
Model Minimization in Markov Decision Processes
�

Thomas Dean and
y Robert Givan

Department of Computer Science

Brown University

Box ����� Providence� RI �����

ftld�rlgg�cs�brown�edu

Abstract

We use the notion of stochastic bisimulation homo�
geneity to analyze planning problems represented as
Markov decision processes �MDPs�� Informally� a par�
tition of the state space for an MDP is said to be
homogeneous if for each action� states in the same
block have the same probability of being carried to
each other block� We provide an algorithm for �nding
the coarsest homogeneous re�nement of any partition
of the state space of an MDP� The resulting parti�
tion can be used to construct a reduced MDP which
is minimal in a well de�ned sense and can be used to
solve the original MDP� Our algorithm is an adapta�
tion of known automata minimization algorithms� and
is designed to operate naturally on factored or implicit
representations in which the full state space is never
explicitly enumerated� We show that simple variations
on this algorithm are equivalent or closely similar to
several di�erent recently published algorithms for �nd�
ing optimal solutions to �partially or fully observable�
factored Markov decision processes� thereby providing
alternative descriptions of the methods and results re�
garding those algorithms�

Introduction

Planning problems can be characterized at a semantic
level by a state	transition graph 
or model� in which
the vertices correspond to states and the edges are as	
sociated with actions� This model is typically large but
can be represented compactly using implicit represen	
tations that avoid enumerating all the possible states�
There exist e�cient algorithms that operate directly

on such models� e�g�� algorithms for determining reach	
ability� 
nding connecting paths� and computing opti	
mal policies� However� the large size of the model for
typical planning problems precludes the direct appli	
cation of such algorithms� Instead� many planning sys	
tems reason at a symbolic level about large groups of
states�groups of states that behave identically rela	
tive to the action under consideration� These systems
incur a computational cost in having to derive these
groupings repeatedly over the course of planning�
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In this paper� we describe algorithms that perform
the symbolic manipulations required to group similarly
behaving states as a preprocessing step� The output of
these algorithms is a model of reduced size whose states
correspond to groups of states 
called aggregates� in the
original model� The aggregates are described symbol	
ically and the reduced model constitutes a reformula	
tion of the original model which is equivalent to the
original for planning purposes�
Assuming that certain operations required for ma	

nipulating aggregates can be performed in constant
time� our algorithms run in time polynomial in the size
of the reduced model� Generally� however� the aggre	
gate manipulation operations do not run in constant
time� and interesting tradeo�s occur when we consider
di�erent representations for aggregates and the opera	
tions required for manipulating these representations�
In this paper� we consider planning problems rep	

resented as Markov decision processes 
MDPs�� and
demonstrate that the model reduction algorithm just
described yields insights into several recently published
algorithms for solving such problems� Typically� an al	
gorithm for solving MDPs using an implicit represen	
tation can be better understood by realizing that it is
equivalent to transforming the original model into a re	
duced model� followed by applying a standard method
to the 
explicitly represented� reduced model�
In related papers� we will examine the relevance of

model reduction to deterministic propositional plan	
ning� and also demonstrate how ideas of approximation
and reachability analysis can be incorporated�

Model Minimization
A Markov decision process M is a four tuple M �

Q�A� F�R� where Q is a set of states� A is a set of
actions� R is a reward function that maps each ac	
tion�state pair 
�� q� to a real value R
�� q�� F is a set
of state	transition distributions so that for � � A and
p� q � Q�

fpq
�� � Pr
Xt�� � qjXt � p� Ut � ��

where Xt and Ut are random variables denoting� re	
spectively� the state and action at time t� Figure �
shows the state	transition graph in which the states
are vertices and the edges are probabilistic transitions�
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Figure �� State	transition graph for the MDP in which
Q � f�� �� �� �g� A � fa� bg� R
�� �� � R
�� �� � ��
R
�� �� � R
�� �� � �� and the transition probabilities
are indicated in parentheses�

In this paper� we refer to the state	transition graph
as a model for the underlying dynamics of a planning
problem 
Boutilier� Dean� � Hanks ������

A policy is a mapping from states to actions� � �
Q � A� The value function for a given policy maps
states to their expected value given that you start in
that state and act according the given policy�

V�
p� � R
�
p�� p� � �
X

q�Q

fpq
�
p��V�
q�

where � is the discount rate� � � � � �� and we assume
for simplicity that the objective function is expected
discounted cumulative reward 
Puterman ������
Let P � fB�� � � � � Bng be a partition ofQ� P has the

property of stochastic bisimulation homogeneity with
respect to M if and only if for each Bi� Bj � P � for
each � � A� for each p� q � Bi�

X

r�Bj

fpr
�� �
X

r�Bj

fqr
��

For conciseness� we say P is homogeneous�� A homo	
geneous partition is a partition for which every block
is stable 
see De
nition ���

The model with aggregate states corresponding to
the blocks of P and transition probabilities de
ned by

f �ij
�� �
X

r�Bj

fpr
��

where p is any state in Bi is called the quotient model
with respect to P �
A partition P � is a re�nement of a partition P if and

only if each block of P � is a subset of some block of P �
in this case� we say that P is coarser than P �� The
term splitting refers to the process whereby a block of
a partition is divided into two or more sub	blocks to
obtain a re
nement of the original partition�
We introduce the notion of an initial partition to

encode certain basic distinctions among states� In tra	
ditional AI planning� we might use an initial partition

�Stochastic bisimulation homogeneity is closely related
to the substitution property for �nite automata developed
by Hartmanis and Stearns �	
��� and the notion of lumpa�
bility for Markov chains �Kemeny 
 Snell 	
����

consisting of two blocks of states� those that satisfy the
goal and those that do not� In solving an MDP� we dis	
tinguish states that di�er on the basis of reward� Given
the distinctions implied by an initial partition� other
distinctions follow as a consequence of the dynamics�
In particular� a homogeneous re
nement of the initial
partition is one that preserves the initial distinctions
and aggregates blocks that behave the same� For any
particular initial partition� there is one homogeneous
re
nement that is of particular interest�

Theorem � For any initial partition P � there exists a
unique coarsest homogeneous re�nement of P �

The existence of this re
nement of P follows by ana	
lyzing the algorithm described below�
In the remainder of this section� we consider an

algorithm� called the model minimization algorithm

or simply the minimization algorithm� which starts
with an initial partition P� and iteratively re
nes that
partition by splitting blocks until it obtains the coars	
est homogeneous re
nement of P�� We refer to this
re
nement as the target partition�
We discuss the algorithm at an abstract level� leav	

ing the underlying representation of the partitions
unspeci
ed�hence our complexity measures are in
terms of the number of partition manipulation oper	
ations� and the actual complexity depends on the un	
derlying partition representation and manipulation al	
gorithms� Our complexity measures are relative to the
number of blocks in the resulting partition�

De�nition � We say that a block C of a partition P
is stable with respect to a block B of P and action �
if and only if every state in C has the same probability
of being carried into block B by action �� Formally�

�c � ��� ��� �p � C�Pr
Xt�� � BjXt � p� Ut � �� � c

where

Pr
Xt�� � BjXt � p� Ut � �� �
X

q�B

Pr
Xt�� � qjXt � p� Ut � ��

We say that C is stable if C is stable with respect to
every block of P and action in A�

A partition is homogeneous exactly when every block
is stable� The following theorem implies that any un	
stable block in the initial partition can be split imme	
diately� with the resulting new partition retaining the
property that it can be re
ned into the target parti	
tion� By repeatedly 
nding unstable blocks and split	
ting them� we can thus 
nd the target partition in lin	
early many splits in the target partition size 
each split
increases the partition size� which cannot exceed that
of the target partition��

�Our algorithm is an adaptation of an algorithm by Lee
and Yannakakis �	

�� which is related to an algorithm by
Bouajjani et al� �	

���



Theorem � Given a partition P � blocks B and C of
P � and states p and q in block C such that

Pr
Xt�� � BjXt � p� �� Pr
Xt�� � BjXt � q�

then p and q do not fall in the same block of the coarsest
homogeneous re�nement of P �

This theorem yields an algorithm for 
nding the
target partition in linearly many split operations and
quadratically many stability checks�� simply check
each pair of blocks for stability� splitting each unstable
block as it is discovered� Speci
cally� when a block C
is found to be unstable with respect to a block B and
action �� we replace C in the partition by the uniquely
determined sub	blocks C�� � � � � Ck such that each Ci

is a maximal sub	block of C that is stable with re	
spect to B and �� We denote the resulting partition
by SPLIT
B�C� P� ��� where P is the partition just be	
fore splitting C�

Theorem � Given any initial partition P � the model
minimization algorithm computes the coarsest homoge�
neous re�nement of P �

The immediate reward partition is the partition in
which two states� p and q� are in the same block if and
only if they have the same rewards� �� � A� R
�� p� �
R
�� q�� Let P � be the coarsest re
nement of the initial
reward partition� The resulting quotient model can
be extended to de
ne a reduced MDP by de
ning the
reward R�
�� i� for any block Bi and action � to be
R
�� p� for any state p in Bi�

Theorem � The exact solution of the reduced MDP
induces an exact solution of the original MDP�

The above algorithm is given independent of the
choice of underlying representation of the state space
and its partitions� However� we note that� in order
for the algorithm to guarantee 
nding the target par	
tition we must have a su�ciently expressive partition
representation such that any arbitrary partition of the
state space can be represented� Typically� such par	
tition representations may be expensive to manipu	
late� and may blow up in size� For this reason� we
also consider partition manipulation operations that
do not exactly implement the splitting operation de	
scribed above� Such operations can still be adequate
for our purposes if they di�er from the operation above
in a principled manner� speci
cally� if whenever a split
is requested� the operation splits �at least as much�
as requested� Formally� we say that a block splitting
operation SPLIT� is adequate if SPLIT�
P�C�B� �� is
always a re
nement of SPLIT
B�C� P� ��� and we re	
fer to the minimization algorithmwith SPLIT replaced

�Observe that the stability of a block C with respect to
another block B and any action is not a�ected by splitting
blocks other than B and C� so no pair of blocks need ever be
checked twice� Also the number of blocks ever considered
cannot exceed twice the number of blocks in the target
partition �which bounds the number of splits performed��

by SPLIT� as adequate minimization� We refer to ade	
quate splitting operations which properly re
ne SPLIT
as non�optimal� Note that such operations may be
cheaper to implement than SPLIT even though they
�split more� than SPLIT�

Theorem � The minimization algorithm with SPLIT
replaced by any adequate SPLIT� returns a re�nement
of the target partition� and the solutions of the resulting
reduced MDP still induce optimal solutions�

Many published techniques that operate on implicit
representations closely resemble minimization with ad	
equate but non	optimal splitting operations� We de	
scribe some of these techniques and the connection to
minimization later in this paper� In the next section�
we introduce one particular method of implicit repre	
sentation which is well suited to MDPs and then use
this as a basis for our discussion�

Factored Representations
In the remainder of this paper� we make use of
Bayesian networks 
Pearl ����� to encode implicit 
or
factored� representations� however� our methods apply
to other factored representations such as probabilis	
tic STRIPS operators 
Kushmerick� Hanks� � Weld
������ Let X � fX�� � � � � Xmg represent the set of
state variables� We assume the variables are boolean�
and refer to them also as �uents� The state at time t
is now represented as a vector Xt � hX��t� � � � � Xm�ti
where Xi�t denotes the ith state variable at time t� A
two	stage temporal Bayesian network 
�TBN� 
Dean �
Kanazawa ����� is a directed acyclic graph consisting
of two sets of variables fXi�tg and fXi�t��g in which
directed arcs indicating dependence are allowed from
the variables in the 
rst set to variables in the sec	
ond set and between variables in the second set� The
state	transition probabilities are now factored as

Pr
Xt��jXt� Ut� �
mY

i��

Pr
Xi�t��jParents
Xi�t���� Ut�

where Parents
X� denotes the parents of X in the
�TBN and each of the conditional probability distri	
butions Pr
Xi�t��jParents
Xi�t���� Ut� can be repre	
sented as a conditional probability table or as a deci	
sion tree which we do in this paper following 
Boutilier�
Dearden� � Goldszmidt ������ We enhance the �TBN
representation to include actions and reward func	
tions� the resulting graph is called an in�uence dia�
gram 
Howard � Matheson ������
Figure � illustrates a factored representation with

three state variables� X � fA�B�Cg� and describes
the transition probabilities and rewards for one action�
The factored form of the transition probabilities is

Pr
Xt��jXt� Ut� �

Pr
At��jAt� Bt� Pr
Bt��jBt� Pr
Ct��jCt� Bt�

where in this case Xt � hAt� Bt� Cti�
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Figure �� Quotient models for the MDP represented by
the factored representation shown in Figure � for 
a�
the immediate reward partition and 
b� the coarsest
homogeneous partition computed by the minimization
algorithm�

Figure �
a� shows the quotient model induced by the
immediate reward partition for the MDP described in
Figure �� there are two blocks� states in which the
reward is � and states in which the reward is �� Fig	
ure �
b� shows the quotient model for the re
ned parti	
tion constructed by the model minimization algorithm�
In this paper� we consider two di�erent partition rep	

resentations� The 
rst and most general representation
we use represents a partition as a set of mutually incon	
sistent DNF boolean formulas� one for each block� such
that a state is in a block if and only if the state�s cor	
responding truth assignment satis
es the block�s DNF
formula� Given the generality of this representation�
the following result is not surprising�

Theorem � Given a factored MDP and initial par�
tition P represented in DNF� the problem of �nding
the coarsest homogeneous re�nement of P is NP�hard�
even under the assumption that this re�nement has a
DNF representation of size polynomial in jX j�

The NP	hardness in the above theorem lies in main	
taining DNF block descriptions in simplest form� The
minimization algorithm described above can run in
time polynomial in the size of its output if it never
simpli
es the block descriptions�however that output
will therefore not be the simplest description of the
coarsest homogeneous re
nement of P �

As a second partition representation� we consider
any subset S of the �uents 
i�e�� X � to be the �u�
entwise representation of the partition which would be

represented in DNF as the full set of complete truth
assignments to S� Note that this representation cannot
express most partitions�

Existing Algorithms on Factored
Representations

In the following three subsections� we brie�y describe
several existing algorithms that operate on factored
representations� We argue that each algorithm is
asymptotically equivalent to 
rst applying the mini	
mization algorithm and then solving it using an algo	
rithm that operates on the reduced MDP� Space limi	
tations preclude detailed descriptions of the algorithms
and explication of the background necessary to formal	
ize our arguments� hence� the arguments provided in
this paper are only sketches of the formal arguments
provided in the longer version of this paper�

State�Space Abstraction

State	space abstraction 
Boutilier � Dearden ����� is
a means of solving a factored MDP by generating an
equivalent reduced MDP by determining with a su	
per
cial analysis which �uents� values are necessarily
irrelevant to the solution� The reduced MDP gener	
ated is always a �uentwise partition of the state space�
and the analysis can be viewed as minimization where
the splitting operation is adequate but non	optimal�
Let FSPLIT
B�C� P� �� be the coarsest re
nement

of SPLIT
B�C� P� �� which is �uentwise representable�
FSPLIT is adequate and computable in time polyno	
mial in the size of M �

Theorem 	 Minimization using FSPLIT yields the
same partition that state space abstraction does�

The following theorem shows that there is an opti	
mal reduced MDP given the restriction to �uentwise
partitions�

Theorem 
 For any MDP and initial partition P �
there is a unique coarsest homogeneous re�nement of
P that is �uentwise representable�

The state	space abstraction analysis is quite sensi	
tive to the factored representation of the MDP� A par	
ticular explicit MDP may have many di�erent factored
representations� and state space abstraction performs
well only when the representation chosen represents
the independence properties of the �uents well� so that
the super
cial analysis can easily detect which �uents
are relevant� The presentation in 
Boutilier � Dearden
����� relies on a slightly more expressive factored rep	
resentation than that presented above to allow the ex	
pression of a richer class of independence properties�
each action is described by multiple but consistent as�
pects which apply simultaneously� each aspect is rep	
resented just as an action above� The next theorem
shows that� using this more expressive representation�
there is always a way to factor an explicit MDP so that
the optimal �uentwise partition is found by state	space
abstraction and�or FSPLIT minimization�



Theorem � For any MDP M and initial partition P �
there is a factored MDP representation of M �using as�
pects� such that state space abstraction �nds the coars�
est homogeneous �uentwise re�nement of P �

Structured Policy Iteration

Policy iteration is a well	known technique for 
nding
an optimal policy for an explicitly represented MDP
by evaluating the value at each state of a 
xed pol	
icy and using those values to compute a locally better
policy�iterating this process converges to an optimum
policy 
Puterman ������ In explicit MDPs� the eval	
uation of each 
xed policy can be done with another
well	known algorithm called successive approximation�
which involves repeatedly computing the value of each
state using the just computed values for neighboring
states�iterating this process converges in the in
nite
limit to the true values� and a stopping criterion can
be designed to indicate when the estimated values are
good enough to proceed with another step of policy
iteration 
Puterman ������

Boutilier et al� 
����� describe variants of policy it	
eration and successive approximation designed to work
on factored MDP representations� called structured
policy iteration 
SPI� and structured successive approx�
imation 
SSA�� respectively� These algorithms can
both be understood as variants of minimization using
a particular non	optimal but adequate split operation�
For the remainder of this paper� we assume the DNF
partition representation�

De�nition � We say that a block C of a partition P
is �uentwise stable with respect to a �uent Xk and ac�
tion � if and only if every state in C has the same
probability under action � of being carried into a state
with Xk true� Formally�

�c � ��� ��� �p � C�Pr
Xk�t��jXt � p� Ut � �� � c

We say that C is �uentwise stable with respect to block
B and action � if C is �uentwise stable with respect to
every �uent mentioned in the DNF formula describing
block B�

Let SSPLIT
B�C� P� �� be the coarsest re
nement of
SPLIT
B�C� P� �� for which C is �uentwise stable with
respect to B and �� SSPLIT is adequate and com	
putable in time polynomial in the number of new
blocks introduced plus the size of its inputs�

Structured Successive Approximation For a 
x	
ed policy � and MDP M � we de
ne the ��restricted
MDP M� to be the MDP M modi
ed so that actions
not prescribed by � do nothing� in M� � if action � is
taken in a state q such that � �� �
q�� the result is
state q again with probability �� Minimization of the
�	restricted MDP using SSPLIT is equivalent to SSA�

Theorem �� For any MDP M and policy �� SSA ap�
plied to M and � produces the same resulting parti�
tion and value convergence properties as minimization

of M� using SSPLIT� followed by traditional succes�
sive approximation on the resulting reduced MDP� Both
algorithms run in time polynomial in the number of
blocks in the resulting partition�

Structured Policy Iteration Each iteration of
structured policy iteration accepts as input a value
function V� � Q � R� and selects a new policy ��

by considering the possible advantages of choosing ac	
tions on the 
rst step alternative to those indicated
by the current policy and assuming that the value in
subsequent steps is determined by V� � We cast pol	
icy iteration as a minimization problem by considering
a special MDP MPI 
where PI stands for �policy im	
provement�� that forces all actions after the 
rst step
to be chosen according to �� In order to distinguish the

rst step from subsequent steps� we introduce a new
�uent First� The actions executed on the 
rst step are
executed in the subspace in which First is true and ac	
tions executed on subsequent steps are executed in the
subspace in which First is false� For a factored MDP
M with �uents X and policy �� we de
ne MPI to be
the MDP with �uents X 	 fFirstg so that


 the actions always set First to false�


 when First is true� the actions behave on X as they
would in M � and


 when First is false� the actions behave on X as they
would in M� �

Theorem �� For any MDP M and previous policy ��
one iteration of SPI computes the same partition as the
partition of the subspace in which First is true which is
produced by the minimization of MPI using SSPLIT�

Once the new partition is computed 
by either
method�� we select an improved policy by choosing
for each block of the new partition the action that
maximizes the immediate reward plus the probability
weighted sum of the V� values of the possible next
states�

Explanation�Based Reinforcement
Learning

Splitting an unstable block requires computing the
preimage of the block with respect to an action� This
basic operation is also fundamental in regression plan	
ning and explanation	based learning� Explanation	
based learning 
EBL� techniques use regression to ma	
nipulate sets instead of individual states�
Reinforcement learning 
RL� is an on	line method

for solving MDPs 
Barto� Sutton� � Watkins ������
essentially by incremental� on	line dynamic program	
ming� Dietterich and Flann 
����� note that comput	
ing preimages is closely related to the iterative 
dy	
namic programming� step in policy iteration and other
standard algorithms for computing optimal policies�
They describe RL algorithms that use regression in



combination with standard RL and MDP algorithms
to avoid enumerating individual states

Their algorithms make use of a particular represen	
tation for partitions based on rectangular regions of
the state space� The direct application of model mini	
mization in this case is complicated due to the on	line
character of RL� However� an o�	line variant 
which
they present� of their algorithm can be shown to be
asymptotically equivalent to 
rst computing a reduced
model using an adequate splitting operation based on
their rectangular partition representation followed by
the application of a standard RL or MDP algorithm to
the reduced model� We suspect that the rest of their
algorithms as well as other RL andMDP algorithms for
handling multidimensional state spaces 
Moore �����
Tsitsiklis � Van Roy ��� � can be pro
tably analyzed
in terms of model reduction�

Partially Observable MDPs

The simplest way of using model reduction techniques
to solve partially observable MDPs 
POMDPs� is to
apply the model minimization algorithm to an initial
partition that distinguishes on the basis of both reward
and observation and then apply a standard POMDP
algorithm to the resulting reduced model� We suspect
that some existing POMDP algorithms can be par	
tially understood in such terms� In particular� we con	
jecture that the factored POMDP algorithm described
in 
Boutilier � Poole ��� � is asymptotically equiva	
lent to minimizing the underlying MDP and then using
Monahan�s 
����� POMDP algorithm�

Conclusion

This paper is primarily concerned with introducing the
method of model minimization for MDPs and present	
ing it as a way of analyzing and understanding exist	
ing algorithms� We are also working on approxima	
tion algorithms with provable error bounds that con	
struct reduced models using a criterion for approxi	
mate stochastic bisimulation homogeneity�

The methods of this paper extend directly to ac	
count for reachability from an initial state or set of
initial states� We are also working on algorithms that
use minimization and reachability to extend decompo	
sition and envelope	based techniques such as 
Dean et
al� ����� to handle factored representations�
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