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This paper provides an overview of the is-
sues that arise when designing a system that
is capable of autonomous navigation in an un-
known environment. In addition to presenting
the necessary components for such a system
and ways to model the environment, dynamic
path planning algorithms are treated from the
ground up.

The applicability of different algorithms de-
pends on different factors. Required perfor-
mance and correctness may make the usage
of a particlar algorithm unfeasible. However,
much research remains to be done in this do-
main of AL

1 Introduction

Successfully landing an unmanned vehicle on
the face of the planet Mars is one in a se-
ries of recent breakthroughs in space explo-
ration and technical possibilities. This accom-
plishment has received wide media coverage,

which is understandable: it feeds our imagina-
tion. Somewhere out there, at least 55 million
kilometers away from earth!, a robotic vehicle
autonomously roams the planet’s surface, col-
lecting data, taking photographs, and sending
them back to us. This machine is behaving in a
seemingly intelligent fashion.

One of the crucial capabilities of Marslan-
ders is autonomous navigation. These multi-
billion Euro projects can not be allowed to fail
because the vehicle stumbled and fell down a
ravine. Unfortunately, the distance between
Earth and Mars is too long to allow for direct
control: around 11 lightminutes. Therefore, a
navigational system had to be engineered that
enables the rover to travel from A to B while
detecting and avoiding obstacles and other haz-
ards.

Similar requirements exist in systems that
are more down-to-earth. One particular ex-
ample is computer games. Optimal game-

Uhttp://en.wikipedia.org/wiki/Mars
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play is achieved when simulated opponents
or other computer-controlled entities in virtual
worlds behave in an intelligent, perhaps even
human-like, fashion. As many games are mod-
elled around some traversable terrain (first-
person shooters, real time strategy games, etc.),
navigational systems are applicable here too.
Countless other systems, like car navigation
systems, mobile security units, autonomous
vacuum cleaners and lawn mowers, etc. em-
ploy the same, or related, techniques.

This paper attempts to provide an overview
of the available methods for autonomous nav-
igation, with an emphasis on path planning al-
gorithms and their specific characteristics and
benefits. Of importance is the ability to in-
crementally build a terrain map and adjust the
plan accordingly (hence, the “unknown envi-
ronments” part of the title.)

First, the discretization of world information
is addressed. Then, path finding algorithms
are introduced starting with Dijkstra’s Algo-
rithm and subsequently discussing heuristics
and incremental techniques. Finally, some as-
sorted techniques for improvement are briefly
explained after which conclusions are drawn.

People with an interest in Al-techniques and
path finding, but no strong expertise in the lat-
ter (among these are students of computer sci-
ence and game developers), are the main in-
tended audience for this paper. Most algo-
rithms, such as Dijkstra’s Algorithm, will be
briefly but sufficiently explained. However,
formal proofs of correctness are not within the
scope of this text. Readers are referred to the
corresponding literature for this, and more, ad-
vanced information.

2 Issues in Navigation

There are four main steps that have to be taken
in order for a physical vehicle to navigate au-
tonomously:

1. Collect data from sensors.

2. Build an internal representation of the en-
vironment.

3. Calculate the shortest path to the goal.

4. Perform physical movement

Of course, virtual vehicles work in a slightly
different way. They have no sensors and do
not move in the physical world. However, the
principles remain the same. A part of the simu-
lation program provides information about the
virtual environment (step 1) and another part
performs the virtual movement.

This paper is mainly concerned with step 3.
It is assumed that a goal location is available.
This could be a location on the surface of Mars,
the tile behind an enemy in a computer game,
or anything else.

Steps 1 and 4 will not be treated as they are
the field of other engineering disciplines. Step
2 will be briefly touched upon because of its
relevance to the algorithms the algorithms that
are discussed subsequently.

2.1 Terrain Representation

Because of their formal nature and practi-
cal reasons (like computational power, system
complexity, etc.), algorithms need a simplified
model of the physical world to work on. Ide-
ally, the representation of the terrain in com-
puter memory is small and can be accessed
quickly to optimize performance.

2.1.1 Partitioning

The terrain needs to be partitioned into tiles
that can be individually visited by the vehicle.
Smaller tiles mean more tiles and therefore a
higher amount of required resources (computa-
tional power, memory, etc.) On the other hand,
smaller tiles allow for greater flexibility: for
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example, there is less chance that a tile will
contain an obstacle and the vehicle has more
freedom of movement.

Typically, the tile size will be related to
physical size of the vehicle. A Mars rover with
dimensions 50cm * 90cm might opt for tiles of
1 square meter. Likewise, tiles in computer
games will be approximately the size of their
vehicles.

Hybrid methods for tile size are also possi-
ble. See section 3.5.

Another design choice is the shape of the
tiles and possible directions of movement. In
the simplest form (for a 2-dimensional ter-
rain map) they are squares allowing only ver-
tical or horizontal movement. Diagonal move-
ment would add complexity, but also flexibil-
ity. Hexagonal tiles may be another option.
Key factors in making a decision in regard
to this are terrain characteristics and vehicle
shape and movement capabilities.

2.1.2 Traversability & Obstacles

One of the requirements of autonomous navi-
gation is obstacle avoidance. These obstacles
need to be represented in the map, so there are
at least to types of terrain: traversable and un-
traversable.

Reality is more complex and so multi-
ple terrain types, which are all considered
traversable, might also be necessary. For ex-
ample, a terrain might consist of dirt areas with
small pebbles and areas with fine sand. A vehi-
cle can traverse both, but movement over sand
requires more effort (but see section 2.2).

2.1.3 Discretization

Fed by the data from sensors, a discretization
module creates or updates a representation of
the world that the algorithms can operate on.
Actual implementations may vary greatly, but
this paper uses graph theory for illustrational

purposes. This is also the representation used
in most texts about algorithms.

We define a graph G in which every node
represents a tile on the terrain map. The source
node, usually the current location of the vehi-
cle, is denoted by the letter s. Similarly, the
destination (or target) node is denoted by the
letter d. Paths from one tile to another are rep-
resented as edges between nodes in G. Weights
of edges specify movement costs (see next sec-
tion.)

How such a graph is actually implemented
in computer systems depends highly on several
factors like the architecture of the platform, the
programming language used, etc. Naturally,
the most efficient solution (in terms of perfor-
mance, maintainability, etc.) will be preferred
in most cases.

2.2 Movement Cost

Each edge in the terrain graph is accompanied
by a weight; the movement cost. This is an
approximate cost for the vehicle to move from
one particular tile to another. Depending on
the nature of the pathfinder, this cost could be
physical distance, fuel usage, danger, or any-
thing else.

Movement cost may be influenced by factors
such as terrain type (paved road vs. mud) and
available energy sources (sun vs. shade.)

Because of these many influential factors,
one may choose to create several terrain maps
that are used simultaneously by the path find-
ing algorithms. For example, a terrain class
map, a heigh map, an energy map, etc. Alter-
natively, these values may be added and repre-
sented in one map. These are implementation
details that this paper will not elaborate on.

2.2.1 Vertical Movement

Vertical movement occurs when there are
slopes on the terrain. It is interesting because
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it adds a third dimension to the terrain.

One way to cope with this third dimension
is to make the terrain map 3D as well. The
vehicle might even be able to move vertically
in an arbitrary fashion.

Another, simpler, solution is to introduce ex-
tra movement costs to the 2D terrain map. An
ascent (positive slope) increases costs, a de-
scent (negative slope) decreases costs.

3 Path Planning Algorithms

Once the necessary information about the ter-
rain is available, the navigational system can
kick in.

When planning a path from an arbitrary lo-
cation A to location B, the goal is usually to
find a path that has the lowest cost. A combi-
nation of variables is also possible.

3.1 Dijkstra’s Algorithm

Dijkstra’s Algorithm [4, 6] is a very well-
known and widely used algorithm which is
guaranteed to find a shortest path (there may be
multiple paths of the same length.) It is also re-
ferred to as the “Single-Source Shortest Paths”
algorithm because, starting from one source lo-
cation, it will find multiple shortest paths to
different nodes in all directions.

Fundamentally, the algorithm works as a
breadth-first search, starting out at the source
node s and working outward from there until
the target node d has been found.

Initially, the accumulated movement cost is
set to O for s (the vehicle is already there) and
is undefined for all other nodes. At each step,
the algorithm picks a node (X) that has the low-
est accumulated cost and explores its incident
nodes (¥). They have two possible states:

1. Undefined. In this case, assign the cost of
moving from X to Y, added to the cost of
X,t0Y.

Figure 1: Cost Values in Dijkstra’s Algorithm

2. <cost(X)+weight(X,Y): Leave the cur-
rent value intact. A shorter path to Y was
already found.

A situation where a node Y is encountered that
has a higher accumulated cost than the cost of
X plus weight(X,Y) will not occur because X
is always picked from the list of nodes with
lowest cost that still have unexplored incident
nodes. Therefore, the explored region will al-
ways grow in circular fashion.

Once the target node has been reached, the
shortest path can be found by greedily tracing
optimal values back from d to s.

Consider Figure 1 . All nodes are repre-
sented as squares and edges exist between ver-
tically or horizontally neighbouring squares?.
The cost of moving from one node to another
is 1. Obstacles are depicted as black squares,
the source square is marked with an S and the
destination square is marked with a D.

There are multiple shortest paths to d of
(which could randomly be chosen when trac-
ing back towards s), but they all traverse nodes
below the obstacle. Their cost is 12.

Unfortunately, because all nodes with a cost
less than or equal to the target cost are pro-
cessed before the target node is found, Dijk-

2This is called a gridworld
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stra’s algorithm is slow. The are some ways to
improve performance (see section 3.5), which
mostly depend on the characteristics of the ter-
rain. However, for consistent improvement,
altered algorithms are needed. Two ways in
which to do this are:

1. Use heuristics to guide the search. A* em-
ploys this technique.

2. Assuming that a search has been done ear-
lier, for example when the vehicle was in
a different position, reuse earlier search
results but alter them to fit the current
state. This is done by incremental algo-
rithms such as DYNAMICSWSEF-FP.

Still, Dijkstra’s Algorithm is very robust.
Therefore, there may be situations where this
robustness is chosen over performance. For in-
stance, the Mars robot which was mentioned
in the introduction needs to navigate very ac-
curately. Autonomous navigation using Dijk-
stra’s Algorithm will not be optimally fast, but
is still a great improvement over the 11 minute
delay from earth.

3.2 Heuristics
3.2.1 Best-First Search

Best-First Search is very similar to Dijkstra’s
Algorithm, but instead of using accumulated
cost values, node values are calculated by a
heuristic function A(X) that approximates the
remaining cost to travel to the goal from node
X. More importantly, this approach does not
necessarily result in an optimal path. It de-
pends on the quality of the heuristic. However,
it is very fast.

One such heuristic is the Manhattan Method
(probably named after the blocks in New York
that one must travel around) [3]. The heuris-
tic value for distance to a node is the distance
when only vertical or horizontal movement is
possible: d = |x; —xa| + [y1 — 2|

Figure 2: Manhattan Distances to Target

See figure 2 for the Manhattan values for the
gridworld presented in section 3.1. Of course,
other heuristics like Euclidian distance are also
possible.

The advantage of Best-First Search is that
much less calculation needs to be done in or-
der to reach the target. Instead of searching in
all directions, the search now consists of greed-
ily finding lower values of neighbouring nodes
and travelling there.

There are also caveats. Mainly, the algo-
rithm uses a heuristic in a greedy manner. It
does not consider movement costs. Therefore,
a route may easily turn out to be much more
costly than according to the heuristic.

3.22 A*

As was described in the previous sections,
both Dijkstra’s algorithm and Best-First Search
have specific problems: mainly speed and cor-
rectness (finding the absolute shortest path) re-
spectively. However, it is possible to combine
the two approaches in order to get the best from
both worlds. This is what A* does [3, 4]. In-
stead of spreading out in all directions, the al-
gorithm has a bias towards a certain direction,
as determined by a heuristic. Still, because of
the use of a heuristic, A* may also not return
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the absolute shortest path. Whether this is ac-
ceptable depends on the application. In some
cases, it may even desirable, for instance to
model human-like behavior for opponents in
computer games.

The key to determining which nodes to use
when searching for a path is the following
equation:

F=G+H

in which:

e G is the cost to move from the starting
node to the current node, as in Dijkstra’s
Algorithm.

e H is the heuristic for distance to the target,
as in Best-First Search.

The algorithm maintains an “open list” of
nodes that need to be considered and a “closed
list” of nodes that have already been visited. It
proceeds as follows:

1. Add the starting node to the open list.

2. Repeat:

a) Look for the node with the lowest F'
score in the open list.

b) Move it to the closed list.

¢) For each incident node, if it is
traversable and not in the closed list:

i. Ifitis not in the open list, add it
to the open list. Make the cur-
rent node the parent of this inci-
dent node. Record the F, G and
H values of the node.

ii. If it is already in the open list,
use the G value to determine if
this path is better (lower G). If
so, change the parent node to
the current node and recalculate
the G and F values.

The algorithm is terminated in one of the fol-
lowing conditions:

1. The target node has been found (i.e.
added to the open list.)

2. The open list is empty but the target node
has not been found. In this case, there is
no path.

To optimize this algorithm, it is a good idea to
keep the open and closed lists sorted.

3.3 Incremental Algorithms

So far, only pathfinding algorithms which re-
quire complete knowledge of the terrain have
been mentioned. What happens when there is
no knowledge of the terrain and only the target
location (node) is known?

One strategy is to assume a direct path to the
target and attempt to pursue it, discovering ob-
stacles along the way. At each such discovery,
the shortest path could be calculated again us-
ing one of the above methods. However, some
algorithms exist that, in some cases, enable a
more efficient method of map updating.

3.3.1 DYNAMICSWSF-FP

This incremental algorithm is based on Dijk-
stra’s algorithm. DYNAMICSWSE-FP [2, 5]
basically caches movement cost values that
were calculated during previous searches. It
uses a clever way of identifying the move-
ment costs that have not changed and recalcu-
lates only the ones that have changed. Con-
sequently, it results in highest performance
gain (compared to Dijkstra’s Algorithm) in sit-
uations where only a small number of costs
change.

The dynamics of the algorithm can best be
explained by example: assuming a gridworld
as in Figure 1, where all cost values have been
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Figure 3: State after first step.

calculated, every traversable node has the fol- L2 0 4 s e 7 89w
lowing property: the cost value is equal to the
minimum of all neighboring nodes plus the
cost to move from the particular neighboring
node to the current node. For example, the

minimum cost value of all neighboring nodes SO o P e
of C9 in Figure 1 is 12.3 Therefore, the cost B 20K
value of C9is 12+ 1 = 13. It is easy to see that N U U B

this holds for every node.

This fact can be used when changes in the
environment are detected. When an obstacle is
removed the tile becomes traversable. Then it
is checked for conformance to the fact stated
above, which does not hold. The cost value
must then be recalculated, after which the fact
must be checked for all incident nodes, and
so on until no further unconformities are de-
tected. The order in which unconforming in-
cident nodes are updated may be determined
randomly or in greedy fashion.

Similarly, when an obstacle is added (mak-
ing its cost value o) its incident nodes may
have invalid cost values in the new situation.
They are handled in the same way as when an
obstacle is removed.

Figures 3 to 6 illustrate the first 3 steps and
the last step of DYNAMICSWSE-FP after the

Figure 6: State after last step.

3Note that diagonal movement is not possible.
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obstacle E4 has been removed (assuming that
all cost values are available initially.) A diago-
nal line indicates that a cost value is incorrect
and must therefore be recalculated according
to the minimum of its neighbor values.

DYNAMICSWSE-FP is most efficient when
changes occur near the target node because
then the fewest costs have to be updated. If, on
the other hand, changes occur near the start-
ing node, it results in recalculation of a large
part of the graph. The algorithm has even been
known to perform less efficiently than Dijk-
stra’s Algorithm in such cases because of the
computational overhead of checked for uncon-
forming nodes.

3.3.2 Lifelong Planning A*

DYNAMICSWSF-FP does not take any
heuristics into account, and therefore still
relies on a complete path to the target initially,
which results in the exploration of many
insignificant nodes when Dijkstra’s Algorithm
is used. When the terrain is not known, this
can be an imaginary direct path which is
modified along the way, but another possibility
is to combine the incremental algorithm with
heuristics. One algorithm resulting from such
a combination is LPA*, or Lifelong Planning
A*[2,5].

The algorithm is almost identical to
DYNAMICSWSF-FP and only differs in
calculating the priority of nonconforming
nodes to be updated and direction in which to
search. Like A*, it uses a heuristic to prioritize
nodes which are assumed to be closer to the
target.

As with A*, the heuristic approach has both
benefits and issues: it is faster, but may not
be entirely correct. Additionally, it shares the
performance problem of DYNAMICSWSF-FP
when nodes near the starting node change. The
algorithm’s feasibility depends on the situation
(where and how often might changes occur,

must the path be optimal, etc.)

3.3.3 D*

D* is another incremental algorithm which, as
the name suggests, is derived from A*. It uses
incremental graph theory techniques to com-
pute a new, optimal path to the target. The
algorithm’s (advanced) inner workings are be-
yond the scope of this paper. Interested readers
are referred to [8].

However, it may be noted that one particular
feature of D* is that it is most efficient when
changes are detected near the current starting
point in search space, which is the case with,
for example, robots equipped with on-board
sensors. This is a great benefit over LPA*. Ac-
cording to [8], performance is also very high.
Still, this algorithm also relies on heuristic
methods and may therefore not be feasible in
all situations. Accuracy may be preferred over
search speed.

3.4 Other Algorithms

There are methods for path planning that are
vastly different from Dijkstra’s algorithm and
not presented in this paper. Among these are
flow fields and network simplex methods (de-
rived from methods for achieving optimal data
flow.) They are outside the scope of this paper.

Another interesting fact is that in some cases
other methods from Al like evolutionary meth-
ods and neural networks may be used to en-
hance the algorithms presented in this paper.
For example, to calculate heuristics.

3.5 Further Techniques

Several techniques exist which can be used
to further optimize and improve the ones dis-
cussed in the previous sections:

Multiple Resolutions [7] uses multiple res-
olutions of path planning in order ef-
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ficiently calculate a global path (which
would be very expensive, both computa-
tionally and memory-wise, with a large
amount of small tiles) while at the same
time performing fine-grained navigation
at local level. Of course, this does make
the system more complex and therefore
computational resources and complexity
should be weighed against eachother.

Aging When terrain is being traversed and ob-
served at the same time, some information
might be quite old. The vehicle may have
been at a particular location days ear-
lier, which means that things could have
changed since then. With “aging”, the
certainty of observed tiles is multiplied by
a value that is proportional to the distance
the vehicle has travelled since the tile was
last examined. This means that new data
is preferred, but old data still has impact.
A practical example might be that a par-
ticular route that has been visited many
times recently will be preferred in order
to be on the safe side (even if it is slightly
longer), but when it is blocked by an ob-
stacle, an older, less certain route, may be
taken. [7]

Influence Mapping This is used often in com-
puter games, but may apply to real sce-
narios as well (particularly where mul-
tiple robots are involved.) Certain in-
formation on environmental influence is
recorded in an “influence map” that fits
the world map. One example of influ-
ence mapping is death by enemy real time
strategy games. When the enemy has built
an ambush area in which many units per-
ish, this effect will be taken into account.
The units will, in time, prefer a different
route.* [1]

4The artificial player in the game “Red Alert” some-
times suffer greatly from not employing this tech-

Deadends Some areas of the map may not
lead anywhere. In order to avoid recalcu-
lating the corresponding tiles at each step,
they may be marked as unimportant. Of
course, care has to be taken when using
this technique. A tile within the deadend
area may become the target at some point
in time, which means that the vehicle will
have to be able to go there anyway.

4 Conclusion

Path planning is the core activity of au-
tonomous navigation. It depends on support
tasks such as collecting terrain information and
discretization of this information.

Several choices must be made for the dis-
cretizing task, among which: choosing an in-
ternal representation, choosing a tile size and
shape, determining terrain types and specify-
ing movement costs.

Several techniques exist for path planning,
but the most predominant today are based on
Dijkstra’s Algorithm. Improvements over this
original algorithm are generally in the area of
faster search or the ability to reuse previous in-
formation. Faster search is mainly achieved by
heuristics, as with A*. However, it is important
to realize that the use of heuristics may cause a
system to not always return the absolute short-
est path. There is a tradeoff between speed and
accuracy.

Incremental algorithms such as
DYNAMICSWSF-FP, LPA* and D*
able reuse of previous search information.
Depending on where in the world a change has
occured, this may improve speed. Both LPA*
and D* use heuristics as well.

€n-

When assuming a direct path to the target in
the beginning, incremental algorithms may be

nique. Units keep coming along the same route, only
to meet their death.
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used to navigate and explore unfamiliar terrain
simultaneosly.

The existing algorithms may be further im-
proved by using additional techniques like
multiple resolutions and aging.

Finally, the amount of research that has been
done on incremental search methods is quite
limited [7]. There remains much to be explored
and understood about the problem domain.
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