
Evolutionary Learning Outperforms
Reinforcement Learning on Non-Markovian

Tasks

G. de Croon, M.F. van Dartel, and E.O. Postma

IKAT, Universiteit Maastricht, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
{g.decroon, mf.vandartel, postma}@cs.unimaas.nl,

http://www.cs.unimaas.nl

Abstract. Artificial agents are often trained to perform non-Markovian
tasks, i.e., tasks in which the sensory inputs can be ambiguous. Agents
typically learn how to perform such tasks using either reinforcement
learning (RL) or evolutionary learning (EL). In this paper, we empirically
demonstrate that these learning methods result in different levels of per-
formance when applied to a non-Markovian task: the Active Categorical
Perception (ACP) task. In the ACP-task, the proportion of ambiguous
sensor states can be varied. EL outperforms RL for all tested proportions
of ambiguous states. In addition, we show that the relative performance
difference between RL and EL increases with the proportion of ambigu-
ous sensor states. We argue that the cause of this increasing performance
difference is that in RL the learned policy consists of those state-action
pairs that individually have the highest estimated values, while the per-
formance of a policy for a non-Markovian task highly depends on the
combination of state-action pairs selected.

1 Introduction

Artificial agents often have to perform tasks in which the sensory inputs can be
ambiguous, referred to as non-Markovian tasks [8, 1]. Agents typically learn how
to perform such tasks with either reinforcement learning (RL) or evolutionary
learning (EL). RL and EL differ fundamentally in the manner in which they
search in the policy space, i.e., the space of possible mappings from states to ac-
tions. RL searches for the optimal policy by learning a value function of states or
state-action pairs. Learning a value function is more difficult in a non-Markovian
task than in a Markovian task, since it is hard to estimate the value of an am-
biguous sensor state [1, 9]. In contrast to RL, EL searches in the policy space
directly, by selecting and evaluating complete policies. Therefore, EL does not
depend on how well the values of ambiguous states can be estimated, but on the
properties of the policy space in which it searches. This difference between value
function search and direct policy search leads to the conjecture that EL performs
better on non-Markovian tasks than RL does [1, 12, 5]. If the estimation of the
value of ambiguous states is the problem for RL, EL should be better able to
cope with a larger proportion of ambiguous states.

In this paper we investigate empirically whether this conjecture is valid.
Therefore, we formulate the following two research questions: (1) Do reinforce-
ment learning and evolutionary learning result in different levels of performance
when applied to a non-Markovian task?, and (2) Is there a relation between the
proportion of ambiguous states and the performance difference between reinforce-
ment learning and evolutionary learning?

To answer these research questions, we use a revised version of the ‘Active
Categorical Perception’ (ACP) task (described in [11]). We adopt this task, since
it allows a gradual increase in the proportion of ambiguous states. Although the
task is non-Markovian, in [11] it has been shown that memory-less, deterministic
policies can be rather successful in solving the task. Since these types of policies
are the ones that have been most extensively studied in the literature (e.g., [6,
11]), we focus on such policies.

The remainder of the paper is organised as follows. In Sect. 2, we present the
revised version of the ACP-task, which we employed to compare the two learning
methods. We describe the experiments in Sect. 3. The results are reported in
Sect. 4. In Sect. 5 we analyse the experimental results. We discuss the outcome
of the analysis in Sect. 6. Finally, we draw our conclusions in Sect. 7.

2 Active Categorical Perception Task

To compare RL and EL, we apply them to a revised version of the ACP-task
as described in [11]. In the active categorical perception task, an agent has to
categorise falling objects by catching or avoiding them. Below, we provide an
overview of the revised version of the task.

2.1 Overview of the ACP-task

In the ACP-task [11], an agent has to catch small objects and avoid large objects.
By doing so, an agent exhibits its ability to categorise. The environment in which
an agent acts is a two-dimensional grid of 20 x 10. The objects and agents are
allowed to move through the left and right boundaries of the environment, and
to re-appear at the opposite side of the environment. An ‘epoch’ consists of ten
discrete time steps. At the first time step an object is placed somewhere in the
top row of the grid. The object falls down one row at each time step, and hits
the floor of the grid at the last time step. Objects always fall with a horizontal
velocity of two grid cells leftward or rightward. The direction of movement of the
objects is consistent throughout an epoch. Small objects occupy two grid cells,
while large objects occupy four grid cells. The agent is restricted to movements
in the bottom row of the environment. Figure 1 illustrates three consecutive
simulation time steps of an epoch (denoted by t = 5 to t = 7). In the figure,
a large object (represented by four filled grid cells) falls rightward. The four
circles in the bottom row of each grid represent the sensors of the agent; they
are activated (gray circles) by the presence of an object in the same column. In
the figure, the agent moves four grid cells leftward at each time-step.

The movement of the agent depends on the activation of the sensors and
the agent’s policy. In our experiments, a policy is represented by a state-action

Fig. 1. Movement of an agent and object over three consecutive simulation time steps
(from t = 5 to t = 7). Filled grid cells represent the object and circles represent the
active (gray) and inactive (white) sensors of the agent.

table that assigns a value to all possible actions for all possible sensor states.
The state-action table determines the size and direction of the next step taken
by the agent, i.e., the number of grid cells moved to the left (negative action)
or right (positive action), ranging from -10 to 10. If the action is 0, the agent
does not move. A movement of the agent leads to a new position of the sensor
array and, consequently, to a new sensor state. The sensor array of the agent
consists of two types of sensors: functional sensors and blind sensors. Each agent
has s functional sensors. A variable number of blind sensors b replace functional
sensors s in the sensor array; they determine the level of perceptual ambiguity
(see Subsection 2.2). In the experiments described below, we optimise agents with
all possible configurations of functional sensors and blind sensors. A functional
sensor is active if an object is present in its column, and inactive otherwise. We
note that the agent’s sensor state does not contain any information regarding
its own position or its distance to the object.

The behaviour of an agent is evaluated when the object reaches the bottom
row of the grid. An object is caught by the agent iff ca − co ≤ d (modulo the
boundaries), with ca representing the center of the agent, co the center of the
object, and d a number of grid cells; an object is avoided iff ca− co > d (modulo
the boundaries). Following the setup in [11], we determine d = 4.5. Since the
center is a size-independent measure, there is an equal probability to avoid or
catch an object from both classes. The performance of a policy is defined as
the percentage of objects that are correctly classified. Therefore, if both types
of objects are encountered an equal number of times, the expected performance
of random behaviour is equal to 50%. Since the environment is deterministic
and there are a small finite number of possible distinct epochs, we evaluate the
performance of an agent by executing it for all possible starting positions and
moving directions of both types of objects. We refer to an execution of all distinct
epochs as an ‘episode’.

2.2 Ambiguous Sensor States

We define an ‘ambiguous sensor state’ as a sensor state that does not provide any
information on the type of object present in the environment. For example, if the
agent consists of four active sensors (s = 4) and only the left sensor is active, this
sensor state might be due to either a big object or a small object. The number

of ambiguous sensor states can be changed by altering the sensor configuration
of the agent. For instance, in the case that all sensors are functional, there are
nine possible sensor states of which five are ambiguous (left in Fig. 2). In the
case of a blind leftmost sensor only six sensor states can occur, of which five are
ambiguous (right in Fig. 2).

s = 4 s = 3

Fig. 2. Left of the line, all possible sensor states are shown when all four sensors are
functional. Right of the line, all possible sensor states are shown when the leftmost
sensor is blind. The circles represent the active (gray), inactive (white), and blind
(crossed) sensors of the agent. Ambiguous sensor states are indicated with a box.
Examples of unambiguous states left of the line are the states with three or four active
sensors (large object) and with two active middle sensors (small object).

In the experiments described below, we apply both RL and EL to the task
with all sensor configurations and measure the performance differences. A spe-
cific sensor configuration does not imply that the agent encounters a specific
proportion of ambiguous states, since the proportion of ambiguous states actu-
ally encountered also depends on the agent’s behaviour [6]. However, it is possible
to estimate the proportion with a behaviour-independent measure: the ‘task am-
biguity’. We define the task-ambiguity as the proportion of object positions that
give rise to an ambiguous sensor state. For instance, for four functional sensors
the task ambiguity is 90%, since 90% of the possible object positions results in
one of the ambiguous sensor states depicted on the left in Fig. 2.

3 Experiments

To test how well RL and EL perform on a non-Markovian task, we apply both
learning methods to the categorisation task described in Sect. 2. In addition,
we employ random search as a reference point. In the next subsections we de-
scribe the applied learning methods: reinforcement learning (Subsection 3.1),
evolutionary learning (Subsection 3.2), and random search (Subsection 3.3). As
described below, for each learning method we optimise its parameter settings
for the task with four functional sensors. The optimised parameter settings are
then employed in experiments on all distinct sensor configurations.

3.1 Reinforcement Learning (RL)

There have been several studies that analyse the performance of RL-methods on
non-Markovian problems [9, 4, 3]. In [9] Monte Carlo (MC) is recommended to
learn non-Markovian tasks, while in [4, 3] it is argued that time differential learn-
ing with eligibility traces (SARSA(λ)) is a better learning method for such tasks.

We implement MC, SARSA(λ), and include Q-learning, since it is a widely-used
RL-method (for an explanation of these methods, see [10]).

We optimise the parameter settings of each learning method on the task
with four functional sensors as follows. For every parameter setting we perform
30 different runs of the learning algorithm, each consisting of 5000 episodes.
We first vary all relevant parameters from 0 to 1.0 with steps of 0.1. Around
the optimum, these rates are varied on a finer scale with steps of 0.02. If the
optimum is at the end of the scale, experiments are run with steps of 0.005. The
relevant parameters are: the exploration rate ε (all methods), the training rate α
(SARSA(λ) and Q-learning), the discount factor γ (SARSA(λ) and Q-learning),
and the eligibility parameter λ (SARSA(λ)). Note that exploration is not applied
to the last run of an episode, so that the learned policy can be evaluated. In [3]
it is argued that the exploration rate should decrease over time. Therefore, we
also employ all RL-methods with a decreasing exploration; as in [3], the initial
exploration rate ε is set to 0.20, which decreases linearly during learning, so
that it reaches 0 at the 1000th episode. After optimising the parameter settings,
we apply all RL-methods to the task with all possible sensor configurations,
performing 100 runs per configuration.

3.2 Evolutionary Learning (EL)

In our EL-algorithm, a population is evolved for 100 generations and consists
of 50 individuals, i.e., policies. The genome of an individual represents a state-
action table by a vector of doubles in the range [0, 1]. During an episode, the
agent chooses the action that has the highest value in the genome for the current
state. After evaluating all individuals in the population, the best 50% of them
are selected to produce the next population. Each selected individual has two
offspring in the new generation. To form one offspring, the genome of the indi-
vidual has a probability of Pc that a one-point cross-over at a random location
in the genome is performed with another selected individual. After a possible
cross-over, each gene in the genome is mutated with probability Pm to a random
value in the range [0, 1]. For the experiments of evolutionary learning we optimise
the relevant parameters (Pc and Pm) in the same manner as the parameters of
the RL-methods, and employ the optimised parameter settings in experiments
on all sensor configurations.

3.3 Random Search (RS)

We compare both RL and EL to random search (RS) on all sensor configura-
tions, as a reference point for their performance. Like EL, RS performs direct
policy search. For RS, we perform 100 runs on all sensor configurations, one run
consisting of evaluating 5000 random policies.

4 Results

Below, we first discuss the results of the experiments on the task with four
functional sensors. Then, we compare all RL-methods with EL and RS on all
possible sensor configurations.

Figure 3 shows the performance over time of all RL-methods and EL on the
task with four functional sensors, averaged over all hundred experimental runs.
For each method, we only show the results of the settings that achieved the
highest mean performance. These settings are: for MC ε = 0.02; for SARSA(λ)
a decreasing ε, λ = 0.14, γ = 0.8, and α = 0.005; for Q-learning ε = 0.01,
γ = 1.0, and α = 0.005; for EL Pc = 0.20 and Pm = 0.06. The main observation
we can make from Fig. 3 is that, although both MC and Q-learning initially
perform better than EL, EL eventually achieves a higher performance than any
of the RL-methods. Note that the increase in performance of SARSA(λ) almost
comes to a halt at the 1000th run, the cut-off point of the exploration. Other
settings of the cut-off point (3000, 4000 episodes) yielded similar results, but
attained a lower performance.

0 1000 2000 3000 4000 5000
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Episodes

M
ea

n
pe

rf
or

m
an

ce

EL
MC
SARSA
Q

Fig. 3. Rewards over time, expressed in episodes, for all RL-methods and EL.

Table 1 shows the results for all sensor configurations (‘SC’, first column),
where ‘x’ stands for a blind sensor and ‘o’ for a functional sensor. Since in one
episode all objects are placed at all positions for both moving directions, mirrored
sensor configurations give equal results and are not included in the table. The
second column of the table contains the task ambiguity (‘TA’). The five columns
that follow, contain the average performance and standard deviation for all learn-
ing methods. The significance of the performance differences between the various
methods has been tested with a bootstrap method [2] (p < 0.05). The last five
columns contain the maximal performances of all learning methods. In Table
1, the highest mean performances are in bold text. We can make four observa-
tions from Table 1. The first observation is that EL significantly outperforms
all RL-methods on all sensor configurations. Secondly, Q-learning significantly
outperforms the other RL-methods on five sensor configurations (a ‘2’ indicates
that there is no significant performance difference between Q-learning and MC
for four of the configurations). Thirdly, RS significantly outperforms all RL-
methods from the third sensor configuration on. Finally, the table shows that
EL achieves higher maximal performances than all other learning methods on
the first two sensor configurations, and equal or higher maximal performances
on all other sensor configurations.

Table 1. Mean performance, standard deviation, and maximal performance of all learn-
ing methods for all possible sensor configurations. A ‘1’ indicates that the performance
difference with EL is statistically not significant (p < 0.05), and a ‘2’ indicates that
the performance difference with Q-learning is not significant (p < 0.05).

SC TA EL RS MC Q SARSA EL RS MC Q SARSA
oooo 90.0 85.2(±1.9) 77.9(±2.0) 79.4(±4.4) 80.6(±3.6) 79.4(±3.7) 88.75 83.75 86.25 86.25 86.25
oxoo 92.5 83.5(±2.3) 78.02(±2.5) 75.4(±5.1) 77.9(±4.8) 74.8(±4.5) 87.50 85.00 83.75 85.00 82.50
xooo 95.0 80.4(±2.3) 75.8(±2.1) 71.8(±4.7) 74.6(±5.5) 71.7(±4.7) 85.00 81.25 82.50 83.75 85.00
xoxo 95.0 76.6(±1.5) 75.5(±1.5) 67.2(±5.1) 71.2(±6.6) 68.9(±3.8) 77.50 77.50 76.25 77.50 77.50
oxxo 97.5 69.6(±2.0) 69.51(±2.1) 63.02(±3.2)62.1(±3.8) 56.4(±4.1) 73.75 73.75 71.25 68.75 67.50
xxoo 100 70.2(±1.5) 69.3(±1.7) 64.7(±4.0) 68.5(±3.3) 65.0(±4.4) 72.50 72.50 72.50 72.50 72.50
xoox 100 68.0(±1.2) 67.81(±1.2) 63.52(±3.2)62.6(±4.2) 59.2(±4.1) 70.00 70.00 70.00 67.50 66.25
oxxx 100 60.9(±0.5) 61.3(±0.0) 57.92(±2.0)58.5(±3.0) 50.5(±1.7) 61.25 61.25 61.25 61.25 57.50
xoxx 100 59.9(±0.3) 60.01(±0.0)57.12(±2.6)56.8(±3.4) 52.2(±4.2) 60.00 60.00 60.00 60.00 60.00

5 Analysis

In this section we analyse the results of the experiments. In Subsection 5.1
we investigate the relation between the task ambiguity and the performance
difference between RL and EL. We delve into the causes of the performance
difference in Subsection 5.2.

5.1 Performance Difference and Task Ambiguity

Is there a relation between the proportion of ambiguous states and the per-
formance differences between RL and EL? As shown in Table 1, the abso-
lute difference in mean performance between EL and the RL-methods does
not increase with the task ambiguity. However, the absolute difference does
not take into account that the maximal possible performance on the task de-
creases as the task ambiguity increases. Therefore, we measure the ‘relative
performance difference’ r between EL and every other learning method X:
r = (EL−X)/(max (EL)−50%), in which EL and X are the mean performances
of EL and method X. We estimate the maximally obtainable performance with
the maximal performance of EL, since it is higher than, or equal to, that of
the other methods for all sensor configurations. In addition, it corresponds to
the maximally obtainable performance for all sensor configurations with two or
less functional sensors (as determined by exhaustive search, discussed below).
Figure 4 shows the relative performance difference over different levels of task
ambiguity. Since there are multiple sensor configurations with a task ambiguity
of 95% and 100%, the relative performance differences are averaged for these
task ambiguities.

The figure illustrates that the relative difference between EL and the RL-
methods increases with the task ambiguity, while the relative difference between
EL and RS decreases. Apparently, both EL and RS gain an advantage over RL-
methods as the task ambiguity increases. This suggests that direct policy search
becomes more important as task ambiguity increases. In the next subsection we
analyse why EL can better cope with ambiguity than RL.

90 92.5 95 97.5 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Task ambiguity

R
el

at
iv

e
pe

rf
or

m
an

ce
 d

iff
er

en
ce

RS
MC
SARSA
Q

Fig. 4. The relative performance difference over different levels of task ambiguity.

5.2 Causes of the Performance Difference

As mentioned in the introduction, the performance difference between RL and
EL is argued to be caused by the fact that RL searches for a value function,
while EL searches directly in the policy space. The lower performance of RL
might be explained by assuming that for non-Markovian tasks it is more diffi-
cult to estimate the rewards associated with state-action pairs. As stated in [1]:
”If ... observations contain very little useful information about the state of the
environment, values cannot be reasonably estimated and associated with states,
and it may be better to search directly in the space of policies”. In this subsec-
tion, we show that a difficult estimation of the values does not have to be the
cause of the lower performance. Instead, we argue that the cause of the lower
performance might be that RL’s learned policy consists of the state-action pairs
with the highest estimated value.

We can verify this for MC by performing exhaustive search on the task and
calculating (instead of estimating as MC does) the average rewards of all state-
action pairs. Then we can test the policy that combines the state-action pairs
with the highest average rewards, and compare it with the maximal perfor-
mance obtainable on the task. Below, we apply exhaustive search to the sensor
configuration ‘xoxo’1. The four possible sensor states and 21 actions result in a
policy space with 214 = 194, 481 policies. Table 2 shows the average reward per
state-action pair over all policies in the policy space.

The table shows that individual state-action pairs do not have much influence
on the reward of a policy. Namely, all average rewards are very close to 50%,
while the maximal fitness obtainable on this problem is 77,50%. Apparently, a
policy’s reward highly depends on the combination of state-action pairs that
are selected. MC prefers those state-action pairs that have the highest values in
Table 2 (shown in bold), which indicates that MC estimates them rather well.

The combination of state-action pairs with the highest estimated values does
not result in the optimal policy. Even if MC estimated the average rewards for all

1 Exhaustive search on the task with other sensor configurations containing one or two
functional sensors gave similar results, while exhaustive search on configurations with
three or more functional sensors is computationally too expensive to perform.

Table 2. Average rewards for all state-action pairs.

s/a -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
00 0.48 0.47 0.49 0.48 0.50 0.48 0.50 0.49 0.52 0.51 0.52
01 0.49 0.50 0.50 0.49 0.49 0.51 0.51 0.49 0.50 0.51 0.51
10 0.50 0.50 0.49 0.48 0.49 0.50 0.49 0.48 0.50 0.49 0.49
11 0.52 0.52 0.52 0.52 0.51 0.49 0.50 0.50 0.44 0.46 0.47
s/a 1 2 3 4 5 6 7 8 9 10
00 0.51 0.53 0.50 0.50 0.50 0.50 0.48 0.49 0.49 0.48
01 0.49 0.49 0.50 0.49 0.48 0.49 0.50 0.49 0.48 0.49
10 0.51 0.52 0.49 0.49 0.51 0.50 0.49 0.50 0.49 0.50
11 0.47 0.43 0.48 0.50 0.50 0.50 0.51 0.52 0.52 0.52

state-action pairs perfectly, it would not obtain the optimal policy. Namely, the
policy that combines all state-action pairs with the highest values only achieves
a performance of 51,25% on a whole episode. Hence, the optimal policies contain
state-action pairs that do not have the highest values. For example, exhaustive
search shows that all optimal policies contain either the action -6 or 6 in the state
‘00’; actions that do not have the highest values in Table 2. However, the value-
distributions for these actions have a higher standard deviation than those for
the other actions in this state. The preference of MC for state-action pairs with
high values and of EL for state-action pairs included in successful strategies is
supported by an analysis of the policies that they learn: for state ‘00’ MC selects
actions -2, 0, and 2 significantly more often than EL (p < 0.05), while EL selects
actions -6 and 6 significantly more often than MC (p < 0.05).

The other RL-methods, SARSA(λ) and Q-learning, also learn policies con-
sisting of state-action pairs with the highest values; they only use a different
notion of a state-action pair’s value. Therefore, the analysis might also be valid
for these other RL-methods.

6 Discussion

The results reported in Sect. 4 show that EL performs better than RL on all
sensor configurations of the ACP-task. A typical approach for avoiding the prob-
lems that arise from perceptual ambiguity is to employ policies that make use
of a memory (see, e.g., [1]). Such policies can enhance performance for both
RL and EL. For example, recurrent neural networks (policies with a memory)
outperform perceptrons (memory-less policies) on the ACP-task [11]: for the
configuration without blind sensors this difference is around 2.8%. However, in
[6] it is observed that the introduction of a memory does not profoundly re-
organise the behaviour of agents performing a certain task, but rather serves
to complement the otherwise reactive behaviour. This suggests that behavioural
differences between RL and EL may remain when memory is used. Therefore,
the choice of learning algorithm might influence the outcome of Artificial Life
studies that focus on the type of learned behaviour (e.g., [7]), be it reactive or
not.

7 Conclusions

The experimental results reported in Sect. 4 lead to the following two conclusions
regarding our research questions. First, RL and EL obtain different performance
levels on a non-Markovian task: EL outperforms RL on the ACP-task for each
sensor configuration. Second, the relative performance difference between EL
and RL increases as the proportion of ambiguous states increases. Our analysis
suggests that the increase of performance difference does not have to stem from
problems with estimating the state-action values, but from RL learning a policy
consisting of the state-action pairs with the highest estimated values. For a non-
Markovian task this does not lead to the best performance, since the reward of
a policy is highly dependent on the combination of state-action pairs. As a con-
sequence, RL and EL exhibit different behavioural strategies on the ACP-task.
A possible direction of future research is to determine whether such behavioural
differences remain when policies with memory are applied.

References

1. B. Bakker. The State of Mind: Reinforcement Learning with Recurrent Neural
Networks. PhD thesis, Leiden University, 2004.

2. P. Cohen. Empirical Methods for Artificial Intelligence. MIT Press, Cambridge,
Massachusetts, 1995.

3. P. A. Crook and G. Hayes. Learning in a state of confusion: Perceptual aliasing in
grid world navigation. In Proceedings of TIMR 2003 - Towards Intelligent Mobile
Robots, UWE, Bristol, 2003.

4. J. Loch and S.P. Singh. Using eligibility traces to find the best memoryless policy
in partially observable markov decision processes. In ICML, pages 323–331, 1998.

5. D. E. Moriarty, A. C. Schultz, and J. J. Grefenstette. Evolutionary algorithms
for reinforcement learning. Journal of Artificial Intelligence Research, 11:241–276,
1999.

6. S. Nolfi. Power and the limits of reactive agents. Neurocomputing, 42:119–145,
2002.

7. M. Schlesinger. A lesson from robotics: Modeling infants as autonomous agents.
Adaptive Behavior, 11:2:97–107, 2003.

8. J. Schmidhuber. Reinforcement learning in markovian and non-markovian envi-
ronments. In D.S. Lippman, J.E. Moody, and D.S. Touretzky, editors, NIPS-3:
Proceedings of the 1990 conference on Advances in neural information process-
ing systems 3, pages 500–506, San Francisco, CA, USA, 1990. Morgan Kaufmann
Publishers Inc.

9. S. Singh, T. Jaakkola, and M. Jordan. Learning without state-estimation in par-
tially observable markovian decision processes. In W. W. Cohen and H. Hirsh,
editors, Machine Learning: Proceedings of the Eleventh International Conference
(ICML), pages 284–292. Morgan Kaufmann, 1994.

10. R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA, A Bradford Book, 1998.

11. M. F. van Dartel, I. G. Sprinkhuizen-Kuyper, E. O. Postma, and H. J. van den
Herik. Reactive agents and perceptual ambiguity. Adaptive Behavior, in press.

12. J. Wyatt. Reinforcement learning: a brief overview. In I.O. Stamatescu et al.,
editor, Perspectives on Adaptivity and Learning, pages 243–264. Springer, 2002.

