Submitted to Artificial Intelligence special issue on Planning and Scheduling

Planning Under Time Constraints in Stochastic Domains

Thomas Dean, Leslie Pack Kaelbling, Jak Kirman, Ann Nicholson
Department of Computer Science
Brown University, Providence, RI 02912
{tld, Ipk, jak, aen}@cs.brown.edu

Abstract

We provide a method, based on the theory of Markov decision processes, for efficient
planning in stochastic domains. Goals are encoded as reward functions, expressing the
desirability of each world state; the planner must find a policy (mapping from states to
actions) that maximizes future rewards. Standard goals of achievement, as well as goals
of maintenance and prioritized combinations of goals, can be specified in this way. An
optimal policy can be found using existing methods, but these methods require time
at best polynomial in the number of states in the domain, where the number of states
is exponential in the number of propositions (or state variables). By using information
about the starting state, the reward function, and the transition probabilities of the
domain, we restrict the planner’s attention to a set of world states that are likely to be
encountered in satisfying the goal. Using this restricted set of states, the planner can
generate more or less complete plans depending on the time it has available.

Our approach employs several iterative refinement routines for solving different as-
pects of the decision making problem. We describe the meta-level control problem of
deliberation scheduling, allocating computational resources to these routines. We pro-
vide different models corresponding to optimization problems that capture the different
circumstances and computational strategies for decision making under time constraints.
We consider precursor models in which all decision making is performed prior to ex-
ecution and recurrent models in which decision making is performed in parallel with
execution, accounting for the states observed during execution and anticipating future
states. We describe experimental results for both the precursor and recurrent problems

that demonstrate planning times that grow slowly as a function of domain size.

1 Introduction

In a completely deterministic world, it is possible for a planner simply to generate a sequence
of actions, knowing that if they are executed in the proper order, the goal will necessarily
result. In nondeterministic worlds, planners must address the question of what to do when

things do not go as expected.

The method of triangle tables [Fikes et al., 1972] made plans that could be executed
robustly in any circumstance along the nominal trajectory of world states, allowing for
certain classes of failures and serendipitous events. It is often the case, however, that an
execution error will move the world to a situation that has not been previously considered
by the planner. Many systems (SIPE, for example [Wilkins, 1988]) can monitor for plan
“failures” and initiate replanning. Replanning is often too slow to be useful in time-critical
domains, however. Schoppers, in his universal plans [Schoppers, 1987], gives a method for
generating a reaction for every possible situation that could transpire during plan execution;
these plans are robust and fast to execute, but can be very large and expensive to generate.
There is an inherent contradiction in all of these approaches. The world is assumed to
be deterministic for the purpose of planning, but its nondeterminism is accounted for by
performing execution monitoring or by generating reactions for world states not on the

nominal planned trajectory.

In this paper, we address the problem of planning in nondeterministic domains by
taking nondeterminism into account from the very start. There is already a well-explored
body of theory and algorithms addressing the question of finding optimal policies (universal
plans) for nondeterministic domains. Unfortunately, these methods are impractical in large
state spaces. However, if we know the start state, and have a model of the nature of the
world’s nondeterminism, we can restrict the planner’s attention to a set of world states
that are likely to be encountered on the way to the goal. Furthermore, the planner can
generate more or less complete plans depending on the time it has available. In this way,
we provide eflicient methods, based on existing techniques of finding optimal strategies, for
planning under time constraints in non-deterministic domains. Our approach addresses the
uncertainty resulting from control error, but not sensor error; in most of the following, we

assume certainty in observations, but discuss relaxing this assumption in Section 9.

We assume that the environment can be modeled as a stochastic automaton: a set of

states, a set of actions, and a matrix of transition probabilities. In the simplest cases,

achieving a goal corresponds to performing a sequence of actions that results in a state
satisfying some proposition. Since we cannot guarantee the length of a sequence needed to
achieve a given goal in a stochastic domain, we are interested in building planning systems

that minimize the expected number of actions needed to reach a given goal.

In our approach, constructing a plan to achieve a goal corresponds to finding a policy
(a mapping from states to actions) that maximizes expected performance. Performance is
based on the expected accumulated reward over sequences of state transitions determined
by the underlying stochastic automaton. The rewards are determined by a reward function
(a mapping from states to the real numbers) specially formulated for a given goal. A good
policy in our framework corresponds to a universal plan for achieving goals quickly on

average.

There are dynamic programming algorithms for computing the optimal policy given a
stochastic model of the world. They are useful in small to medium-sized state-spaces, but
become intractable on very large state-spaces. We address this difficulty by make some
informal assumptions about the environments in which we are working that allow us to
generate approximate solutions efficiently. In particular, we assume that the environment

has the following properties:

e high solution density: it is relatively easy to find plausible (though perhaps not opti-

mal) solutions

o low dispersion rate: from any given state, there are only a few states to which tran-

sitions can be made

e conlinuily: it is reasonable to estimate the values of states by considering the values of
near-by states (where distance is measured as the expected number of steps between

states)

Many large, realistic planning problems, such as those involving high-level navigation, have

these properties.

In the following, we refer to the automaton modeling the environment as the system
automaton. Instead of generating the optimal policy for the whole system automaton,
we formulate a simpler or restricted stochastic automaton and then search for an optimal

policy in this restricted automaton. The state space for the restricted automaton, called

the envelope, is a subset of the states of the system automaton, augmented with a special

state OUT that represents being in any state outside of the envelope.

There are two basic types of operations on the restricted automaton. The first is called
envelope alteration and serves to increase or decrease the number of states in the restricted
automaton. The second is called policy generation and determines a policy for the system
automaton using the restricted automaton. Note that, while the policy is constructed using
the restricted automaton, it is a complete policy and applies to all of the statesin the system
automaton. For states outside of the envelope, the policy is defined by a set of reflexes that

implement some default behavior for the agent.

The algorithm is implemented as an anylime algorithm [Dean and Boddy, 1988], one
that can be interrupted at any point during execution to return an answer whose value, at
least in certain classes of stochastic processes, improves in expectation as a function of the
computation time. In this paper, deliberation scheduling refers to the problem of allocating
processor time to envelope alteration and policy generation. We gather statistics on how
envelope alteration and policy generation improve performance and use these statistics to

compile expectations for allocating computational resources in time-critical situations.

We consider several decision models for deliberation scheduling. In the simpler mod-
els, called precursor-deliberation models, we assume that the agent has one opportunity to
generate a policy and that, having generated a policy, the agent must use that policy there-
after. In more complicated models, called recurrent-deliberation models, we assume that
the agent periodically replans and executes the resulting policy in parallel with planning

the next policy.

Our approach is motivated by the intuitively appealing work of Drummond and Bresina
on ‘anytime synthetic projection’ [Drummond and Bresina, 1990]. In this paper, we refor-
mulate their basic framework in terms of Markov decision processes, cast the algorithmic
issues in terms of approximations to specific optimization problems, provide a disciplined
approach to allocating computational resources at run time, introduce techniques for spec-
ifying goals in stochastic domains, and describe how to extend the framework to deal with

uncertainty in observation.

The structure of this paper is as follows. We begin with an introduction to stochastic
decision making in Section 2, then define the structures necessary to cope with large state

spaces in Section 3. In Section 4 we present basic algorithms for a variety of envelope

alterations and consider how iterative refinement versions of these algorithms may be used
as anytime algorithms to provide expected improvements in value. Idealized decision models
for precursor and recurrent deliberation are presented in Section 5; experimental results
from the domain of robot path planning are given in Section 6. In Section 7 we show how
the language of reward functions can be used to specify complex goals, including goals
of achievement, maintenance of properties of the world, and prioritized combinations of
primitive goals. In Section 8 we outline an extension of our approach to handle uncertainty
in observation, based on the theory of partially observable Markov processes. The research
presented in this paper is related to work in the literature on sequential decision making,

stochastic control, and reinforcement learning; we review this work in Section 9.

2 Markov Decision Models

Following the work on Markov decision processes [Bellman, 1957, Bertsekas, 1987], we model
the entire environment as a stochastic automaton. Let § be the finite set of world states;
we assume that they can be reliably identified by the agent. Let A be the finite set of
actions; every action can be taken in every state. The transition model of the environment
is a function mapping elements of S X A into discrete probability distributions over S. We
write Pr(sy, a, sz) for the probability that the world will make a transition from state s; to

state sy when action a is taken.

A policy 7 is a mapping from S to A, specifying an action to be taken in each situation.
An environment combined with a policy for choosing actions in that environment yields a
Markov chain [Kemeny and Snell, 1960)].

A reward function is a mapping from S to R, specifying the instantaneous reward that
the agent derives from being in each state. Given a policy m and a reward function R,
the value of state s € S, V,(s), is the sum of the expected values of the rewards to be
received at each future time step, discounted by how far into the future they occur. That
is, Vi(s) = Y0207 E(Ry), where R, is the reward received on the {th step of executing
policy 7 after starting in state s. The discounting factor, 0 < v < 1, controls the influence
of rewards in the distant future. When v = 0, the value of a state is determined entirely
by rewards received on the next step; we are generally interested in problems with a longer

horizon and set 7 to be near 1. Due to properties of the exponential, the definition of V

can be rewritten as

Va(s) = R(s)+ 7 3 Pr(s,m(s), s)Va(s)) - (1)
s'eS
We say that policy m dominates (is better than) 7’ if, for all s € S, V(s) > Vy(s), and for
at least one s € S, V;(s) > Vu(s). A policy is optimal if it is not dominated by any other
policy.

One of the most common goals is to achieve a certain condition p as soon as possible. If
we define the reward function as R(s) = 0if p holds in state s and R(s) = —1 otherwise, and
represent all goal states as being absorbing, then the optimal policy will result in the agent
reaching a state satisfying p as soon as possible. A state is absorbing if all actions result
in that same state with probability 1; that is, Va € A, Pr(s,a,s) = 1. Making the goal
states absorbing ensures that we go to the “nearest” state in which p holds, independent
of the states that will follow. The language of reward functions is quite rich, allowing us
to specify much more complex goals, including the maintenance of properties of the world

and prioritized combinations of primitive goals; this is explored in Section 7.

Given a state-transition model, a reward function, and a value for =, it is possible
to compute the optimal policy using either the policy iteration algorithm [Howard, 1960]
or the value iteration algorithm [Bellman, 1957]. We use the policy iteration algorithm
because it is guaranteed to converge in a finite number of steps—generally a small number
of steps in the domains that we have experimented with—and thus simplifies debugging

our computational experiments. The policy iteration algorithm works as follows:

1. Let 7’ be any policy on &
2. While © # 7’ do loop

a. m:=7'
b. For all s € S, calculate V;(s) by solving the set of |S| linear equations in |S]|

unknowns given by equation 1

c. For all s € S, if there is some action a € A s.t.
[R(s) + 7YX ges Pr(s,s’,a)Va(s')] > Vi(s), then 7'(s) := a; otherwise 7'(s) :=
m(s)

3. Return =

The algorithm iterates, generating at every step a policy that strictly dominates the
previous policy, and terminates when a policy can no longer be improved, yielding an
optimal policy. In every iteration, the values of the states under the current policy are
computed. This is done by solving a system of equations, which requires time on the order
of |S|3. The algorithm then improves the policy by looking for states s in which doing
some action a other than 7(s) for one step, then continuing with 7, would result in higher
expected reward than simply executing 7. When such a state is found, the policy is changed
so that it always chooses action a in that state. The algorithm is guaranteed to converge

in a number of iterations polynomial in |S].

3 Coping with Large State Spaces

As the size of our state spaces grows, even a polynomial-time algorithm such as policy
iteration becomes too ineflicient. We will assume that our environment is such that, for
any given reward function and initial starting state, it is sufficient to consider a highly-

restricted subset of the entire state space in our planning.

A partial policy is a mapping from a subset of § into actions; the domain of a partial
policy 7 is called its envelope, £:. The fringe of a partial policy, F;, is the set of states that
are not in the envelope of the policy, but that may be reached in one step of policy execution
from some state in the envelope. That is, Fr = {s € § — & | 35’ € & s.t. Pr(s', w(s'), s) >
0}.

To construct a restricted automaton, we take an envelope £ of states and add the
distinguished state ouT. For any states s and s’ in £ and action @ in A, the transition
probabilities remain the same. Further, for every s € £ and ¢ € A, we define the probability

of going out of the envelope as
Pr(s,a,0uT)=1— Z Pr(s,a,s’) .
s'e€
The oUT state is absorbing.

The cost of falling out of the envelope is a parameter that depends on the domain. If

it is possible to re-invoke the planner when the agent falls out of the envelope, then one

approach is to assign V(ouT) to be the estimated value of the state into which the agent
fell minus some function of the time required to construct a new partial policy. Under the
reward function described earlier, the value of a state is negative, and its magnitude is
the expected number of steps to the goal; if time spent planning is to be penalized, it can
simply be added to the magnitude of the value of the oUT state with a suitable weighting

function.

4 Basic Algorithms

As a concession to complexity, in generating a policy, our algorithms consider only a subset
of the state space of the stochastic process. The algorithm starts with an initial policy
and a restricted state space (or envelope), extends that envelope, and then computes a new
policy. We would like it to be the case that the new policy 7’ is an improvement over (or

at the very least no worse than) the old policy 7 in the sense that V,/(so) — Vx(s9) > 0.

In general, however, we cannot guarantee that the policy will improve without ex-
tending the state space to be the entire space of the system automaton, which results in
computational problems. The best that we can hope for is that the algorithm improves in
expectalion. Suppose that the initial envelope is just the initial state and the initial policy
is determined entirely by the reflexes. The difference V;/(s9) — V(o) is a random variable,
where 7 is the reflex policy and 7’ is the computed policy. We would like it to be the case
that E[Vi(so) — Vx(so)] > 0, where the expectation is taken over start states and goals
drawn from some fixed distribution. Although it is possible to construct system automata
for which even this improvement in expectation is impossible, we believe many moderately
benign environments are well-behaved in this respect. In particular, navigation environ-
ments (excluding mazes) in which transitions are restricted by spatio-temporal constraints

generally satisfy our requirements.

Our basic algorithm consists of two stages: envelope alteration followed by policy gen-
eration. The algorithm takes an envelope and a policy as input and generates as output a
new envelope and policy. We assume that the algorithm has access to the state transition
matrix for the stochastic process. In general, we assume that the algorithm is applied in
the manner of iterative refinement, with more than one invocation of the algorithm. We
also treat envelope alteration and policy generation as separate, so we cast the overall pro-

cess of policy formation in terms of some number of rounds of envelope alteration followed

O
e

TG P

| |
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \

Figure 2: Stochastic process and a restricted version

by policy generation, resulting in a sequence of policies. Figure 1 depicts a sequence of
automata generated by iterative refinement along with corresponding paths through state

space from the initial state to a goal state.

Policy generation is itself an iterative algorithm that improves an initial policy by es-
timating the value of policies with respect to the restricted-state-space stochastic process
mentioned earlier. When run to completion, policy generation continues to iterate until it
finds a policy that it cannot improve with respect to its estimate of value; this policy is
guaranteed to be optimal with respect to the restricted-state-space stochastic process. We
say that policy generation is inflexible if the ¢th round of policy generation is always run

to completion on the restricted automaton available at the 7th round.

Figure 2.i shows an example system automaton consisting of five states. Suppose that

the initial state is 1, and state 4 satisfies the goal. The path 1 % 2 % 4 goes from the initial

state to a state satisfying the goal and the corresponding envelope is {1,2,4}. Figure 2.ii
shows the restricted automaton for that envelope. Let 7(s) be the action specified by the
policy 7 to be taken in state s; the optimal policy for the restricted automaton shown in
Figure 2.ii is defined by 7(1) = 7(2) = 7(4) = a on the states of the envelope and the
reflexes by 7(OUT) = b (i.e., Vs € {1,2,4},7(s) = b) (the reflex actions need not be the

same in all states).

First we consider the high level algorithms for a precursor and a recurrent model of
planning and execution. Execution of an explicit policy is trivial, so we describe only the
algorithm for generating policies. We then look at the various component phases of the
planning algorithms, which are shared between both models. A wider range of precursor and
recurrent models are described in Section 5, where we consider how to schedule deliberation
in both models.

4.1 High Level Algorithms
4.1.1 Precursor Deliberation Model

In the precursor deliberation model, there are two separate phases of operation: planning
and execution. The planner constructs a policy that is followed by the agent until a new
goal must be pursued or until the agent falls out of the current envelope. In the simplest
precursor models, a deadline is specified indicating when planning stops and execution

begins.

The high level planning algorithm, given a description of the environment and start

state sg or a distribution over start states, is as follows:

1. Generate an initial envelope &
2. While (£ # §) and (not deadline) do

a. Extend the envelope £

b. Generate an optimal policy 7 for restricted automaton with state set £ U {ouT}

3. Return =

The algorithm first finds a small subset of world states and calculates an optimal policy
over those states. Then it gradually adds new states in order to make the policy robust by
decreasing the chance of falling out of the envelope. After new states are added, the optimal
policy over the new envelope is calculated. Note the interdependence of these steps: the
choice of which states to add during envelope extension may depend on the current policy,
and the policy generated as a result of optimization may be quite different depending on
which states were added to the envelope. The algorithm terminates when a deadline has

been reached or when the envelope has been expanded to include the entire state space.

4.1.2 Recurrent Deliberation Model

A more sophisticated model of interaction between planning and execution is one in which
the planner runs concurrently with the execution, sending new or expanded strategies to

the executor as they are developed.

In recurrent-deliberation models, the agent has to repeatedly decide how to allocate
time to deliberation, taking into account new information obtained during execution. The
details of such models are discussed in Section 5; here we provide just a rough sketch. We
assume two separate modules: one for planning and a second for execution. In the simplest
model, the planner and executor operate in a rigid cycle with a period determined by fixed
length of time. At the beginning of each cycle, the planner is given the current state by the
execution module; the planner spends the fixed length of time working on a new policy; at
the end of the fixed time, the planner gives the new policy to the execution module. For
the time being we assume that the execution module can identify the current state with

certainty; in Section 8 we consider the case in which there is uncertainty in observation.

In the recurrent models, it is often necessary to remove states from the envelope in order
to lower the computational costs of generating policies from the restricted automata. For
instance, in the mobile-robot domain, it may be appropriate to remove states corresponding
to portions of a path the robot has already traversed if there is little chance of returning to
those states. Figure 3 shows a typical sequence of changes to the envelope corresponding
to the state space for the restricted automaton. The current state is indicated by € and
the goal state is indicated by [].

The recurrent planning algorithm, given a description of the environment, the policy 7,

that is currently being followed by the agent, and the state of the agent at the beginning

10

Find path to the goal

Extend the envelope ‘ .

Extend and then prune the envelope

@

Find path back to the envelope ‘

Extend and then prune the envelope

}

awn

\J

Figure 3: Typical sequence of changes to the envelope

of the planning interval, s., is as follows:

While (not goal) do

1. Set s. to be the current state for planning purposes
2. While (not end of current planning interval) do

a. Extend the envelope £
b. Prune the envelope £

c. Generate an optimal policy 7’ for restricted automaton with state set £ U {ouT}

3. Set 7. to be the new policy 7’

The details of the extension and pruning of the envelope will depend on the agent’s expected
state at the end of the planning interval. This can be determined from the state transitions,

s. and 7. by forward simulation.

4.2 Algorithm Components

In the following sections, we consider each subcomponent of the precursor and recurrent

algorithms in more detail. Each of the subcomponents can be implemented as an anytime

11

algorithm; in Section 5, we cast the problem of allocating computational resources to the
subcomponents as an optimization problem and then describe decision-theoretic techniques

to compute approximations.

4.2.1 Policy Generation

Given a restricted automaton with envelope £, we use the policy iteration algorithm to gen-
erate the optimal policy. Although this is potentially an O(| £|) operation, most realistic
environments cannot transition from every state to every other, so the transition matrix is
sparse, allowing much more efficient solution of the equations. This algorithm requires a
number of iterations at most polynomial in the number of states; in practice, in our robot
path planning domains with 660 to 16,000 world states, it has never taken more than 15
to 50 iterations respectively. When we use this as a subroutine in our planning algorithm,
we generate a plausible policy for the first step, and then for all subsequent steps we use
the old policy as the starting point for policy iteration. We are considering, but have not
tried, Kushmerick et al.’s method for generating plausible initial policies [Kushmerick et
al., 1993]. Because, in general, the policy does not change radically when the envelope
is extended, it requires very few iterations of the policy iteration algorithm to generate
the optimal policy for the extended envelope (typically 2 or 3 iterations for the smaller
domains, up to 10 for the larger domains). Occasionally, when a very dire consequence or

an exceptional new path is discovered, the whole policy must be changed.

4.2.2 Initial Trajectory Planning

The high-level precursor and recurrent algorithms work no matter how the initial envelope
is chosen, but if it is done with some intelligence, the early policies are much more useful,
and the time taken to reach the goal is shorter. In our examples, we consider the goal of
being in a state satisfying p as soon as possible. For such simple goals of achievement, a
good initial envelope is one containing a chain of states from the initial state, sg, to some
state satisfying p such that, for each state, there is some action with a non-zero probability

of moving to the next state in the chain.

In the implemented system, we generate a path from start to goal by doing a depth-first

search from sg considering the most probable outcome for each action in decreasing order of

12

probability. This yields a set of states that can be traversed to a goal state. We then check
for any shortcuts within this path, deleting intermediate states if this does not decrease the
probability of reaching the goal for the resultant path. We then attempt to improve the
robustness of the path by adding a successor to a path state if it in turn has the next state
in the path as its successor and the combined transition probabilities are higher than the

original single transition probability.

We use this method to generate a small number of paths from the start to the goal, say
10, and choose the shortest path (which is usually the path with the highest probability) to
form the initial envelope to the policy. We can then use the nominal path from the start to
goal as the initial policy, which makes the optimization of the initial envelope much faster
than if we began with a completely random policy for the envelope. More sophisticated
techniques or more complicated heuristics could be used to generate a good initial envelope;
our strategy is to spend as little time as possible doing this, so that a plausible policy is

available as soon as possible.

4.2.3 Envelope Alteration

Envelope alteration can be classified in terms of three basic operations on the envelope:
trajectory planning, envelope extension, and envelope pruning. Trajectory planning consists
of searching for a path from some initial state to a state satisfying the goal; this method
need not make use of the current restricted automaton. Envelope extension adds states
to the envelope. Envelope pruning removes states from the envelope and is generally used
only in recurrent-deliberation models. Both envelope extension and envelope pruning will
typically make use of the current restricted automaton; for example, envelope extension
may add those the states outside of the envelope that the agent is most likely to reach
given the current policy, and pruning may delete states that the agent is unlikely to end up

in.

Extending the envelope There are a number of possible strategies for extending the
envelope; the most appropriate depends on the domain. The aim of the envelope extension
is to judiciously broaden the subset of the world states, by including states that are outside
the envelope of the current policy but that may be reached upon executing the policy. One

simple strategy is to add the entire fringe of the current policy, Fr; this would result in

13

adding states uniformly around the current envelope. It will often be the case, however,

that some of the states in the fringe are very unlikely to be reached given the current policy.

A more reasonable strategy, similar to one advocated by Drummond and Bresina [Drum-
mond and Bresina, 1990], is to look for the N most likely fringe states. We do this by
simulating the restricted automaton and accumulating the probabilities of falling out into
each fringe state. We then have a choice of strategies. We can add each of the N most
likely fringe states. Alternatively, for goals of achievement, we can take each element of this
subset of the fringe states and find a path from the state back to some state in the enve-
lope. Following Drummond and Bresina, we call this class of envelope extension methods
robuslification. Robustification may also be combined with trajectory planning by taking

a fringe state and adding a path to a state that satisfies the goal.

Trajectory planning Trajectory planning is performed in much the same way as initial
trajectory planning except that the notions of initial and goal states may vary. For instance,
we often wish to find a path (trajectory) from some fringe state back to some state inside
the envelope or back to a state satisfying the goal. Apart from this difference, the actual

search techniques are exactly the same as in initial trajectory planning.

Pruning In the recurrent models, it is often necessary to remove states from the envelope
in order to lower the computational costs of generating policies from the restricted automa-
ton. One obvious method is to prune states from the current envelope on the grounds that
the agent is unlikely to end up in those states and therefore need not consider them in
formulating a policy. However we need to be careful about how this is done. It may be that
a state has a low instantaneous reward, or is some kind of sink (e.g., all non-self transitions
have low probability). In these situations the current policy will direct the agent away from
that state, resulting in a low probability of that state being reached. We do not always
want to remove this kind of state; its presence in the envelope directs the agent away from
an area it should avoid. We want to distinguish between states that have a low probability
of being reached because they are in an area to be avoided but are still somehow between
the agent and the goal, and those which the agent has gone past. In order to prune the

latter category, for the results given in Section 6, we prune the N least likely states which

14

also have a lower value than the value of the current state.l

4.3 Example: Robustification in the Precursor Model

In our approach, unlike that of Drummond and Bresina, extending the current policy is
coupled tightly and naturally to changing the policy as required to keep it optimal with
respect to the restricted view of the world. The following example illustrates how such

changes are made using the precursor algorithm described above.

The example domain is high-level mobile-robot path planning. It was chosen so that
it would be easy to understand the policies generated by our algorithms. The floor plan
is divided into a grid of 166 locations, £, with four directional states associated with each
location, D = {N, S, E, W}, corresponding to the direction the robot is facing, resulting in a
total of 664 world states, representing the layout of the fourth floor of the Brown University
Computer Science department (see Figure 4). The robot is given a task to navigate from
some starting location to some target location. The actions available to the robot are {sTAyY,
GO, TURN-RIGHT, TURN-LEFT, TURN-ABOUT}. The transition probabilities for the outcome
of each action may be obtained empirically. In our experimental simulation, the sTAY action
is guaranteed to succeed. The probability of success for GO and turning actions in most
locations is 0.8, with the remainder of the probability mass divided between undesired
results such as overshooting, over-rotating, slipping sideways, etc. The world also contains
sinks, locations that are difficult or impossible to leave. In the mobile-robot domain, a sink
might correspond to a stairwell that the robot could fall into. The reward function for the
sequential decision problem associated with a given initial and target location assigns 0 to
the four states corresponding to the target location and —1 to all other states. On average
each state has 15.6 possible successors. This is a dispersion rate of about 2.3% for the basic
fourth floor domain, however it is reduced 0.1% when the domain is expanded to 16,000
states; this is the type of low dispersion rate domain we identified earlier as suitable for our

approach.

Figure 5 shows a subset of the domain corresponding to the locations surrounding a
stairwell. The stairwell states taken as a whole correspond to what we call a complete

sink; there are no nonzero transitions out of a complete sink. The stairwell states are only

!Note that sinks that are between the current state and the goal will have low value and still be deleted,

so this heuristic is still not ideal.

15

Figure 4: Plan of the Brown CS department fourth floor used for the mobile-robot domain.
Each square is a location corresponding to four states, one for each heading of the robot,
as shown in the expanded square in the lower left. Sinks are indicated by darker shading.

The larger domains are constructed by replicating this map in a grid layout.

16

accessible from one direction, the north. In this figure there are four small squares associated
with each location, one for each possible heading; thus each small square corresponds to a
state, the direction of the arrow shows the policy for the robot in that location and with
that heading. Figure 5 (a) shows the optimal policy for a small early envelope; Figures 5(b)
and (c) show two subsequent envelopes where the policy changes to direct the robot to

circumvent the stairwell, reflecting aversion to the risk involved in taking the shortest path.

5 Deliberation Scheduling

Deliberation scheduling is the problem of allocating processor time to envelope alteration
and policy generation. It is natural to think of deliberation scheduling in terms of opti-
mization even if the combinatorics dictate that an optimal solution is not computationally
feasible. Having said this, it still remains to determine what optimization problem we are
trying to solve. We have to specify exactly what options are allowed and what information

is available; such a characterization is generally referred to as a decision model.

In the following, we present a number of decision models. It should be pointed out that
for each instance of the problems that we consider there are a large number of possible de-
cision models. By specifying different decision models, we can make deliberation scheduling
easy or hard. Our selection of which decision models to investigate is guided by our interest
in providing insight into the problems of time-critical decision making and our anticipation
of the combinatorial problems involved in deliberation scheduling. In this section, we ignore
the time spent in deliberation scheduling; for practical reasons, however, we are interested

in decision models for which the on-line time spent in deliberation scheduling is negligible.

In the simpler precursor-deliberation models, we assume that the agent has one oppor-
tunity to generate a policy and that having generated a policy the agent has to stick to

that policy thereafter. Precursor-deliberation models include those in which

1. a deadline is given in advance specifying when to stop deliberating and start acting

according to the generated policy (the algorithm for this was given in Section 4.1.1)

2. the agent is given an unlimited amount of time to respond with a time cost of delay

specified as a fixed function

17

v V1 = = = = =
o= (3= 13 D E O =E | T=E = | T
v v - - = - - J
i i i ~ = A A =
¥ 1= 1= |I=X7J = | M =X
< < < - = A
N
W E
S
>< start i1 = = =
v = =)= |
® o= y g _ _
= best path = A § i
— = N N K
- stairwell N y] =
D fringe = (i
— forward L L S WEW
= turn right % vl
< turn left L L S = F%W
L ==
turn about 7£ L 7 S 7 7ﬁ
N = U= 0= |IE |O
L _ Il =

Figure 5: Example of policy change for different envelopes near a complete sink. The
direction of the arrow indicates the current policy for that state. (a) Sink not in the
envelope: the policy chooses the straightforward shortest path. (b) Sink included: the
policy skirts north around it. (c) All states surrounding the stairwell included: the barriers
on the south, east and west sides allow the policy take a longer but safer path. For this
run 7 = 0.999999 and V(ouT) = -4000.

18

In the following two models, there is a trigger event that occurs indicating that the agent

must begin following its policy immediately with no further refinement.

3. the trigger event can occur at any time in a fixed interval with a uniform distribution

4. the trigger event is governed by a more complicated distribution, e.g., a normal dis-

tribution centered on an expected time

Models (3) and (4) are not considered in this paper; models (1) and (2) are treated in
Section 5.1.

In the more complicated recurrent-deliberation models, we assume that the agent peri-

odically replans. Recurrent-deliberation models include those in which

5. the agent performs further envelope alteration and policy generation if and only if it

‘falls out’ of the envelope defined by the current restricted automaton

6. the agent performs further envelope alteration and policy generation in parallel with
execution, tailoring the restricted automaton and its corresponding policy to states

anticipated in the near future (the algorithm for this was given in Section 4.1.2)

Model (6) is treated in Section 5.2.

5.1 Precursor-Deliberation Models

In the following we consider four cases of precursor deliberation with known deadlines and
one case of precursor deliberation with unlimited time to respond and a cost for delay. Let
tToT be the total amount of time from the current time until the deadline. If there are &

rounds of envelope alteration and policy generation, then we have

lga, +lpg, + -+ tlga, +1iprc, =lroT,

where {4, (tpg,) is the time spent in the ¢th round of envelope alteration (policy gener-
ation). Let m; represent the policy after the ith round of envelope alteration followed by

policy generation.

19

Single round; inflexible policy generation; deadlines In the simplest case, policy
generation does not inform envelope alteration and so we might as well do all of the envelope

alteration before policy generation, and

tpa, +tpg, = tror.

In order to schedule time for £ A; and PG, we need:

1. the expected improvement of the value of a random initial state between the reflex
policy and the policy resulting from policy generation given a fixed amount of time

allocated to envelope alteration, E[V;, (s0) — Vo (S0)|tEA4, I;

2. the expected size of the envelope given the time allocated to the first round of envelope

alteration, E[1&11|tg 4,]; and

3. the expected time required for policy generation given the size of the envelope after

the first round of envelope alteration, E[tpg, | 1&11].

Fach of (1), (2) and (3) can be determined empirically, and, at least in principle, the
optimal allocations to envelope alteration and policy generation can be determined. If we
assume no variance in run times and envelope sizes, then optimal deliberation schedul-
ing corresponds to finding that {g4, maximizing E[V (so) — Vi, (S0)|tE4,] subject to the
constraint that

tpa, + Eltpe, |E[l&1] |[tpa,]] < tror.

Note that, because policy generation is itsell an iterative refinement algorithm, we can
interrupt it at any point to obtain a policy. Although the particular model considered here
assumes inflexible policy generation for the purpose of deliberation scheduling, we might

use a more flexible approach to handling of deadlines at run time.

In the case of nondegenerate distributions over run times and envelope sizes, optimal
deliberation scheduling would require consideration of cases in which the actual run times
violate the specified deadline. This is relatively straightforward to model, but considerably

more difficult to implement.

20

Multiple rounds; inflexible policy generation; deadlines Assume that policy gen-
eration can profitably inform envelope alteration, i.e., that the policy after round ¢ provides
guidance in extending the environment during round 7 4+ 1. In this case, we have k rounds

and

lga, +lpg, + -+ 1ga, +tpg, = lToT.

Recall that the fringe states for a given envelope and policy correspond to those states
outside the envelope that can be reached with a non-zero probability in a single step by
following the policy starting from some state within the envelope. Let the most likely
Jalling-out state with respect to a given envelope and policy correspond to that fringe state
that is most likely to be the first fringe state reached by following the policy starting in the
initial state. We might consider a very simple method of envelope alteration in which we
just add the most likely falling-out state and then the next most likely and so on. Suppose

that adding each additional state takes a fixed amount of time. Let
E[‘/ﬂi(SO) - V?Tz‘_l (50)| Igi—ll =1m, Igzl =m++ ’Il]

denote the expected improvement in the value of the initial state after the 7th round of
envelope alteration and policy generation given that there are n states added to the m

states that were already in the envelope after the — 1 round.

Again, the expectations described above can be obtained empirically. Coupled with the
sort of expectations described for the previous single-round case (e.g., E[tpg,|I&l]) , one
could, at least in principle, determine the optimal number of rounds &k and the allocations
to tga, and tpg, for 1 < 7 < k. In practice, we use slightly different statistics and heuristic

methods for deliberation scheduling to avoid the combinatorics.

Single round; flexible policy generation; deadlines Actually, this case is simpler in
concept than the case with inflexible policy generation assuming that we can compile the

following statistics.
E[‘/ﬂl (80) — Vr (So)ltEAJ ’ tPGJ]

Multiple rounds; flexible policy generation; deadlines Again, with additional

statistics, e.g.,

E[Vr(80) = Va,_y (s0)[€1l = m, 1€l = m + n,tpg,_,],

21

this case is not much more difficult than the earlier cases.

Single round; inflexible policy generation; cost of delay Deliberation models that
assume no fixed deadline but specify a time cost of delay as a fixed function can be han-
dled similarly to the cases considered above. For instance, in the case of single round,
inflexible policy generation, if we assume no variance in run times and envelope sizes,
optimal deliberation scheduling corresponds to finding that {g4, maximizing the sum of

E[Vm(so) - VWO(SO)HEAJ and COSt(tEA1 + E[tPG1 |E[&1l |tEA1]])'

5.2 Recurrent-Deliberation Models

In recurrent deliberation models, the agent has to decide repeatedly how to allocate time to
deliberation, taking into account new information obtained during execution. In this sec-
tion, we consider a particular model for recurrent deliberation in which the agent allocates
time to deliberation only at prescribed intervals. We assume that the agent has separate
planning and execution modules that run in parallel and communicate by message passing;
the planning module sends policies to the execution module and the execution module sends

observed states to the planning module.

We call the models considered in this section the discrete, weakly-coupled, recurrent
deliberation models. Discrete because each tick of the clock corresponds to exactly one
state transition; recurrent because the execution module gets a new policy from the planning
module periodically; weakly coupled in that the two modules communicate by having the
execution module send the planning module the current state and the planning module

send the execution module the latest policy.

As mentioned earlier, in the recurrent models, it is often necessary to remove states
from the envelope in order to lower the computational costs of generating policies from
the restricted automata. In general, there are many more possible strategies for deploying
envelope alteration and policy generation in recurrent models than in the case of precur-
sor models. To cope with the attendant combinatorics, we raise the level of abstraction
slightly and assume that we are given a small set of strategies that have been determined
empirically to improve policies significantly in various circumstances. Each strategy cor-
responds to some fixed schedule for allocating processor time to envelope alteration and

policy generation routines.

22

intervals during which the system is executing reflexively
|

0 n 2n 3n 4n

falls out of the envelope

current state happens to be contained in the new envelope

falls out of the envelope again

current state is not in the new envelope

current state isin the new envelope

Figure 6: Recurrent deliberation

Discrete; weakly-coupled; fixed intervals We first consider the case in which com-
munication between the two modules occurs exactly once every n execution steps or ticks;
at times n,2n,3n,... the planning module sends off the policy generated in the last n
ticks, receives the current state from the execution module, and begins deliberating on the
next policy. Strategies would be tuned to a particular n-tick planning cycle. One strategy
might be to use a particular pruning algorithm to remove a specified number of states and
then use whatever remains of the n ticks to generate a new policy. In this regime, deliber-
ation scheduling consists of choosing which strategy to use at the beginning of each n-tick

interval.

Before we get into the details of the decision model, consider some complications that
arise in recurrent deliberation problems. At any given moment, the agent is executing a
policy, 7, defined on the current envelope and augmented with a set of reflexes for states
falling outside the envelope. The agent begins executing 7 in state s. At the end of the
current n-tick interval, the execution module is given a new policy 7/, and the planning
module is given the current state s’. It is possible that s’ is not included in the envelope
for 7'; if the reflexes do not drive the robot inside the envelope then the agent’s behavior
throughout the next n-tick interval will be determined entirely by the reflexes. Figure 6
shows a possible run depicting intervals in which the system is executing reflexively and
intervals in which it is using the current policy; for this example, we assume reflexes that

enable an agent to remain in the same state indefinitely.

23

Let é,(s,m,s") be the probability of ending up in s’ starting from s and following =
for n steps. Suppose that we are given a set of deliberation strategies {F7, Fy,...}. Asis
usual in such combinatorial problems with indefinite horizons, we adopt a myopic decision
model with a limited horizon. In particular, we assume that, at the beginning of each
n-tick interval, we are planning to follow the current policy 7 for n steps, follow the policy
F(7) generated by some strategy F' attempting to improve on 7 for the next n steps, and
thereafter follow the optimal policy 7*. If we assume that it is impossible to get to a goal

state in the next 2n steps, the expected value of using strategy Fis given by

2n—1
— Z 7i + A2n Z 6n(s,m,8") Z 6u(s', F(m), "YW (") | = Vie(s),
1=0 s'eS s'"eS

where 0 < v < 1is a discounting factor, controlling the degree of influence of future results

on the current decision.

Extending the above model to account for the possibility of getting to the goal state
in the next 2n steps is straightforward; computing a good estimate of V,« is not, however.
We might use the value of some policy other than 7*, but then we run the risk of choosing
strategies that are optimized to support a particular suboptimal policy when in fact the
agent may be able to do much better. In general, it is difficult to estimate the long term
prospects for sequential decision problems of indefinite duration. In the next model, we
consider an alternative decision model that avoids computing or even estimating the value

of the optimal policy, but has related problems in practice.

Discrete; weakly-coupled; variable intervals One practical problem with the fixed-
interval model is that it is difficult to design strategies for a fixed n-tick interval. In
this case, we allow variable planning intervals and assume that we can predict reasonably
accurately the time required for a given deliberation strategy to run. Also, in anticipation
of combinatorial issues that arise in our experimental studies, we adopt a simpler myopic
decision model. In this case, we assume that the agent will apply exactly one deliberation
strategy and commit to the resulting policy thereafter. The expected value of using strategy

F on 7 assuming that F will take k steps is just

k-1
=3 D Skl T,)WV (s | = Va(s),
1=0 s'eS

24

where the first term corresponds to the value of using 7 for the first k steps and F(7)
thereafter and the second term corresponds to the case in which we do no deliberation
whatsoever and use m forever. As in the model described in the previous section, we
assume that the goal cannot be reached in the next k steps; again it is simple to extend

the analysis to the case in which the goal may be reached in fewer than k steps.

The above decision model does not require that we compute the value of the optimal
policy. The model does, however, require that we compute the long-term performance of
policies. In practice, of course, we will only compute an estimate, but this estimation will
turn out to be rather difficult.

6 Experimental Results

This section reports on experiments conducted in the simulated robot-navigation environ-

ment described in Section 4.3.

6.1 Greedy Precursor Deliberation

In general, computing the optimal deliberation schedule for the multiple-round precursor-
deliberation models described above is computationally complex. We have experimented
with a number of simple, greedy and myopic scheduling strategies; we report on one such

strategy here.

We gathered a variety of statistics on how extending the envelope increases value. The
statistics that proved most useful corresponded to the expected improvement in value for
different numbers of states added to the envelope. Instead of conditioning just on the size
of the envelope prior to alteration we found it necessary to condition on both the size of
the envelope and the estimated value of the current policy (i.e., the value of the optimal
policy computed by policy iteration on the restricted automaton). At run time, we use the
size of the automaton and the estimated value of the current policy to index into a table of
performance profiles giving expected improvement as a function of number of states added

to the envelope.

Using the mobile-robot domain (the single fourth floor, 664 states), we generated

1,600,000 data points to compute statistics of the sort described above plus estimates of the

25

value

1.00 __ _
o —

0.80 - ~

/
¢
0.60 1’ greedy agorithm /ompleta state space
1
040 |/ /
J /
0.20 ',l
i e

0.00 0.20 0.40 0.60 0.80 1.00 time

Figure 7: Comparison of planning algorithm using greedy deliberation strategy (dashed

line) with the policy iteration optimization method (solid line): Average over 630 runs

time required for one round of envelope alteration followed by policy generation given the
size of the envelope, the number of states added, and value of the current policy. We use the
following simple greedy strategy for choosing the number of states to add to the envelope
on each round. For each round of envelope alteration followed by policy generation, we use
the statistics to determine the number of states which, added to the envelope, maximizes

the ratio of performance improvement to the time required for computation.

We compared the performance of (1) our planning algorithm using the greedy deliber-
ation strategy with (2) policy iteration optimizing the policy for the whole domain. Our
results show that the planning algorithm using the greedy deliberation strategy supplies a
good policy early, and typically converges to a policy that is close to optimal before the
whole domain policy iteration method does. Figure 7 shows average results from 620 runs,
where a single run involves a particular start state and goal state. The graph shows the
average value of the start state under the policy available at time ¢, Vi(sg), as a function of
time. In order to compare results from different start/goal runs, we show the average ratio
of the value of the current policy to the value of the optimal policy for the whole domain,
plotted against the ratio of actual time to the time, 7,,;, that the policy iteration takes to

reach that optimal value.

The greedy deliberation strategy performs significantly better than the standard opti-
mization method. We also considered very simple strategies such as adding a small fixed
number of fringe states each iteration, and adding the whole fringe each iteration, which

performed fairly well for this domain, but not as well as the greedy policy. Further experi-

26

mentation is required to draw definitive conclusions about the comparative performance of

these deliberation strategies for particular domains.

6.2 Recurrent Deliberation

In this section, we present results for recurrent-deliberation problems of indefinite duration
using statistical estimates of the value of a variety of deliberation strategies. We do this
for the discrete, weakly-coupled decision model which allows variable-length intervals for
deliberation. Although fixed-length intervals facilitate exposition, it is much easier to collect
useful statistical estimates of the utility of deliberation strategies if the deliberation interval
is allowed to vary. For the remainder of this section, a deliberation strategy is just a

particular sequence of invocations of envelope alteration and policy generation routines.

6.2.1 Gathering Statistics

The utility of a deliberation strategy is characterized as a function of attributes of the
policy to which it will be applied, such as the estimated value of the policy and the size
of the envelope. For example, the function EIV(F, ffm I£-]) provides an estimate of the
expected improvement in value from using the strategy F assuming that the estimated
value of the current policy and the size of the corresponding envelope fall within specified
ranges. This function is implemented as a table in which each entry is indexed by a strategy
F and a set of ranges over the attributes. We determine the EIV function off line by
gathering statistics for F running on a wide variety of policies. At run time, the deliberation
scheduler computes an estimate of the value of the current policy V;, determines the relevant
attributes of current policy, for example the size |£;] of the corresponding envelope, and
chooses the strategy F maximizing IV for those attributes. Note that actual results given

in Section 6.2.2 use FIV contingent on other attributes also.

To build a table of estimates of function EIV off line, we begin by gathering data on
the performance of strategies ranging over possible initial states, goals, and policies. For a
particular strategy F’, initial state z, and policy 7, we run F on 7, determine the elapsed
number of steps k, and compute the estimated improvement in value as defined in the

section describing the discrete, weakly-coupled, variable interval deliberation model. Given

27

data of the sort described above, we build the table for IV (F, TA/W, I£-1) by appropriately

dividing the data into buckets with equal numbers of elements.

One unresolved problem with this approach is exactly how to compute f/ﬂ(w). Recall
that 7 is only a partial policy defined on a subset of § augmented with a set of reflexes to
handle states outside the current envelope. In estimating the value of a policy, we are really
interested in estimating the value of the augmented partial policy. If the reflexes kept the
agent in the same place indefinitely, then as long as there was some nonzero probability of
falling out of the envelope with a given policy starting in a given state, the actual value of
the policy in that state would be —1/(1 — 7). Of course, this is an extremely pessimistic
estimate for the long term value of a particular policy since in the recurrent model the
agent will periodically compute a new policy based on where it is in the state space. The
problem is that we cannot directly account for these subsequent policies without extending
the horizon of the myopic decision model and absorbing the associated computational costs

in off-line data gathering and online deliberation scheduling.

To avoid complicating the online decision making, we have adopted the following ex-
pedient, which allows us to keep our one-step-lookahead model. We modify the transition
probabilities for the restricted automaton so that there is always a non-zero probability of
getting back into the envelope after having fallen out of it. FExactly what this probability
should be is difficult to determine. The particular value chosen will determine just how
concerned the agent will be with the prospect of falling out of the envelope. In fact, the
value is dependent on the actual strategies chosen by deliberation scheduling which, in our
particular case, depends on EIV and this value of falling back in. We might possibly re-
solve the circularity by solving a large and very complicated set of simultaneous equations;

in practice, we have found that it is not difficult to find a value that works reasonably well.

6.2.2 Experimental Results

Domain The experimental results for the recurrent model were obtained on the mobile-
robot domain in a range of sizes. Table 1 shows the numbers of locations and states for
the different sized domains in the columns nLocs and nStates respectively. The larger
domains are obtained by combining multiples of the floor plan shown in Figure 4 into

two-dimensional grids.

The actions available to the agent were the same as those described in Section 4.3 and

28

World mnlocs mnStates ExpCost CostOut
1x1 158 632 -500 -1
2x2 632 2528 -1000 -4
3x3 1422 5688 -1500 -9
4x4 2528 10112 -2000 -16
5x5 3950 15800 -2500 -25

Table 1: Information about the domains used to obtain experimental results for the recur-

rent deliberation model

used to obtain the precursor-model results. The transition probabilities were also the same,
except that the domain was modified slightly to no longer contain any complete sinks; this
means that even if the agent falls into a semi-sink state (i.e. one with low but non-zero
probabilities of making transitions into another state), it can eventually reach the goal. In

each case, the discount factor, v, was 0.9999.

In addition to the numbers of locations and states, Table 1 also shows the values used
for CostOut and ExpCost when generating the statistics; CostOut is the estimate of how
long the agent must wait once it has fallen out of the envelope using only its reactive policy
and ExpCost is the estimate of the average value of the states in the world. These values
are conservative estimates given the relatively benign nature of the domain — about 3% of

the states are semi-sinks.?

Deliberation strategies Our implementation provided a number of phases, including

envelope optimization (0) and the following types of envelope alteration:

1. findfirstpath (FFP): find 10 paths from the agent’s current state, x.,,, to a goal

state, and chose the shortest path to be the initial envelope

2. findpath (FP): if the agent’s current state z.y, is not in the envelope, find a path
from ., back to the envelope, and add this path to the envelope

2Given v = 0.9999, the value of a complete sink is —1/(1 — v) = —10, 000.

29

3. robustify (R[N]): we used the following heuristic to extend the envelope: find the
N most likely fringe states and add them to the envelope

4. prune (P[N]): of the states that have a worse value than the current state, remove

the N least likely to be reached using the current policy.

The findfirstPath phase is executed only once, to obtain the initial envelope, then the
deliberation module chooses between a set of 24 hand-crafted strategies. Each of these 24
strategies begins with a findpath phase and ends with the optimization phase. Between
these first and last phases, robustification, pruning and optimization are used in different
combinations with different numbers of states to be added or deleted. In order to be able
to compare the same strategy for the different sized domains, we formulated the number of
states to be added and deleted in terms of the dimensions of the world; for world size n x n,
where n = 1,..., 5, the number of states to be added or deleted was one of {512, 10n?, 20n?}.

Examples strategies are:

{FP R[10n?] 0}

{FP P[20n?] 0}

{FP P[5n?] R[10n?*] 0}
{FP R[20n*] P[10n*] 0}
{FP R[10n*] 0 P[10n*] 0}

Statistics We collected statistics over a large number of runs (where a run is a particular
start/goal pair) for each size domain, generating data points for strategy execution as shown
in Table 2.

The start/goal pairs were chosen uniformly at random from all states excluding the
semi-sinks and we ran the simulated robot in parallel with the planner until the goal was
reached. The planner executed findfirstpath (FFP) to obtain the initial envelope, then
executed the following loop: choose one of the 24 strategies uniformly at random, execute

that strategy, and then pass the new policy to the simulated robot.

Conditioning attributes We found the following conditioning variables to be significant:
the envelope size, |€|, the estimated value of the current state Vﬂ, the “fatness” of the

envelope (the ratio of envelope size to fringe size), and the Manhattan distance, M, between

30

World # Stats Runs # Data Points
1x1 5858 155696

2x2 6423 168215

3x3 5758 128611

4x4 5363 110830

5x5 4963 94021

total 28365 657373

Table 2: Statistics for different sized domains

the start and goal locations. We then built the lookup tables of the expected improvement
in value as a function of I€], V;, the fatness, M and the strategy s. The lookup table

granularity used was 3 buckets per attribute dimension.

Simulation results To test our algorithm, we took 50 pairs of start and goal states from
each world, chosen uniformly at random from all states excluding the semi-sink states. For

each pair we ran the simulated robot in parallel with the following deliberation mechanisms:

e recurrent-deliberation with strategies chosen using statistical estimates of £1V (LOOKUP)

e dynamic programming policy iteration over the entire domain, with a new policy
given to the robot
— after each iteration (ITER)

— only after it has been completely optimized (WHOLE)

We found that the statistics were not particularly sensitive to the size of the domain;
statistics gathered for the smaller-sized worlds transferred fairly well to the larger-sized
worlds. The LOOKUP results use the statistics lookup table compiled from the approximately
660,000 data points.

Figure 8 shows the average number of steps taken by the agent to reach the goal for

the various algorithms. For the smaller domains, the recurrent-deliberation algorithm does

31

averagetime to goa (ticks)
WHOLE
1500

1000

500 _—
— |_ LOOKUP

.4/
_/

o 5000 10000 15000

ITER
L~

world size (states)

Figure 8: Comparison of the recurrent algorithm to policy iteration over varying domain

size

not perform better than either of the policy iteration algorithms. However, as we move to
larger domains, the improvement is marked. As we might expect, WHOLE is exponential
and becomes computationally infeasible as the size of the domain increases. ITER also
shows a non-linear degradation in the time to goal. LOOKUP shows linear behavior, clearly

performing better as the domain size increases.

The implementation used to obtain these experimental results did not include a separate
trajectory planning phase that looks for new paths to goal states. This lack of exploration
meant that the planner did not look for shortcuts either to states in the envelope but
significantly closer to the goal, or to the goal itself. Therefore, the performance depended
more on the quality of the first path used as the initial envelope than it might have if
trajectory planning had been implemented. Without the exploratory trajectory planning,
all the significant path planning is done when the initial envelope is found; in this case, if
that initial envelope contains a path of length close to the Manhattan distance, the recurrent
algorithm performs quite well. However if the first path is not a good one, the recurrent
algorithm ends up exploring most of the state space and loses its performance gains over
the dynamic programming algorithm. The addition of trajectory planning would be likely

to improve the performance of the system as a whole.

32

7 Representing Goals with Reward Functions

In early AI work on planning, it was traditional to have a goal of achievement specified
by a logical expression over properties of world states. This translates into having a set of
desirable world states and the implicit goal to reach one of these states in the least possible
amount of time. At the same time, work in temporal and dynamic logics gave us the notions
of a proposition being always true or eventually true and of one predicate being true until
another became true. These ideas have been attractive to Al researchers because they give
us a more complex, compositional language in which to express goals. Unfortunately, these
expressions are not suitable for direct use as goals in Al applications. An agent with the
goal of eventually(p) has the option of postponing p indefinitely; there is no requirement to
achieve p sooner rather than later. Similarly, to have the goal always(p) is to require that

p be maintained true into the infinite future, which is impossible in any sort of real world.

7.1 Basic Goal Types

One way to retain these ideas but make them more useful is to replace eventually by asap,
meaning, intuitively, as soon as possible and to replace always by alap, meaning as long as
posstble. In stochastic domains, we can convert goals of this kind into reward functions and

apply the same algorithms for finding good policies with respect to the reward functions.

Given a goal of asap(p), we can generate a policy that takes actions in such a way as
to minimize the expected number of steps taken before a state in which p holds is entered.

First, we generate the reward function

r(s) = { 1 if p(s)

—1 otherwise

We must also modify the environment so that all states s such that p(s) are absorbing; this
ensures that we go to the “nearest” state in which p holds, independent of the states that

will follow.

Similarly, given a goal of alap(p), we can generate a policy that takes actions in such a
way as to maximize the number of steps taken before a state in which —p holds is entered.

We can use the reward function given above, but this time, we modify the environment so

33

that all states s such that —p(s) are absorbing; this ensures that no good results can ensue

after encountering a state in which p does not hold.

If we have a longer-term goal of staying in states in which p holds as much as possible,
that is amap(p), then we need only adopt the reward function above and make no changes

to the environment.

7.2 Goal Combination

It is often useful to think of an agent as having multiple goals simultaneously. Goals
based on reward functions can be combined to achieve this effect, although the kinds of

combination that are appropriate are different than for logical goals.

Goals of achievement can be disjoined in two ways: either asap(p)Vasap(q) or asap(pVq).
The first method requires that either p be achieved as soon as possible or that ¢ be achieved
as soon as possible, but is indifferent between them. This kind of combination will rarely
be useful, because it would allow p to be pursued, even though it takes much longer than
achieving q. We therefore prefer the second form, which can be performed by taking the
maximum of the reward functions at each state and making any state with zero reward
absorbing. Prioritized disjunction (in which, for instance, states in which p holds are to
be preferred to states in which ¢ holds, but only if the length of time to achieve p is not
too much greater) can be achieved by taking the maximum of scaled versions of the reward

functions:
r(s) = max(ary(s), Brq(s))

where a and (§ encode the relative desirability of achieving p and achieving ¢. The same

technique can be applied to create reward functions for the goals alap(pVq) and amap(pVq).

External conjunction of asap goals is problematic: what does it mean to achieve p
as soon as possible and to achieve ¢ as soon as possible? In general, these goals will be
conflicting and the conjunction is meaningless. However, we can accommodate internal
conjunction by taking the minimum of the reward function at each state. Again, we can

apply the same technique to create reward functions for the goals alap(pAq) and amap(pAq).

Another useful goal combination is asap-maint(p,q), in which the goal is to achieve p
as soon as possible, and to maintain ¢ until p has been achieved. This can be accomplished

using the same reward function as before, but making all states in which —¢ holds absorbing

34

as well. Even though there is no difference in instantaneous value between states in which
¢ does and does not hold, the —¢ states are both bad and absorbing, which will give them
a very high negative value. This is essentially what was done in the experimental domain

described earlier, with the stairwells being absorbing states.

Many languages for the combination of goals allow sequencing, in which it is specified
that p is to be achieved, then ¢ is to be achieved. If it is not possible for the agent to
perceive or remember that p has been achieved, then sequenced goals cannot be specified
using reward functions. If the agent can perceive that p has been achieved (notated prev(p)),

then the goal asap(prev(p) A q) will have the desired effect.

7.3 Modifying the Planning Algorithm

The planning algorithm described earlier can be applied directly to the whole range of
possible reward functions, but some aspects can be tuned to improve the early behavior of

the algorithm.

For asap goals, it makes sense for the initial envelope to include some path, however
tenuous, from the current state to some goal state. If this is not the case, there is no basis
for assigning value to the states in the envelope and the policy will essentially be random.
For alap goals, it is sufficient for the initial envelope to simply be the current state. A good
envelope for an alap goal need only contain a cycle or set of states that the agent can stay

in with high probability.

In addition, the appropriateness of various deliberation strategies will also depend on
the type of the goal. This dependence can be handled directly by the statistics-based

deliberation-scheduling mechanisms described above.

8 Uncertainty in Observation

Howard’s and Bellman’s formulations of dynamic programming address sequential decision
problems of indefinite duration in which the system dynamics can be described as a Markov
chain. They assume that the decision-making agent is able to observe its actual state with
absolute certainty when executing a policy. In the previous sections, we have adopted this

same basic model for decision making. In this section, we are concerned with decision

35

problems of indefinite duration in which the assumption regarding observation does not
hold. For instance, if an agent is in state = then some of the time (perhaps most of the
time) it observes z and the rest of the time it observes some other state. In the case in which
it observes a state other than its actual state, we that say the agent has made an error
in observation. We can specify the uncertainty as a conditional probability distribution
relating observed and actual states. The state transitions are still governed by a Markov
chain, but the ability of the agent to execute a given policy is dependent on its ability to

correctly identify states.

Simple framework In this section, we cast the problem of decision making with uncer-
tainty in observation within the framework described in previous sections. In particular,
we demonstrate how observation errors can be modeled using Markov decision models, and
sketch algorithms for heuristic trajectory planning and envelope alteration that account for
uncertainty in observation. We describe an approach in which the only information used
by the agent in estimating its current state is the observation made on entering that state.
In addition, we describe a more general approach in which state estimation accounts for

the entire past history of observations and actions. We begin with some terminology.

We decompose the problem into designing an observer to identify the current state and
a regulator to determine what actions to take assuming that the agent can identify the
current state with absolute certainty. In the control literature this approach would be said
to assume the separability of observation and regulation. The approach is described as
follows. First, determine the optimal regulator assuming that observation is perfect; this
can be done using Howard’s policy iteration. Second, design the optimal observer using a
model for the observation errors; there is a substantial literature on using Bayesian decision
theory to design optimal observers [Bar-Shalom and Fortmann, 1988]. Finally, couple the

optimal observer to the optimal regulator.

The problem with the above strategy is that the regulator, by assuming a perfect ob-
server, may drive the agent into regions of the state space in which it is very hard to
correctly identify the current state and so having the optimal regulator is not much help.
We can avoid this problem by designing a regulator that takes into account the abilities
of the observer. In the following, we describe approaches to doing this that fit within the

framework presented in previous sections.

36

Here is the standard formulation for sequential decision problems (which differs slightly

in notation from the one we used earlier):

o p;;(u) — the probability of making a transition from z; to z; having executed action

u in state z;

e R(z;) — the reward for being in z;

We abbreviate the state-transition probabilities for a given policy 7 as p;; = pi;j(7(z;)).

We assume that the observer takes in observations and generates as output the most
likely current state based on its observations. The observer can take into account only the
most recent observation or observations arbitrarily far into the future. In the simplest case,

we can model the uncertainty of the observer’s output by:
e g;; — the probability the observer outputs z; when the state is really z;

The standard approach uses Howard’s policy iteration algorithm to find the optimal

policy, 7*, which satisfies the following system of equations:

Vee() = R(2;) + max 7y Z pii(a@)Ves(z;) .
z;EX

When we have uncertainty in observation, it is possible to define the value function over

world states given a particular policy 7 as

Valwi) = R(zi) +7 Y Y grivij(n(a))Valz)) -
z;eX rpeX
The value of a state z; is the instantaneous reward plus the expected value of the next
state. The probability of making a transition from state z; to some next state z; is more
complicated when there is uncertainty in observation. It is the probability of believing
that you are really in some state zj given that you are actually in state z; (that is, gx),
times the probability of making a transition from z; to z; given that you take the action

appropriate to being in z (that is, p;;(zg)).

Now, it is possible to define the optimal uncertain-observation policy as

™ (2;) = arg max Z pij(a)Ves(2;)
z;€X

37

which simply requires you to take the action that would be the best for the state you believe

yourself to be in.

Unfortunately, the techniques of policy iteration cannot be applied to compute this
policy. Any change of action in one state affects the values of all the other states in a
complex way. It may be the case that there is no alternative but to enumerate the policies
in order to find the optimal. We are currently investigating approximation methods for this

problem.

It is important to point out that this approach does not result in an optimal observer; it
results in an optimal regulator assuming a particular observer. The regulator does what it
can to work within the limitations of the chosen observer and requires that the performance
of the observer be modeled simply by the g;; values. In the following, we consider an observer

that accounts for all of the past observations and actions.

Partially observable Markov decision processes In operations research, Markov
decision processes that involve uncertainty in observation are called partially observable.
There is a large literature on partially observable Markov decision processes (see [Monahan,
1982] for a survey). A standard technique is to convert the partially observable process into
a perfectly observable process with states that correspond to distributions over the original
states, summarizing the agent’s knowledge of its current state given all of its past actions

and observations. The resulting, perfectly-observable process is Markov.

The problem with the above approach is that the state space of the perfectly-observable
process is no longer finite and, in some cases, a sequence of policies rather than a single
policy is required for optimality. A number of techniques have been developed that serve to
partition the state space into a finite set of regions or consider only a finite, reachable sub-
space of the infinite state space. Smallwood and Sondik describe state-space-partitioning
algorithms for the finite-horizon [Smallwood and Sondik, 1973] and indefinite-duration
(infinite-horizon) [Sondik, 1978] cases. In the worst case, the number of regions in the
partition can grow exponentially in the time horizon and so much of the current research

involves approximation algorithms [Lovejoy, 1991, White and Scherer, 1989].

Integration into our approach The above discussion was meant to provide some evi-

dence that our basic approach can be extended to take into account uncertainty in obser-

38

vation. The simplest approach to extension would be to make use of existing methods for
optimization and approximation and provide analogs of the envelope alteration routines
introduced earlier to handle the case of uncertainty in observation. In the following, we

sketch what these analogs would look like.

In earlier sections, we describe algorithms for trajectory planning and envelope extension
for the case in which there are no errors in observation. For trajectory planning, we use
a heuristic function that takes into account the probability of traversing a trajectory with
a fixed policy. During trajectory planning, each trajectory is associated with a particular
partial policy and a traversal probability. For a trajectory ending in z; to be extended
to x; by action u, either the associated policy already maps z; to u or the policy must
be extended so that m(z;) = u. The traversal probability is updated to be the traversal
probability for the unextended trajectory times the probability of making the most recent

transition, p;;(u).

In the case of observation errors, the basic idea is quite similar. In the case of the
simple decision model described at the beginning of this section, the traversal probability
for the unextended trajectory is multiplied by the probability that the agent will be able to
follow the most recent transition given both errors in observation and errors in movement
as summarized by f;; = 3_, cx gripij(m(zx)). In the case in which the states of the Markov
process correspond to distributions, the approach is more complicated to describe without
introducing more notation than seems warranted but the idea is similar. The heuristic
methods for adding fringe states and pruning are likewise similar in their implementation

and intuitive basis.

9 Related Work

Our primary interest is in applying the sequential decision making techniques of Bellman
[Bellman, 1957] and Howard [Howard, 1960] in time-critical applications. Our initial moti-
vation for the methods discussed here came from the ‘anytime synthetic projection” work
of Drummond and Bresina. [Drummond and Bresina, 1990]. We improve on the Drum-
mond and Bresina work by providing (i) coherent semantics for goals in stochastic domains,
(ii) theoretically sound probabilistic foundations, (iii) and decision-theoretic methods for

controlling inference.

39

The approach described in this paper represents a particular instance of time-dependent
planning [Dean and Boddy, 1988] and borrows from, among others, Horvitz’ [Horvitz,
1988] approach to flexible computation. Boddy [Boddy, 1991] describes solutions to related
problems involving dynamic programming. Hansson and Mayer’s BPS (Bayesian Prob-
lem Solver) [Hansson and Mayer, 1989] supports general state-space search with decision-
theoretic control of inference; it may be that BPS could be used as the basis for envelope
extension thus providing more fine-grained decision-theoretic control. Christiansen and
Goldberg [Christiansen and Goldberg, 1990] and Kushmerick, Hanks, and Weld [Kush-
merick et al., 1993] also address the problem of planning in stochastic domains. Boddy
[Boddy, 1991] describes solutions to related problems involving dynamic programming. For
an overview of resource-bounded decision making methods, see chapter 8 of the text by
Dean and Wellman [Dean and Wellman, 1991].

Acknowledgements

Thomas Dean’s work was supported in part by a National Science Foundation Presidential
Young Investigator Award IRI-8957601, in part by the Advanced Research Projects Agency
of the Department of Defense monitored by the Air Force under Contract No. F30602-91-
C-0041, and in part by the National Science foundation in conjunction with the Advanced
Research Projects Agency of the Department of Defense under Contract No. IRI-8905436.
Leslie Kaelbling’s work was supported in part by a National Science Foundation National
Young Investigator Award IRI-9257592 and in part by ONR Contract N00014-91-4052,
ARPA Order 8225.

References

[Bar-Shalom and Fortmann, 1988] Bar-Shalom, Yaakov and Fortmann, Thomas E. 1988.

Tracking and Data Association. Academic Press, New York.

[Bellman, 1957] Bellman, Richard 1957. Dynamic Programming. Princeton University

Press.

[Bertsekas, 1987] Bertsekas, Dimitri P. 1987. Dynamic Programming. Prentice-Hall, En-
glewood Cliffs, N.J.

40

[Boddy, 1991] Boddy, Mark 1991. Anytime problem solving using dynamic programming.
In Proceedings AAAI-91. AAAL. 738-743.

[Christiansen and Goldberg, 1990] Christiansen, Alan and Goldberg, Ken 1990. Robotic
manipulation planning with stochastic actions. In DARPA Workshop on Innovative

Approaches to Planning, Scheduling and Control. San Diego,California.

[Dean and Boddy, 1988] Dean, Thomas and Boddy, Mark 1988. An analysis of time-
dependent planning. In Proceedings AAAI-88. AAAL 49-54.

[Dean and Wellman, 1991] Dean, Thomas and Wellman, Michael 1991. Planning and Con-

trol. Morgan Kaufmann, San Mateo, California.

[Drummond and Bresina, 1990] Drummond, Mark and Bresina, John 1990. Anytime syn-
thetic projection: Maximizing the probability of goal satisfaction. In Proceedings AAAI-
90. AAAIL 138-144.

[Fikes et al., 1972] Fikes, Richard E.; Hart, Peter E.; and Nilsson, Nils J. 1972. Learning
and executing generalized robot plans. Artificial Intelligence 3:251-288.

[Hansson and Mayer, 1989] Hansson, Othar and Mayer, Andrew 1989. Heuristic search
as evidential reasoning. In Proceedings of the Fifth Workshop on Uncertainly in Al
152-161.

[Horvitz, 1988] Horvitz, Eric J. 1988. Reasoning under varying and uncertain resource
constraints. In Proceedings AAAI-88. AAAL 111-116.

[Howard, 1960] Howard, Ronald A. 1960. Dynamic Programming and Markov Processes.
MIT Press, Cambridge, Massachusetts.

[Kemeny and Snell, 1960] Kemeny, J. G. and Snell, J. L. 1960. Finite Markov Chains. D.
Van Nostrand, New York.

[Kushmerick et al., 1993] Kushmerick, Nicholas; Hanks, Steve; and Weld, Daniel 1993. An
algorithm for probabilistic planning. Unpublished Manuscript.

[Lovejoy, 1991] Lovejoy, William S. 1991. Computationally feasible bounds for partially

observed markov decision processes. Operations Research 39(1):162-175.

41

[Monahan, 1982] Monahan, George E. 1982. A survey of partially observable markov deci-

sion processes: Theory, models, and algorithms. Management Science 28(1):1-16.

[Schoppers, 1987] Schoppers, Marcel J. 1987. Universal plans for reactive robots in unpre-
dictable environments. In Proceedings IJCAT 10. IJCAIIL. 1039-1046.

[Smallwood and Sondik, 1973] Smallwood, Richard D. and Sondik, Edward J. 1973. The

optimal control of partially observable markov processes over a finite horizon. Operations
Research 21:1071-1088.

[Sondik, 1978] Sondik, Edward J. 1978. The optimal control of partially observable markov

processes over the infinite horizon: Discounted cost. Operations Research 26(2):282-304.

[White and Scherer, 1989] White, Chelsea C. III and Scherer, William T. 1989. Solu-
tion procedures for partially observed markov decision processes. Operations Research
37(5):791-797.

[Wilkins, 1988] Wilkins, David E. 1988. Practical Planning: Ezxtending the Classical Al

Planning Paradigm. Morgan-Kaufmann, Los Altos, California.

42

