alluded to that choosing the right value for the recognition radii is crucial

— this is a fundamental feature of the original SDM. Therefore, it appeared that in

Chapter 5. EA Based Model — COSDM 139

order to progress this work, two features of the COSDM model needed to be addressed,
namely that of the engine by which the correct locations of the hard antibodies could
be found, and a method to circumvent the difficulties associated with the recognition
radii. The next chapter presents a new model — SOSDM — which borrow from a
modifed version of Kanerva’s SDM suggested by [Hely et al., 1997] and disregards
the EA in favour of a self-organising metaphor more in keeping with the principles of

the immune system we are attempting to mimic.

Chapter 6

A Self-Organising SDM — SOSDM

6.1 Introduction

The previous chapter concluded that the combination of an EA with an immune sys-
tem metaphor suffered from three major drawbacks; namely, that the evolved immune
systems failed to recognise some antigen altogether, evolving the correct recognition
radii for each antibody was extremely difficult, and that the system was relatively slow
to evolve, owing to the nature of the fitness function. In this chapter, another method
of discovering an SDM immune system capable of adapting to non-stationary data is
described. The new model, self-organising SDM or SOSDM, relies on an important
principle of the biological immune system not yet explored in this thesis — its self-
organising nature.

As previously discussed, the original form of the SDM is essentially a static
memory, with fixed hard locations. COSDM represented hard locations by anti-
bodies, and attempted to evolve the best definition of those antibodies, subject to
the current state of the environment using an evolutionary algorithm. However,
SOSDM views the memory as a truly self-organising system. Initially randomly
placed antibodies self-organise in order that they become distributed throughout the
input antigen data space in a manner which reflects the input antigen data distri-
bution. This seems an entirely logical step — the immune system itself is self-

organising, whilst viewed from the computational angle, there is an abundance of

140

Chapter 6. A Self-Organising SDM — SOSDM 141

literature describing algorithms for self-organising systems. Furthermore, a num-
ber of data-clustering algorithms rely on self-organising principles, ([Jain et al., 1999]
for a review), and also as noted in the literature review in chapter 2, attempts have
been made at applying network-based immune system models to data clustering
[De Castro and Von Zuben, 2000b, Timmis and Neal, 2001].

This chapter briefly reviews the basic principles of self-organising systems, and
describes an alternative model of an SDM, before describing how these two approaches
can be combined to produce a model capable of rapidly and efficiently clustering data.
Experiments are performed on the same datasets used to analyse COSDM, so that a

direct comparison of the two systems can be made.

6.2 A Brief Background on Self-Organising Maps
(SOMs)

The SOM in various forms has commonly been used to visualize and interpret large
high-dimensional data sets as well as to perform clustering. The earliest example of
a SOM was proposed by Kohonen, [Kohonen, 1982a] and is commonly used for clus-
tering purposes. Typically, a map consists of a number of units or neurons between
which there is a specific topological relationship. The map or network is trained by
an iterative procedure in which the units in the network are gradually adjusted to re-
flect the clustering of the training data. The training procedure arranges the network
so that units representing centres close together in the input space are also situated
close together on the topological map. The basic learning algorithm follows a two step

procedure which is iterated over many epochs:

1. Determine the unit that is closest to the input data, "the winner’

2. Adjust the winning unit and its neighbours to be more like the input case, using

a weighted sum of the input case and the unit itself

A time-decaying learning rate is applied to the adjustment to ensure that as time

progresses, the updates become more subtle, and the map eventually stabilises into a

Chapter 6. A Self-Organising SDM — SOSDM 142

representation of the input data. The topological ordering is achieved by also updating
units in the neighbourhood of the winner. The size of the neighbourhood also decreases
over time, so that as the map becomes fine-tuned, the size of the neighbourhood even-
tually becomes zero and only the winner is updated.

In the typical Kohonen network, the number of units and topology of the network is
predefined. However, the choice of network structure is difficult, and the need to define
a decay schedule for the various features is problematic [Fritzke, 1997b]. A typical
network produced by the Kohonen algorithm is shown in figure 6.1, taken directly from
[Fritzke, 1997b]). This illustrates the difficulty of choosing a suitable topology that
matches the underlying data distribution. Furthermore, the use of a decay schedule is
one of the key reasons why this type of simple self-organising map has generally been
considered unsuitable for handling non-stationary data distributions. The decaying
network adaption parameter means that as the value of the parameter approaches zero,
the network becomes static and therefore cannot react to any further changes in data.

Another self-organising system that can distribute units according to some given
probability distribution is the neural gas algorithm of Martinetz and Schulten,
[Martinetz and Schulten, 1991]. This algorithm is capable of distributing centres to
reflect underlying data distributions, but does not provide any topological information,
therefore there are no connections between units in the distribution. The algorithm
works by determining the distance in input space between the units in the network and
an input signal, and then adapting the units based on the rank order of these distances.
Like the Kohonen networks, it requires a decay schedule to be defined in advance for
the adaptation parameters, and the number of units must also be pre-defined. However,
it is better able to adapt to data distributions as it does not provide topological infor-
mation. Figure 6.2 again taken from [Fritzke, 1997b] illustrates the application of the
Neural Gas algorithm to the same data distribution as shown in figure 6.1.

In order to overcome some of the problems associated with Kohonen type net-
works that have topological structure, Fritzke has proposed two algorithms for incre-
mentally growing SOMs: growing cell structures, [Fritzke, 1994], and the Growing
Neural Gas (GNG), [Fritzke, 1995]. Both these models provide topological informa-

tion as well as distributing the centres according to the underlying distribution. The

Chapter 6. A Self-Organising SDM — SOSDM 143

models present an incremental method of growing a network, in which there is no
need to specify the size of the network, and in which all parameters are constant.
These models therefore are much more suited to finding clusters in data about which
no decisions can be made a priori regarding the likely number of clusters and suitable
topologies. In the GNG algorithm, a growth mechanism for incrementally growing
a network is combined with the topology generation of competive Hebbian learning
[Martinetz and Schulten, 1991]. Starting with very few units, units are inserted suc-
cessively. To determine where to insert such units, local error measures are gathered
during the adaptation process, and each new unit is inserted near the unit with the most
accumulated error. The complete algorithm is given in figure 6.4. The Growing Cell
Structures algorithm is very similar to the GNG model, but differs in that the network
topology is constrained to consist of k-dimensional simplices, where k is some positive
integer, chosen in advance. Thus k = 1 specifies a line, a triange is specified by k = 2
etc.

An example of the application of the GNG algorithm is given in figure 6.3. In
its original forms however, although the GNG is capable of following slowly chang-
ing probability distributions, for example a normal distribution with a slowly drifting
mean, it is unable to handle rapid changes in distribution in a non-stationary environ-
ment, [Fritzke, 1997b]. The problem arises due to units in the network becoming stuck
in former regions of high probability density and from then on becoming ’dead’ units,
with no connections to any other unit in the map. Fritzke proposes a solution to this in
[Fritzke, 1997a] in which he introduces a new on-line criterion for identifying useless

neurons on the network. According to [Fritzke, 1997a]:

.... When this criterion is used in the context of the (formerly developed)
growing neural gas network model to guide deletion of units, the result-
ing method is able to closely track non-stationary distributions. Slow
changes of the distribution are handled by adaptation of existing units.
Rapid changes are handled by removal of “useless” neurons and subse-
quent insertion of new units in other places

Each of the above algorithms incorporate features which might potentially be in-
corporated in an immune-SDM based algorithm for data clustering. Clearly, they are

all self-organising, a characteristic which it seems obvious to try and capture in an im-

Chapter 6. A Self-Organising SDM — SOSDM 144

mune algorithm given the nature of the biological immune system itself. This thesis is
not concerned with data clustering with topological information, therefore the neural
gas algorithm would seem to provide a basis for a new immune-based self-organising
algorithm. However, as mentioned, it has several drawbacks, such as the need to define
a decay schedule and to predetermine the number of units. Therefore, we propose that
elements of the incremental GNG algorithm might also be incorporated into the new
model. Furthermore, the GNG has already been shown to be capable of adapting to

non-stationary probability distributions which is encouraging.

6.3 Modifying an SDM to function in a non-stationary

environment

In chapter 4 section 4.1.4, the postulates underlying Kanerva’s original SDM were
outlined, and it was explained why these postulates are unsuitable for modelling an
SDM which functions in a non-stationary environment. However, [Hely et al., 1997]
have proposed an alternative model of an SDM — although the model was developed
in order to handle non-random input data more satisfactorily than Kanerva’s original
system, it contains several features which could be adapted to work in a non-stationary
environment. According to [Hely et al., 1997]

the SDM signal model retains the essential characteristics of the original

SDM whilst providing the memory with a greater scope for plasticity and

self-evolution. By removing many of the problematic features of the orig-
inal SDM the new model is not as dependent upon a priori input values.

Their signal-model SDM modifies postulates 1 and 3 of those given in section
4.1.4 and introduces a 4th postulate. Thus the new postulates (taken directly from
[Hely et al., 1997], are given below, with the fundamental changes highlighted in ital-

ics:

1. The storage locations that make up the final memory are not known from the
start. Initially locations are created until there is an excess of storage locations

which then compete for available signal. Storage locations receiving little or no

Chapter 6. A Self-Organising SDM — SOSDM 145

Figure 6.1: Kohonen map result for a clustered distribution which is uniform in the
shaded areas. Due to a mismatch between the data distribution and the network topol-
ogy the data distribution is not well represented.

Figure 6.2: Neural Gas result: the distribution of the units reflects the underlying data
distribution. There is no topological information, i.e. there are no neighbourhood con-

nections

Figure 6.3: Result of applying the Growing Neural Gas algorithm: the topology is very
well adapted to the data distribution. The structure consists of two clusters reflecting

the clustered data and all units lie in the regions in which the data actually comes from.

Chapter 6. A Self-Organising SDM — SOSDM

146

10.

11.

. Initialise the set 4 to contain 2 units, c; and ¢, with reference vectors

chosen randomly according to p(§).

Initialise the connection set ¢,C C 4 X 4 to the empty set:

Generate at random an input signal & according to p(&).

. Determine the winner s; and the second nearest unit s,

If a connection between s and s, does not exist already, create it, and

set the age of the connection between s1 and s; to zero.

Add the squared distance between the input signal and the winner to a

local error variable:

Adapt the reference vectors of the winner and its direct topological

neighbours by fractions of the total distance to the input signal.

. Increment the ages of all edges emanating from s

. Remove the edges with an age greater than some parameter a,,,. If this

results in units having no more emanating edges, then remove them as

well.

. If the number of input signals generated so far is an integer multiple of

a parameter A, insert a new unit near the unit which has accumulated

most error
Decrease the error variables of all units

If a stopping criterion has not been meet (e.g. net size or some perfor-

mance measure) continue with step 2

Figure 6.4: Fritzke’s GNG algorithm

Chapter 6. A Self-Organising SDM — SOSDM 147

signal are removed. Locations which survive are chosen for the total amount of

signal they receive.

2. The storage locations are very few in comparison with 2", i.e. the memory is

sparse.

3. Although storage locations are initially randomly distributed in the {0,1}" ad-
dress space, the final distribution of locations depends on the input patterns

presented, and may be non-random.

4. The recognition radius of the original SDM is replaced by a new parameter
which decreases the value of the signal as it spreads out. Locations have real
valued counters to store a copy of the data, weighted by the strength of sig-
nal they receive. The signal does not propagate after it falls below a minimum

strength

The key attractions of this approach as far as SOSDM is concerned is that the
model abandons the recognition radius parameter, which has already been shown to be
problematic, and that it does not rely on locations being randomly distributed through-
out the input space; clearly, the input data in a database is not random. The need for
an explicit recognition radius is removed by distributing each data pattern, i.e. signal,
throughout the memory with decreasing strength. The centre closest to the input data
receives 100% of the signal; thereafter the signal spreads throughout the memory and
some small percentage of the signal, say 5%, is lost at each subsequent location en-
countered. Each location thus receives a weighted copy of the signal, which is used
to update real-valued counters. A ’generate-and-cull’ approach is taken to producing
the final memory. Initially, a new location is created for every input data pattern, with
an address identical to the input data. A ’trial period’ then occurs in which a sample
sample of the input patterns are written to memory, with locations competing for signal
in the manner described. At the end of this period, a ’killing phase’ begins. A further
sample of patterns is written to the memory, only this time, locations which have re-
ceived the least signal are killed off at regular intervals until only approximately 1/2

the original number of locations remain. At this point, the counters are reset and the

Chapter 6. A Self-Organising SDM — SOSDM 148

memory is considered stable. The model was shown to exhibit greatly improved effi-
ciency when presented with non-random address patterns when compared to Kanerva’s
original SDM.

However, despite these attractions, the signal model has several drawbacks when
placed in a non-stationary data-clustering context. Firstly, the ’generate-then-cull” ap-
proach is inappropriate, particularly when considering very large datasets. The pri-
mary reason is that this method does not lend itself well to an adapting environment
— the culling process simply forces the memory to converge onto the current input
space. If that input space changes, another cycle of add-then-cull would be required.
Furthermore, the existence of distinct phases is not very appealing, as this in itself
requires some external mechanism to cause transition between the phases. Secondly,
the method of distributing data across the memory, albeit with decreasing strength is
unsuitable, especially in a memory that contains relatively few hard locations. In small
memories, all centres are likely to receive some proportion of the signal if the pa-
rameters are not chosen extremely carefully — this is exactly the opposite of what is
desired in a clustering system, in which the intent is to isolate clusters. Finally, there
is a large overhead in distributing large amounts of data to many nodes, however, the
signal model seems to require a large number of nodes in order to function correctly.

Thus, the new model SOSDM now described borrows from the underlying philos-
ophy of the Hely signal model of distributing data, but modifies the detail somewhat.
Antigens in the new model can bind to multiple antibodies, but with a binding affin-
ity based on the attraction between an antibody and an antigen relative to all other
antibodies in the system. SOSDM also borrows from the CE-POTTER algorithm in
that antibodies compete for antigens based on their affinity for the antigen data, i.e.
the similarity between the data-item and antibody as given by its address. In order to
tackle the problems associated with the signal model’s generate-and-cull’ approach,
SOSDM adopts a similar approach to growing an SOM as that taken by Fritzke in his
GNG algorithm, in that as the network grows, antibodies are added and deleted only
as necessary in areas of the input space that are misrepresented.

It should be noted that there have also been other attempts to address the shortcom-

ings in Kanerva’s original model, and the choice of Hely’s model as the one to adapt

Chapter 6. A Self-Organising SDM — SOSDM 149

was because it seemed to lend itself most obviously to an immune-based model. For
example [Sjodin, 1996] tried to refine the basic model so that it could more efficiently
deal with non-randomly distributed data by adding an extra counter to each location
which counts the number of items stored at the location. A further location is added
covering the entire space — these are then used to determine which locations should
be used in any read attempt from the memory. [Sjodin, 1996] shows that this method
greatly reduces errors in the recalled strings for data that is biased when compared to
the original model, as the new model ignores many locations which are activated but

effectively contain noise.

6.4 Implementation of SOSDM

Pseudo-code outlining the SOSDM algorithm is given in figure 6.5. Firstly, antigens
are distributed to a subset of antibodies, based on the affinity of each antibody for
the antigen in a batch process. Affinity is simply the Hamming Distance between an
antigen and an antibody - the closer the distance, the stronger the affinity between the
two. This results in the counters of the subset of antibodies being updated, according
to the strength of each antigen encounter. After all antigens have been given a chance
to encounter an antibody, the accumulated error of each antibody is calculated. The
error is equivalent to the sum of the distances between each antibody and any antigen
it recognises, weighted by the strength of the encounter. The value of the error is then
used to allow the antibodies to self-organise — antibodies gravitate towards areas of
the space in which they recognise data, the distance and direction of the movement
determined by the accumulated error. Each of these steps is now described in greater

detail.

6.4.1 Notation

The following notation is used to describe the manner in which SOSDM is imple-
mented. Assume an SOSDM is defined by n antibodies (i.e hard locations in an SDM),
each of which is referred to as ¢;. Each antibody is described by two strings, each of

length L. The first, V(c) denotes the address or location of the antibody, the second

Chapter 6. A Self-Organising SDM — SOSDM 150

1. begin with a fixed number of antibodies N, with randomly initialised

positions and counters set to 0.

2. present a subset s(s < N) of the data-set (antigens) visible at time ¢ to
the SOSDM

3. distribute the data in the s to each antibody in the SOSDM, with a
strength proportional to the affinity of the antibody for the data

e update the counters at each antibody according to the binding

affinity of the antigen-antibody encounter

e compute the accumulated error at each antibody

4. update antibody positions — the distance and direction of the move is

determined by the total accumulated error at the antibody
5. update antibody counters
6. add or delete nodes from the memory if necessary

7. go back to step 2

Figure 6.5: The SOSDM algorithm

C(c) consists of L real-valued counters. Thus, V(c;;) specifies the address of bit j in
antibody i and C(c;;) specifies the counter value of bit j in antibody i. The aim of the
SOSDM is to cluster a dataset consisting of N binary antigens, a. Each antigen is of

length L, and a; denotes the value of bit i in antigen a.

6.4.2 Distributing the Data

Data is distributed through the SDM according to the distance 4 of each antibody ¢
from an input antigen a. This is simply defined as the Hamming Distance between the

antigen a and the address of the antibody ¢ equation 6.1).

Chapter 6. A Self-Organising SDM — SOSDM 151

J=L i N — g
,q(ci7a) _]Z { 1 lf V<Cj) =daj (6.1)
=1

0 otherwise

The affinity of each of the N antibodies for the input antigens is calculated. Fol-
lowing this, the antibody that is closest in distance to the antigen a, denoted by 2 * can

be determined:

4% =max(4(cy,a),....,A(cn,a)) (6.2)

This value 4% is then used to determine the strength of the antigen-antibody en-
couter, i.e. the affinity of the antibody for the antigen. From an SDM perspective, this
value determines how much signal from the input data is distributed to each centre.
The affinity of any antibody for an antigen is proportional to the ratio of the distance of
the antibody from the antigen compared to the distance of the winning’ antibody from
the antigen, i.e. 4(c;,a) to 4*. A further parameter known as the affinity-threshold
t is introduced, such that (0 <¢ < 1). Antigens are only considered to bind to those
antibodies in which § is greater than this threshold. This is shown in equation 6.3.
Again, from an SDM perspective, this means that only centres where Sc,a > t have

their counters updated due to the incoming signal.

i .
s(c,a)z{ i slea)>t (6.3)

0 otherwise

Binding between an antigen and antibody implies updating the counters at that
antibody. The counter C (c;;) for each bit j at each antibody c; is updated according to

equation 6.4, where yis equal to 1 if V(c;;) = 1 and to -1 if V(¢;;) = 0.

C(Cij) = C(C,’j) + v$(c,a) (6.4)

Each time an antibody binds with an antigen, it increments an internal variable
R which relects the total amount of binding exhibited by the antibody, as shown in

equation 6.5:

Ve: R(c)=2R(c)+ S(c,a) (6.5)

Chapter 6. A Self-Organising SDM — SOSDM 152

6.4.3 Calculating the Error at Each Antibody

The self-organising mechanism by which antibodies move around the immune system
is based on a calculation of the total error accumulated at each antibody after all anti-
gens have been distributed to the system. Error is calculated in the following manner;
firstly, each time an antibody binds to some antigen c, the error at each of the j bit
positions for the address of that antibody is updated according to equation 6.6. The
error at each bit position is thus effectively a measure of the difference between the
desired value of the antibody address at position j as given by the value of the antigen

at position j and the actual value of the antibody address, V (c;;).

Z (cij) = E(cij) + S (ci,a)(aj—V(cij)) (6.6)

Movement of antibodies only occurs after all antigens have been presented to the
system, which allows the total average error at each antibody, %, to be calculated,
according to equation 6.7. Note that this will always have a value lying between -1 and
1.

£ (cij) = E(cij) /R (ci) (6.7)

6.4.4 Updating the nodes position and counters

Once all antigens have been presented, self-organisation of the antibodies can take
place. Thus, as shown identified in steps 4 and 5 of the SOSDM algorithm in figure
6.5, the address of each antibody is modified as the antibodies move to parts of the
input space more representative of the antigens they are binding to. The counters
associated with an antibody also move, however they too are modified as the physical
locations of the antibodies move to reflect the new position of the antibody.

The probability with which the position and the counter of each bit j in an antibody
c; are moved is defined according to the absolute value of the average error (c; i) If
the value of |Z(c;;)| is greater than 0.5, then this value determines the probability
with which an address bit is flipped and its counter updated. (The introduction of

the seemingly arbitrary value of 0.5 ensures that the system will eventually stabilize,

Chapter 6. A Self-Organising SDM — SOSDM 153

given a static data set, and prevents random movements). Thus, if E(ci j) < 0, then
V(cij) = 0, and if £ (c;;) > 0, then V(c;;) = 1.. Equation 6.8 summarises the effect on
the counters for each bit j in each antibody c; for all antibodies in which |Z (c;;)| > 0.5.
A new parameter is introduced — the influence-counter, 1. This parameter allows the

amount by which the counters are adjusted to be explicitly controlled.

C(cij) = Clcij) x (14 (1 x £(cij))) (6.8)

Thus, the effect on a counter is that it is increased or decreased by a percentage of
its original value, the amount of which is proportional to the total error accumulated
by the antibody. The effect on the address of bit j is that it is flipped, with a probability
proportional to the average error accumulated at that address location.

In summary, the key features of the SOSDM system involve distributing a sample
of antigen-data to the system, followed by allowing the system to self-organise, in a
manner dependent on the average error accumulated by each antibody. The algorithm
is iterated until it stabilises (given a static set of antigens). Note that when using
SOSDM there is no need to calculate the mean recall accuracy of the system at each
iteration, unlike with COSDM. The value of this parameter does not feedback into the
algorithm and has no bearing on its performance. However, in order for the observer
to evaluate the performance of SOSDM, this quantity must be calculated. The method

by which this is done is now outlined.

6.4.5 Recalling Data from the SOSDM

Exactly as with COSDM, the quality of the SOSDM defined by this model is measured
by the accuracy with which data, i.e. antigens, stored in the memory can subsequently
be recalled, i.e. by 7. The recall mechanism is almost identical to that already described
for COSDM in section 5.2.1.2, chapter 5. To recap, when attempting to recall an
antigen a, first the antigen that is retrieved from the memory a’ is calculated, and then
this is compared to the desired antigen, i.e. that which was originally stored in the

memory, a. The process is as follows:

e Calculate the subset of antibodies n’ for which the binding affinity $ (¢;,a) > ¢

Chapter 6. A Self-Organising SDM — SOSDM 154

e Sum the counters of each member of the subset n’ at each of the j bit positions to
give 6(a). The value of each counter C(c;;) is weighted by the binding affinity

S (ci,a) during the summation process, as shown in equation 6.9.

6j =) C(cij,a)xS(ci,a) (6.9)
ien’

Thus, the only differences between this method and that used to measure recall in
COSDM are that the subset n’ is derived from those antibodies in which the binding
affinity $(c;,a) > t, rather than requiring the use of a recognition radius, and that
during the summation process, the counter values are weighted. From here on, the
recall process proceeds exactly as for COSDM, i.e. according to equations 5.3 to 5.5.
Thus, the actual recalled antigen is calculated, compared to the desired antigen, and
the match-score ¢ between the actual and desired antigen derived. The average of the

match-scores over the entire antigen set is used to calculate 7.

6.5 Calibrating the SOSDM

This section describes a series of experiments that were performed in order to test and
calibrate the new model. Comparisons are performed to the CE-POTTER algorithm,
as in chapter 5. Extensive testing was performed in order to determine the bounds
in which the model performs satisfactorily, and also the ease with which it could be
calibrated. In the form outlined above, the model requires only 2 parameters to be
set, which compares favourably to any evolutionary algorithm experiments and also
to the number of parameters that must be be set in many of the competitive learning
algorithms described above. Those parameters are the binding affinity threshold, 7, and

the influence-counter, 7.

6.5.1 Experimental Set-up

Experiments described in the following sections are performed using the static datasets

outlined in chapter 4, section 4.2.1. Therefore, experiments are performed on datasets

Chapter 6. A Self-Organising SDM — SOSDM 155

b,
&
T

/

Potter—half—schema

IS
E3

SOSDM-half-schema :

Average Fitness
& 5
T

IS
&

{— SOSDM-quarter—schema

44 ,\\\ 777777777 /
P S T T e |
SOSDM-eighth—schema ——| T : :
ef T B D Potter—quarter—schema
wp e

Potter—eighth—schema f/’?
50 100 150 200 250 300 350 400 450 500
Number of antigens in data set

Figure 6.6: Comparison of Potter Algorithm to SOSDM for all experiments

containing 2,4, and 8 clusters, identified as half-schemas, quarter-schemas, and eighth-
schemas respectively. The number of antigens in each dataset is varied from 5 to
500, in steps of 50, and the length of each antigen string is always 64. Unless stated
otherwise, each experiment is repeated 10 times, and the SOSDM algorithm is applied
for 200 iterations. The quality of the immune system representing the data is measured
by the mean recalled accuracy, (see equation 5.5), as in the COSDM experiments. As
with COSDM and CE-POTTER, the number of antibodies in each experiment was
fixed before the experiment began, and remained static throughout each experiment, as

the number of clusters in each dataset is known a priori.

6.5.2 Comparison of SOSDM Performance to that of CE-POTTER

Initial experiments were performed with t = 1.0 and 7 = 1.0. Thus, antigens can
bind to all antibodies with 4 = 2™ and to no others. (This is in direct contrast to
the Potter approach in which an antigen can bind to only a single antigen, with ties
broken by age of antibody). The setting for / also ensures that counters are adjusted
maximally. The best recall-accuracy obtained in each of 10 experiments is recorded,
and the results averaged. Figure 6.6 shows a plot of the results — clearly SOSDM
outperforms CE-POTTER for all sizes of antigen datasets and regardless of the number
of clusters. T-tests show that the mean recalled accuracy obtained using SOSDM is
statistically significant in every case when compared to the identical experiment using
CE-POTTER — these results are tabulated in appendix B.

The results may be partially explained by examining the number of antigens that

Chapter 6. A Self-Organising SDM — SOSDM 156

40 T T T T T T T T
s
= .
A — . -
g S 35 / i
N ’ ’
7 uarter ;
235 30 q -
59 L
o Qs .
c o -
o5 20 .
o S .
k= eighth
S I5r i
o
0] L
B0 E 10 - -
5) half
> 5F . Ptae
0 ==]]]]]]]]
50 100 150 200 250 300 350 400 450 50

Number of antigens

Figure 6.7: Examining the number of antigens that bind to more than one antibody

bind to more than one antibody, i.e. belong to more than one cluster — this is shown
graphically in figure 6.7. This shows that as the number of antigens increases, the num-
ber of antibodies binding to an antigen increases. These findings apply to all experi-
ments. In small datasets, it is relatively straightforward for the antibodies to distinguish
between each cluster. For very large datasets however, even though the antigens nom-
inally belong to separate clusters, there is likely to be a large overlap between items in
each cluster, especially as the length of the defined section characterising each cluster
decreases, and the number of antigens generated from that schema increases. Thus,
the memory must generalise in order to accurately recall the large number of data-
items, despite the fact that items nominally belong to a finite set of clusters — this is
achieved by allowing clusters to overlap. This effect is much more clearly apparent in

the quarter-schema and eighth-schema than it is for those using half-schema.

6.5.3 Number of Iterations Required to Find the Best Solution

Table 6.1 shows the mean number of iterations required to produce the best solution for
all experiments, with the corresponding standard deviations. We observe that the mean

values show that the algorithm rapidly converges on a solution, however the algorithm

Chapter 6. A Self-Organising SDM — SOSDM

157

Antigens Half Quarter Eighth
Mean SD Mean SD Mean SD
50 15.400000 | 14.683324 || 39.700000 | 52.679429 || 46.200000 | 46.322061
100 14.700000 | 5.618422 || 37.000000 | 24.805913 || 42.600000 | 41.679198
150 16.700000 | 11.671904 || 42.500000 | 30.613178 | 75.500000 | 37.146108
200 27.600000 | 26.854340 || 57.200000 | 30.017773 || 103.500000 | 46.980492
250 13.300000 | 9.866329 || 46.800000 | 46.499223 | 98.800000 | 47.377444
300 23.700000 | 18.481522 || 71.400000 | 48.339540 || 110.500000 | 48.376418
350 13.500000 | 6.023104 || 64.700000 | 56.330473 | 107.500000 | 52.816769
400 16.800000 | 14.226735 || 79.100000 | 53.831940 | 144.500000 | 36.939139
450 10.400000 | 8.248906 || 53.100000 | 57.085608 | 148.700000 | 53.804275
500 18.100000 | 13.714955 || 46.700000 | 40.260402 || 89.100000 | 47.799233

Table 6.1: SOSDM: Average/SD of epochs taken to find best solution

is somewhat variable — the standard deviations are very large. Closer examination of
the results showed that in the majority of runs, a good solution was found in very few
iterations, but occasionally, a run required a large number of iterations, thus resulting
in the large standard deviation, Even if this is taken into account, these results compare
very favourably with those obtained by Potter — each iteration of SOSDM requires at
most n* ¢ calculations of match-score. Potter’s algorithm on the other hand requires 7 *
c* p where p is the population size controlling each species (or antibody) per iteration,
plus the usual overheads associated with reproduction in an evolutionary algorithm (for

example, crossover, mutation etc.).

6.5.4 Investigating the sensitivity of SOSDM to the influence-

counter parameter

Initial experiments fixed I, the influence-counter parameter to 1.0. This section de-
scribes the effect of varying this parameter. All previous experiments were repeated,
varying I in each case from 0.0 to 1.0 in steps of 0.1. Again the mean recalled ac-
curacy was taken as the measure of quality of the result. Surprisingly, the value of
I appeared to have little effect on the final result. Students t-test was applied to the

mean recalled-accuracy of all possible pairs of experiments (x,y) in each possible ex-

Chapter 6. A Self-Organising SDM — SOSDM 158

Number of Antigen Type of Schema
half | quarter | eighth
50 7 2 4
100 4 1 0
150 5 0 5
200 8 3 4
250 3 6 5
300 0 0 2
350 0 12 0
400 0 3 0
450 0 1 2
500 2 2 4

Table 6.2: The table shows the number of comparisons (out of a total of 55 in each
case) that gave statistically significant differences between the mean recalled accuracy

as I was varied

periment class (A,C) where A = number of antigens, and C = number of clusters, and
x and y identify the value of the influence parameter (with the caveat that x # y). Ta-
ble 6.2 shows the number of comparisons which gave statistically significant results,
in that the probability that the means are different is > 0.95. Clearly the table shows
that very few comparisons of I gave statistically significant results. (The total num-
ber of comparisons per experiment class (A,C) is 55). In cases where a statistically
significant difference was observed, then the higher value of I gave improved results,

therefore in future experiments it was determined that 7 should simply be fixed at 1.0.

6.5.5 Choosing the Binding Affinity Threshold, ¢

As described in section 6.4.2, the binding affinity threshold ¢ determines if an anti-
gen can bind to an antibody, and if so, how well. High values of ¢ introduce more
competition and therefore encourage antibodies to specialise, whereas low values will

encourage overlap of clusters. Note that a randomly chosen antibody ¢ and antigen a

Chapter 6. A Self-Organising SDM — SOSDM 159

50 T T T T T T T T T

48 Fmmm s / —

half—schema
46 + .

44 F .

quarter—schema e,

42

Average Fitness Over Dataset

40 eighth—schema 7
38 - R .
36 - 1 1 1 1 1 1 1 1 1

08 082 08 08 08 09 092 094 09 098 1

Threshold

Figure 6.8: Examining effect of threshold parameter ¢ on average best fitness across

data set

will be expected to have a binding affinity of S(c,a) > 0.5, as in a binary system on
average 1/2 of the data bits will match the antibody bits, therefore we need only con-
sider thresholds above this value. In practice, it is observed that much higher values
are required if data is not to be distributed to every antibody.

Experiments compared the best recalled accuracy for values of # ranging from 0.8 to
1.0 in steps of 0.02 for 3 datasets. Each dataset contained 200 antigens; set 1 was gen-
erated from half-schemas, set 2 from quarter-schemas and set 3 from eighth-schemas.
Figure 6.8 shows the results of these experiments: as expected, recall-accuracy in-
creases with increasing ¢, as the ability of the system to generalise is reduced. All 3
experiments show a band over which recall-accuracy rises rapidly, before flattening

off. As a rule-of-thumb, a threshold of r > 0.95 seems a sensible choice.

6.6 Limitations of the Model

This section investigates the limitations of the SOSDM model in terms of its scalability

and with respect to the characteristics of the data-sets it should cluster. In order for it to

Chapter 6. A Self-Organising SDM — SOSDM 160

prove ultimately useful using real-world data, the model should perform successfully
with very large data-sets, and also with very long antigens. The latter requirement is
particularly true if we are considering encoding data that occurs naturally in a non-
binary form as a binary antigen string. A database may easily contain one hundred
attributes per record, and encoding a single one of those attributes may require many
bits; encoding a 5 digit US zip-code for example would require 16 bits. Furthermore,
data-sets will vary in both the number of clusters they contain, and the distribution of
data within those clusters. Thus, this section describes experiments which consider the

above factors.

6.6.1 Investigating the effect of cluster size

In the system outlined so far, every antigen will bind to at least one antibody at each
iteration of the algorithm, regardless of the affinity 2 of the data for the antibodies,
i.e. there must always be an 2™ for each antigen. If all clusters in the dataset contain
roughly equal numbers of items then the recall rate for each cluster will tend to be
roughly similar. However, in real datasets this is unlikely to be the case — clusters
will be unequal in size, and some may be very small compared to others. In this case,
clusters containing very few items will tend to be ’swallowed’ into other clusters as
the antibodies are pulled towards the larger clusters. This will be reflected in a low
accuracy of recall for items in small clusters. This is verified by generating a series of
new datasets in which the clusters are generated in unequal proportions, and repeating
some of the above experiments using both SOSDM and CE-POTTER.

Data is generated by modifying the algorithm described in section 4.2.1 of chapter

4 as follows:

e The total size of each dataset is fixed at 200 antigens

e For each experiment, n clusters are represented by n schemas, each with defined

length d, and the remaining L — d bits represented by wildcards.

e The size of cluster 1 is set to x

Chapter 6. A Self-Organising SDM — SOSDM 161

e The size of the other (n— 1) clusters is set to be (200 —x)/(n— 1), i.e. antigens

are equally distributed to each of the remaining clusters.

e Antigens are generated from each schema according to the size of the cluster by

replacing the wild-cards in the schema at random.

Using this method, antigens are generated from half-schema, varying x from 10-
100 in steps of 10, from quarter-schema by varying x from 10-50 in steps of 5, and from
eighth-schema by varying x from 2-25 in steps of 2. 10 experiments were repeated for
each dataset, using both SOSDM and CE-Potter. The best recalled-accuracy for the
entire dataset and for cluster 1 was averaged over the 10 experiments in each case.
The results are shown in figures 6.9, 6.10, and 6.11. An identical trend is observed in
both SOSDM and CE-Potter results — whilst the recall-accuracy of the entire dataset
changes little with the size of cluster 1, there is a noticeable increase in recall-accuracy
of cluster 1 as the size of the cluster approaches that of the other clusters. Moreover,
the accuracy of recall of cluster 1 is often less than the optimal single-string generalist,
described in section 5.3.2. For all values of n, (i.e total number of clusters), the result
obtained by SOSDM intersects this baseline at smaller values of x (i.e. the number
of antigens in the smallest cluster) however. For the half-schema experiments, the
recall-rate is below the baseline until the cluster contains approximately 14% of the
total antigens. The figure drops to 6% for the quarter-schema experiments, whereas in
the case of the eighth-schema experiments, the recalled-accuracy of cluster 1 is always

above the baseline, though it shows the same increase as x increases.

6.6.2 Fitness Proportionate Selection of Data — FPS

In attempt to improve the recall accuracy of small clusters, a new method of selecting
data to be stored in the memory was proposed. In the original SOSDM, all antigens
visible to the SOSDM are stored exactly once in the memory at each iteration of the
algorithm. An alternative approach is to select antigens for storing in the memory at
iteration i according to the difficulty with which the data can was recalled from the

system at iteration i — 1. This method is identical to the fitness proportionate selection

Chapter 6. A Self-Organising SDM — SOSDM 162

51

50

49 - -

48
47
46
45

44

Average fitness

43

4

41

’

/
4

[/ T~ Potter: mean fitness of group 1

T T T T T T
/ SOSDM: mean fitness of all data

~<— base line

Potter: mean fitness of all data

SOSDM: mean fitness of group 1

10 20
Number of antigens in smallest cluster (group 1)

30 40 50 60 70 80 90 100

Figure 6.9: Half-Schema: Figure shows average best fitness recorded across entire

dataset, and for smallest cluster only. Comparison is shown for SOSDM/Potter algo-

rithms

44

43

42r

41 -

0 - - -

Average Fitness

39

AN

SOSDM: mean fitness of entire dataset

Potter: mean fitness of entire dataset

base line

SOSDM: mean fitness of group 1~ -

otter: mean fitness of group 1

37
0 5

10

15

20 25 30 35 40 45 50

Number of antigens in smallest cluster (group 1)

Figure 6.10: Quarter-Schema: Figure shows average best fitness recorded across en-

tire dataset, and for smallest cluster only. Comparison is shown for SOSDM/Potter

algorithms

Chapter 6. A Self-Organising SDM — SOSDM 163

43 ‘ — SOSDM: Mean fitness across entire dataset

42 -

41

0 pREY ylean fitness across entire dataset

39 Potter: Mean fitness of group 1 -

38 b SOSDM: Mean fitness of group 1 .

Average Fitness

37 - 4

baseline
L —

35 I I I I
0 10 15 20 25

5
Size of smallest antigen cluster (group 1)

Figure 6.11: Eighth-Schema: Figure shows average best fithess recorded across entire
dataset, and for smallest cluster only. Comparison is shown for SOSDM/Potter algo-

rithms

method common to evolutionary algorithms in which items are selected according to

some measure of fitness:

e Let f; be the fitness value of an individual i and let f be the average fitness of the

_ N
population i.e. f = (1/N)Y f;
1
e The probability of an individual being selected is given by:

N i} N _
pi :fi/;fi = (1/N)(fi/f). since)lifi =Nf

In this case, the fitness of a piece of data is inversely proportional to the accuracy
with which the data is currently recalled. Therefore items which are recalled poorly
have a high fitness and therefore more chance of being selected. A consequence of this
method is that the same piece of data may be selected multiple times for storing in the
memory during one iteration of the algorithm.

In order to implement this method of data selection, the fitness or failure rate f,
for recall of each antigen a at iteration ¢ is calculated as shown in equation 6.10 during

the recall phase '.

At iteration 0 of the algorithm when all counters are 0, the failure rate is defined by f, =
(L—a (a)) /L

Chapter 6. A Self-Organising SDM — SOSDM 164

CE-POTTER | Standard SOSDM | SOSDM with FPS
s=10 s=200
Mean recall all data 49.17 50.28 49.82 50.09
Mean recall group 1 41.88 44.24 46.19 45.33

Table 6.3: Comparison of mean recalled accuracy for CE-POTTER, standard SOSDM
and FPS-SOSDM for group 1 schemas and entire dataset

fa(t) = (L—r(a)) /L (6.10)

Thus, failure rates calculated following iteration ¢ are used at iteration (4 1) in

order to select a subset of data of size s for storage.

6.6.2.1 Experimental Results

A series of experiments was performed using a dataset containing 200 antigens gener-
ated from two half-schema. 5% of the dataset was generated using schema-1, and the
remaining 95% using schema-2. The size of subset s selected for storing in the mem-
ory at each iteration was varied from 10 to 200 in steps of 10. After 200 iterations, the
best recalled-accuracy of the entire dataset was measured, and also the best recalled
accuracy of the 5% of antigen generated from schema-1. These results were compared
to the corresponding experiments where all data is stored exactly once in the SOSDM.
In each case, experiments were repeated 100 times. Table 6.3 compares the results for
CE-POTTER, with standard-SOSDM and FPS-SOSDM.

6.6.2.1.1 Average recall of entire dataset Comparing the mean recall-accuracy
for FPS against the standard SOSDM algorithm shows the standard algorithm always
outperforms FPS, and applying Student’s t-test to the results shows that the results
are statistically significant, (see table B.4 in appendix B. The results obtained using
FPS are still better than those obtained by CE-POTTER however, and improve as s

increases.

Chapter 6. A Self-Organising SDM — SOSDM 165

Size of subset 1 | Size of subset 2 | P(means different) | Mean Subset 1 | Mean Subset 2
10 20 0.970369 46.193636 45.450909
10 90 0.960757 46.193636 45.539091
10 100 0.993885 46.193636 45.297273
10 110 0.991606 46.193636 45.340909
10 120 0.951153 46.193636 45.570000
10 140 0.975882 46.193636 45.458182
10 180 0.967632 46.193636 45.498182
10 200 0.993710 46.193636 45.333636
50 100 0.959255 45.926364 45.297273
50 200 0.955828 45.926364 45.333636
70 100 0.973447 46.004545 45.297273
70 110 0.964623 46.004545 45.340909
70 200 0.971447 46.004545 45.333636

Table 6.4: The table shows the comparisons of subset size used in FPS which produced

a statistically significant difference in mean fitness for the smallest cluster

6.6.2.1.2 Average recall of smallest cluster Examining the mean recall of the
smaller group of schemas however shows the opposite trend; for all values of s the
best result found is better than both standard SOSDM and CE-POTTER. The differ-
ences are statistically significant in each case (see table B.5 in appendix B). Thus,
there is a trade-off between improving fitness of small groups vs fitness of entire data
set. There is no obvious trend in the results as s increases. In comparisons of mean
recalled accuracy of the smallest cluster for a subset size of size s to a subset of size
52, then in only 13/190 cases are there significant differences observed in the recalled
values. The cases where statistical differences were observed are summarised in table
6.4.

6.6.3 Performance of SOSDM vs Size of Dataset

Experiments were performed using datasets ranging in size from 500 antigen to 10,000
antigen in steps of 500. All datasets were generated using 4 quarter-schema, and the

mean recalled accuracy of the entire dataset measured at the end of 200 iterations of

Chapter 6. A Self-Organising SDM — SOSDM 166

43.5

R

Mean recalled accuracy

415 ! ! ! ! ! ! ! !
1000 2000 3000 4000 5000 6000 7000 8000 9000 100¢

Size of antigen dataset

Figure 6.12: The figure shows how mean recalled accuracy 7 varies with the size of the
antigen dataset N

the algorithm. Experiments were repeated 50 times in each case. Figure 6.12 shows
the performance of SOSDM vs the size of the dataset, with error-bars showing the
minimum and maximum accuracy over the 50 experiments. Note that although there
is a slight downwards trend in mean recalled accuracy 7, the value of 7 is always sig-
nificantly greater than the result that would be obtained using the best possible string
generalist, which would give ¥ = 40. T-tests show what there is a significant difference
(p > 0.99) in the value of 7 obtained for N = 1000 and that obtained when N = 10, 000.

6.6.4 Performance vs Length of Antigen

A second series of experiments used datasets generated again from quarter-schema,
this time of fixed size N=200 antigens. The length of the antigen L in each dataset was
varied from 40 to 1000 in steps of 40. The best recalled accuracy 7 was measured at
the end of 200 iterations of SOSDM, and the results averaged over 50 trials. Figure
6.13 shows the results of these experiments; a comparison is made to the mean recall
accuracy that would be expected using the best possible single string generalist for each
value of L. The figure shows a direct correspondence between 7 and L — again, for

every value of L , the value of 7 exceeds that expected using the single string generalist

Chapter 6. A Self-Organising SDM — SOSDM 167

700

600

500 -

400 —

300 -

200 - Expected recall accuracy for

best string generalist

Mean recalled accuracy

100 [~

0 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 100

Length of antigens

Figure 6.13: The figure shows how mean recalled accuracy 7 varies with the length of

antigen L in a dataset of fixed size 200

and this difference increases as L increases.

6.7 Performance of SOSDM in non-stationary environ-

ments

One of the motivations that drove the design of the SOSDM system was that it should
be able to operate in a non-stationary environment, taking inspiration from the bio-
logical immune system. Thus, consider the behaviour of the system in an artificial
non-stationary environment in which the number of clusters remains fixed and known
a priori, but in which the centres of the clusters may move and in which the data within
the clusters is continuously updated. This environment allows many types of dynamic

scenarios to be tested — two possibilities are addressed here:

1. The centre of the clusters remain fixed, but the data in the clusters is gradually
updated, by replacing the original data-items with new data-items, so that the

total number of data-items remains constant.

2. Clusters are randomly replaced by entirely new clusters containing new data.

Chapter 6. A Self-Organising SDM — SOSDM 168

Again the total number of data-items in the system remains constant throughout.

(This is an identical scenario to that described in chapter 5 section 5.5).

Experimental details and results are now presented for the behaviour of the
SOSDM system under each of these scenarios. In both scenarios, an update regime

is implemented in the following manner:

e The first update (whether of an entire cluster or of data-items within a cluster)
is made after a fixed interval known as the tolerization period. This allows the
system sufficient time to organise into s state where it accurately represent the

initial dataset.

e Subsequent updates are performed whenever the fitness of the system has re-
turned to within 1% of the maximum fitness recorded immediately prior to the

last update.

The size of the interval between updates (i.e. the number of iterations) indicates
how long it takes the system to respond to the change in data and return to its previous
level of accuracy, therefore is a useful indicator of the performance of the system.
Thus in each experiment, the interval between updates is recorded, and averaged over

5 repeated runs of each experiment.

6.7.1 Update of data within fixed clusters

The experimental procedure adopted is at each update to choose at random one of the
clusters in the system, and replace a randomly chosen fraction of the antigens within
that cluster with new data, which are generated from the schema that identifies the
cluster. The number of antigens replaced at each update is controlled by the variable f,
which specifies a percentage of the antigens to be replaced. Experiments are performed
using an antigen data-set containing 200 items, each of length 64 bits. The antigen are
generated from 2 distinct schema, each with 32 contiguous bits set to ’1’, the remaining
bits being wild-cards. The length of the tolerization period is set to 100 iterations, and
updates are performed whenever the system returns to within 0.5% of its previous best

fitness. The relationship between the length of the update interval and the fraction of

Chapter 6. A Self-Organising SDM — SOSDM 169

antigens updated, f, is investigated by varying f from 10% to 100% in steps of 10, and
allowing the experiment to run for a total of 2000 iterations in each case. The averaged
results are given in table 6.5. The results show that when the description of the clusters
remains unchanged, on average the SOSDM system quickly responds to new data. The
standard deviations are rather large however, as can be seen from the wide variation
in the minimum and maximum number of iterations between each update shown in
this table. Occasionally, SOSDM takes a very large number of intervals to return to
within 0.5% of its previous level of accuracy, though these cases are rare. There is a
general (and expected) trend that the number of intervals between updates increases as
f increases. However, the average interval size is still very small, even when 100%
of the dataset is replaced. It is noteworthy that table 6.5 also shows that in every
experiment, the minimum interval required for the system to return to its previous
level of fitness is only 1 iteration. This is quite surprising, and simply appears due to a
fortuitous combination of the random choice of data to be replaced and the random data
with which it is replaced. More detailed examination of the data would be required to
confirm this. Nevertheless, it illustrates the model’s ability to react rapidly to changes

in data.

6.7.2 Appearance of new clusters

A somewhat harder test of the system is to investigate how it responds to the appear-
ance of entirely new clusters. The number of antibodies in the SOSDM model is fixed
throughout each experiment, as in this case the number of clusters is of course known
a priori. Although this is of course an artificial situation, in some ways it represents an
extreme test of the system — in real life, entire new clusters are unlikely to suddenly
appear at the same time as other clusters suddenly disappear, rather, a more gradual
process would occur. The situation in the real world is likely to fall somewhere in be-
tween the behaviour described here and that described in the previous section, therefore
the extremes are investigated.

For consistency, experiments were repeated exactly as in chapter 5, section 5.5.
Thus 9 sets of experiments were performed, in which data sets were generated using

2,5,10 schemas of length 64 bits, and the defined section of each schema was set to

Chapter 6. A Self-Organising SDM — SOSDM

f | Average Interval | Minimum | Maximum | Standard
(%) | between Updates | Interval Interval | Deviation
10 1.000000 1 1 0.000000
20 1.126316 1 13 1.224677
30 4.833333 1 252 27.442566
40 3.820225 1 130 15.437851
50 30.024390 1 549 81.543790
60 19.873563 1 340 64.113012
70 32.823529 1 401 82.663375
80 29.536232 1 336 75.658956
90 24.122449 1 280 55.245143
100 33.694915 1 296 74.696959

170

Table 6.5: The table shows the average number of iterations taken for the SOSDM

system to reach its peak fitness value following replacement of f antigens. An interval

records the number of iterations between antigen updates.

Chapter 6. A Self-Organising SDM — SOSDM 171

415
41
40.5

o
o

395

W
=}

385

(3
oo

375

Average recall accuracy

w
~

36.5

! ! !
0 200 400 600 800 1000 1200 1400 1600 1800 20

36 ! ! ! Loy !

Iterations

Figure 6.14: The figure shows how the recall accuracy of the SOSDM changes following
a number of antigen updates in which entirely new clusters are introduced. The points
marked * indicate the iteration at which the antigens were updated. The data contains

5 clusters, each containing 40 antigens. One cluster is replaced at each update.

either 8,16 or 32 bits. For each dataset containing ¢ clusters, experiments tested the
ability of SOSDM to respond to replacing 1,2, .., c clusters at each update, resulting in
a total of 51 experiments. Figure 6.14 shows a typical result of one of the experiments
in which the dataset was generated from 5 schemas each with 8 defined bits, and in
which one cluster was replaced at each update. Full results are given in appendix B,
tables B.6, B.7, B.8. It is difficult to observe clear trends in the results by varying
either the number of clusters in the dataset or the number of defined bits in a cluster.
However, it is possible to observe that in all but one of the experiments, the average
time lag for the system to return to its previous best level of fitness increases as the
number of updates in one experiment increases.

It becomes increasingly difficult for the system to respond as the number of clusters
being replaced increases. This is clearly shown by analysing two situations in which an
identical number of antigens are replaced at each update, but in differing numbers of
clusters. Thus, if we compare an experiment on a data-set generated from 2 schema in
which 1 cluster is replaced with one in which the data-set is generated from 10 schemas

and 5 clusters are replaced, (table 6.6), then it is clear that when the number of defined

Chapter 6. A Self-Organising SDM — SOSDM 172

Number of | Index of Average Lag Minimum Lag | Maximum Lag
Defined Bits | Update | S=2 S=10 | S=2| S=10 |S=2| S=10
8 2 159.2 | 251.8 | 100 183 216 365
3 276.6 | 6134 | 187 309 364 | 1304
4 407.0 | 758.75 | 280 574 497 941
5 611.0 | 657.0* | 372 657 846 657
16 2 100.0 | 401.0* | 100 401 100 401
3 138.2 | 1244.0" | 100 | 1244 | 231 1244
4 128.2 ¥ 100 ¥ 165 ¥
5 268.6 ¥ 143 ¥ 348 ¥
32 2 146.8 | 187.0 | 100 132 206 257
3 3240 | 361.4 | 201 307 504 480
4 121.6 | 300.4 | 100 248 208 362
5 61525 | 307.0 | 459 198 819 522

* indicates that only one update was observed during 2000 iterations

** indicates that no updates were observed during 2000 iterations

Table 6.6: The table compares the average lag between updates observed when 50%
of the antigen data is updated at each update for data sets in which S =2 and S =
10. However, when § = 2, this corresponds to replacing 1 cluster, when § = 10 this
corresponds to replacing 5 clusters.

bits in each schema is 8 or 16, it is much more difficult for SOSDM to respond to
replacing 5 clusters. Indeed, in some experiments, the SOSDM never manages to
return to within 1% of its previous best fitness before the limit of 2000 iterations is
reached, and hence only one update is performed. Furthermore, the tables in appendix
B shows that there is little observable difference in the average lag between updates
between experiments in which 1 out of a possible 10 clusters (and therefore 10% of
total data) is updated and those in which 1 out of 2 clusters (and therefore 50% of total
data) is replaced. Therefore, we can conclude that SOSDM seems much more sensitive

to changes in cluster position than changes in data.

Chapter 6. A Self-Organising SDM — SOSDM 173

6.7.3 Making the System Truly Dynamic

In order for SOSDM to operate in a truly unsupervised manner in a non-stationary
environment, SOSDM should be able to create and delete antibodies in response to
the data it is exposed to, as generally the number of antibodies required will not be
known a priori. [Fritzke, 1994] notes that a purely incremental approach to generating
a network or model is unsatisfactory in a dynamic environment, as the centres (or anti-
bodies in the SOSDM case) must be able to adapt to changing data, and that therefore,
a model must also contain a mechanism for removing anibodies when appropriate.

Possible ways of achieving this are now considered.

6.7.3.1 Adding Antibodies

The incremental algorithms proposed by Fritzke (e.g. [Fritzke, 1994, Fritzke, 1995]
handles addition of nodes by simply adding new units after presentation of every A in-
put signals. This is unsatisfactory for SOSDM as we wish the number of antibodies to
correlate with the number of clusters, hence using such an addition mechanism would
work only if combined with an efficient method of removing antibodies. Furthermore,
the choice of A is also difficult.

The method used in COSDM, (chapter 5), was to add antibodies whenever the
global fitness of the system had stagnated. This approach seems reasonable for
COSDM where the fitness measure of the system has a direct influence on the evo-
lution of the co-evolving populations of potential antibodies; in SOSDM on the other
hand, the global fitness or recall accuracy of the system is incidental — it does not
have any direct influence on the movement of antibodies during the self-organisation
of the system. Therefore, this method appears somewhat of a ’cheat’ and again incurs
high overheads in having to calculate recall accuracy at every iteration.

Therefore, a mechanism is suggested in which stagnation of the system is detected
not in respect to recall accuracy but in terms of movement of antibodies — if no move-
ment of any antibody has happened over a fixed number of generations s (the stagna-
tion threshold) then an antibody is added. The new antibody is generated in a random

position with its counters initialised to zeros.

Chapter 6. A Self-Organising SDM — SOSDM 174

6.7.3.2 Deletion

[Fritzke, 1997a] suggests a method of deleting ’dead units” when trying to track non-
stationary distributions using the GNG algorithm that involves a local utility measure.
In the typical GNG application, it is possible to compute how much the error for some
given input signal & would increase if the winning unit s; were not present, and the
signal instead had to be mapped to the runner-up unit, sp. The increase in error is
then simply || — wsZH2 — 1€ —wy, ||2. This allows the total utility of each unit to be
calculated by summing the utilities over all input signals, and then a unit is removed
whenever its utility falls below some predefined threshold. However, this method does
not transfer well to SOSDM; in the pure GNG algorithm, error is easily calculated as
2 but in SOSDM, although the winning antibodies are determined based on

1€ —ws,
the correlation between the address of the antibody and the data to be stored, the error
in the recall accuracy depends also on the counters stored at the physical address. Sec-
ondly, the recall error can only be calculated once all data has been stored, and hence
there is an extremely high overhead in calculating such a utility measure, especially in
a very large database. For these reasons, the use of a utility function was rejected as a
method of deleting nodes.

The following method of deleting antibodies is suggested :- the sum of the binding
affinities of the antibody with all its binding antigens, K is compared to the total bind-
ing affinity the antibody would exhibit if it had bound to all available antigens; if the
ratio of these quantities is less than some predefined percentage d (the deletion thresh-
old), then the antibody is deleted. However, as in the COSDM model, an antibody is
allowed to exist for at least n epochs after creation in order to give it an opportunity
to survive. Furthermore, a caveat is applied that if an antibody uniquely recognises at

least one antigen, then it is allowed to remain.

6.7.3.3 Results

A series of experiments was performed in which SODSM was used to try and cluster
the half-schema, quarter-schema and eighth-schema data used throughout this thesis.
Each dataset contained 200 antigens, and in each experiment SOSDM was initialised

with 2 antibodies. The stagnation threshold s is set to 10 iterations, and the deletion

Chapter 6. A Self-Organising SDM — SOSDM 175

Data No. Antibodies Average No. Average Recall
(original data) | Antibodies using SOSDM Accuracy
half-schema 2 2.29 4941
quarter-schema 4 6.75 44.77
eighth-schema 8 10.06 42.40

Table 6.7: The table shows the average number of antibodies required and correspond-
ing accuracy of recall for clustering data-sets with a dynamic SOSDM algorithm

threshold d was varied as described below. At the end of each experiment, the best re-
call accuracy and the corresponding number of antibodies in the system are recorded.
Each experiment was run 100 times and the results averaged. Initial experiments using
the half-schema data showed that the actual value of the deletion threshold parameter
d was unimportant in terms of the recall accuracy the system achieved and the average
number of antibodies used, however it had a large effect on the number of times anti-
bodies were deleted from the system and then subsequently re-added, hence a careful
choice is necessary in order to make the system efficient. These results are shown in
table B.9, appendix B, which clearly indicates that for this data, a large increase in
the instability of the system occurs when the deletion threshold rises above 0.3. How-
ever, for all values of d, the system always produces its best results when the number
of antibodies is on average 2, as desired. Experiments with the quarter-schema data
and eighth-schema data were performed with d set to 0.25. The average number of
antibodies required to give the best recall is shown in table 6.7.

The number of clusters in each case is sensible — although the original data-sets
were created using 2,4 and 8 schemas and hence nominally contain the correspond-
ing number of clusters, these clusters are somewhat arbitrary. Recall that the data is
created by randomly filling in wild-cards in a set of schemas, therefore the formation
of other clusters is likely, especially when the defined length of the schemas is short.
Thus, with the half-schema data, the data is most accurately recalled using 2 or 3 clus-
ters, closely matching the original schemas, whereas in the eighth-schema data, more

accurate recall is gained by using more than the 8 clusters that the data was generated

Chapter 6. A Self-Organising SDM — SOSDM 176

from.

6.8 Conclusions

This chapter has presented a new model for clustering data, combining ideas from im-
munology, self-organising maps, and associative memories. A thorough investigation

of the model’s performance has been carried out, in particular:

e The ease of calibrating the model, i.e. its sensitivity to internal parameters
e The performance of the model on a set of benchmark data

e The limitations of the model with respect to characteristics of the data-sets on

which it operates

e The performance of the model in non-stationary environments

The results have shown that SOSDM outperforms both CE-POTTER and COSDM
on the benchmark data, and that it is straightforward to calibrate. Furthermore, it is
fast and reliable — the benchmark datasets were clustered accurately in fewer than
100 iterations of the controlling algorithm. The performance of the system on data-
sets other than the benchmark data was also promising, in that the system appears to
scale well with both the size of the data-sets and the length of the data items within the
data-sets. The problem of clustering data-sets in which there is an uneven distribution
of data within clusters was also addressed. The results of this investigation showed
that recall of very small clusters could be improved by extending the model to include
Fitness Proportionate Data Selection, FPS, however, this was at the expense of de-
creasing the accuracy of recall of the entire data-set. Encouragingly though, SOSDM
still performs better than both CE-POTTER and COSDM on these data-sets. Clearly
this is something that needs to be addressed more fully in the future, as real data-sets
are unlikely to contain data evenly distributed between clusters. A possible alternative
to FPS would be to utilise Dynamic Subset Selection of data-items, a method proposed

by Gathercole in [Gathercole and Ross, 1994]. In this paper, Gathercole et. al suggest

Chapter 6. A Self-Organising SDM — SOSDM 177

a method for selecting training examples during evolution of a classification function-
tree using Genetic Programming. Cases are selected on the premise that it is of benefit
to focus attention on those cases which are currently difficult, i.e. are currently mis-
classified, and also on those cases which have not been looked at for several iterations.
Thus cases are selected for training with a bias that is based on both the difficulty and
"age’ of the case. However, both this method and FPS suffer from the drawback that
they effectively implement a type of supervised learning, whereas ideally an immune
system based model would be truly unsupervised. Furthermore, they both require the
recall accuracy of each item to be calculated following every iteration — this is not
always desirable and adds a considerable time overhead, especially if the data-set is
large.

Experiments performed in dynamic environments showed that SOSDM rapidly
adapts to data that is changing within fixed clusters, being able to return to its pre-
vious levels of accuracy within a few iterations. It responds less well to the appearance
of entirely new clusters, though as previously noted, this is an unlikely scenario in a
real-world situation. Certainly new clusters will appear over the course of time, how-
ever it is likely to be a slow and gradual process. Furthermore, the quality of the
response is somewhat dependent on the characteristics of the dataset. One radical so-
lution would be to periodically restart the algorithm from scratch using the current
data; this is feasible given the short time-scales required to run the algorithm, however
it has the major disadvantage that all historical information contained in the counters
is lost. New methods of dealing with the formation of new clusters will be tackled in
the future, and are likely to be closely related to the mechanisms incorporated in the
algorithm for adding and deleting antibodies dynamically.

Currently the system incorporates simple mechanisms for determining when to
delete and add antibodies. The addition mechanism is fairly crude in that it detects
stagnation of the system simply by monitoring movement of the antibodies, and then
adds a new antibody in a random position. This could be made more sophisticated
by adding the new antibody in a part of the input space which is not well represented
by the current system, for example by interpolating between the antibodies with the

largest accumulated error, as in Fritzke’s GNG algorithm. The criterion for determin-

Chapter 6. A Self-Organising SDM — SOSDM 178

ing whether an antibody should be added could also be improved. A simple suggestion
would be to add a new antibody if it is determined that the distance between some anti-
gen and the closest antibody is greater than some constant d. However, an alternative
proposal which it is intended to follow up in the future would be to cause antibodies
which only exhibit weak binding (due to data appreaing far away) to emit a distress
signal. On the other hand, antibodies binding strongly to antigens could emit a content-
ment signal. Monitoring the overall level of distress in the system could then prompt
creation of a new antibody within the system. This has a direct analogy with the danger
model proposed by [Matzinger, 1994b] in which it is claimed that cells emit a danger
signal when faced with invading and dangerous pathogens. Furthermore, this system is
not particularly information-intensive and hence is appealing from the computational
perspective.

In summary, SOSDM appears promising as a model for clustering data, both sta-
tionary and non-stationary. It has addressed the problems inherent in COSDM of deal-
ing with fixed, pre-determined radii and of potentially failing to recognise proportions
of the data, and performs very well on the benchmark datasets. It has also been shown
to be scalable. Though improvements need to be made to the mechanisms which allow
it to operate in a non-stationary environment, the experiments have shown that in its
current state, it is capable of clustering moving data-sets with some success, even in
extreme conditions. Finally, the model itself has moved closer to embodying the basic

principles of the immune system, in that it is self-organising and unsupervised.

Chapter 7

Conclusion

7.1 Overview

This chapter summarises the work presented in the preceding six chapters. It addresses
the question of to what extent the original aims of the thesis have been met, and dis-
cusses the usefulness of the immunological metaphor in the context of other similar

systems. Finally, some suggestions for future work are presented.

7.2 Were the aims achieved ?

The aim of this thesis as stated in the introductory chapter was to assess whether
the immune metaphor provided features which distinguished it from other biological
metaphors, and to attempt to categorise the types of problem area where application of
the metaphor might prove advantageous. In order to do this, two application areas were
examined, those of scheduling and data-clustering (both stationary and non-stationary).
For both problem domains, two different models were developed, incorporating a num-
ber of immunological principles. The success of each model in its relevant problem
domain has been discussed in detail at the end the chapter in which each model was
introduced. In this section, some general conclusions are drawn regarding the design
of each model.

Table 7.1 lists the distinguishing properties of the immune system, as described by

179

Chapter 7. Conclusion 180

Atrtificial Immune System
SCHED1-IS | SCHED2-IS | COSDM | SOSDM
Recognition yes yes yes yes
Feature-Extraction yes yes yes yes
Diversity yes yes no yes
Learning yes yes yes yes
Memory yes yes yes yes
Distributed detection no no possible | possible
Self-regulation no no no yes
Threshold-mechanism no yes yes yes
Co-stimulation no no no no
Dynamic protection no no yes yes
Probabilistic detection yes yes yes yes

Table 7.1: The table identifies which of the distinguishing features of the biological

immune system are present in each of the models developed in this thesis

[Dasgupta, 1998] and presented in chapter 1. For each of the four new AIS models
developed in this thesis, the table identifies which of the distinguishing features of the
biological immune system are present in each model. Each model is now discussed in

turn in more detail with reference to this table.

7.2.1 Scheduling Models, SCHED1-IS and SCHED2-IS

The SCHED1 — IS and SCHED?2 — [algorithms both involve two distinct phases in
schedule production. In the first phase, schedule building blocks are derived (via an
evolving immune library in the case of SCHED]1 — IS and by finding blocks that match
existing schedules in the case of SCHED?2 — IS). In the second phase, the building
blocks are combined to produce new schedules (randomly for SCHED]1 — IS and using
mechanisms based on immunological principles in the case of SCHED?2 — IS).

In SCHED1 — IS, there is no direct analogy of the usual recognition process that

occurs between an antibody and an antigen — an indirect recognition process occurs

Chapter 7. Conclusion 181

however when the schedule builder produced as a result of combining segments from
the evolved libraries is used to form a schedule based on the conditions defined by
the antigen. The quality of the actual schedule produced as a result of binding the
schedule-builder with the antigen defines the strength of the recognition process. Dur-
ing the evolution of the schedule fragments in SCHED?2 — IS, the recognition process
is explicit; schedule fragments are directly matched against existing schedules in order
to generate the building blocks from which new schedules can later be derived.

Both models exhibit feature detection, the features detected being useful fragments
of schedule, or schedule builder. Both models also exhibit diversity, in that a small
number of schedule fragments can result in a large number of schedules, owing to
the combinatoric manner in which fragments are used to produce entire schedules.
Learning is also apparent in both models — in each case, a genetic algorithm is used
to learn which schedule fragments are required to make up the immune system. The
models thus also utilise memory, which is simply the store of schedule building blocks.

Neither SCHED1 — IS or SCHED?2 — IS provide distributed detection in the same
manner as the biological immune system which must provide physically distributed
detection in order to detect invaders entering any part of the body. However, it could
be argued that they are robust to individual points of failure within each system; as each
system consists of multiple schedule fragments, loss of individual fragments does not
render either system useless. Therefore, they exhibit the properties that distributed de-
tection confers. Similarly, neither SCHED1 — IS nor SCHE D2 — IS are self-regulating.
Use of a genetic algorithm with an associated fitness function is clearly an external
regulatory mechanism and hence the systems cannot be considered to be in any sense
self-regulating.

SCHED]1 — IS does not contain any kind of threshold mechanism — a schedule
can always be produced by combining an antibody, i.e. a schedule-builder, with an
antigen (the scheduling conditions) and although the quality of resulting schedule feeds
back into the fitness function of the genetic algorithm, it does not prevent ’binding’,
(i.e. formation of a schedule) occurring. On the other hand, an explicit threshold
mechanism is incorporated in SCHED?2 — IS, below which a match does not occur.

Co-stimulation, i.e. the presence of a second signal’ reinforcing the match between

Chapter 7. Conclusion 182

antigen and antibody is not utilised in either SCHED]1 — IS or SCHED2 —1S. As
both systems are essentially static, i.e. once a set of schedule fragments has been
produced it remains constant, there is little need for such a mechanism. However,
such a mechanism might prove useful if the models were adapted such that the set of
schedule fragments was continuously adapted, so that fragments which do not prove
useful in generating good schedules were gradually replaced by new fragments. In this
case, co-stimulation would be provided to indicate that a schedule fragment contributed
to producing a good schedule and thus prolong its ’life’ in the set of all fragments. The
fact that both scheduling models are static systems also means that there is no feature in
these models that has a direct analogy with the dynamic protection feature observed in
the natural immune system, which increases the cover provided by the immune system
over time.

Probabilistic Detection in the natural immune system implies that a lymphocyte
can bind with several kinds of structurally related antigen. Due to the absence of
a threshold-mechanism for SCHED1 — IS, any antibody can bind with any antigen,
though the resulting objective function for the schedule may be low. For SCHED2 — 1,
probabilistic detection is implicit; a schedule fragment can match a set of antigens
owing to the presence of wild-cards within each fragment, and does not match other

antigens at all due to the use of a matching threshold.

7.2.2 Data-Clustering Models, COSDM and SOSDM

COSDM and SOSDM are both based on the concept of the Sparse Distributed Memory,
but are hybridised with other methodologies in order to provide an adaptive system.
Thus, COSDM is a hybrid of an SDM and a genetic algorithm, whereas SOSDM is
a hybrid of an SDM and a self-organising map. In chapter 1 of this thesis, it was
stated that one of the questions that this thesis hoped to address was “fo what end does
the immunological metaphor provide an analogy that cannot be provided by another
less seductive labelling” therefore this section addresses the point as to whether it is
justifiable to refer to the hybridised systems presented as ’immune systems’.

Any basic introduction to biological immunology almost always begins with a

discussion of the respective roles of antibodies and antigens, therefore clearly these

Chapter 7. Conclusion 183

features must be able to be identified in COSDM and SOSDM as a first step to call-
ing them immune systems. The two preceding chapters have shown that for a data-
clustering system these roles can be identified. In both COSDM and SOSDM, data
can be considered as antigen, and also in both systems, the ’centres’ defining the SDM
play the role of antibodies, therefore the systems contain the essential core compo-
nents. Therefore, it seems reasonable to argue that if these components are there,
and that the systems exhibit the defining features of the immune system as given by
[Dasgupta, 1998] then it is justifiable in referring to COSDM and SOSDM as im-
mune systems. [Smith et al., 1999] has already shown that an SDM is a member of
the same class of associative memories as immune memory, however, this fact alone
is not sufficient to justify calling an SDM-based system an immune system — a com-
parison of table 7.1 and table 2.1 in chapter 2 shows that there are features exhibited
by the immune system that are not observed in Smith’s mapping between the SDM
and the immune system. The relationship between each of the features in table 7.1 and
COSDM/SOSDM is now discussed.

Both the COSDM and SOSDM models clearly incorporate a recognition mecha-
nism — antibodies bind to antigen only when the affinity between the two is consid-
ered to be sufficiently high. In the case of COSDM, this involves the use of a threshold
mechanism, 1.e. the recognition radius, which directly determines whether the anti-
body recognises the antigen or not. In SOSDM, the concept of the recognition radius
is replaced by the affinity-threshold, which effectively acts as a threshold mechanism
in that it determines whether any binding at all can take place. The difference between
the models is that in SOSDM, antigens are always distributed to at least one antibody,
whereas in COSDM, the threshold mechanism can prevent recognition of an antigen
by any of the antibodies. In both cases, recognition is clearly probabilistic — an exact
match between an antibody and an input data item (antigen) is not required in order for
recognition to occur.

Both COSDM and SOSDM perform feature extraction — by performing clustering
of the data, the system is indirectly detecting features in the data. In each system,
an antibody describes the feature present in the cluster its represent by virtue of its

description (i.e. address) and its associated set of counters.

Chapter 7. Conclusion 184

Diversity as described in [Dasgupta, 1998] is the usage of a combinatoric process
in order to generate a diverse set of lymphocytes that can bind to any antigen, whether
known or unknown. COSDM does not exhibit true diversity, as discussed in chapter
5 — if suitable recognition radii cannot be found, then it is possible for a COSDM
system to fail to recognise some antigens. SOSDM on the other hand does not utilise
a combinatoric mechanism to confer diversity, but achieves the same result via a com-
petition between antibodies for recognising an antigen, which always results in the
antigen being recognised by at least one antibody, therefore an SOSDM model will
always recognise both known and unknown antigen.

Both clustering algorithms are capable of learning, in order to find the best antibod-
ies to accurately describe the clusters present in the data. In COSDM this is achieved
via a genetic algorithm, in SOSDM by using a similar learning algorithm to that found
in self-organising maps. By definition, the models exhibit memory — they are exam-
ples of associative, content-addressable memories. Furthermore, they both have the
potential for offering distributed detection. Antibodies can be physically distributed
across servers, and the systems are robust to loss of one or more of the antibodies
without adversely affecting performance, as in each case, antigens can be bound by
more than one type of antibody.

Co-stimulation is not modelled by COSDM or SOSDM. In principle, it could be
included in both models to reinforce addition of new antibodies when the system be-
comes static. Both models however exhibit dynamic protection, in that the systems can
respond to dynamic changes in the environment. This is due to the ability of the anti-
bodies to 'move’, i.e. adapt their definition, in response to changes in the environment.

Both systems exhibit probabilistic detection. The dynamic manner in which anti-
bodies are added to the system in both COSDM and SOSDM result in new antibodies
being added at random positions in the systems, and thus confers an element of prob-
abilistic detection.

Finally and most importantly, SOSDM embodies one of the most important princi-
ples of the biological immune system listed in table 7.1, that it is self-regulatory. This
feature is not displayed by COSDM which by use of a genetic algorithm to control its

evolution requires an external fitness function.

Chapter 7. Conclusion 185

In addition, COSDM and SOSDM also incorporate some other biological features
not mentioned in table 7.1. Binding of antigens to specific antibodies based on the
attraction of the antibody for the antigen is consistent with the idea of shape-space,
first introduced as an abstract concept by [Perelson and Oster, 1979]. In this model,
antibodies and antigens are considered as points in a ’shape-space’, and antibodies
within the affinity cut-off for clonal selection by an antigen form a ball in the shape-
space known as the ball of stimulation. [Perelson and Oster, 1979] attempted to make
the shape-space quantitative by representing antibodies and antigen with real-valued
coordinates, however an alternative to this kind of Euclidean shape-space is the Ham-
ming shape-space used by for example [Farmer et al., 1986, Hightower et al., 1995,
Perelson et al., 1996]. Thus, in COSDM, the size of the shape-space is directly de-
termined by the recognition radius of each location, and the corresponding quantity
can be calculated in SOSDM by determining the maximum distance between an anti-
body and an antigen recognised by it. Furthermore, due to its self-organising nature,
SOSDM also exhibits the meta-dynamic behaviour observed in immune-networks and
discussed in chapter 2. Every time the antigen data is presented to the system, the
definition of the antibodies may be perturbed, but the system eventually settles into a
stable representation of the current input data, representing the core clusters.

Thus, of the four models presented in this thesis, SOSDM comes closest to mod-
elling all of the features of the real immune system. Everyone of the features listed
in table 7.1 is apparent in the model, (or could potentially be added) and it con-
tains the core components of an immune system, i.e. antigens and antibodies, and
the ability of one species to recognise the other. Therefore, it seems justified to la-
bel the system as an immune system. Furthermore, the next section shows the hybrid
SOSDM/COSDM systems encapsulates precisely the properties that are required of a
data-clustering system, and can offer some advantages over standard clustering algo-
rithms, and that therefore approaching the design of the system from an immunological

perspective has proved beneficial.

Chapter 7. Conclusion 186

7.3 Is Immunology a Useful Metaphor ?

In the 14th century, William of Occam, a logician and Franciscan friar is said to have
remarked “Entia non sunt multiplicanda praeter necessitatem”, or “Entities should
not be multiplied more than necessary”. This guiding principle, known as Occam’s
Razor, is usually interpreted as meaning "the most simple explanation is the one to be
preferred’. Thus, with this in mind, it is necessary to consider whether, in the context of
the work presented in this thesis, the immune system has proved a useful metaphor, or
whether the same problems could have been tackled by other methods. In this section,
we examine some of the systems to which immune systems have been compared, to

see if they could have been applied to the problems considered.

7.3.1 Other approaches to scheduling

In [Farmer et al., 1986], the analogy between the immune system and classifier sys-
tems was discussed in detail. The idea of the classifier system was first introduced by
Holland in [Holland et al., 1986], and there exist many variations of the basic system.
However, in its simplest form, it consists of a number of classifiers, which are sim-
ply rules comprising of a condition and an action. If the condition part of any rule is
matched by a message from the environment, then the rule bids to be able to fire and
hence execute its action. Each bid is a fraction of the rule’s associate strength — the
winning rule gets to fire and executes its action, and then may earn some reward from
the external environment. This reward is paid to the winning rule, though in some
more elaborate systems, the winning rules also pay some of their strength to those
rules which made it possible for them to fire, in a kind of ’trickle-down information
economy’. New classifiers are generated either at random, or using a GA, which peri-
odically runs in order to generate new rules and replace existing ones of low strength.
The paper by Farmer illustrates the analogy in detail. Could the type of scheduling
problem described in chapter 3 be tackled by a classifier system approach, rather than
using the immune metaphor ?

First note that the analogy as described by Farmer applies to immune-networks,

and not necessarily to the type of immune model presented in chapter 3. In this chap-

Chapter 7. Conclusion 187

ter, scheduling problems were solved by recombining evolved ’segments’ of sched-
ules, with the rationale that the schedule segments (whether stored in libraries as in
SCHED]1 — IS or in a population as in SCHED?2 — IS) captured prior useful experi-
ences, and therefore reduced the size of the potential search space. When formulating
the problem in this way, it is difficult to see how the problem could be mapped onto a
classifier system approach. However, there are potential approaches to re-scheduling
that could benefit from use of a classifier system. For example, if the condition’ part
of the classifier was used to match the current state of the scheduling environment, i.e.
the jobs yet to be scheduled, information pertaining to arrival-dates and due-dates, and
current machine usage, then the associated action of the rule could specify a heuristic
to be applied in order to select the next job to be scheduled. This kind of approach has
already been adopted in work in which the author has been involved, [Ross et al., 2002]
for solving bin-packing problems, and could easily be extended to scheduling. Clearly,
an immune-system analogy is also relevant here, the important functions exhibited by
the classifier in this example are its ability to match (imprecisely) information in the
environment, to learn suitable associated heuristics, and also to adapt as the envi-
ronment changes. These functions are of course exhibited by the immune system —
though it would be straightforward to use the metaphor to find ’rules’ that matched the
environment, some further thought would have to be applied in order to find a suitable
method for associating the matching rules with the correct heuristic.

Another approach which immune-systems have been compared to is that of case-
based-reasoning systems (CBR), first discussed by [Hunt et al., 1995]. A CBR system
relies on having a representative database of cases which is efficiently organised and
has suitable mechanisms for retrieving the cases. The manner in which memory is
organised and the way in which cases are retrieved is crucial, and yet can be very ap-
plication dependent. It is often difficult to identify the most suitable organisation prior
to actually developing and experimenting with the system, which results in long de-
velopment times and can severely restrict the usefulness of the approach. However,
[Hunt et al., 1995] argue that the immune system exhibits exactly the properties re-
quired of a CBR system: the immune system is inherently case-based, it relies on a

content addressable memory, it contains a general pattern matching mechanism, and

Chapter 7. Conclusion 188

most importantly, the memory is self-organising. In addition, the immune system pos-
sesses the ability to 'forget’ cases which are no longer useful, therefore improving the
efficiency of the system.

[Hunt et al., 1995] compared an immune-network to several other forms of case-
memory, namely linear memories, hierarchical memories, nested memories, decision-
trees, and knowledge-guided indexing. The analysis showed when compared to these
memories, only the immune system has a structured memory, is inherently incremen-
tally adaptable, can automatically create its memory structure without a memory ’de-
signer’ identifying the appropriate structure, is inherently self-organising and provides
an implicit mechanism for case-forgetting. Furthermore, when considering retrieval
mechanisms, the immune system can focus search towards similar cases and can han-
dle noisy or missing data. None of the previously mentioned forms of memory exhibit
both these properties. However, the immune system has one potential drawback in that
it is not deterministic, and does not necessarily return the same result given the same
inputs. This is in contrast to the other forms of memory considered.

Is then, a CBR system a suitable methodology for tackling scheduling problems
? Certainly, in the problem described in chapter 3, a database of previous cases, i.e.
schedules, could be built up. Straightforward matching algorithms could be utilised to
match partial schedules and environmental conditions to cases in the databases, as in
general we would only be dealing with integer representations. Thus, it is conceivable
that a CBR approach might be adopted in some circumstances. However, a CBR ap-
proach has a major drawback in that it is not possible to produce entirely new schedules
from such a system, that do not resemble existing cases in the database. This is not true
of an immune system approach in which the building blocks from which schedules are
built can be recombined in many ways to produce novel schedules which are appropri-
ate for the current conditions. Thus, this fact might prove a significant advantage for

an immune-system rather than CBR approach in this case.

7.3.2 Other Approaches to Data-Clustering

In [Timmis et al., 1999], the author compares the performance of an immune-network

algorithm for clustering with a simple clustering technique known as Single Linkage

Chapter 7. Conclusion 189

Clustering and a Kohonen Network on Fisher’s Iris data set. He concludes that “the
AIS provides a more diverse representation of the data than the other two methods
which is useful for classifying unseen data and variations on unseen data, and that
in addition, the AlS is effective at allowing the user to explore the evolved network to
gain a fuller understanding of the makeup of the dataset, thus aiding the data-mining
and analysis process.”. Therefore, it is necessary to consider whether either a self-
organising map approach, as typified by the Kohonen network, could have been used
to cluster the artificial data-sets described in chapter 4 and tested with the COSDM and
SOSDM models.

The Kohonen network can clearly be applied to cluster static data sets, although
[Timmis et al., 1999] found that it was unable to discover the three distinct classes
present in the Fisher data set, whereas his AIS algorithm was able to correctly identify
three separate clusters. However, due to the arguments outlined in chapter 2, section
2.3, it is unsurprising that the Kohonen algorithm could not correctly cluster this data
— an unsupervised clustering algorithm could not correctly classify this data due to
the geometric intermingling of the data classes. However, despite this, it is clear that
Timmis’s AINE algorithm does visually produce three distinct clusters whereas the
Kohonen algorithm does not, therefore it is of benefit in discovering general features
in data-sets, even if the classification accuracy is not 100%.

The Kohonen algorithm in its original form is not suitable for clustering
non-stationary data, although extensions to it have been suggested, for example
[Abrantes and Marques, 1998] give a framework for clustering dynamic image and
video data based on the Kohonen algorithm. Other algorithms for clustering dy-
namic data also exist; Fritzke’s Growing Neural Gas algorithm was described in chap-
ter 6, and as mentioned, has been applied to cluster slowly changing distributions,
[Fritzke, 1997a]. It would be interesting to examine how this algorithm performs on
the data used in this thesis — this work will be performed in the future. A point to note
however is that clustering algorithms such as GNG and Kohonen rely on calculating
the Euclidean distance between vectors in order to cluster them — the data-sets de-
scribed in chapter 4 consist of binary data, and hence it might be more appropriate to

modify these algorithms to use Hamming distance as a measure of similarity between

Chapter 7. Conclusion 190

vectors.

However, the SOSDM based on a combination of ideas from the immune-system
and Sparse Distributed Memories may offer some advantages over the standard cluster-
ing algorithms. The most obvious advantage is that SOSDM is an associative memory,
as well as a means of clustering data. Thus, data can be stored and retrieved from
the memory if necessary, and new data easily be categorised on presentation to the
memory. An important feature of the SOSDM not provided by the other clustering
techniques is that the combination of the address and counters defining the centre of
each hard location in the SOSDM provides a concise description of the cluster itself;
this information is not available from either the GNG or Kohonen algorithms. The
method also provides a mechanism for identifying anomalous data, either by moni-
toring the system for appearance of new hard locations and hence clusters, or track-
ing large movements in existing clusters. A further point to consider is also that the
SOSDM algorithm allows data to belong to more than one cluster — in real databases,
clusters will rarely be able to be completely isolated, therefore this feature may be
useful.

Finally, [Dasgupta, 1997] has made clear the relationship between immune sys-
tems and neural networks. A neural network is not a suitable tool for clustering data,
though could be used to perform anomaly detection in data by training the network
with examples of items from known clusters. This obviously requires previous classi-
fication of the data into clusters. However, the idea is mentioned here as a recurrent
network could provide a means of performing anomaly detection in a non-stationary
environment with continuously adapting weights.

In summary, the models presented in this thesis do suggest that the immune
metaphor might provide features not apparent in other more established techniques
for tackling both scheduling problems and dynamic data-clustering problems. It seems
clear that the way forward is not to attempt to adhere strictly to biological principles
when building artificial models, but to use them as inspiration for suitable computa-
tional techniques, modifying principles and adding new ones where necessary. This is
not a drawback — many successful neural network applications are built on the back

of the back-propagation algorithm, yet it is clear that this algorithm is not utilised by

Chapter 7. Conclusion 191

nature in biological neural systems. Thus, immunology can provide a useful addition
to the computer-scientists armoury of metaphors for solving complex problems, and

the field is deserving of further attention.

7.4 Suggestions for Future Work

It would seem most fruitful to extend the SOSDM model, as noted above, it embod-
ies most of the principles of the biological immune system and the experimentation
performed so far with it indicates its potential value. An obvious extension would be
to add a visualisation mechanism to the system, so that the topology of the memory
could be observed, for example as in the work by [Timmis, 2000b]; whilst a two di-
mensional map would have no meaning in terms of the x-y coordinates of points on
the map, it would be useful to observe the relationships between clusters and between
points within the clusters. Along similar lines, it would be useful for the system to
be able to report information concerning movement of the centres over time, which
would indicate movement of trends in the data more explicitly. If the system is to be
used to perform anomaly detection or to classify new items of data, then further report-
ing mechanisms must be added; thus, warnings could be produced when either a new
centre is added or an existing centre moves significantly when performing anomaly
detection, or the centre recognising a data-item should be reported when classifying
new data-items.

Another area in which the algorithm could be improved is the manner by which
new centres are added and deleted. This would make the system more useful when
clustering data sets in which no sensible guesses can be made about the number of
clusters likely to be present, and would also improve the pattern-tracking capabilities
of the system. A possible way that this could be implemented would be to introduce a
"detector lifetime’ as in [Hofmeyr and Forrest, 2000] which would result in centres not
recognising new data over a long period of time being removed.

Finally, in order for the SOSDM to ultimately prove useful in clustering real-world
data, a method must be formulated for representing non-binary data. The original

method in which counters are updated and are used to retrieve items from the memory

Chapter 7. Conclusion 192

is suitable only for binary representations, therefore, a mechanism must be found for
modifying this algorithm, or alternatively for mapping real-valued data into binary

form so that the original algorithm can be used.

Appendix A

Coincidences in permutations and

schedules

Thanks to [Ross, 2002] for providing this proof.

Given two permutations of the numbers 1...n, what is the expected number of coin-
cidences between them. A coincidence is when the numbers in position i are the same.
Without loss of generality, you can suppose that the first permutation is 1..n itself,
so the question is then as follows: given a random permutation, what is the expected
number of instances in which position i contains i ?

Let the random variable f(P) be the number of coincidences in permutation P. If

fx(P) is the random variable which is 0 or 1 according to whether position k contains
k then

£P) =Y fil(P)
k=1

because the f;(P) are independent (the fact that position k contains k cannot affect

whether other positions i contain 7). So, in expectation,
E(f(P))= Y E(fi(P))
k=1

but E(fx(P)) = 1/n because (n — 1)! permutations out of n! contain k in position
k. Thus

E(f(P)) =1

Appendix A. Coincidences in permutations and schedules 194

Thus, no matter how long the permutation, you expect just one item to be in its
place!
What is the variance of f? Consider E(f?)):

M=
D=

E(f?) = E(f)E(fi)

~

Il
—_
x~

I
R

I
M=

E(f]fk)

~.

I
_
-

I
_

|
=

Ef,)+2 Y, E(fif)

1<j<k<n

~.
Il
—_

But f; is just O or 1, s0 f7 = fj, so E(f}) = E(f;) = 1/n. Also, E(f;fi) is the
probability that a permutation has both j and k in place, namely, (n —2)!/n! =1/n(n—
1). Therefore,

E(f)=1+42x(nn—1)/2)x1/n(n—1)=2

and the variance of f is therefore E(f?) —E(f)>=2—1—1.

Experimental results obtained using

Appendix B

SOSDM

Antigens | Probability that true means differ | CE-Potter | SO-SDM
50 0.999773 49.446000 | 50.142000
100 0.999836 48.872000 | 49.496000
150 0.999999 48.828667 | 49.417333
200 0.999883 48.710000 | 49.328500
250 1.000000 48.860000 | 49.220400
300 0.999999 48.577333 | 49.147666
350 0.999993 48.520000 | 49.062286
400 0.999996 48.512250 | 49.081250
450 0.995579 48.334889 | 48.929778
500 0.999992 48.434400 | 48.983600

Table B.1: T-tests comparing CE-Potter and SOSDM for Half-Schema Experiments

195

Appendix B. Experimental results obtained using SOSDM

Antigens | Probability that true means differ | CE-Potter | SO-SDM
50 0.999998 43.872000 | 45.016000
100 1.000000 43.073000 | 44.201000
150 1.000000 42.568667 | 43.528666
200 1.000000 42.401500 | 43.567000
250 1.000000 42.528400 | 43.402800
300 1.000000 42.301333 | 43.251333
350 0.999991 42.394000 | 43.134286
400 1.000000 42.458000 | 43.143500
450 1.000000 42.273555 | 43.142889
500 1.000000 42.273555 | 43.142889

196

Table B.2: T-tests comparing CE-Potter and SOSDM for Quarter-Schema Experiments

Antigens | Probability that true means differ | CE-Potter | SO-SDM
50 0.999863 43.966000 | 44.826000
100 1.000000 42.246000 | 43.150000
150 1.000000 41.776000 | 42.619333
200 1.000000 41.439500 | 42.228000
250 1.000000 41.058400 | 41.728400
300 1.000000 40.868333 | 41.494000
350 0.999999 40.762571 | 41.254286
400 0.999999 40.578000 | 41.053250
450 0.999991 40.586222 | 40.895333
500 0.999997 40.465600 | 40.821400

Table B.3: T-tests comparing CE-Potter and SOSDM for Eighth-Schema Experiments

Appendix B. Experimental results obtained using SOSDM 197

subset size | p means differ | Data stored in SOSDM at each epoch
for FPS Standard SOSDM FPS
10 1.000000 50.275636 49.820636
20 1.000000 50.275636 49.868091
30 1.000000 50.275636 49.919455
40 1.000000 50.275636 49.978864
50 1.000000 50.275636 49.965364
60 1.000000 50.275636 49.983727
70 1.000000 50.275636 50.000455
80 1.000000 50.275636 50.039227
90 1.000000 50.275636 50.017182
100 1.000000 50.275636 50.038636
110 1.000000 50.275636 50.044545
120 1.000000 50.275636 50.023000
130 1.000000 50.275636 50.023636
140 1.000000 50.275636 50.071591
150 1.000000 50.275636 50.068000
160 1.000000 50.275636 50.063773
170 1.000000 50.275636 50.078273
180 1.000000 50.275636 50.089773
190 1.000000 50.275636 50.081455
200 1.000000 50.275636 50.087364

Table B.4: Table shows the probability that the mean fithess across entire dataset ob-
tained using FPS is statistically different than the mean fitness obtained when all data

is stored at each epoch

Appendix B. Experimental results obtained using SOSDM

subset size | p means differ | Data stored in SOSDM at each epoch
for FPS All data FPS

10 1.000000 44.238182 46.193636
20 0.999552 44.238182 45.450909
30 0.999974 44.238182 45.674545
40 0.999999 44.238182 45.889091
50 1.000000 44.238182 45.926364
60 0.999985 44.238182 45.686364
70 1.000000 44.238182 46.004545
80 0.999987 44.238182 45.639091
90 0.999944 44.238182 45.539091
100 0.998712 44.238182 45.297273
110 0.999276 44.238182 45.340909
120 0.999964 44.238182 45.570000
130 0.999976 44238182 45.653636
140 0.999778 44.238182 45.458182
150 0.999979 44238182 45.624545
160 0.999979 44.238182 45.586364
170 0.999998 44238182 45.689091
180 0.999867 44.238182 45.498182
190 0.999984 44.238182 45.605455
200 0.999441 44.238182 45.333636

198

Table B.5: Table shows the probability that the mean fitness of smallest cluster using

FPS is statistically different than the mean fitness obtained when all data is stored at

each epoch

Appendix B. Experimental results obtained using SOSDM

Number of | Index of | Average | Minimum | Maximum
defined bits | update Lag Lag Lag
8 2 159.200000 100 216
3 276.600000 187 364
4 407.000000 280 497
5 611.000000 372 846
16 2 100.000000 100 100
3 138.200000 100 231
4 128.200000 100 165
5 268.600000 143 348
32 2 146.800000 100 206
3 324.000000 201 504
4 121.600000 100 208
5 615.250000 459 819

Table B.6: Data sets containing 2 clusters: Average lag between updates

199

Appendix B. Experimental results obtained using SOSDM

Number of | Index of | Average | Minimum | Maximum
defined bits | update Lag Lag Lag
8 2 196.400000 143 243
3 250.600000 196 321
4 333.800000 210 372
5 389.600000 238 567
16 2 143.400000 115 180
3 154.600000 119 211
4 180.800000 100 259
5 255.000000 169 317
32 2 304.000000 214 394
3 264.500000 125 404
4 144.000000 143 145
5 100.000000 100 100

Table B.7: Data sets containing 5 clusters: Average lag between updates

Number of | Index of | Average | Minimum | Maximum
defined bits | update Lag Lag Lag
8 2 183.600000 137 283
3 303.200000 236 476
4 468.200000 307 678
5 509.750000 354 635
16 2 228.000000 191 255
3 475.200000 379 597
4 807.500000 586 979
32 2 178.000000 119 218
3 158.000000 100 213
4 211.200000 162 257
5 150.400000 121 175

Table B.8: Data sets containing 5 clusters: Average lag between updates

200

Appendix B. Experimental results obtained using SOSDM 201

Deletion Average Average Average Average

Threshold | No. Centres | Recall Accuracy | No. Centres Deleted | No. Centres added
0.1 241 49.46 1.84 2
0.2 2.25 49.43 1.92 2
0.3 2.61 49.72 7.68 2
0.4 2.52 49.70 7.73 8
0.5 2.54 49.69 7.73 8
0.6 2.62 49.83 7.61 8
0.7 2.67 49.74 7.67 8
0.8 2.50 49.70 7.72 8
0.9 2.65 49.85 7.58 8
1.0 2.59 49.70 7.72 8

Table B.9: Variation in recall accuracy and in the number of centres added and deleted

with deletion threshold

Bibliography

[Abrantes and Marques, 1998] Abrantes, A. and Marques, J. (1998). A method for

dynamic clustering of data. In British Machine Vision Conference.

[Baldwin, 1896] Baldwin, J. (1896). A new factor in evolution. American Naturalist,
30:441-451.

[Beasley, 1990] Beasley, J. (1990). Or-library: distributing test problems by electronic
mail. Journal of the Operational Research Society, 41(11):1069-1072.

[Bierwirth et al., 1995] Bierwirth, C., Kopfer, H., Mattfeld, D. C., and Rixen, I.
(1995). Genetic algorithm based scheduling in a dynamic manufacturing environ-
ment. In Proc. of 1995 IEEE Conf. on Evolutionary Computation, pages 439—443,
Piscataway, NJ. IEEE Press.

[Booker, 1985] Booker, L. (1985). Improving the performance of genetic algorithms
in classifier systems. In Grefenstette, J., editor, Processings of the an International

Conference on Genetic Algorithms and their Applications, pages 80-92.

[Burnet, 1959] Burnet, F. (1959). The clonal selection theory of immunity. Vanderbilt
University Press, Nashville, TN.

[Carter, 2000] Carter, J. (2000). The immune system as a model for pattern recogni-
tion and classification. Journal of the American Medical Informatics Association,
7(3):28-41.

[Celada and Seiden, 1992] Celada, F. and Seiden, P. (1992). A computer model of

cellular interactions in the immune system. Immunology Today, 13(2):56-62.

202

Bibliography 203

[Cooke and Hunt, 1995] Cooke, D. E. and Hunt, J. (1995). Recognising promoter
sequences using an artificial immune system. In Proceedings of Intelligent Systems
in Molecular Biology, pages 89-97, CA. AAAI Press.

[Costa et al., 2002] Costa, A., Vargas, P., Von Zuben, F., and Franca, P. (2002).
Makespan minimisation on parallel processors: an immune based approach. In Pro-
ceedings of the Special Session on Artificial Immune Systems in the 2002 Congress

on Evolutionary Computing.

[Dasgupta, 1996] Dasgupta, D. (1996). Using immunological principles in anomaly
detection. In Proceedings of Artificial Neural Networks in Engineering, (AN-
NIE’96), St Louis, USA.

[Dasgupta, 1997] Dasgupta, D. (1997). Artificial neural networks and artificial im-
mune systems: Similarities and differences. In Proceedings of the IEEE Interna-

tional Conference on Systems, Man and Cybernetics.

[Dasgupta, 1998] Dasgupta, D. (1998). Artificial Immune Systems and Their Applica-
tions, chapter An Overview of Artificial Immune Systems and Their Applications,

pages 3—18. Springer-Verlag.

[Dasgupta and Forrest, 1999] Dasgupta, D. and Forrest, H. (1999). Artificial immune
systems in industrial applications. In Proceedings of the International conference

on Intelligent Processing and Manufacturing Material (IPMM)., pages 257-267.

[Dasgupta and Forrest, 1995] Dasgupta, D. and Forrest, S. (1995). Tool breakage de-
tection in milling operations using a negative-selection algorithm. Technical Report

CS95-05, Dept. of Computer Science,University of New Mexico.

[Dasgupta and Forrest, 1996] Dasgupta, D. and Forrest, S. (1996). Novelty detection
in time series data using ideas from immunology. In Proceedings of the Interna-

tional Conference on Intelligent Systems.

[Dasgupta et al., 2002] Dasgupta, D., Majumdar, N., and Nino, F. (2002). Artificial

immune systems: A bibliography. Technical report, University of Memphis.

Bibliography 204

[Davis, 1985] Davis, L. (1985). Job shop scheduling with genetic algorithms. In
Grefenstette, J., editor, Proceedings of the Ist International Conference on Genetic
Algorithms and Their Applications, pages 136—40. Lawrence Erlbaum Associates,
Hillsdale New Jersey.

[De Castro and Von Zuben, 2000a] De Castro, L. and Von Zuben, F. (2000a). The
clonal selection algorithm with engineering applications. In GECCO 2002 - Work-
shop Proceedings, pages 37-37.

[De Castro and Von Zuben, 2000b] De Castro, L. and Von Zuben, F. (2000b). An evo-
lutionary immune network for data clustering. In Proceedings of the IEEE Brazilian

Symposium on Artificial Neural Networks, pages 84—89.

[De Castro and Von Zuben, 2001] De Castro, L. and Von Zuben, F. (2001). Ainet: An
artificial immune network for data analysis. In Abbass, H., Sarker, R., and Newton,

C., editors, Data Mining: A Heuristic Approach. Idea Group Publishing, USA.

[Deb and Goldberg, 1989] Deb, K. and Goldberg, D. (1989). An investigation of niche
and species formation in genetic function optimization. In Schaffer, J., editor, Pro-
ceedings of the Third International Conference of Genetic Algorithms, pages 42-50.

Morgan Kaufmann.

[DelJong, 1975] Delong, K. (1975). An analysis of the behaviour of a class of genetic
adaptive systems. PhD thesis, The University of Michigan, Ann Arbor, MI.

[DeJong, 9898] DeJong, K. (19898). Learning with genetic algorithms. Machine
Learning, 3:121-138.

[D’haeseleer, 1995] D’haeseleer, P. (1995). Further efficient algorithms for generat-
ing antibody strings. Technical Report CS-95-03, The University of New Mexico,
Albuquerque.

[Fang et al., 1993] Fang, H.-L., Ross, P., and Corne, D. (1993). A promising genetic
algorithm approach to job-shop scheduling, rescheduling and open-shop scheduling
problems. In Forrest, S., editor, Proceedings of the 5th International Conference on

Genetic Algoriothms, pages 375-382. San Mateo:Morgan Kaufmann.

Bibliography 205

[Farmer et al., 1986] Farmer, J., Packard N, H., and Perelson, A. (1986). The immune
system, adaption and machine learning. Physica D, 22:187-204.

[Forrest et al., 1997a] Forrest, S., Hofmeyr, S., and Somayaji, A. (1997a). Computer

immunology. Communications of the ACM.

[Forrest et al., 1994] Forrest, S., Javornik, B., Allen, L., and Cherukuri, R. (1994).
Self-nonself discrimination in a computer. In Proceedings of IEEE Symposium on

Research in Security and Privacy, pages 202-212, Oakland, CA.

[Forrest et al., 1993] Forrest, S., Javornik, B., Smith, R., and Perelson, A. (1993). Us-
ing genetic algorithms to explore pattern recognition in the immune system. Evolu-

tionary Computation, 1(3):191-211.

[Forrest et al., 1997b] Forrest, S., Somayaji, A., and Ackley, D. (1997b). Building
diverse computer systems. In Proceedings of the 6th workshop on Hot Topics in

Operating Systems, Los Alamitos, CA. IEEE Computer Press.

[Fritzke, 1994] Fritzke, B. (1994). Growing cell structures - a self-organizing network
for unsuperviesd and supervised learning. Neural Networks, 7(9):1441-1460.

[Fritzke, 1995] Fritzke, B. (1995). A growing neural gas network learns topologies. In
Tesauro, G., Touretzky, D., and Leen, T., editors, Advances in Neural Information
Processing Systems 7, pages 625-632, Cambridge,MA. MIT Press.

[Fritzke, 1997a] Fritzke, B. (1997a). A self-organising network that can follow non-
stationary distributions. In Proceedings of ICANN-97, International Conference on
Artifical Neural Networks, pages 613—618.

[Fritzke, 1997b] Fritzke, B. (1997b). Unsupervised ontogenic networks. In Handbook
of Neural Computation, pages C2.1:1-16. IOP Publishing Ltd and Oxford Univer-

sity Press.

[Fukuda et al., 1999] Fukuda, T., Mori, K., and Tsukiyama, M. (1999). Artificial Im-
mune Systems and their Applications, chapter Immunity-Based Management Sys-

tems, pages 278-288. Springer.

Bibliography 206

[Gaspar and Collard, 1999] Gaspar, A. and Collard, P. (1999). From gas to artificial
immune systems: Improving adaptation in time dependent optimization. In Pro-

ceedings of the Congress on Evolutionary Computation, pages 1859—1866.

[Gaspar and Collard, 2000] Gaspar, A. and Collard, P. (2000). Two models of immu-
nization for time dependent optimization. In Proceedings of the IEEE International

Conference on Systems, Man and Cybernetics.

[Gathercole and Ross, 1994] Gathercole, C. and Ross, P. (1994). Dynamic training
subset selection for supervised learning in genetic programming. In Davidor, Y.,
Schwefel, H.-P., and Minner, R., editors, Parallel Problem Solving from Nature III,
volume 866 of LNCS, pages 312-321, Jerusalem. Springer-Verlag.

[Gibert and Routen, 1994] Gibert, C. and Routen, T. (1994). Associative memory in
an immune based system. In Proceedings of AAAI-94, volume 2, pages 852—-857.
AAALI Press, Menolo Park, California.

[Gilfillan et al., 1993] Gilfillan, S., Dierich, A., Leneur, M., Bonoist, C., and Mathis,
D. (1993). Mice lacking tdt: Mature animals with an immature lymphocyte reper-
toire. Science, 261:1175-1178.

[Goldberg and Richardson, 1987] Goldberg, D. and Richardson, J. (1987). Genetic
algorithms with sharing for multimodal function optimization. In Grefenstette, J.,
editor, Proceedings of the Second International Conference of Genetic Algorithms,

pages 148—154. Morgan Kaufmann.

[Grefenstette, 1984] Grefenstette, J. (1984). Genesis: A system for using genetic
search procedures. In Proceedings of a Conference on Intelligent Systems and Ma-

chines, pages 161-165.

[Hart and Ross, 1998] Hart, E. and Ross, P. (1998). A heuristic combination method
for solving job-shop scheduling problems. In Eiben, A., Bick, T., Schoenauer,
M., and Schwefel, H.-P., editors, Parallel Problem Solving from Nature - PPSN V,
number 1498 in LNCS, pages 845-855. Springer.

Bibliography 207

[Hart et al., 1998] Hart, E., Ross, P., and Nelson, J. (1998). Solving a real world
problem using an evolving, heuristically driven, schedule builder. Evolutionary
Computation, 6(1):61-81.

[Helman and Forrest, 1994] Helman, P. and Forrest, S. (1994). An efficient algorithm
for generating antibody strings. Technical Report CS94-07, Department of Com-

puter Science, University of New Mexico.

[Hely et al., 1997] Hely, T., Willshaw, D., and Hayes, G. (1997). A new approach to
kanerva’s sparse distributed memory. In IEEE Transactions on Neural Networks,
pages 101-105.

[Herrmann, 1999] Herrmann, J. (1999). A genetic algorithm for minimax optimzation
problems. In Angeline, P., Michalewicz, Z., Schoenhauer, M., Yao, X., and Zalzala,
A., editors, Proceedings of the 1999 Congress on Evolutionary Computation, vol-
ume 2, pages 1099-1103. IEEE Press.

[Hightower et al., 1995] Hightower, R., Forrest, S., and Perelson, A. (1995). The evo-
lution of emergent organization in immune system gene libraries. In Eshelman,
L., editor, Proceedings of Sixth Annual Conference on Genetic Algorithms, pages
344-350. Morgan Kaufmann, San Francisco, CA.

[Hofmeyr and Forrest, 2000] Hofmeyr, S. and Forrest, S. (2000). An architecture for
an artificial immune system. Evolutionary Computing, 8(4):443-473.

[Holland et al., 1986] Holland, J., Holyoak, K., Nisbett, R., and Thagard, P. (1986).
Induction: Processes of inference, learning and discovery. MIT Press, Cambridge,
MA.

[Hunt and Cooke, 1996] Hunt, J. and Cooke, D. (1996). Learning using an artificial
immune system. Journal of Network and Computer Applications, 19:189-212. Spe-

cial Issue on Intelligent Systems: Design and Applications.

[Hunt et al., 1995] Hunt, J., Cooke, D., and Holstein, H. (1995). Case memory and
retrieval based on the immune system. In Weloso, M. and Aamodt, A., editors,

First International Conference on Case Based Reasoning, (Case-Based Reasoning

Bibliography 208

Research and Development, number 1010 in Lecture Notes in Artificial Intelligence,
pages 205-216.

[Hunt et al., 1999] Hunt, J., Timmis, J., Cooke, D., Neal, M., and King, C. (1999).
Artificial Immune Systems and Their Applications, chapter Jisys: The Development
on An Immune System for Real World Applications, pages 157-184. Springer-
Verlag.

[Ishiguro et al., 1996] Ishiguro, 1., Kondo, T., Watanabe, Y., and Uchikawa, Y. (1996).
Immunoid: An immunological approach to decentralized behaviour arbitration of

autonomous mobile robots. In Lecture Notes in Computer Science, volume 1141,
pages 666—675.

[Jain et al., 1999] Jain, A., Murty, M., and Flynn, P. (1999). Data clustering: A review.
ACM Computing Surveys, 31(3):264-323.

[Jensen and Hansen, 1999] Jensen, M. and Hansen, T. (1999). Robust solutions to
job-shop problems. In Angeline, P., Michalewicz, Z., Schoenhauer, M., Yao, X.,
and Zalzala, A., editors, Proceedings of the 1999 Congress on Evolutionary Com-
putation, volume 2, pages 1138—1144. IEEE Press.

[Jerne, 1973] Jerne, N. (1973). The immune system. Scientific American,
229(1):52:60.

[Kanerva, 1988] Kanerva, P. (1988). Sparse Distributed Memory. MIT
Press,Cambridge, MA.

[Knight and Timmis, 2001] Knight, T. and Timmis, J. (2001). Assessing the perfor-
mance of the resource limited artificial immune system AINE. Technical Report

3-01, Computing Laboratory, University of Kent at Canterbury, Canterbury, Kent.
CT2 7NFE.

[Kohonen, 1982a] Kohonen, T. (1982a). Self-organizing formation of topologically
correct feature maps. Biological Cybernetics, 43(1):59—69.

Bibliography 209

[Kohonen, 1982b] Kohonen, T. (1982b). A simple paradigm for the self-organized
formation of structured feature maps. In Amari, S. and Arbib, M. A., editors, Com-
petition and Cooperation in Neural Nets, Lecture Notes in Biomathematics, Vol.
45, pages 248-266. Springer, Berlin, Heidelberg. U. S. —Japan Joint Seminar on
Competition and Cooperation in Neural Nets, Kyoto, Japan, Feb. 15-19, 1982.

[Leder, 1991] Leder, P. (1991). The genetics of antibody diversity. Immunology:

Recognition and Response.

[Lin et al., 1997] Lin, S.-C., Goodman, E., and Punch, W. (1997). A genetic algorithm
approach to dynamic job-shop scheduling problems. In Béck, T., editor, Proceed-
ings of the Seventh International Conference on Genetic Algorithms, pages 481—

489. Morgan-Kaufmann.

[Marshalls Agriculture, 1998] Marshalls Agriculture, p. (1998). Personal communi-

cation.

[Martinetz and Schulten, 1991] Martinetz, T. and Schulten, K. (1991). A ’neural-gas’
nework learns topologies. In Kohonen, T., Mikisara, K., Simula, O., and Kangas,

J., editors, Artificial Neural Networks, pages 397-40.

[Matzinger, 1994a] Matzinger, P. (1994a). Immunological memories are made of this
? Nature, 369:605-606.

[Matzinger, 1994b] Matzinger, P. (1994b). Tolerance, danger and the extended family.
Annual Review Immunology, pages 991-1045.

[Mori et al., 1998] Mori, K., Tsukiyama, M., and Fukuda, T. (1998). Adaptive
scheduling system inspired by immune system. In Proceedings of the IEEE Con-
ference on Systems, Man and Cybernetics, pages 3833-3837.

[Mori et al., 1997] Mori, M., Tsukiyama, M., and Fukuda, T. (1997). Artificial immu-
nity based management system for a semiconductor production line. In Proceedings

of the IEEE Conference on Systems, Man and Cybernetics, pages 851-855.

Bibliography 210

[Morton and Pentico, 1993] Morton, T. and Pentico, D. (1993). Heuristic Scheduling
Systems. John Wiley.

[Nakano, 1991] Nakano, R. (1991). Conventional genetic algorithm for job shop prob-
lems. In Belew, R. K. and Booker, L. B., editors, Proceedings of the Fourth Inter-

national Conference on Genetic Algorithms, pages 474—479. Morgan Kaufmann.

[Oprea and Forrest, 1998] Oprea, M. and Forrest, S. (1998). Simulated evolution of
antibody gene libraries under pathogen selection. In Proceedings of the 1998 IEEE

International Conference on Systems, Man and Cybernetics.

[Oprea and Forrest, 1999] Oprea, M. and Forrest, S. (1999). How the immune system
generates diversity: Pathogen space coverage with random and evolved antibody li-
braries. In Banzhaf, W., Daida, J., Eiben, A. E., Garzon, M. H., Honavar, V., Jakiela,
M., and Smith, R. E., editors, Proceedings of the Genetic and Evolutionary Com-
putation Conference, volume 2, pages 1651-1656, Orlando, Florida, USA. Morgan

Kaufmann.

[Percus et al., 1993] Percus, J., Percus.O, and Perelson, A. (1993). Predicting the size
of the antibody combining region from consideration of efficient self/non-self dis-

crimination. In Proceedings of the National Academy of Science, volume 60, pages
1691-1695.

[Perelson, 1989] Perelson, A. (1989). Immune network theory. Immunological Re-
view, 10:5-36.

[Perelson et al., 1996] Perelson, A., Hightower, R., and Forrest, S. (1996). Evolution
and somatic learning in v-region genes. In Research in Immunology, volume 147,
pages 202-208.

[Perelson and Oster, 1979] Perelson, A. and Oster, G. (1979). Theoretical studies of
clonal selection: Minimal antibody repertoire size and reliability of self-non-self

discrimination. Journal of Theoretical Biology, 81:645-670.

Bibliography 211

[Potter and De Jong, 1998] Potter, M. and De Jong, K. (1998). The coevolution of
antibodies for concept learning. In Parallel Problem Solving From Nature - PPSN
V, pages 530-540. Springer-Verlag.

[Potter and De Jong, 2000] Potter, M. and De Jong, K. (2000). Cooperative coevolu-
tion: An architecture for evolving coadapted subcomponents. Evolutionary Com-
putation, 8(1):1-29.

[Richardson et al., 1989] Richardson, J., Palmer, M., Leipin, G., and Hilliard, M.
(1989). Some guidelines for gas with penalty functions. In Schaffer, J., editor, Pro-
ceedings of the Third International Conference on Genetic Algorithms and Their

Applications, pages 191-197. Morgan Kaufmann.

[Roitt et al., 1988] Raoitt, 1., Brostoff, J., and Male, D. (1988). Immunology. Mosby,
5th edition.

[Ross, 2002] Ross, P. (2002). Personal communication.

[Ross et al., 2002] Ross, P., Schulenburg, S., Marin-Blazquez, J., and Hart, E. (2002).
Hyper-heuristics: Learning to combine simple heuristics in bin-packing problems.
In Langdon, W. B., Canti-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakr-
ishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M. A., Schultz,
A. C., Miller, J. E,, Burke, E., and Jonoska, N., editors, GECCO 2002: Proceedings
of the Genetic and Evolutionary Computation Conference, pages 942-948, New

York. Morgan Kaufmann Publishers.

[Russ et al., 1999] Russ, S., Lambert, A., King, R., Rajan, R., and Reese, D. (1999).
An artificial immune system model for task allocation. In Proceedings of the Sym-

posium on High Performance Distributed Computing.

[Sjodin, 1996] Sjodin, G. (1996). Getting more information out of sdm. In von der
Malsburg, C., von Seelen, W., Vorbruggen, J., and Sendhoff, B., editors, Proceed-
ings of ICANN 96, pages 477-482. Springer.

Bibliography 212

[Smith and Coit, 1997] Smith, A. and Coit, D. (1997). Handbook of Evolutionary
Computing, chapter Constraint Handling Techniques - Penalty Functions. Oxford
University Press. Chapter C5.2.

[Smith et al., 1996] Smith, D., Forrest, S., and Perelson, A. (1996). Immunological
memory is associative. In Workshop Notes, Workshop 4: Immunity Based Systems,

International Conference on Multiagent Systems, pages 62—70. Kyoto, Japan.

[Smith et al., 1999] Smith, D., Forrest, S., and Perelson, A. (1999). Artificial Immune
Systems and Their Applications, chapter Immunological Memory is Associative,

pages 105-112. Springer-Verlag.

[Smith et al., 1993] Smith, R., Forrest, S., and Perelson, A. (1993). Searching for di-
verse, cooperative populations with genetic algorithms. Evolutionary Computation,
1(2):127-149.

[Stadnyk, 1987] Stadnyk, I. (1987). Schema recombination in pattern recognition
problems. In who, editor, Proceedings of the 2nd International Conference on Ge-
netic Algorithms and their Applications, page ?, Hillside, NJ. Lawrence Erlbaum

Assoc.

[Tew and Mandel, 1979] Tew, J. and Mandel, T. (1979). Prolonged antigen half-life
in the lymphoid follicules of antigen-specifically immunized mice. Immunology,
37:69-76.

[Timmis, 2000a] Timmis, J. (2000a). On parameter adjustment of the immune in-
spired machine learning algorithm AINE. Technical Report 12-00, Computing Lab-
oratory, Univeristy of Kent at Canterbury, Canterbury, Kent. CT2 7NF.

[Timmis, 2000b] Timmis, J. (2000b). Visualising artificial immune networks. Tech-
nical Report UWA-DCS-00-034, University of Wales, Aberystwyth.

[Timmis and Neal, 2001] Timmis, J. and Neal, M. (2001). A resource limited artificial
immune system for data analysis. Knowledge Based Systems, 14(3-4):121-130.

Bibliography 213

[Timmis et al., 1999] Timmis, J., Neal, M., and Hunt, J. (1999). Data analysis using
artificial immune systems, cluster analysis and kohonen networks: Some compar-

isons. In Proceedings of the International Conference on Systems, Man and Cyber-

netics, pages 922-927. IEEE.

[Timmis et al., 2000] Timmis, J., Neal, M., and Hunt, J. (2000). An artificial immune
system for data analysis. Biosystems, 55(1/3):143—-150.

[Tonegawa, 1983] Tonegawa, S. (1983). Somatic generation of antibody diversity.
Nature, 302:575-581.

[Varela and Coutinho, 1988] Varela, F. and Coutinho, A. (1988). Cognitive networks:

Immune,neural and otherwise. Theoretical Immunology, 2:359-371.

[Weigert et al., 1970] Weigert, M., Cesari, 1., Yonkovitch, S., and Cohn, M. (1970).
Variability in the light chain sequences of mouse antibody. Nature, 228:1045=1047.

[Weinand, 1990] Weinand, R. (1990). Somatic mutation, affinity maturation and an-
tibody repertoire: A computer model. Journal of Theoretical Biology, 143(3):343—
382.

[Whitely and Starkweather, 1990] Whitely, D. and Starkweather, T. (1990). Genitor ii:
A distributed genetic algorithm. Journal of Experimental and Theoretical Artificial
Intelligence, 2(3):189-214.

[Wuetal., 1999] Wu, S., Byeon, E., and Storer, R. (1999). A graph-theoretic de-
composition of the job-shop scheduling problem to achieve scheduling robustness.

Operations Research, 47.

