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Abstract

The local-path-planning and obstacle-avoidance module used in the CajunBot autonomous land rover is described.
The module is designed for rapid subgoal extraction in service of a global navigation system. The core algorithm
is built around a grid-based, linear-activation field which supports real-time performance. The subgoal extraction
methods used in conjunction with an artificial potential field are novel. Another novel feature of the path-planner is
that of aggressive avoidancehe planned path turns to avoid an obstacle as soon as it is detected. The system has
been tested in simulation and in the CajunBot autonomous, six-wheeled, all-terrain, land rover.

1 Introduction

A local-navigation and obstacle-avoidance module named CBLN (CajunBot Local Navigation) was developed for
use in an autonomous, six-wheeled, all-terrain, land-rover known as CajunBot [2]. CajunBot is a research testbed
equipped with a global-positioning system (GPS) that conducts long-distance navigation by following GPS waypoints
over varied terrain. The CBLN module described herein augments CajunBot’s abilities by enabling her to plan paths
around dynamically detected obstacles and undesirable terrain. The module continuously, in real time, delivers a
set of local, nearby waypoints (subgoals) compatible with those used in CajunBot’s global, long-distance navigation
subsystem. The CBLN system meets the following design requirements.

The system supports real-time performance in a vehicle that travels at a rate of about 10 mph (4.47m/s).
The system supports rapid subgoal, or way-point, extraction.
The design allows for clear separation of realtime path-planning and realtime steering control (path execution).

Waypoint-based pluggability allows substituting alternative local path-planning modules for testing purposes.
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The algorithm considers terrain cost. For instance, some terrain types are navigable but should be avoided. The
algorithm provides waypoints to avoid such terrain unless there is no alternative.

*Long list of acknowledgements.



1.1 Related work and current approach

Feng & Krogh [4, 7] built an early subgoal-based, dynamic obstacle-avoidance system that used range-finder-based
obstacle acquisition. Subgoal extraction used the assumption that obstacles were convex polygons (Subgoals were
chosen to avoid obstacle vertices). The system clearly differentiated path-planning from path-execution and steering
control (a good design for subgoal-based navigation). They also used the method of expanding obstacles by the
bot radius (allows treating the bot as a point, while accounting for its physical radius in obstacle avoidance). This
obstacle-expansion technique was also used in [13].

Barraguand et al. [1] described sophisticated artificial-potential-field (APF), path-planning methods for robot manip-
ulators with many degrees of freedom. These algorithms were not designed to be incremental (they precomputed
many data structures), operate in real-time, or cope with situations where the robot deviates from the planned path (as
in a fast-moving vehicle with imperfect steering). However, our CBLN module does use one element of their APF
algorithms, namely their W-potential, which computes city-block distance from a goal location on a cell grid.

An APF algorithm uses a charged-particle metaphor, where the robot, is (say) positively charged and a desired goal
location (or region) is negatively charged. Obstacles are given the same charge as the vehicle. The simulated force
vectors can control the steering of the actual robot in the actual world so that the robot approaches the goal while
avoiding obstacles. An attractive feature of APF algorithms are the smoothly varying paths that are generated. How-
ever, in the present context such algorithms have the following drawback pertaining to the form of their output. Global
navigation is often subgoal, or way-point, based. An APF algorithm must express its output as way-points.

Lagoudakis & Maida [8, 9] used a neural-network-based APF [5, 6] in an incremental path planner. They also used
the obstacle expansion technique introduced in [4].

Stentz & Hebert [13] describe an integrated local and global navigation system which is capable of terrain classifica-
tion. The local navigation system does not do elaborate path planning, but performs immediate obstacle avoidance.
The local navigation provides steering recommendations, rather than waypoints.

The present path-planner uses a grid-distance-field (GDF) based on the W-potential in [1]. However, the present
work represents a novel synthesis of APF algorithms with subgoal navigation methods. In particular, the methods for
extracting subgoals (local waypoints) from APFs are novel. Another novel feature of the path-planner is the feature
of aggressive avoidancd he vehicle turns to avoid an obstacle as soon as it is detected. The GDF has the following
features.

1. Field strength changes linearly with (city-block) path-length from the goal.

2. Obstacles are avoided by virtue of not falling on the trajectory path created by the gradient. However because of
maneuverability uncertainties in the robot, the planned route may not exactly match the realized route. Regions
of repulsion from obstacles are used only when the bot deviates from the planned path.

3. The linear gradient is generated by a simple and fast algorithm (linear on number of grid cells).

4. The resulting paths do not have smoothly varying trajectories. However, since the global navigation system
requires waypoints (rather than a detailed trajectory), this is not a drawback. Further because of the aforemen-
tioned maneuverability uncertainties, computing a fine-grained exact path is not useful.

Figure 1 summarizes our initial design choices. The top-left flow-field was generated by the algorithm in [9]. Tra-
jectories are smooth. However, the flow-field robustness is quite sensitive to parameter choices and scales poorly to
arenas whose grid size is larger thahx 50. The top-right figure shows a GDF. Trajectories have sharp turns but
performance is stable with respect parameter adjustments and the algorithm scales well with arena size. Field flows
were obtained by applying minusctan(z, ) to thex andy components of the stablized activation gradient. Further
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Figure 1:Initial design flow maps showing arena viewed from above. Subfigures show direction of travel (before subgoal extrac-
tion) toward goal location (30, 20) from every point in arena. Rectangular obstacle is positianed 28 and is extended in the
y-dimension. (A) Generated by a neural network. Trajectories are smooth but algorithm scales poorly to arena sizes larger than
50 x 50. (B) Flow-map was generated by applyiag:tan(z, y) to a GDF. (C) Flow-map used the same GDF as in B, but from a

rule that uses only gradient sign and not magnitude. When magnitude is not used, trajectories are straight lines joined by 45-degree
turns (C). This is good for extracting way-points. Also, C shows aggressive turning to avoid obstacles. Compare locations (5, 15)
inBand C.
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Figure 2:Local arena is constructed and used by the local navigation subsystem to circumvent dynamically detected obstacles.
The GDF algorithm operates within a local arena or grid. As the bot moves, the arena moves with it. When the arena is constructed,
a subgoal is chosen to be en route to distant AWP. The arena is updated on each local navigation cycle. An arena update can consist
of building a new arena or adding dynamically acquired terrain descriptors to the current arena.

experimentation revealed (bottom left) that if gradient magnitudes were ignored and only the kigndnd+1) of
the (z,y) gradient components was used, it was easier to extract way-points from the flow fields (see Section 2.2).

The following describes the details and extensions of the CBLN module, its communication with the global navigation
subsystem, and its performance in simulation and in CajunBot.

2 The local path-generation algorithm

As CajunBot travels, it visits a sequence of predetermined, global GPS waypoints. The specific waypoint that the
bot is approaching is the active waypoint (AWP). When this waypoint is reached, the next waypoint in the sequence
becomes the new AWP. The CBLN module is responsiblddcal path generatiorand allows the bot to navigate

around obstacles (and undesireable terrain) en route to the AWP (see Figure 2). It continuously generates a series of
subgoal waypoints that lead to the AWP. The module generates paths in a rectangular arena, whose dimensions are
about 20 — 40 meters on a side, that moves along with the bot. CBLN communicates with the rest of the system via a
realtime blackboard [3] implemented in shared memory (see Figure 3).

In the following, we refer to the global navigation system as G-nav and the local navigation system as L-nav. CBLN

is an implementation of L-nav. The L-nav process operates in a read-compute-write cycle, as it reads and writes to
the blackboard (Figure 3). Each cycle islaimav cycle whose duration is about 0.5 sec. One L-nav cycle consists of
reading path-relevant information, updating the local arena, computing a local-path, and then writing the results back
to the blackboard as a sequence of local (subgoal) waypoints. A later section describes exactly what L-nav reads and
writes to the blackboard. Here, we say a few words about how the arena is initialized and then devote the remainder of
the section to describing the path-generation computation. When the arena is initialized, a subgoal (or subgoal region)
en route to the AWP is generated. The subgoal is chosen to be near enough to the bot’s current location, so that a local
arena can be built to enclose the bot and subgoal, with the bot at one end and the subgoal at the opposite end. The
path-generation computation has two components. First, the GDF is computed and then a sequence of local waypoints,
or subgoals, is extracted from the GDF. This local sequence leads to the subgoal that was created when the arena was
initialized. We now turn our discussion to computing the GDF, and then later to local waypoint extraction.
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Figure 3:Information flow between the realtime blackboard and the CBLN implementation of L-nav. (The component showing
the dashed arrow was not implemented.)

2.1 Grid distance field

The local arena has dimensionsandy and is represented by a rectilinear grid@fcolumns andR rows. Grid

spacing is about 30 cm. Grid columns representitdénension of the continuous arena space and rows represent the

y dimension. The grid is used to construct a GDF which generates flow maps and allows a path to be extracted from
the bot’s current location to the local subgoal region within the arena.

To support path generation, each grid cell falls into one of four types: goal, obstacle, expansion, and open (clear). The
set ofgoal cellscompose the (contiguous) subgoal region that the bot wants to reach. A path is constructed to reach
a cell in this set.Obstacle cellare so named because they represent space containing known obstacles (as indicated
by external sensors). Within the grid, the bot is modeled as a point object occupying exactly one cell. Since the actual
bot has physical extengxpansion cellsepresent grid areas that the “point bot” should avoid to prevent a collision
with an obstacle. The size of the expansion region corresponds to the physical bot radius (assuming a circular bot).
Remaining cells are considereden

Figure 4 illustrates the purpose of expansion cells. Consider the case of a circular bot with physical-radats,

can turn in place (Figure 4 [left]). A collision with obstacle,is avoided provided the center of the bot is always a
distance greater thanfrom o. Since it is easier to model the bot as a point, an equivalent formulation is shown on
the right. Here, an expansion radius of size greater thare is created around the obstacle perimeter (whete0

is a safety margin). If the bot followed the flow field in the open area of the arena perfectly (see Section 2.2), this
would be the end of the story because flow fields in the open area always avoid the expansion region. Unfortunately
in a physical world, the bot may enter the expansion region because of imperfect steering or another unanticipated
physical event. Therefore, within this expansion region, linear flow-fields are generated to direct the bot away from
the obstacle. Complications for an elongated bot that does not turn in place are described in Section 4.2.1.

A path within the arena from the bot's current location to the subgoal region is constructed from a GDF. Before
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Figure 4:Use of an obstacle expansion region to simplify collision calculations.

Category Initial value  Clamped?
init_goal_act 0 yes
init_obst_act 2 x max_pl yes
init_open_act max_pl no
init_expand_act max_pl no

Table 1: Initial values for grid square activations. Goal square activations are clamped to 0. Obstacle activations are
clamped to twice the city-block maximum path length R < max_pl < C - R). Other activations are initialized,
but not clamped, to values midway between goal and obstacle activation.

describing path construction, we describe how the GDF is generated. The grid is an array of cells whose activations
evolve over a series of discrete time steps. Activation of a given cell changes according to its own type and according
to the activations of its four neighbors (north, south, east, and west). We first describe how grid activation changes
over one time step within the update sweep. The process of propagating stable activations over a grid requires a series
of grid-update sweeps. grid-update sweepomputes a single activation update to each grid cell.

2.1.1 Grid-update sweep

Let: denote a cell at grid locatioft, r). Letact(i,t) denote the ‘activation’ of at time step¢ (after¢ grid sweeps

have occurred). The different cell types have different initial activatieas(i) denotes the type afand can have
values:goal, obst, open, andexpand. The symbolsinit_goal_act, init_obst_act, init_open_act, init_expand_act denote

initial activations for goal, obstacle, open, and expansion cells, respectively. The initial activation of each cell (after
0 grid sweeps) is given below and in Table 1. The specific initial values depend on the length of the longest path
within the grid. There ard? - C cells. The maximum path length must be less than this, regardless of the obstacle
configuration within the grid, because no cell occurs in a path more than once. If there are no obstacles in the grid,
then the maximum path length must be less tRai C'. In practice, the parameterax_pl is set to a value between

these bounds.

init_goal_act if cat(i) = goal
.y ) init_obst_act if cat(i) = obst
act(s,0) = init_open_act  if cat(i) = op (1)
init_expand_act if cat(i) = ex pand

Let nb(7) be the set of city-block (CB) neighbors ©fThese are the cells at locatioris-+ 1,7), (¢ —1,7), (¢,r + 1),



and(c,r — 1). Letnb_act(i, t) denote the set of the activations of the neighbors dhat is,
nb_act(i,t) = {act(j,t) | 7 € nb(4)} 2

Let max andmin respectively denote the maximum and minimum of a set of scalars. For each grid sweep, each cell
updates its activation according to the following rule.

init_goal_act if cat(i) = goal
) _ ) init_obst_act if cat(i) = obst
act(i,t+1) = min(nb_act(z,t)) +1  if cat(é) = open (3)
max(nb_act(i,t)) — 1 if cat(:z) = expand

The interesting cases are the open cells and expansion cells. For an open cell, the cell reads the activations of its four
neighbors and remembers the minimum value. It then computes its own activation by adding one to that minimum
value. An expansion cell also reads the activations of its four neighbors but remembers the maximum value instead of
the minimum. It subtracts one from this maximum. Section 2.1.3 extends (3) to include cell cost.

2.1.2 Stable activation-field propagation

The GDF algorithm performs grid sweeps until the GDF is stable. The GDF is guaranteed to be stable if the number
of grid-update sweeps is at leastx_pl. The pseudo-code below uses (3) to propagate a stable GDF.

do_times maxpl
begin
actBuff= compute all new activations according to Formula (3);
store actBuffinto grid;
end;

The update sweep is synchronous: new activations are computed for all of the cells before any values are changed.
Each grid-update sweep updates the activations for each @f th cells once. Thus a stable GDF is obtained after
max_pl - C - R cell-activation updates. The following theorems describe the stability and convergence properties of the
activations that emerge as the GDF propagates.

The preliminary definitions formalize the notion of grid city-block distance. Given a tethe city-block (CB)
neighborsof i are the four cells touchingto the north, south, east, and westpathis a sequence of cells without
duplicates. Acity-block pathfrom cell to j is a sequence of cells where the first element of the sequengcthis

last isj, and any two adjacent cells in the sequence are CB neighbor<ityHaock distancérom celli to cell j is

the length of the shortest city-block path frarto j. Path length is defined as the number of elements in the sequence
minus one. The next theorems describe how long it takes (number of grid update sweeps) for the GDF to stabilize.
The path extraction algorithms in Section 2.2 assume the GDF is stabilized.

Theorem 1 For a grid consisting of only goal and open cells, aftér R update sweeps, the activation of each open
cell is stable and codes its city-block distance from the closest goaleell.

Theorem 2 LetG be a grid consisting only of goal, open, and obstacle cells. If the activations of the obstacle cells are
clamped t@ - max_pl, then aftermax_pl update sweeps, the activation of each open cell codes its city-block distance
to the nearest goal cellZ



Figure 5:The CH path is composed of straight lines joined together at 45-degree angles. Background shows field flow map. This
grid does not use expansion cells. Figure 6 shows a grid and associated CH path that uses expansion cells.

Theorem 3 During GDF propagation, once an open cell reaches an activation that codes its CB path distance to the
nearest goal cell, its activation reaches a fixed point. That is,

act(i, t + 1) = act(i, t).

2.1.3 Incorporating a cost function

The update Formula (3) can be extended to include cell cosicdsefti) > 1 denote the cost of cel] which is some
measure of how difficult it is to travel through the region of the arena represented by that cell. Default cost is one. The
revised activation-update formula is given below.

init_goal_act if cat(i) = goal
) _J init_obst_act if cat(i) = obst
act(s,t +1) = min(nb_act(s,t)) + cost(z) if cat(i) = open )
max(nb_act(i,t)) — 1 if cat(i) = expand

Let max_cost be the largest cost value used in the grid. Maximum path length isimawcost x C x R. Intuitively,

giving a cell a cost greater than one can be interpreted as magnifying the size of the cell, thereby making it seem farther
from the goal. There is no concept of cost for the expansion area. The bot cannot penetrate deeply into an expansion
area without causing a collision (safety margincpf Therefore, when in the expansion area, the bot never needs to
travel far to leave it. In practice, the most common scenario is that the bot sideswipes the expansion area and must
veer away from the obstacle, while continuing on its path.

2.2 Path extraction and local waypoint generation
2.2.1 Path extraction

After the GDF is stable, flow maps, paths, and waypoints are extracted. For a stable GDF, the activation value of an
open cell;i, codes the CB distance to the nearest subgoal cell fi®tocation. From this information, it is possible



Signof Sign of Local Signof Sign of Local Sign of Sign of Local
z—grad y—grad heading z—grad y—grad heading z—grad y—grad heading

-1 -1 SW -1 0 w -1 +1 NW
0 -1 S 0 0 N/A 0 +1 N
+1 -1 SE +1 0 E +1 +1 NE

Table 2: Rules for extracting grid-relative compass headings from the sign of #m& y gradient components.
Heading is local to a cell.

to extract a path fromi to the subgoal, circumventing arena obstacles. Internal to the GDF, a path is represented as a
non-duplicating cell sequence, where the last cell in the sequence is a subgoal cell.

Trajectories are typically extracted from gradients by applyingan(z,y) to thexz andy gradient components of

each arena location. For our GDF, mirustan(z, y) would be used because the bot needs to travel down the gradient

to approach the subgoal. If smoothly varying trajectories are not required (e.g., as is the case for waypoint generation),
one can ignore the magnitude of the gradient componerasdy) and use only their sign{1, 0, +1). Hence in the

GDF algorithm, only the signs of theandy gradient components are computed for, and assigned to, each cell. From
these values, local headings are computed for each cell. Rules for mapping gradient sign into local compass heading
are given in Table 2. The headings are quantized into eight values known as the local, grid-relative compass headings.
These quantized headings are used for path extraction (explained below). Drawing the local compass heading at each
cell location generates the quantized flow map. The definitions below help characterize the paths.

An annotated grids one in which each cell has been assigned a quantized local compass heading.ille\ein
associated local compass heading. The heading points to exactly one of the eight adjacent gellSrisasquare
is said totarget ;.

Because local headings are quantized, the GDF supports extraction of paths composed of line segments joined at 45-
and 90-degree angles. Such a path is shown in Figure 5. The points where these lines are joined are candidate local
waypoints. Note that even though cell activation codes CB distance, the rules of Table 2 allow the extraction of a CH
path, defined below.

Definition 1 Let P be a path ofV annotated cellsP is aCH pathif the cell at positior; in the sequencd (< i < N)
targets the cell at position+ 1. O

Procedure to construct a CH path. Let G be an annotated grid anidbe a particular cell. The objective is to
construct a CH path from to a subgoal cell. Assume that the GDF is stabilized. Initialize gatio the empty
sequence. Put cellat the end ofP. While i is not a subgoal cell do the following. Seto the target of, and then
add the new value ofto the end ofP. O

For a CH path, all adjacent cell in the path are neighboring cells within the grid. We do not want each adjacent cell
in a CH path to be mapped into a separate waypoint. We need a path data structure which provides more support for
waypoint extraction. For this purpose, the relevant feature of a path is where it changes direction. The next type of
path — the PB path — saves only those sequence elements that represent changes of direction.

Definition 2 Let P be a CH path where each path cell has an associated local compass heading. The bends in the
path correspond to positions in the sequence where the CH changes. Consider two adjacent cells at pasitions

i+ 1 in the path sequence. dfandi + 1 have different compass headings, then the cell at positien represents a

path bendO



Path type Abbrev  Function

City-block CB Cell activations code shortest CB distance to subgoal.

Compass heading CH Local headings extracted from CB activations using gradient sign.

Path bends PB Filtered CH path to retain cells where direction changes.

Waypoints WP Filtered PB path to retain cells matching spacing and reachability requirements.

Table 3: Summary of path types used to obtain waypoints.

Definition 3 A path-bend (PB) patis a subsequence of a CH patR, that contains exactly the cells (with order
preserved) inP that are path bends

Procedure to extract path bends from a CH path. The path is a sequence of cells, where the sequence has N
elements. Start with the cell at positior= 2 in the sequence. If the heading at positiafiffers from that at position

i — 1, then position represents path bend Add this to the end of the sequence. Incremeamd repeat the process
until cell i is a subgoal cell. Add the subgoal to the sequenkce.

2.2.2 Waypoint extraction

In a world where the bot did not have physical steering limitations, the cells in a PB path would yield acceptable
waypoints. Because of these physical limitations, one more type of path is needed to represent the final waypoint path.

Definition 4 A WP pathis a subsequence of a PB path whose cells satisfy bot-specific, waypoint acceptability crite-
ria. O

To extract waypoints from a smoothly varying trajectory, one must identify path locations of high curvature. Using

a linear GDF to create paths composed of line segments joined by discrete turns simplifies this problem greatly. The
path bendsas defined above, are obvious and serve as candidate local waypoints. Waypoint filtering heuristics are

used to ensure that the waypoints are reachable by the bot. The heuristics take into account the factors of waypoint
separation, bot maneuverability, and bot heading.

To summarize, three path-sequence types are used (see Table 3). These are CH, PB, and Wi wh&ig@ C WP.

That is, each sequence is a subsequence of the previous. In particular, the CH path is filtered to obtain the PB path.
This in turn is filtered to obtain the WP path. The WP path consists of cells. The locations of each of these cells must
be converted from grid-relative coordinates into global coordinates and then published to the blackboard.

2.2.3 Waypoint stability

A path to the subgoal is constructed when the bot is at a particular point in the arena. If the bot is on a cell within that
path (not necessarily the first cell) and then constructs a new path starting from the cell it is currently at, then the new
path is a subpath of the previous path. This yields a form of path stability. The bot continuously recomputes its path.
As long as the bot lives in a grid world and follows the previously computed path, the new path matches the previous
path.

However, the real bot lives in continuous physical space and its current position must be mapped to a grid cell as the
bot travels. This can create complications. If the bot is moving horizontally or vertically in grid-relative coordinates,
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Figure 6: Incremental obstacle detection. Laser range finder does not detect the full extent of the distant obstacle. Path is
constructed on the basis of the information available. The arena must be continuously updated and a new path generated as the
robot travels. Path bends in the middle of the path are too close together to all serve as waypoints. They must be filtered.

Figure 7: Initial bot location is at black dot within bottom-left of square (1, 6). Initial path is shown in black arrows with first
waypoint at center of path bend (5, 2). If bot moves in continous space along path toward waypoint, bot could enter boundaries of
grid square (1, 5). A path originating at this square is different from the previous path. The new path, indicated by dashed arrows,
is parallel to the original path and merges with the original path. The new waypoint is at (4, 2), displaced horizontally from the
original waypoint by an amount equal to the grid spacing. If the bot continues, it could reach the boundary of square (2, 5) and
reconstruct the original path with the original waypoint. This leads to waypoint oscillation by an amount equal to the grid spacing.
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there will be no complications. In this case, when the bot’s physical position is mapped to a grid cell, that cell will be
in the existing path sequence. If the bot constructs a new path from that point, then the new path will be a subpath of
the original path. This property yields the stability described above.

However, if the bot travels diagonally in grid-relative coordinates, then even if the bot follows the path, mapping its
position in continuous space to a grid cell does not necessarily place it on a cell in the existing path (see Figure 7).
Its position could map to a cell adjacent to the path. If a new path is generated from this location, it will be slightly
different. It will generate a segment that is parallel to the corresponding segment in the previous path, but displaced
horizontally or vertically (in grid-relative coordinates) by an amount equal to the grid spacing. After the first bend, the
two paths will merge.

The significance is that the first local waypoint extracted is located at that path bend. Depending on which path
is constructed, the waypoint will be different and will shift location by an amount equal to the grid spacing. This
problem can be eliminated by mapping the bot’s global location to a diamond on a diamond-shaped tiling of the arena
(rather than grid-shaped) during the path-extraction phase while the bot is traveling on a grid-relative diagonal heading.
In other words, when the bot is traveling horizontally or vertically use a rectilinear grid. When the bot is traveling
diagonally, use a diamond-shaped grid. This is only needed for path extraction and not for propagating the GDF.

3 Communication between L-nav and the blackboard

L-nav communicates with the rest of the CajunBot system by reading and writing to the realtime blackboard imple-
mented in shared memory (Figure 3). L-nav is one of many processes that interact with the blackboard. Each type
of data residing in the blackboard is owned by exactly one process that has write privileges for that data type. Other
processes only have read privileges for that data type. L-nav owns the subgoal waypoints that it writes to the black-
board for use by G-nav. However, as seen in Figure 3, it reads compass heading data, GPS location data, various
terrain descriptors from the digital terrain map, and a reference to the AWP. Data on the blackboard is expressed in
global coordinates whose units are meters. The L-nav read-and-write processes must translate between the blackboard
global coordinates and the grid-relative arena coordinates whose units are centimeters. The list below summarizes the
complete L-nav cycle (from Section 2) with its read and write components included.

1. Read the path-relevant information from the blackboard and convert it to grid-relative coordinates.

2. Initialize or update the arena using the information from Step 1 (plus cached terrain descriptor information from
the previous four L-nav cycles).

3. Propagate a stable GDF and extract subgoal waypoints as described in Section 2.

4. Write the waypoints (expressed in global coordinates) to the blackboard.

The following presents more detail on information exchange between the blackboard and arena. We describe arena
construction heuristics, conversions between global and grid-relative coordinates, terrain descriptor input, and local
waypoint (subgoal) output.

3.1 Arena construction heuristics

As the bot travels, if there are no detected obstacles, an empty arena moves along with the bot, and L-nav publishes
one subgoal waypoint to the blackboard, which is the arena subgoal en route to the global AWP. When the arena is
first constructed, the arena length is chosen to be the distance of the bot to the subgoal plus three bot lengths. Initial
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Return code Meaning
result_normal A path was found.
result_trapped There is no path.
result_arena_too_small Obstacles span width of arena.
result_goal_in_obstacle Subgoal unreachable because within obstacle.
result_bad_input Bad input.

Table 4: L-nav return codes.

distance between the bot and subgoal is 1500 cm. If this subgoal lies in the vicinity of a known obstacle then the
arena is enlarged to accommodate a more distant subgoal (distance increment is 100 cm). This process repeats until a
subgoal is generated that appears to be in open space. It is possible that the AWP will be closer than the arena subgoal
(more discussion in Section 3.2.2). The path planner can also determine whether the bot is trapped or whether, given
the obstacle configuration, the arena is too small to properly plan a path. It signals this information through a return
code shown in Table 4. Unfortunately, in the current implementation, this information is not written to the blackboard.

3.1.1 Conversion between grid-relative and global coordinates

When an arena is built, a coordinate transformation is defined between the gobal and grid-relative coordinates. The
transformation is based on the following information and is used in Steps 1 and 4 of the aforementioned L-nav cycle.

1. The global position of the bot is known (from GPS) and the initial position of the bot in the arena is known (by
stipulation). This establishes the translation component.

2. The heading from the global bot location to the AWP is known. The arena subgoal is stipulated to be due east
in grid-relative coordinates. This establishes the rotation component.

3. The transformation does not have a scaling component.

3.2 Blackboard interaction

3.2.1 No-go and cost-descriptor input

L-nav understands two kinds of terrain descriptors. These are no-go and cost descriptors. The no-goes indicate
points in space that have hard obstacles. When a grid cell becomes an obstacle cell, then any open cells within the
bot radius of the new obstacle cell are designated as expansion cells. Cost descriptors establish particular points in
space as having higher cost (greater than the default of'ofb} terrain descriptors on the blackboard do not have
persistence. Consequently, within L-nav a terrain-descriptor buffer with a history of five (previous four and current)
L-nav cycles is used.

When there are obstacles or terrain cost descriptors, then the arena is nonempty, its position remains fixed in global
space, and the bot moves within the arena (in contrast to the circumstance of an empty arena). The arena is allowed
to exist for up to twenty L-nav cycles. If the bot does not reach the arena subgoal within this period, the arena is

destroyed and rebuilt afresh starting at the bot’s new location. The cached terrain descriptors are added to the new

1The L-nav primitives to add terrain descriptors to the arenaaad obstacles andadd _location _cost _info . They take global
coordinatesget _path retrieves the local waypoints from the arena. More documentation is available in [11].
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Figure 8:Subgoal waypoint queue. The bot achieves these waypoints in sequence. The queue is continuously updated.

arena. This design was chosen experimentally and offers a compromise between reactive performance and persistence
of memory.

3.2.2 Waypoint queue

Whereas G-nav publishes the identity of the current AWP to the blackboard, L-nav publishes subgoal waypoints to
the blackboard. The subgoal waypoint queue holds up to twenty waypoints as shown in Figure 8. The queue has
two parts delimited by the location of the AWP. In front of the AWP are the local obstacle avoidance waypoints that
were generated in the arena. Immediately in front of the AWP is the arena subgoal. After the AWP, are the next GPS
waypoints in the bot’s preset itinerary. A queue size of twenty was chosen to have enough capacity to hold the local
obstacle avoidance path plus a few global waypoints. In practice, local obstacle-avoidance paths never have more than
eight waypoints. When the bot approaches the end of its journey, the queue has fewer waypoints according to the
number of waypoints remaining in the preset itinerary. At the end of the journey, the AWP is the last waypoint in the
queue.

Subgoal waypoint beyond AWP As mentioned in Section 3.1, the subgoal waypoint may be beyond the AWP. The
reason for allowing this is as follows. If there are no obstacles, then if the bot travels to the subgoal, it will also travel
through the AWP, thereby achieving its objective. There is the complication, that the bot will backtrack when it tries
to achieve the AWP after reaching the subgoal. G-nav can detect this situation and then discard that AWP in order to
prevent backtracking.

There are two ways this can go wrong. First, if the subgoal is considerably beyond the AWP, then reaching it may
take the bot considerably off course as it travels to the subsequent AWP (see Figure 9A). This problem is mitigated
by having the arena persist for a maximum of twenty L-nav cycles. Thus, the bot is guarrantteed to head toward the
subsequent AWP within twenty L-nav cycles of reaching the current AWP. The second problem is that the AWP could

be missed if there are obstacles en route to the more distant subgoal as shown in Figure 9B.

4 Performance

CajunBot was tested in the DARPA Grand Challenge Qualification and Inspection Demonstration (QID) obstacle
course. Because CajunBot was built in such a short time, the L-nav software was not run on the physical CajunBot
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Figure 9:Arena subgoal issues. (A) Bot deviates from next AWP if it tries to achieve the arena subgoal. (B) Bot entirely misses
AWP if it avoids obstacle en route to arena subgoal.

until after QID started. Consequently, all of the L-nav testing was done in simulation. This section describes how the
simulations were developed and how CajunBot performed in the QID.

4.1 Simulation development

There were six phases of simulation development before the final L-nav module was deployed on CajunBot. These
were:

4.1.1 Potential field visualization

Potential fields were initially generated in a3 prototype and visualized using MLAB. Examples are shown in

Figure 1. We started with a neural-network-generated potential field but found that a simple linear potential field that
coded city block distance to the goal was more useable. We subsequently learned that this type of potential field was
first used in [1]. We initially created flow maps using the gradient sign because we didn’t immediately think of using
the more standard minusctan(z, y) function. One would expect the more standarctan flow maps to have better
properties than the gradient-sign flow maps, but this wasn't obvious from observing the flow maps. Certainly, the
arctan flow maps had a seemingly desireable smoothness property but the gradient-sign maps had a nice aggressive
avoidance property. Further, although the gradient-sign path trajectories had sharp turns, the trajectories themselves
seemed very trustworthy and sensible. At this point, we abandoned the neural network potential fields in favor of
the linear potential fields. However, in order to evaluate flow-map generation from the potential field, we needed a
different testing tool.
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4.1.2 Initial embedded environment simulations

In this phase, we built aa¥a -based agent/environment simulation of a bot navigating a local arena with obstacles.
Examples are shown in Figures 5, 6, and 10. As the simulator developed, we gradually added more realism to the
bot and environment such as including maneuverability limitations, skid steering, and steering delays. Internals of
the core algorithm were aggressively visualized in order to reveal anomalies and bugs. We also systematically added
increasingly complex obstacle configurations, such as that shown in Figure 10. In these simulations, the bot performed
better with the gradient-sign flow maps than with thetan flow maps. A bit of a crisis emerged when steering
delays were introduced because even at low speeds, the bot's direction of travel would oscillate severely and the
vehicle would crash. In discussion, it was pointed out that G-nav was waypoint-based and perhaps the best way for
L-nav to communicate with G-nav was by supplying local subgoal waypoints to G-nav. It also seemed likely that
using waypoints would simplify the steering control issues. Once the decision to use waypoint-based interaction was
made, thearctan flow fields were abandoned and we committed to using the gradient-sign flow fields. It was at this
point in the simulation work, that the waypoint extraction heuristics described in Section 2.2 were developed. When
waypoint-based control was added to the local arena, the steering-oscillation issues did improve.

4.1.3 Initial C++ prototype

At this point, we had a local navigation prototype hamed CBLN which was writteavin.JHowever, the CajunBot
software was written in C++. Now we were faced with translating the L-nav system into C++ without introducing
bugs. The low-level potential-field software was translated and then tested by visualizing ArinA® using the
methods in Section 4.1.1. However, to test the other components we needed either to link it with the exiating J
testbed and visualization environment (perhaps via JNI), or translate the environment into C++. Since such a large
percentage of the core algorithm was aggressively visualized, it was decided that translating tiestbed into C++

and OPENGL/GLUT was the most prudent approach. It was also decided that the team would develop a comprehensive
CajunBot simulation system [10] that mimicked the physical CajunBot. The design objective for this system was
to solve the full system integration and testing problem. It was intended that any code that ran correctly in the
comprehensive simulatashould be trustworthy in the physical CajunBot. Also, in parallel, we continued the existing
methodology of developing a seriestafgeted simulationsach of which was designed to study and answer questions
about a specific problem.

4.1.4 G-nav control of L-nav

Although it was expected that G-nav and L-nav should easily work together if their means of interaction were
waypoint-based, we had not yet developed an algorithm to realize this. The previous C++ testbed was targeted to
model L-nav. We decided to enhance it to include a G-nav testbed. This testbed modeled the bot operating in a global
environment supplied with obstacles and operating under GPS-waypoint control. Whenever an obstacle came within
the bot's sensor range, G-nav would call L-nav to obtain a sequence of subgoal waypoints that would bypass the
obstacle(s). The arena construction heuristics and coordinate transformations described in Section 3.1 were initially
formulated and studied using this testbed. This testbed also enabled testing of some elements of the terrain descrip-
tor interface. However, most importantly, this testbed allowed for simultaneous observation and visualization of the
internals of G-nav and L-nav working together.

4.1.5 Blackboard interaction between L-nav and G-nav

In the previous simulator, G-nav invoked L-nav whenever an obstacle was in sensor range. In the physical CajunBot,
L-nav and G-nav were to be concurrent processes interacting via the blackboard in shared memory. The objective

16



Jofccsssdssssssssrmonssfssssssssioeses £ AEEAEEg [ | I n

l:\\ SESESESESESESESESEEES! ‘EH I EE S EEEEEESEEESEEESEEESEEE

Figure 10:Dead end canyon. (Left) Bot enters canyon to approach subgoal. The canyon has a dead end which is beyond sensor
range. (Right) When dead end is detected, L-nav generates a new path to subgoal. If bot follows this path, it will hit canyon wall
while turning.

of this simulation was to transform L-nav into a concurrent process reading and writing to shared memory. Thus

the previous prototype needed to be refactored to reflect this design. However, it still needed to retain the ability to

simultaneously visualize G-nav and L-nav working together. This stage of development yielded the designs shown in
Figures 3 and 8, except for the terrain descriptor component in Figure 3. In this version of the simulation, we simulated

obstacle acquisition internally. However, in the physical CajunBot the terrain descriptors were being extracted by

another concurrent process. Also, this simulation did not use the G-nav software in the physical CajunBot because it
was not deemed necessary to answer the concurrency issues of L-nav.

4.1.6 Comprehensive CajunBot simulator

At this point, the code for the L-nav concurrent process was transferred to the comprehensive Cajunbot simulator [10]
to address as many system integration issues as possible. In particular, this allowed testing of the blackboard commu-
nication between the sensor systems, L-nav, and the complete G-nav. In this phase, a few coordinate transformation
bugs were revealed, such as failing to translate between meters and centimeters when reading from the blackboard
(the G-nav module of the previous phase did not correctly model the CajunBot G-nav coordinate system). Also some
waypoint extraction bugs were uncovered. Perhaps most revealing from a software engineering standpoint is that the
L-nav software gave uninformative error messages when it received unanticipated types of data provided by the richer
simulation environment. Thus, it was difficult to distinguish bugs in L-nav from simply receiving bad data from other
processes. Earlier simulations should have used a richer spectrum of testing data.

The comprehensive CajunBot simulation did have limitations, however. For instance, it could not simulate the richness
of the sensor input provided by the physical CajunBot operating in a real environment. In addition, there were some
concurrency surprises that were not revealed in the comprehensive simulation. Perhaps one reason for this was that
the comprehensive simulation needed to allocate resources to simulate the testbed environment, whereas this was not
necessary in the software that ran on the physical CajunBot. The differing processing loads on the two systems could
have lead to the observed concurrency discrepancies.
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Figure 11:Elongated bot and limited maneuverability. (A) Radius of a circle circumscribing an elongated bot that can turn in
place. (B) When turning left (right), skid steer bot rotates about left (right) side.

4.2 Simulated Performance
4.2.1 Bot not aligned with path

The following flaw in the L-nav system was revealed in simulation experiments when the core algorithm was being
developed (Ava -based agent/environment simulation). Figure 10 (left) shows the bot traveling down a canyon toward
goal. The canyon has a dead end which is beyond the bot’s sensor range. On basis of current information, the most
direct route to the goal is through the (unknown) dead end. When the sensors detect the dead end, a new local path
is generated (right). However, the bot heading is not aligned with the new local path. If the bot tries to follow the
path, it will collide with the canyon wall while turning. However, if the bot were aligned with path, there would be no
problem. Hence a test must be made whenever the bot turns more than 125 degrees.

Why didn’t the expansion region work? An expansion region for obstacle avoidance, as shown in Figure 4, works
perfectly with a circular bot that can turn in place. Figure 11A shows an elongated bot that can turn in place. The
distancer shows the radius of a circle circumscribing this bot. CajunBot uses an expansion radius of this size. For an
elongated bot that can turn in place, a region of this size gives complete safety, although it does classify some passages
as impassable which are in fact passable.

However, CajunBot violates the above assumptions. CajunBot cannot turn in place and does not rotate about its center.
CajunBot has skid steering (Figure 11B). That is, it rotates about the left side when turning left and the right side when
turning right. Simulations showed that an expansion regiome€ is adequate in practice as long as the bot is aligned

with the planned path and is following a path consisting of 45 degree turns.

4.3 Performance in field testing

Obstacle on waypoint There was a disabled van placed as an obstacle on top of a global waypoint. This of course
tests whether the bot will discard the current AWP and move on to the next. Our vehicle did, in fact, circumvent the
van in its first run, and it is instructive to examine why. As the van was approached, L-nav constructed a subgoal en
route to the AWP, but 15 meters ahead of its current position. This actually places the sadygwaithe global AWP

and beyond the van. The subgoal waypoint was then put in the shared-memory queue in front of the AWP. So the
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Figure 12: The path of the human operator is persistent. The bot cannot travel backwards. The bot wants to go around the
perceived obstacle but, on the basis of the information it has, cannot do so without a collision.

G-nav system approached the subgoal before approaching the then active AWP. Once reaching the subgoal, it selected
the next waypoint from the queue and this was the AWP centered within the van. The G-nav system first checked
whether it already reached or passed this waypoint on its extended journey. G-nav realized that it was beyond this
waypoint and abandoned it to press forward on its jourdeythor’s note: This is a guess. Perhaps examining the
system logs would tell us whether this really happened.

Robot is trapped In this episode, the robot was in the starting shute. The system was running and waiting for a
go signal. A DARPA operator was on the left side of the bot and, inexplicably, walked across the front of the bot
to get to the other side while CajunBot was in start-up mode (We all thought this was remarkably dangerous and out
of character for DARPA's stringent safety standards). When the bot finally received the go signal, it did nothing and
did not move. Afterwards, the system log said the bot wanted to make a U-turn, but was trapped. My teammates
initially suspected a bug in the local path-planning system. Upon reflection, it became apparent that the operator was
a moving obstacle that walked across the entire sensory field of the laser range finder, and at very close range. The
system had not been calibrated for moving obstacles, and so the operator was interpreted as a persistent, very-close-
range static obstacle blocking the entire field (see FigureAithor’s note: | wrote this description in April, before

writing Section 3.2.1. Since the arena refreshed after twenty L-nav cycles, the ghost obstacle created by the operator
should have been forgotten. So, I'm not sure what really happe@adstion: Does the DTM have any persistence
properties?

5 Discussion, limitations, future work

Conclusions

1. Alocal arena that supports eight quantized compass headings is adequate for practical waypoint extraction.

2. Aggressive avoidance is also a nice property of the L-nav path generation algorithm.

Limitations and future work

1. The logging facilities for L-nav need to be improved.
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Figure 13:Local path planner tells bot to go directly to goal. Reactive system for balance reflex has higher priority and tells bot to
align itself with the gradient. Another reflex tells bot to avoid obstacle. How does the reactive system resolve conflicting reflexes?

2. L-nav does path-planning in the two-dimensional plane. However, the bot travels on the surface of 3D terrain.

3. Cost is based on cell cost, not arc cost. Need to integrate graph-based regional planning with geometry-based
local planning [12].

4. Need to consider general architecture with reactive (reflexive), local, regional, and global navigation. Individual
reflexes can conflict (e.g., gradient alignment verses obstacle avoidance as shown in Figure 13).

5. Reactive navigation should not translate to global coordinates.

6. Need to incorporate obstacle classification to distinguish harmless obstacles like small weeds and serious obsta-
cles that look similar (e.qg., barbed-wire).

7. Need to distinguish between moving obstacles and persistent obstacles.

Issues raised by Pablo in his April 24th email In this section, | discuss the role of L-nav in some of the issues that
Pablo has raised.

Stopping “The path planner needs to determine when the vehicle is unable to make progress and signal this con-
dition.” That's true. Table 4 shows that the CBLN module has a return code for when the robot is trapped.
However, as shown in Figure 3, we forgot to establish a protocol to write the result back to shared memory so
that it could be used bgrain.C

Course boundary “We are not honoring the course boundarieslso, true. Given the existing L-nav, | think the best
way to solve this is to have the CBLN wrapper program (the part of the program that adds the terrain descriptors
to the arena) add course boundary information to the arena as it reads the RDDF file. The course boundary could
be treated as an obstacle.

Stalemate “The CB feels free to backtrack looking for a way out of a dead end even though there are no forks to
backtrack td: First, | think this is in part a regional navigation issue as opposed to a local navigation issue, but
let me explain what happens in the current implementation of CBLN. Recall from Section 3.2 that an existing
arena is deemed stale after a maximum of twenty L-nav cycles and is rebuilt. Assume for the moment that this
did not happen. In that situation, CajunBot would not feel free to back track to dead ends that are inside the
arena (CBLN does not generate paths that go outside of the arena boundaries). It backtracks because of the
limited persistence of the arena and its associated information.
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Forgetting obstacles”Once the vehicle has stopped, how does it detect that an obstacle has disagpéardd-
scribed above, if CajunBot waits for a period of twenty L-nav cycles, then the CBLN module will forget the
existence of the obstacle.

Tension between forgetting and persistencd’ablo makes reference to an inherent conflict between remembering
not to backtrack to dead ends and realizing that a non-persistent obstacle (e.g., a stopped vehicle) may have
moved. This is a good question. To address this problem, we need some means to classify obstacles as persistent
verses non-persistent.

Need for a library of scenarios Lastly, Pablo pointed out that we need a library of test scenarios in order to approach
these questions systematically. | agree completely. The simulations described in Section 4.1.2 used a rudimen-
tary library of local navigation scenarios. The simulations of G-nav control of L-nav described in Section 4.1.4
included an environment containing several G-nav/L-nav interaction scenarios, although it was not a systematic
library. Also, in my opinion, the methodology of using a series of targeted simulations (augmented with ag-
gressive visualization to answer targeted questions) helps make it clear which questions of been answered and
which questions still remain open.
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