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ABSTRACT

In this paper, we propose the architecture that

searches and acquires calculation procedure. In this

idea, the calculation procedure of intellectual system

is realized by a set of functional parts and an atten-

tion sequence combining them. To verify this idea, we

see the development of agent behavior after a change

of its subfunctional parts. At first, an agent acquires

Q-learning procedure using given parts. When an en-

vironmental map representing subfunction is added

to the agent, its behavior changes to more effective

search using the map for prediction.

Keywords: procedure acquisition, functional parts,

attention search

1. INTRODUCTION

In a study of intellectual information processing

model such as machine learning, the concrete design

of a processing system for each task is as important

an issue as the abstract level modeling of data repre-

sentation and its operation. However, in the model

research, the concrete processing procedure required

to realize the model and to perform peripheral com-

putation including preprocessing, central calculation,

execution of calculation result and conducting con-

trol, was entrusted to a human who knows the task

in advance. Therefore, even if the model of an intelli-

gence system is powerful, a human being must inter-

vene and implement the system separately. When the

task changed, the model had to be re-implemented.

Contrarily, humans can perform tasks that require

essentially the same calculation with different appear-

ance and interface, detecting the identity of their pro-

cesses and adding the function that absorbs the ex-

ternal difference. They can also solve a task that has

similar appearance with different central calculation

by noticing the difference and replacing the calcula-

tion with one suitable for the task. Behind this abil-

ity, we should assume architecture of intelligence in

which there are many functional parts for intellectual

calculation and they are selected and combined as the

need arises. In this paper, we propose the combina-

tion mechanism of functional parts using an attention

sequence as the architecture that looks for a calcula-

tion procedure to realize the intellectual behavior.

Calculation procedure of intellectual system is re-

alized by a set of functional parts and an atten-

tion sequence that combines them. The attention

sequence alters the calculation process from input

to output by changing the combination of func-

tional parts according to environment and situa-

tion. The mechanism that selects combination of

functional parts depending on situation realizes

flexible procedure search system for new prob-

lems.

To verify this idea, we choose a navigation problem

as a benchmark task, and by a computer simulation

show that more effective path search procedure is ac-

quired by the addition of functional parts. We prepare

a grid world for the navigation simulation to simplify

the argument. We assume an agent that searches for

the shortest path to the goal, moving through each

grid. For the agent structure, we use a neural net-

work with activity control that can represent dynam-

ica change of the processing system naturally.

We show computer simulation results that indi-

cate the possibility of procedure acquisition including

learning ability. First, an agent acquires Q-learning

procedure using the given parts. When the agent

is given the functional parts for the environmental

map representation, it acquires prediction-based nav-

igation strategy more effective than the previous one.

2. THE ARCHITECTURE OF

PROCEDURE SEARCH

In our idea, a model has many functional parts that

are specialized for different subfunctions, and is con-

trolled by the system which combines those functional

parts depending on a task, and performs an operation

based on internal knowledge. We consider this process

the procedure.



Figure 1: The world for procedure acquisition

Omori and Mochizuki[3] proposed a method that

uses sequence of attention for realization of this inter-

nal procedure. In that method, the Attention System

selects a set of neural network modules which are re-

quired for instantaneous processing and their opera-

tion form a processing circuit. Furthermore, the at-

tention changes sequentially forming the dynamically

changing neural network. The result is the realizatino

of the sequential operation of memorized knowledge.

In this paper, we adopt a modified version of the

method to realize a procedure. In our method, the

attention directly switches connections between the

neural parts to form a processing circuit.

We use the genetic algorithm (GA) for the searching

method of the parts combination. Fig.2 shows basic

structure of our agent for the procedure search.

As a result, the agent consists of some functional

parts and their connections. The range of realizable

procedure functions change depending on what func-

tional parts are prepared in the agent.

3.NAVIGATION PROBLEM

The task in this paper is a goal search problem in

the 4x4 grid world (Fig.1). The agent receives the

distance to the wall in the four directions as a sensory

input, and has internal states corresponding to each

grid.

Start and goal points are located at (1,1) and (3,3)

in Fig.1 respectively. When the agent reaches the

goal, it receives reward and returns to the starting

point. Should the agent collide with the wall, it re-

ceives no reward and goes back to the starting point.

The task is to maximize the reward. In short, the

agent must discover the shortest path to the goal

quickly.

4. AGENT STRUCTURE

For comparison, we prepare two agents, a basic

agent and an evolved agent. The Basic agent’s func-

tional parts are sensory input, place recognition, ran-

dom action generation, learned action generation, suf-

ficient Q-table memory for Q-learning and a maxi-

mum value search circuit. The evolved agent has all

of the avobe, as well as an internal map of the envi-

ronment. Both agents also have the same attention

system.

4.1 Basic Agent

The basic agent consists of the following functional

parts.

• State recognition
• Action selection
• Reinforcement learning
• Attention System

4.1.1 The Part of State Recognition

Distance sensor input RS is normalized. the SP-

layer receives it and works as an input buffer.

SPi =
RSipP
iRS

2
i

Each cell of the SS-layer represents the internal state

corresponding to the place in the environment. Com-

petition between cells limits the number of cells firing

at any one time to one.

ssj = a1
X
i

SWijSPi (1)

w = argmax
j
ssj

SSj =

½
0 : j 6= w
1 : j = w

The variable a1 is the attention value over the con-

nection SWij from the SP-layer to the SS-layer. It

takes a value of zero or one to control usage of the

connection SWij .

4.1.2 The Part of Action Selection

Input to the MP-layer is a vector (cos θ, sin θ) that

is generated by random action generator , where θ

is a random value between 0 and 2π. It generates

random action when proper attention is set to the

neural circuit.

Each cell of the MS-layer represents the discrete

motor direction. Only one cell is allowd to fire at any

one time.

msu = a4(
X
r

MWruMP
in
r ) + a5Qu (2)



Figure 2: The structure of a basic agent

w0 = argmax
u
msu

MSu =

½
0 : u 6= w0
1 : u = w0

After the firing of an MS-layer cell, its corresponding

input pattern MWru is recollected at MP
out-layer,

and it is outputted.

MP outr = a8
X
u

MWruMSu

The variable a4 is the attention value over the con-

nection MWru from the MP-layer to the MS-layer,

and the a5 is the attention value over the connection

from the Q-layer to the MS-layer. Both variables take

the value of zero or one, and control the usage of the

corresponding term in each equation. The a8 works

as an action trigger.

4.1.3 The Part of Reinforcement Learning

After the place representing cell SSj fires, the Q-

layer receives the action-value (Q-value) of the place

and works as a buffer for this value. Because there is

a one to one correspondence between cells in the Q-

layer and the MS-layer, each of Q-layer cell activity

represents the Q-value of each action k at the place j.

Qk =
X
j

WSQjkSSj

By inputting this value to the MS-layer, the agent can

decide its action based on the Q-value.

The connectionWSQjk is equivalent to the Q-value

table in Q-learning. Learning ofWSQjk is performed

by the following equation.

WSQwt−1,w0 = α(r + γ(max
b
WSQwt,b

−WSQwt−1,w0))
Here α is the learning rate, and γ is the discount rate.

This is a typical Q-learning equation. Although ac-

quisition of the learning rule itself is only one of our

final targets, we give it a priori in this study.

4.1.4 Attention System

The Attention System can control the topology of

a neural network dynamically by changing the atten-

tion vector. The attention vector can be considered

the equivalent of microcode in CPU. Using the at-

tention vector, the programming of a neural network

might be possible by controlling the network struc-

ture. However, so far as the attention vector desig-

nates the structure at one moment, it can not describe

even easy algorithms. So, we assume an attention

vector sequence (AVS) that consists of two or more

ordered attention vectors. Each AVS element is given

to the network sequentially, and the network operates

until it converges to a stable state. Then, the next

element is given to the network.

avs = (av0,av1,av2, . . . ,avn)

The attention vector of basic agent consists of the

following four elements.

• a1:switching of inhibition on input from SP-layer
to SS-layer

• a4:switching of inhibition on input fromMP-layer
to MS-layer



• a5:switching of inhibition on input from Q-layer

to MS-layer

• a8:switching of inhibition on input from MS-layer
to MP-layer (triggering of action).

4.2 Evolved Agent

In addition to the functional parts of the basic

agent, the evolved agent has the internal model that

represents the environmental map. Our interest re-

sides in the change of agent behavior after the addi-

tion of this type of map.

4.2.1 State Recognition Part

In addition to the input from sensor, the SS-layer

of the evolved agent receives input from the T-layer

and the Q-layer. Equation (1) is changed as follows.

ssj = a1
X
i

SWijSPi + a2
X
l

WTSljTl

+ a3
X
k

WSQjkQk

The 2nd term is the input from the T-layer that rep-

resents the place-action to place relation of environ-

ment. The value of a2 and a3 represent attention over

each input.

4.2.2 Action Selection Part

The MS-layer of the evolved agent also receives in-

put from the A-layer. Equation (2) is modified to in-

clude the input from the A-layer that represents the

place-place to action relation.

msu = a4
X
r

MWruMP
in
r + a5Qu

+ a6
X
v

WAMvuAv

The value a6 represents attention over the input.

4.2.3 Environment Model Learning

The T-layer represents the next state from the com-

bination of the current internal state and the action.

As the state corresponds to a place in the map, the

T-layer represents the state transition relation of the

environment. The number of T-layer cells is the prod-

uct of the number of SS-layer cells and the number of

MS-layer cells. WSTjl andWMTul are set by the fol-

lowing equations, where N is the number of SS-layer

cells.

WSTjl =

½
1 : l = uN + j
0 : others

WMTul =

½
0 : l = um+ 0 . . . N − 1
−1 : others

The value of a T-layer cell is calculated by the follow-

ing equation.

Tl = φ(
X
j

WSTjlSSj +
X
u

WMTulMSu)

φ(x) =

 0 : x ≤ 0
x : 0 < x < 1
1 : x ≥ 1

The connection WTSlj between the T-layer and the

SS-layer represents state transition, (state, action) →
state. The T-layer is used to predict the next state

based on the next action. Learning of WTSlj is per-

formed by the following equation,

WTSlj =WTSlj + α(Tl −WTSlj)SSj
where all the initial value of WTSlj is 0.

The A-layer represents the action that bridges in-

ternal state of time t and t−1. The number of A-layer
cells is equal to the square of the number of SS-layer

cells. We assume the SS’-layer represents the activity

of the SS-layer on time t−1. ConnectionsWSAjv and
WS0Aj0v are set by the following equations, where N
is the number of SS-layer cells.

WSAjv =

½
1 : v = j(N − 1) + 1, . . . , N − 1
0 : others

WS0Aj0v =

½
1 : j0 + j(N − 1) (j0 6= j)
0 : others

The value of an A-layer cell is calculated by the fol-

lowing equation,

Av = (
X
j

WSAjvSSj)(
X
u

WS0Tj0vSS0j0)

The connectionWAMvu lies between the A-layer and

the MS-layer,and represents the directional relation

between the places. Learning ofWAMvu is performed

by following equation,

WAMvu =WAMvu + α(Av −WAMvu)MSu

where all the initial value is set to zero.

4.2.4 Reinforcement Learning Part

Special attention value a7 is added to the Q-layer

of an evolved agent. If a7 = 0, the Q-layer works as

same as that of the basic agent. If a7 = 1, all the cells

of the Q-layer output value 1.

If a7 = 1 and the SS-layer receives input from the

Q-layer and the T-layer, the total Q-value at each

place is represented at corresponding cell in the SS-

layer by the input from the Q-layer. The input from

the T-layer restricts the firing cell in the SS-layer to



Figure 3: The structure of an evolved agent

those reachable in a single step. With these inputs,

the cell that corresponds to the place with the maxi-

mum Q-value fires, due to the embedded lateral inhi-

bition property.

4.2.5 Attention System

The following four elements are added to the atten-

tion vector of evolved agent.

• a2:switching of inhibition on input from T-layer

to SS-layer

• a3:switching of inhibition on input from Q-layer

to SS-layer

• a6:switching of inhibition on input from A-layer

to MS-layer

• a7:switching of firing all Q-layer cells

5. SIMULATION

In our model, the procedure acquisition is realized by

the acquisition of AVS. Because AVS is a bit sequence

of {0, 1}, searching is possible by the use of genetic
algorithm (GA).

5.1 Preparation

The length of AVS is set to two, and the population

size is set to 50. All genes are initialized randomly.

One trial ends when an agent discovers the shortest

path. Fitness O is the number of necessary moves

in each trial. When an agent reaches the goal three

times consecutively in the minimum number of steps,

we conclude that the agent has found the shortest

Figure 4: The fitness of the best adapted basic agent
for each generation.

path. It is unreliable to decide fitness from one trial,

because the action of agent contains random factor.

Accordingly, the following scale is used.

f(O) = 1000

10X
i=1

O−1i

To reduce the influence of random factor, the sum of

O−1 for ten trials per individual is calculated.
Half the agents with higher fitness are used for the

next generation production. Crossover pairs are de-

cided in the order of 1st and 2nd, 2nd and 3rd ... and

so on based on their fitness value. One-point crossover

is used, and crossover point is chosen at random. The

mutation rate is 0.05.

5.2 Result

5.2.1 Basic Agent

The maximum fitness of the basic agent in each



Figure 5: The fitness of the best adapted evolved
agent for each generation. The fitness is improved at
the 3rd generation, by the acquisition of prediction-
based action.

generation is shown in Fig.4.

The following two AVSs are typical ones that the

basic agent acquired.

avs = ((1, 0, 1, 0), (0, 0, 1, 1)) (3)

avs = ((1, 0, 1, 1), (0, 0, 1, 1)) (4)

The basic agent acquired AVS (3) at the 6th genera-

tion. The first attention vector recognizes the current

state. According to the Q-value, the action is selected

and conducted by the 2nd attention vector. It is a

well-known greedy strategy.

The basic agent acquired AVS (4) at the 3rd gen-

eration. The current state is recognized and action

is conducted according to the Q-value based on the

1st attention vector. The first step action is repeated

based on the 2nd attention vector. The agent acceler-

ates reaching the goal by repeating the same action.

5.2.2 Evolved Agent

The maximum fitness of the evolved agent in each

generation is shown in Fig.5.

The evolved agent acquired the following AVS at

5th generation.

avsB = ((1, 0, 0, 0, 1, 0, 1, 0), (0, 0, 1, 0, 1, 1, 0, 1))

An embedded competition process in the 1st attention

vector finds the next place with the maximum total

sum of Q-value within the range of a single step. The

agent moves to the place by the 2nd attention vector.

This is a prediction-based behavior that makes use of

the environmental map.

6. CONCLUTION

In this paper, we propose an architecture that

searches and aqcuires calculation procedure. We show

that a different path search procedure was acquired,

when the functional parts are different. The simu-

lation results show that the agent has the ability to

acquire an effective procedure if it has the functional

parts that are effective to path search problem. This

simulation was not sufficient to show that the proce-

dure effectiveness is dominated by the functional parts

effectiveness to the task. For that, we need to perform

an additional simulation.
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