
Toward a Topological Theory of Relational Reinforcement Learning for
Navigation Tasks

Terran Lane
Department of Computer Science

University of New Mexico
Albuquerque, NM 87131
terran@cs.unm.edu

Andrew Wilson
Sandia National Laboratories

Albuquerque, NM 87131
atwilso@sandia.gov

Abstract

We examine application of relational learning methods to re-
inforcement learning in spatial navigation tasks. Specifically,
we consider a goal-seeking agent with noisy control actions
embedded in an environment with strong topological struc-
ture. While formally a Markov decision process (MDP), this
task possesses special structure derived from the underlying
topology that can be exploited to speed learning. We describe
relational policies for such environments that are relocatable
by virtue of being parameterized solely in terms of the re-
lations (distance and direction) between the agent’s current
state and the goal state. We demonstrate that this formulation
yields significant learning improvements in completely ho-
mogeneous environments for which exact policy relocation is
possible. We also examine the effects of non-homogeneities
such as walls or obstacles and show that their effects can be
neglected if they fall outside of a closed-form envelope sur-
rounding the optimal path between the agent and the goal.
To our knowledge, this is the first closed-form result for the
structure of an envelope in an MDP. We demonstrate that re-
lational reinforcement learning in an environment that obeys
the envelope constraints also yields substantial learning per-
formance improvements.

Introduction
While the field of reinforcement learning (RL) has achieved
a number of impressive successes, RL methods still suf-
fer from slow convergence in many domains and have not
yet found general, widespread acceptance in many appar-
ently ideal RL domains. Recent years have seen the advent
of relational methods across a wide spectrum of learning
tasks including data mining (Getooret al. 2001), web nav-
igation analysis (Anderson, Domingos, & Weld 2002), and
reinforcement learning (Boutilier, Dearden, & Goldszmidt
2000; Finneyet al. 2002).

In this paper, we argue that navigational tasks in geo-
graphic environments, e.g., the kinds of tasks encountered
by robots moving through the physical world, possess spe-
cial structure that renders them particularly well suited to
relational methods. In particular, large subsets of the phys-
ical world are characterized bylocality, homogeneity, and
translation/rotation invariances. Furthermore, unlike com-
plex combinatorial planning problems such as blocksworld
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(Finneyet al. 2002) or task planning (Boutilier, Dearden,
& Goldszmidt 2000), navigational domains are typically not
prone to exponential explosions of trajectories. These prop-
erties have been well understood and exploited for hundreds
of years in the context of deterministic motion planning, but
it is much less clear how to interpret such properties in the
kinds of stochastic domains that we typically deal with in
RL. The fundamental difficulty is that our understanding
of deterministic motion planning is rooted in the metric of
physical spaces — the important properties of a space de-
pend only on thedistancebetween points and absolute co-
ordinates are irrelevant — while RL methods are typically
based on the Markov decision process (MDP) formalism in
which policies are tied to atomic states, i.e., to absolute co-
ordinates.

In this paper we take first steps toward developing a re-
lational theory for RL in navigational Markov decision pro-
cesses. We wish to be able to describe navigational tasks
in terms of something like a distance or orientation between
states. That is, “for all states locatedX units south andY
units west of the goal state, act as follows. . . ” We exploit
recent results by Ravindran and Barto (Ravindran & Barto
2002; 2003; Ravindran 2004) on the equivalence of options
(partial policies) under homeomorphic transforms to con-
struct goal-seeking policies described only in terms of the
relationship between current state and goal state, indepen-
dently of absolute coordinate. The difficulty is that, even
when the underlying space is metric and homogeneous, the
behavior of a stochastic agent maynot be exactly relocat-
able. Obstacles, even off of the “optimal trajectory” between
current and goal state, may distort transition probabilities
and, therefore, typical notions of distance.

In response to this problem, we develop a closed-form
bound on the high-probability envelope (Deanet al. 1995)
of trajectories that an agent can take in traversing between
two states while executing a fixed policy. This bound is de-
scribed in terms of the topology of the underlying space,
allowing us toa priori describe the states that an agent may
reasonably enter en route to the goal state. To our knowl-
edge, this is the first closed-form description of a policy en-
velope for an MDP. Such an envelope allows us to describe
when a goal-seeking policy is “approximately relocatable”.
Essentially, when no obstructions fall within the envelope,
the probability that the agent’s trajectories (and, therefore,



its value function) will be distorted by obstructions, is low
enough to neglect. Unlike methods that have been devel-
oped for MDPs with “rooms” or “corridors” (Hauskrechtet
al. 1998; Parr 1998a), our results are most applicable to
open and largely unobstructed spaces such as free space or
open field navigation.

This paper does not aim to be acompleteor generalso-
lution to navigational problems in relational navigation do-
mains. Rather, it is a first step toward such a theory. Our pri-
mary concerns here are developing a useful relational repre-
sentation for navigational MDPs, describing important topo-
logical properties of such MDPs, and demonstrating that
those properties lead to strong constraints on an agent’s be-
haviors.

Background and Definitions
We give here only a very brief review of the notation and
key aspects of Markov decision processes and reinforcement
learning in them. For a thorough treatment, we refer the
reader to the texts by Puterman (Puterman 1994) and Sutton
and Barto (Sutton & Barto 1998), respectively.

An MDP M = 〈S,A, T, R〉 is a stochastic control pro-
cess specified by four components: astate space, S =
{s1, s2, . . . , sN}, of cardinality|S| = N (taken to be dis-
crete and finite in this paper); a set of primitive (or atomic)
actions, A = {a1, a2, . . . , am} (also finite); atransition
function, T : S × A × S → [0, 1]; and areward func-
tion, R : S → R. An agent acting in an MDP is, at any
time step, located at a single states ∈ S. The agent chooses
an actiona ∈ A and is relocated to a new state,s′, deter-
mined by the transition probability distributionT (s, a, s′),
whereupon it receives rewardR(s′). In this paper, we are
concerned withgoal-seekingproblems in which there is a
distinguished “goal state”,g ∈ S, that the agent is trying to
reach in the minimum number of steps.

The goal of reinforcement learning in an MDP is to lo-
cate apolicy, π : S → A, that specifies an action for the
agent in every state. The optimal policy,π∗, is one that max-
imizes thevalue function, a long-term aggregate measure
of received reward. We will use the commoninfinite hori-
zon discountedvalue function,V π(s) = E[

∑∞
t=0 γtR(st)],

where0 ≤ γ < 1 is the discount factor. In goal-seeking
domains, typically a reward of 1 is assigned tog and 0 to
all other states and the value function reduces toV π(s) =
γE[# steps to reachg from s|π].

The MDPs in which we are interested are those derived
from a system with an innate topology — specifically, spa-
tial navigational domains. The notion is that, although the
agent itself may have stochastic dynamics, there is an under-
lying topology that governs the deterministic relationships
between states. We will assume that there is a distance func-
tion on the underlying domain,dtopo : S × S → R+. This
distance may be interpreted as “the minimum time required
to transition betweens ands′ if all actions were determinis-
tic”. We also assume the existence of a coordinate frame in
which directions between states are well defined — for ex-
ample,s′ is “northwest” ofs — given by a functionφtopo :
S × S → Φ, whereΦ denotes the set of allowable direc-

tions such asΦEuclidean = (−π, π] or Φgridworld = Z× Z.1

Both distance and direction between states are summarized
by the topological relation, Rtopo

d,φ (s, s′), between pairs of
states. The agent’s representation is the set of all possible
such equivalence relations,R = {Rtopo

d,φ }, such that(s1, s
′
1)

and(s2, s
′
2) ∈ Rtopo

d,φ ⇔ dtopo(s1, s
′
1) = dtopo(s2, s

′
2) and

φtopo(s1, s
′
1) = φtopo(s2, s

′
2).

This framework allows us to describe useful properties of
the MDP in terms of the topology of the underlying domain:

Definition 1 An MDP is said to bek-local iff there is no
chance of making a single-step transition between any pair
of states further thank units apart with respect todtopo .
That is, for every pair of states,s1, s2 ∈ S such that
dtopo(s1, s2) > k, it is the case thatT (s1, a, s2) = 0 ∀a ∈
A.

Definition 2 Theneighborhoodof a state,N (s), is the set of
states reachable froms in a single step with non-zero prob-
ability under some action. That is,N (s) = {s′ ∈ S : ∃a ∈
A such thatT (s, a, s′) > 0}.

In a k-local MDP, all neighborhoods fall within balls of
radiusk in the underlying topology.

Definition 3 Two states,s1 ands2 ∈ S are said to beiso-
morphiciff there is a mapping between their neighborhoods
that preserves transition probabilities. That is,s1 ands2 are
isomorphic iff∃f : N (s1) ↔ N (s2) such that∀a ∈ A and
s′1 ∈ N (s1), T (s1, a, s′1) = T (s2, a, f(s′1)).

Definition 4 A subset of the states of an MDP,S ⊆ S, is
said to behomogeneousiff all states inS are isomorphic
according to the above definition.

Finally, we are specifically interested in systems in which
the agent’s actions, while noisy, are “largely predictable”.
That is, there exist actions whose maximum probability out-
come is to move the agent in a fixed direction with respect
to the underlying topology.

Definition 5 An actiona ∈ A is predictable inS if, for
every states in a homogeneous subset of the state space,
S ⊆ S, a has an outcome states′ with probability p >
1/2 having a fixed topological relation tos. That is,∀s ∈
S ∃s′ ∈ N (s) such thatT (s, a, s′) = p and(s, s′) ∈ Rtopo

d,φ

for somedtopo andφtopo .

We call the high-probability outcome of a predictable ac-
tion the intendedoutcome and any other, lower probability
outcomes theunintendedor accidentaloutcomes. Acciden-
tal outcomes may also include any off-policy exploratory ac-
tions that the agent takes, so long as the intended outcomes
of on-policy actions still occur with probability> 1/2.

Relational Policies for Navigation Domains
The traditional definition of policy,π : S → A, is tied
to the absolute coordinates of the state space. We would

1These are essentially two different agent-centric 2-D polar co-
ordinate systems. Other coordinate systems are also possible, so
long as they uniquely describe the relationship between pairs of
states.



rather employ policies that are described purely in terms
of the topological relationships of the underlying world:
π : Rtopo

d,φ → A. Essentially, we are seeking policies of
the form “whenever you find yourselfX distance south-
west of the current goal, act as follows. . . ”. Doing so pro-
vides two key benefits. First, this representation allows goal-
seeking policies to be relocatable, as they now depend only
on the relationship between the agent’s current location and
the goal: when the goal location changes, the agent’s policy
is automatically defined relative to that new location. This
is a form of translation invariance for Markov decision pro-
cesses. And second, it may allow much faster learning, as re-
lations are entire equivalence classes, so a unit of experience
from any element ofRtopo

d,φ applies toall elements of that
class. This is, however, profitable only when there may be
multiple goal states whose absolute locations vary over time
or when it is useful to formulate an overall policy in terms
of a number of sub-goals. This is a plausible condition;
there are numerous real-world tasks that require seeking a
number of different locations within the same environment,
and many previous authors have demonstrated that sub-goals
are useful for planning and learning in MDPs (Parr 1998b;
Dietterich 2000; Precup 2000; Lane & Kaelbling 2002).

The utility of reasoning with such relationships has been
well established for deterministic domains. Unfortunately,
things are more complicated in stochastic domains. In a
deterministic environment, we can assume that any desired
trajectory can be followed exactly and that no off-trajectory
obstacles can interfere. In a stochastic MDP, however, ex-
act analysis of the transition between any pair of states in-
volves consideration ofall trajectories between them, and
even obstacles that are not on the “optimal” trajectory can
still influence the expected transition time. Such obstacles
can even produce asymmetries in expected transition times,
which prevents us from using the transition time directly as
a metric.

In this section, we demonstrate the utility of reinforce-
ment learning with relational policies in a trivial environ-
ment in which exact relocatability is achievable. We then
consider environments containing obstacles and demon-
strate that, so long as the obstacles are “far” from an opti-
mal trajectory, that their influence can be safely neglected,
allowing relocation of policies in less trivial environments.

The Exact Case

We begin with an extremely simple domain topology: a
perfectly homogeneous toroidal gridworld. In this do-
main, every states has exactly four neighbors, denoted
NORTH(s), SOUTH(s), EAST(s), and WEST(s). The
topology has the intuitive interpretation so that, e.g.,
NORTH(EAST(s))=EAST(NORTH(s)), etc. The agent has
four predictable actions available to it, corresponding to the
four neighbor states. Each action has its intended outcome
with probability p = 0.9 while its unintended outcomes
place the agent at each of the other three neighbor states with
probability(1−p)/3 ≈ 0.03. The torus has a circumference
of 50 states in the east/west direction and 20 states in the
north/south direction. All states are isomorphic according to

Definition 3, implying that there are no walls, cliffs, absorb-
ing states, or other obstacles in the environment. We define
dtopo(s, s′) to be the minimum Manhattan distance between
s ands′ andφtopo(s, s′) to be the ordered pair(dx, dy) rep-
resenting the ratio of horizontal to vertical change between
s and s′, reduced to lowest terms. The agent learns a Q
function expressed in terms of this relational representation,
Q : R × A → R, allowing relocation of policies as goal
locations change.

Ravindran and Barto (Ravindran & Barto 2002; 2003;
Ravindran 2004), extending model minimization work by
Dean and Givan (Dean & Givan 1997), have studied such
policy relocations. Ravindran and Barto have developed a
very general algebraic description of policy relocations in
terms of homomorphisms between MDPs. In the case of
the homogeneous torus, all spatial translations of the coor-
dinate system are isomorphic (a special case of their more
general homomorphisms) and their results imply that poli-
cies are exactly relocatable through translations. In our case,
this means that reinforcement learning in terms of our rela-
tional Q functions/policies should be exact and (assuming a
convergent learning method) should converge to an optimal
policy.

We examined the performance of two learning agents, one
employing an atomic state representation, the other a rela-
tional representation, in this environment. Both agents em-
ployed Q-learning withε-greedy exploration policy (Sutton
& Barto 1998) with a discount factor ofγ = 0.99, a learn-
ing rate ofα = 0.7, and an exploration factor ofε = 0.01.
We ran each agent for 2000 trials in this world, where each
trial consisted of selecting a random start state and a random
goal location and allowing the agent to run until it encoun-
tered the goal. We recorded the number of steps that the
agent took to locate the goal on each trial. We repeated the
entire operation 10 times and averaged the results over all 10
runs. While this environment is stationary for the relational
representation, it is non-stationary for the atomic agent and
we do not expect the atomic agent to converge to a stable
policy. We also attempted an agent that used an atomic rep-
resentation including a variable for the current location of
the goal in addition to the variable giving the agent’s loca-
tion (total ofO(N2) states). This representation renders the
environment stationary, but it was so large (sim30 Mb) that
the agent was unable to make any measurable progress in
the amount of time that we could dedicate to testing it.

Figure 1 (a) shows the learning performance of the rela-
tional and atomic agents. As expected, the atomic agent is
not able to learn a stable policy in this world (in fact, its
performance diverges). The relational agent, however, does
converge to a stable, high-quality solution fairly quickly. By
convergence, the relational agent had located a policy that
achieved a mean time-to-goal of 25.1 steps — close to the
expected transition time for a randomly chosen pair of states
of about 22 steps.

Limited Non-Homogeneity
Homogeneous tori are not terribly useful, however — inter-
esting navigational environments include non-homogeneous
features such as walls, cliffs, or obstacles. These features
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Figure 1: (a) Performance of atomic (upper trace) and relational (lower trace) Q-learning agents in the homogeneous torus
gridworld. Both curves are averages over ten different sequences of (start,goal) pairs in the torus. (b) The same experiment
repeated for non-toroidal gridworld.

render policy relocation problematic because they change
the set of trajectories (and the probability of each) that an
agent could experience in attempting to transition froms to
g. Even if a wall, say, does not obstruct the shortest path be-
tweens andg, it may block a trajectory that an agent would
otherwise experience.

In general this problem is difficult to overcome. In on-
going work, we are examining the possibility of adding ad-
ditional relational terms to describe the relative position of
walls/obstacles with respect to the agent and goal. In this pa-
per, however, we demonstrate a weaker, but still useful, ap-
proach. Specifically, if an agent is able to find a reasonably
good policy for navigating to a goal in one part of the space,
it can relocate that policy to a different part of the space with
small expected change in value, so long as any such obsta-
cles are “far” from the ideal path to the goal. We give an
envelope that contains at least1 − ε of the probability mass
of all trajectories that the agent might experience in transi-
tioning from s to g. Assuming that the MDP has rewards
bounded byRmax < ∞, the presence of walls or obstacles
outside the envelope can change the agent’s expected value
by at mostεRmax.

We obtain a bound on the envelope of probability(1− ε)
as follows. Assume that the agent is executing in ak-local
MDP that is “largely” homogeneous — that is, the major-
ity of the state space is homogeneous, with the exception of
the existence of some walls or other obstacles. Consider an
agent starting at states attempting to reach stateg according
to a fixed policyπ. Let the actualexpectedtransition time
betweens andg be d̂(s, g), which is a function ofs, g, and
π. π need not be an optimal policy to reachg, so long as
d̂(s, g) is within a constant factor ofdtopo(s, g). Note that
the set of all states reachable by a trajectory of lengthd̂(s, g)
that starts ats and ends atg forms an ellipse with respect to
dtopo : for anys′ along the trajectory, it must be the case that
dtopo(s, s′) + dtopo(s′, g) ≤ kd̂(s, g) by virtue ofk-locality
and the metric of the underlying space. The major axis of

this ellipse lies along the shortest path betweens andg ac-
cording todtopo .

Without loss of generality, assume that an intentional out-
come reducesdtopo(agent , g) by at least 1 unit at every
state. Some lower bound is guaranteed by the assumption of
transition time and we can rescaledtopo as necessary. Byk-
locality, we know that any accidental outcome can increase
dtopo(agent , g) by at mostk units. Thus, in expectation, the
agent movesp−k(1−p) = (k+1)p−k units toward the goal
every time step. When this quantity is positive, the agent will
reach the goal in̂d(s, g) = dtopo(s, g)/((k +1)p−k) steps.

Homogeneity allows us to model the sequence of inten-
tional/unintentional outcomes as a series of Bernoulli trials.
The number of actions necessary for the agent to reach the
goal is given by the negative binomial distribution: the num-
ber of accidental outcomes between any pair of intentional
outcomes is geometrically distributed and the total transi-
tion time is given by a sum of geometrically distributed vari-
ables. A Chernoff bound assures us that the probability that
this sum deviates far from its mean is exponentially small:
Pr[|trajectory| > (1 + δ)d̂(s, g)] < exp(−d̂(s, g)δ2/4).
That is, the chance that the agent will take significantly
longer thand̂(s, g) to reach the goal falls off exponentially
with δ. As we have argued above, because of the strong con-
straints of the underlying topology, any trajectory of length
(1 + δ)d̂(s, g) must fall within an ellipse surrounding the
optimal path froms to g. To ensure that this elliptical enve-
lope contains at least(1−ε) of the probability mass, we take

δ >
√
−4 ln ε
d̂(s,g)

. Figure 2 gives an intuitive view of such an

envelope. This is actually a fairly loose bound, as it assumes
that every accidental move is maximally detrimental to the
agent. In practice, many agents make symmetric errors, so
accidents can be somewhat self-compensating. The ellipti-
cal form of the envelope also assumes that all accidental out-
comes could occur in a sequence, carrying the agent as far
as possible fromg — also a low probability circumstance.
We are currently exploring how to tighten this envelope by
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Figure 2: (a) Schematic diagram of envelope bound structure. The inner, light gray ellipse is the set of trajectories of length
≤ d̂(s, g); the outer, dark gray ellipse is the envelope of probability(1 − ε). With high probability, no trajectory betweens
andg under a reasonably good policy will leave the outer ellipse. (b) Empirical examination of the envelope in a homogeneous
gridworld. The start and goal states are indicated by dark circles; the dark, inner filled squares are states encountered by the
agent in 10,000 steps of experience (319 trajectories). The outer, paler filled squares (hexagon) are the ellipse of the(1− 0.1)
envelope under the Manhattan metric.

exploiting such properties.
The implication of this result is that all homogeneous, el-

liptical regions of an MDP obeying the above constraint are
isomorphic and that goal-seeking policies executed within
those regions are value equivalent up to a factor ofεRmax.
So, for example, if an agent has acquired a reasonably effec-
tive policy for transitioning between statess andg, having
relationshipRtopo

d,φ (s, g), then that policy can be relocated to

any other pair of states(s′, g′) ∈ Rtopo
d,φ (s, g) so long ass′

andg′ belong to a homogeneous elliptical envelope.
While this result doesn’t apply to the entire training life-

time of an RL agent, it does apply once the agent has lo-
cated an initial, reasonably good policy. Thereafter, these
envelopes are tolerant of exploratory actions and policy im-
provements will only tighten the envelope.

We repeated the “Exact Case” experiments for a similar
but non-toroidal gridworld. This world is also largely homo-
geneous, except for the presence of outer walls that prevent
moves from wrapping around. In this environment, most
(start,goal) pairs do obey the ellipse constraints specified
above, except for those very near the walls. We constructed
a relational agent using pure Manhattan distance fordtopo

(as opposed to the toroidal Manhattan distance that we used
previously) and tested it against an atomic agent in this en-
vironment. The results, given in Figure 1 (b), display the
same learning patterns as those in (a). The small amount
of inhomogeneity introduced by adding walls does not sig-
nificantly degrade the performance of the relational learn-
ing agent, though it does increase the variance. The agent
doeshowever, require built-in knowledge ofdtopo — when

we trained a relational agent using the toroidal Manhattan
distance on the non-toroidal gridworld, its policy quickly
diverged and it didn’t even complete the 2000 trials in the
allotted107 steps.

Conclusion
We have argued that stochastic navigational domains pos-
sess important topological structure that we can exploit to
build efficient relational reinforcement learning agents. We
described a relational policy representation that exploits
knowledge of the underlying topology and showed that it
can be used to substantial advantage in simple, open space
navigation domains. We identified important characteristics
of an MDP — locality, homogeneity, and action predictabil-
ity — and described them in terms that relate the MDP to the
underlying topology. We used these three properties to de-
rive a closed-form bound for an envelope, given a reasonable
goal-seeking policy.

This work is clearly only a first step toward a widely ap-
plicable theory of topologically constrained navigational re-
inforcement learning. In this work, we have only shown
the utility of relational RL in largely “open space” environ-
ments. Our envelope bound allows nonhomogeneitiesout-
side the bounded region, but still requires the bounded re-
gion to be perfectly homogeneous and unobstructed – condi-
tions of admittedly limited practical significance. Nonethe-
less, our observations represent a key first step as they are,
to our knowledge, the first use of metric and topology to
constrain the general RL case. Not only do these properties
allow us toa priori discard impossible conditions (e.g., tele-



porting across the world), but they also allow us to quickly
ascertain and neglecthighly improbableconditions (such as
violating the elliptical envelope bound). We can thus real-
ize two learning speedups: we can employ simple models of
transition functions that can be learned more efficiently than
can general multinomial models, and we can generalize ex-
perience across isomorphic envelopes. Generalization of ex-
perience across different MDPs, or across different regions
of a single MDP, is one of the holy grails of reinforcement
learning, and we believe that exploiting properties such as
metric or topology gives us a principled framework in which
to do so for specific classes of MDPs.

In current work we are extending the insights of this pa-
per to more general navigational problems. We employ a
more general relational description language that allows de-
scriptions of the form “Here( s0) AND Wall( s1) AND
NorthEast 3,5( s1, s0) AND TerrainMud( s0) AND
. . . ”. This language encodes both metric, local topology, and
other features of the world that are relevant to motion dy-
namics. Using bounds on biased random walks, we are ex-
tending the envelope results of this paper to the more general
relational framework, allowing policy generalization across
a much richer class of navigational environments. Interest-
ingly, the use of strong envelope bounds can be viewed as
a certain sort of partially-observable (POMDP) planning –
only states within the envelope are relevant to the agent,
so unobservability of states outside the envelope will not
change the agent’s actions. Finally, we are working to cou-
ple the current approach to our previous results on mixed
(MDP and deterministic graph) planning in “nearly deter-
ministic” environments (Lane & Kaelbling 2002). Our ulti-
mate vision is a multi-level learning and planning system, in
which RL is responsible for learning local structure, transi-
tion dynamics, noise models, and control, while high-level
task planning and goal prioritization can be left to a deter-
ministic planner.
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