AN ALGEBRAIC APPROACH TO ABSTRACTION
IN REINFORCEMENT LEARNING

A Dissertation Presented
by
BALARAMAN RAVINDRAN

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment
of the requirements for the degree of

DOCTOR OF PHILOSOPHY
February 2004

Computer Science

(© Copyright by Balaraman Ravindran 2004
All Rights Reserved

AN ALGEBRAIC APPROACH TO ABSTRACTION
IN REINFORCEMENT LEARNING

A Dissertation Presented
by
BALARAMAN RAVINDRAN

Approved as to style and content by:

Andrew G. Barto, Chair

Roderic A. Grupen, Member

Sridhar Mahadevan, Member

Neil E. Berthier, Member

W. Bruce Croft, Department Chair
Computer Science

To Prof. S. Banumoorthy

ACKNOWLEDGMENTS

I am very grateful to my thesis advisor Andy Barto. His guidance, support and
patience were instrumental in bringing this work to fruition. He taught me how to be
a better researcher and how to better express my ideas. He keeps an open mind while
approaching a research question and has constantly surprised me by the connections
he can draw with existing literature. When I started working on my thesis, I would
return from my meetings with Andy with a different book each week on topics such as
potential fields, category theory, and statistics, from all of which Andy drew relevant
ideas. I will always strive to emulate him as a researcher. Thank you Andy for
everything.

The other members of my committee also provided me with great support and
encouragement. I thank Rod Grupen for the feedback on drafts of my thesis, and
for helping me better understand symmetry groups and the control basis approach;
Neil Berthier for his support, discussions on developmental psychology, and advice on
certain ethical questions; and Sridhar Mahadevan for many stimulating discussions
on hierarchy and abstractions. My interaction with Rich Sutton and Robbie Moll
during the first two years here were very educative and exposed me to two very
different ways of approaching research problems. Their enthusiasm when confronted
with an interesting problem is infectious.

Many others have contributed to the development of the ideas in the thesis and
to my understanding of the issues involved. I thank Bob Givan and Matthew Greig
for clarifying certain points about their minimization framework. I thank Rob Platt
for numerous discussions on applying my ideas to practical problems and for com-

menting on several drafts of the thesis. I thank Mike Rosenstein for exposing me to a

wide variety of work in RL and related fields. I also thank Ted Perkins, Mohammad
Ghavamzadeh, Khashayar Rohanimanesh, and Dan Bernstein for many hours of in-
teractions, which were either stimulating, entertaining, outrageous, vacuous or all of
them simultaneously.

The erstwhile Adaptive Networks Lab, currently the Autonomous Learning Lab,
is an excellent and enjoyable environment for research. I thank all the denizens of the
lab, past and present, for making it so. I especially thank Amy McGovern and Andy
Fagg for being such good friends and for their constant support and encouragement.
I also thank the lab members for sitting through numerous practice talks and for
giving useful feedback. Again, special thanks to Andy Barto, Andy Fagg, Amy and
Mike for attending more than a fair share of these mind-numbing, repetitive sessions.
My presentation skills have improved largely due to their feedback. In addition I
thank Nathan Sitkoff, Doina Precup, Leo Zelevinsky, Anders Jonsson, Mance Har-
mon, Matthew Schlesinger, Marc Pickett, Jad Davis, Ash Shah, Ozgiir Simsek, Pippin
Wolfe, Randy Casstevens, Sarah Osentoski, Vicky Manfredi, and Andrew Stout, who
over the years have helped maintain a great atmosphere in the lab.

My stay in the graduate school in UMass has been made that much more enjoyable
by the excellent support staff, who really care about the students. Thank you for all
the help. I especially thank Gwyn Mitchell and Pauline Hollister, for responding
readily to my numerous requests for help. I thank Sharon Mallory, the graduate
program manager, for her understanding and support. When I applied for admission
to UMass, my application package was delivered to a different school by the courier.
It was due to the efforts of Sharon and Rosalyn Black, at MIT, that my application
even reached here. I thank Rod Grupen and Neil Immerman the past and present
graduate program directors, and Robbie Moll, for their understanding of my unique

circumstance and enabling me to meet my goals.

vi

During my initial years in this country, I received a lot of support from my cousin
Ravi G. Chandran. Thank you Ravi, for all the wonderful conversations on life,
the universe and everything. My parents have been very supportive of me in all my
endeavors, even if they did not want me to be this far away from them. Their love and
their confidence in my abilities have always provided me with the necessary impetus
to succeed. I also thank my parents-in-law for their support and encouragement.
Vibhu—enthralling, exciting, doughty, exasperating, wonderful, ethereal—the world
is no longer the same after you came, and neither are my priorities. Thank you for
reminding me to smell the flowers. Without my wife Suba, none of this would have
been possible. Even during the darkest of times, she was steadfast in her belief and
provided me with the motivation to persevere. Thank you for the patience and all
the love.

This material in this work is based upon work supported by the National Science
Foundation under Grant No. ECS-9980062 to Andrew G. Barto and Grant No. ECS-
0218125 to Andrew G. Barto and Sridhar Mahadevan. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the authors

and do not necessarily reflect the views of the National Science Foundation.

vii

ABSTRACT

AN ALGEBRAIC APPROACH TO ABSTRACTION
IN REINFORCEMENT LEARNING

FEBRUARY 2004

BALARAMAN RAVINDRAN
B.E., MADURAI-KAMARAJ UNIVERSITY, INDIA
M.Sc.(Engg.), INDIAN INSTITUTE OF SCIENCE, BANGALORE, INDIA
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrew G. Barto

To operate effectively in complex environments learning agents require the ability
to form useful abstractions, that is, the ability to selectively ignore irrelevant details.
Stated in general terms this is a very difficult problem. Much of the work in this
field is specialized to specific modeling paradigms or classes of problems. In this
thesis we introduce an abstraction framework for Markov decision processes (MDPs)
based on homomorphisms relating MDPs. We build on classical finite-state automata
literature and develop a minimization framework for MDPs that can exploit structure
and symmetries to derive smaller equivalent models of the problem. Since employing
homomorphisms for minimization requires that the resulting abstractions be exact,
we introduce approximate and partial homomorphisms and develop bounds for the
loss that results from employing relaxed abstraction criteria.

Our MDP minimization results can be readily employed by reinforcement learn-

ing (RL) methods for forming abstractions. We extend our abstraction approach to

viil

hierarchical RL, specifically using the options framework. We introduce relativized
options, a generalization of Markov sub-goal options, that allow us to define options
without an absolute frame of reference. We introduce an extension to the options
framework, based on relativized options, that allows us to learn simultaneously at
multiple levels of the hierarchy and also employ hierarchy-specific abstractions. We
provide certain theoretical guarantees regarding the performance of hierarchical sys-
tems that employ approximate abstraction. We empirically demonstrate the utility
of relativized options in several test-beds.

Relativized options can also be interpreted as behavioral schemas. We demon-
strate that such schemas can be profitably employed in a hierarchical RL setting.
We also develop algorithms that learn the appropriate parameter binding to a given
schema. We empirically demonstrate the validity and utility of these algorithms.
Relativized options allow us to model certain aspects of deictic or indexical repre-
sentations. We develop a modification of our parameter binding algorithm suited to

hierarchical RL architectures that employ deictic representations.

1X

TABLE OF CONTENTS

Page
ACKNOWLEDGMENTS e v
ABSTR ACT . viii
LIST OF TABLES e xiii
LIST OF FIGURES. e xiv
CHAPTER
1. INTRODUCTION 1
1.1 Motivation. 1
1.2 Outline of Thesis 4
2. BACKGROUND AND NOTATION i 9
2.1 Markov Decision Processes. i 9
2.2 Semi-Markov Decision Processes 11
2.3 Reinforcement Learning 11
2.4 Partitions, maps and equivalence relations 12
3. MDP HOMOMORPHISMS AND MINIMIZATION 15
3.1 Group Homomorphism 15
3.2 Machine Homomorphism 17
3.3 MDP Homomorphism 18
3.4 Minimization Framework 20
3.5 Identifying Homomorphisms 26
3.6 Relation to Stochastic Bisimulations 31
3.7 Learning With Reduced Models 34
3.8 Related Work 36

4. SYMMETRY, STRUCTURE AND APPROXIMATIONS 40

4.1 Modeling Symmetries 40
4.1.1 Symmetry Groupsot 41
4.1.2 Discussion on Identifying Symmetry Groups 46
4.1.3 Related Work 47

4.2 Homomorphisms of Factored MDPs, 49
4.2.1 Structured MDPs 50
4.2.2 Structured Morphisms 52
4.2.3 Permutation Symmetry Groups 54
4.2.4 DiISCUSSION . . .ottt 57

4.3 Approximate Equivalence 58
4.3.1 Approximate Homomorphisms 59
4.3.2 Bounding the Approximation Loss........................... 61
4.3.3 Bounded Approximate Homomorphisms 64
4.3.4 DiSCUSSION . . .t v it e 67

5. ABSTRACTION IN HIERARCHICAL SYSTEMS................ 69

5.1 SMDP HomomorphisSms 70

5.2 Partial Homomorphisms 72

5.3 Sub-goal Options 74

5.4 Relativized Options 78

5.5 Hierarchical Problem Decomposition 80
5.5.1 Hierarchical Policies 82
5.5.2 Learning with Hierarchical Decompositions 85

5.6 Ilustrative Example 87

5.7 Approximate Equivalence 90

5.8 Relation to MAXQ Safe State-abstraction........................ ... 93

5.9 Related Work 94

D10 SUIMIMATY .« . oottt e e e e e e e e e 97

6. OPTION SCHEMAS AND DEIXIS. 98

6.1 Relativized Options as Option Schemas............. 98

6.2 Related Work 100

6.3 Choosing Transformations 102
6.3.1 A Bayesian Algorithm 104

x1

6.3.2 Experimental [llustration................. 105

6.4 Handling Approximate Equivalence 107
6.5 Experiments in a Complex Game Environment 109
6.6 Deictic Representation 118
6.6.1 Modeling Aspects of Deixis with Relativized Options.......... 120
6.6.2 Experimental Illustration in a Complex Game
Environment 123
6.6.3 Perceptual Aliasing with Deictic Representations 128
6.6.4 Related Work. 130
6.6.5 DISCUSSIONot 132
6.7 Applications of Homomorphisms in the Control Basis Framework 133
6.7.1 Control Basis Framework 134
6.7.2 Designing Option Schemas 136
6.7.3 DISCUSSION . . . oottt 141
7. CONCLUSIONS . .. 143
7.1 SUMIATY . .o oot e e 143
7.2 Future Work 146
7.3 Closing Remarks 149
APPENDICES
A. PROOF OF THEOREM 5 i 150
B. SOME RESULTS ON APPROXIMATIONS OF DYNAMIC
PROGRAMS .. 152
BIBLIOGRAPHY ... 156

xii

Table

3.1

3.2

4.1

4.2

6.1

6.2

LIST OF TABLES

Page

Transition probabilities for the MDP M shown in Figure 3.4(a): (i)

under action a;. (ii) under action ag. 25
The transition probabilities of the MDP M’ shown in Figure

3D 25
Algorithm for finding simple projection homomorphisms assuming

that the MDP is completely specified. 54
Incremental algorithm for constructing the G-reduced image given

MDP M and some G < AutM. @ is the queue of states to be

examined. This algorithm terminates when at least one

representative from each equivalence class of G has been

examined. 57
Parameter settings in various rooms in Figure 6.6. 112
Subset of controllers for accomplishing two handed grasps of large

0D JECES. 138

xiil

Figure

1.1

1.2

3.1

3.2

3.3

3.4

3.5

4.1

4.2

LIST OF FIGURES

(a) A blocks world task. The blocks are described by their color,
position and label. (b) One abstract representation that ignores
the labels. (c) Another abstract representation that ignores the

COLOTS. e

(a) A symmetric gridworld problem. The goal state is G and there are
four deterministic actions. State-action pairs (A4, £') and (B, N)
are equivalent in the sense described in the text. (b) A reduced
model of the gridworld in (a). The state-action pairs (A, E) and
(B, N) in the original problem both correspond to the pair
({A, B}, E) in the reduced problem. A solution to this reduced

gridworld can be used to derive a solution to the full problem.
A Group Homomorphism represented by Commutative Diagrams
An FSA homomorphism represented by commutative diagrams.

An MDP Homomorphism represented by Commutative Diagrams

(a) Transition graph of example MDP M. This MDP is irreducible
under a traditional minimization framework. Our notion of
homomorphic equivalence allows us to minimize this further. (b)

Transition graph of the minimal image of the MDP M in (a).

(a) Transition graph of example MDP M. Repeated from Figure
3.4(a). (b) Transition graph of the quotient MDP M|B. See text
for description. Note that this is isomorphic to the MDP in

Figure 3.4(D). ..o

(a) A symmetric gridworld problem. Reproduced from Figure 1.2. (b)

Reflection of the gridworld in (a) about the N E-SW diagonal..

(a) Transition graph of a symmetric MDP. (b) Transition graph of a
similar MDP, but with a trivial symmetry group. (¢) Minimal

image for both the MDPs. L

Xiv

Page

.2

)

.24

.30

.45

4.3

4.4

4.5

4.6

4.7

5.1

(a) The DBN of the coffee robot domain described in the text. The a
node is the action node and can take values de, go, gu, nop. (b)
The DBN of the homomorphic image generated by a simple
projection on to a subset of features. L. 52

Towers of Hanoi. The task is to move the disks from the darker
position to the lighter position. Panels (a), (b) and (c) show
situations that are equivalent under permutation symmetries. 55

(a) A slightly asymmetric gridworld problem. The goal state is G and
there are four deterministic actions. The problem is approximately
symmetric about the N E-SW diagonal. (b) A reduced model of
the gridworld in (a). The state-action pairs (A, F) and (B, N) in
the original problem both correspond to the pair ({4, B}, E) in
the reduced problem. A solution to this reduced gridworld can be
used to derive an approximate solution to the full problem.......... 59

(a) A spatial navigation problem. The goal is to reach the shaded
region in the center. The environment is approximately
symmetric about the dotted lines. (b) An approximate
homomorphic image of the task in (a). Transitions into the lightly
shaded regions are determined either by aggregate dynamics or
specified as intervals. See text for more details. 61

(a) Optimistic choice of parameters for the BMDP shown in Figure
4.6(b). (b) Pessimistic choice of parameters for the same BMDP.
In both the figures, dark squares are obstacles and the goal is to
reach the shaded area in the lower right. See text for explanation
of parameter choices. 66

(a) A gridworld task with rooms and the usual gridworld dynamics.
The dark square indicates the goal. The lighter squares are
alternate locations for the goal. (b) A homomorphic image when
the dark square is the goal. The goal in this image is the dark
triangle at the bottom. The transitions wrap around the dotted
lines, i.e., actions W and S at the left edge will cause transitions
to the right edge and action £ and N at the right edge cause
transitions to the left edge. (c¢) A partial homomorphic image
restricted to the room states. The dark oval is an absorbing
State. . 73

XV

5.2

5.3

5.4

5.5

5.6

5.7

5.8

6.1

6.2

(a) A simple rooms domain with similar rooms and usual stochastic

gridworld dynamics. The task is to collect all 5 objects (black
diamonds) in the environment and reach the central corridor. The
shaded squares are obstacles. (b) The option MDP corresponding

to a get-object-and-leave-room option. See text for full

description.

The modified option MDP corresponding to the

get-object-and-leave-room relativized option. The lightly shaded
squares in the middle of the room indicate states with a negative
reward. The dashed line indicates the optimal policy for this
modified option MDP. The dotted line indicates a component of

the hierarchically optimal policy, when using this option in the

task described by Figure 5.2

(a) Comparison of asymptotic performance of various learning agents

on the task shown in Figure 5.2. See text for description of the
agents. (b) Comparison of initial performance of the regular and
relativized agents on the same task.

Comparison of the rate of improvement to final performance of the

regular and relativized agents on the task shown in Figure 5.2.......

(a) Comparison of asymptotic performance of the regular and

relativized agents on the modified rooms task. See text for
description of the task. (b) Comparison of initial performance of
the two agents on the same task.

(a) A simple rooms domain with dissimilar rooms. The task is to

collect all 5 objects in the environment. (b) The option BMDP
corresponding to a get-object-and-leave-room option. See text for
full description.

(a) Comparison of asymptotic performance of the regular and

relativized agents on the task in Figure 5.7. (b) Comparison of
initial performance of the two agents on the same task.

Comparison of initial performance of agents with and without

knowledge of the appropriate partial homomorphisms on the task

7

91

92

93

94

shown in Figure 5.2 with various levels of stochasticity. 107

Typical evolution of posteriors for a subset of transforms in Room 5

in Figure 5.2, with aslipof 0.1........ 108

Xvi

6.3

6.4

6.5

6.6

6.7

6.8

6.9

A simple rooms domain with dissimilar rooms. The task is to collect
all 5 objects in the environment. 110

Comparison of initial performance of agents with and without
knowledge of the appropriate partial homomorphisms on the task
shown in Figure 5.7 with aslipof 0.1. 111

Typical evolution of weights for a subset of transforms in Room 5 in
Figure 5.7, with aslipof 0.1. 112

A game domain with interacting adversaries and stochastic actions.
The task is to collect all 4 objects, the black diamonds, in the
environment. The adversaries are of two types—benign (shaded)
and delayers (black). See text for more explanation. 113

The option MDP corresponding to the sub-task
get-object-and-leave-room for the domain in Figure 6.6. There is
just one delayer in the option MDP. The state is described by the
x and y coordinates of the agent and the delayer and a boolean
feature indicating possession of the diamond. 115

Comparison of the performance of an agent with 4 regular options
and an agent using a relativized option and no knowledge of the
correct transformation on the task shown in Figure 6.6(a). The
option MDP employed by the relativized agent is shown in Figure
6.6(D). o 117

Typical evolution of weights for a subset of transformations in Room
4 in Figure 6.6(a), with a slipof 0.1. 118

6.10 Typical evolution of weights for a subset of transformations in Room

2 in Figure 6.6, with aslipof O.1. 119

6.11 Deixis in a simple blocks world domain: The task in (a) is to place

block B on A, while in (b) is to place X on Z. The two tasks
reduce to that of placing block pointed to by x over block pointed

6.12 A modified game domain with interacting adversaries and stochastic

actions. The task is to collect the black diamond. The adversaries
are of three types—benign (shaded), retriever (white) and
delayers (black). See text for more explanation................... 124

XVil

6.13

6.14

6.15

6.16

6.17

6.18

6.19

6.20

6.21

The option MDP corresponding to the sub-task
get-object-and-leave-room for the domain in Figure 6.12. There is
just one delayer and one retriever in this image MDP. 125

Typical evolution of a subset of weights of the monolithic agent on
the task shown in Figure 6.12....... 127

(a) Typical evolution of a subset of the delayer weights of the deictic
agent on the task shown in Figure 6.12. (b) Typical evolution of a
subset of the retriever weights on the same task. 128

Perceptual aliasing in a simple blocks world domain: Both (a) and
(b) map to the same representation and are treated as equivalent.
But the task is to stack blocks of three different colors and the
desired action in the two situations are different. 129

The UMass Torso holding a ball in a two handed grasp............... 134

The UMass Torso holding a ball by opposing gravity with the left
hand. 137

The transition structure of a family of sub-tasks for manipulating
objects in the workspace. A state labeled X ® ; means that the

controller X <I>§ has converged in that state. 139

A relativized option that represents the family of tasks shown in
Figure 6.19. A state labeled X® means that for some j, the
controller ¥ ®7 has converged in that state. 140

A relativized option that represents the regrasp before reach sub-task.

A state labeled ¥ ®, means that the controller ¥ ®! has converged
in that state, where ¢ depends on the transformation chosen. 142

XVviil

CHAPTER 1
INTRODUCTION

1.1 Motivation

The ability to form abstractions is one of the features that allow humans to operate
effectively in complex environments. We systematically ignore information that we do
not need for performing the immediate task at hand. While driving, for example, we
ignore details regarding clothing and the state of our hair. On the other hand, while
preparing to attend a ball, we would want to pay special attention to our clothing
and hair. Researchers in artificial intelligence (AI), in particular machine learning
(ML), have long recognized that applying computational approaches to operating in
complex and real-world domains requires that we incorporate the ability to handle
and form various abstractions.

Researchers in many fields, ranging from various branches of mathematics to so-
cial network analysis, also recognize the utility of abstractions and have tried to
answer questions such as what is a useful abstraction and how to model abstractions.
Abstract representations keep recurring in various guises in the literature. For ex-
ample, statisticians use the notion of sufficient statistic, which is a function of the
observed data that summarizes the data so as to provides enough information for
solving the problem at hand, such as determining the probability of occurrence of a
certain event. Informally, one can define a good abstraction to be a function of the
observable features of a task such that it is a “sufficient statistic”.

Let us consider the blocks world task shown in Figure 1.1(a). There are a set of

blocks described by their color, location and label. Suppose the goal is to obtain a

(b) (c)

Figure 1.1. (a) A blocks world task. The blocks are described by their color,
position and label. (b) One abstract representation that ignores the labels. (c)
Another abstract representation that ignores the colors.

green colored block. Then the label of the block is irrelevant and a representation that
pays attention only to the color and the position of the blocks is sufficient (Figure
1.1(b). On the other hand, if the goal is to obtain the block labeled B, the color of
the block is irrelevant and a representation with only the label and the position is
sufficient (Figure 1.1(c)). Thus the notion of sufficiency varies with the goal.

Determining sufficiency and providing ways of modeling abstractions are well stud-
ied problems in Al (e.g., Amarel, 1968; Popplestone and Grupen, 2000; Dean and
Givan, 1997; Knoblock, 1990; Dean and Lin, 1995). They are also difficult problems
when stated in general terms. Therefore, much of the work in this field is specialized
to particular classes of problems or specific modeling paradigms. In this work we
focus on Markov decision processes (MDPs) (Puterman, 1994), a formalism widely
employed in modeling and solving stochastic sequential decision problems.

Our goal in this thesis is to develop a general framework that can accommodate

different notions of abstractions employed with MDPs, including simple aggrega-

tion (Boutilier and Dearden, 1994; Sutton and Barto, 1998), symmetries (Zinkevich
and Balch, 2001; Popplestone and Grupen, 2000), structured abstractions (Dean and
Kanazawa, 1989; Boutilier et al., 1999, 1995, 2001), projections and other feature
selection mechanisms. There is a large body of research in algebraic abstraction algo-
rithms for other modeling paradigms in the literature (e.g., Hartmanis and Stearns,
1966; Kemeny and Snell, 1960; Lee and Yannakakis, 1992; Whitt, 1978). We build on
this wealth of experience and develop a framework that provides additional intuition
into existing MDP abstraction approaches and extends them in ways not envisioned
earlier.

In particular, the algebraic approach we develop is amenable to modeling abstrac-
tions in reinforcement learning (RL) systems. Reinforcement learning (Sutton and
Barto, 1998) refers to a collection of learning techniques for approximate solution of
stochastic sequential decision problems and are often employed with MDP models of
the problems. RL techniques offer many advantages over other approximate solution
methods, such as maintaining a close relation to classical MDP solution methods,
and the ability to learn in real-time and focus on parts of the problem that are
most relevant. Not all RL algorithms require complete models of the environment
and frequently employ some form of abstraction and/or function approximation to
speed up learning, unlike many conventional approaches. They can also work with
extensions to the MDP formalism such as Semi-Markov decision processes (SMDPs)
and partially observable MDPs (POMDPs). Recent advances have led to hierarchical
learning algorithms that significantly broaden the applicability of RL (Sutton et al.,
1999; Parr and Russell, 1997; Dietterich, 2000a). Our abstraction framework extends

to hierarchical settings in a natural way.

1.2 Qutline of Thesis

Our approach to MDP abstraction is based on the notion of MDP homomorphisms.
This is an extension of machine homomorphisms from the finite state automata (FSA)
literature (Hartmanis and Stearns, 1966). Machine homomorphisms help establish
precise correspondences between automata that have similar behavior and identify
states that can be aggregated together to derive “smaller” equivalent models. We
extend the notion to MDPs by incorporating decision making and stochasticity. But
the power of our approach comes from employing a state-dependent action recoding.
This enables us to apply our results to a wider class of problems and extend existing
MDP abstraction frameworks in ways not possible earlier.

Our approach to abstraction belongs to the class of algorithms known as model
minimization methods. The goal of model minimization is to derive a reduced model
representation in which some key property of the original model is preserved. In the
case of MDPs, we require that some aspects of the dynamic structure of the MDP
is preserved in the reduced model. We show that this is sufficient to allow us to
solve the original problem modeled by the MDP. The MDP minimization approach
we present in this thesis can be viewed as an extension of the MDP minimization
framework proposed by Dean and Givan (Dean and Givan, 1997; Givan et al., 2003).
This earlier framework considers equivalence of states based on the notion of stochas-
tic bisimulations (Larsen and Skou, 1991), whereas we believe that homomorphisms
are a simpler notion than bisimulations and provide better insight into the mini-
mization process. Our proposed framework also supports powerful extensions to the
minimization process such as exploiting symmetries of MDPs.

To illustrate the concept of minimization, consider the simple gridworld shown in
Figure 1.2(a). The goal state is labeled G. Taking action E in state A is equivalent to
taking action N in state B, in the sense that they go to equivalent states that are both

one step closer to the goal. One can say that the state-action pairs (A, E) and (B,

Figure 1.2. (a) A symmetric gridworld problem. The goal state is G and there
are four deterministic actions. State-action pairs (A, E') and (B, N) are equivalent in
the sense described in the text. (b) A reduced model of the gridworld in (a). The
state-action pairs (A, F) and (B, N) in the original problem both correspond to the
pair ({A, B}, E) in the reduced problem. A solution to this reduced gridworld can
be used to derive a solution to the full problem.

N) are equivalent. One can exploit this notion of equivalence to construct a smaller
model of the gridworld (Figure 1.2(b)) that can be used to solve the original problem.

Figure 1.2 illustrates a situation in which the symmetry in the problem is exploited
in the abstraction, yet existing MDP minimization approaches do not explicitly ac-
commodate such symmetric reductions. Symmetries of a structure are characterized
traditionally by the symmetry group of the structure. This is the group of mappings
of the structure onto itself, such that some structural property is preserved. For ex-
ample, in the gridworld in Figure 1.2(a), such a mapping is given by reflecting the
states about the NE-SW diagonal and flipping actions NV and F, and actions S and
W. This leaves the transition structure of the gridworld unaltered. We incorporate
this traditional group-theoretic definition into our framework to model symmetries
of MDPs. The goal of minimization methods is to derive the minimal model (or the
smallest model) equivalent to the given MDP. In general this is an NP-hard prob-
lem. Symmetry in the problem definition introduces additional structure that can be
exploited to derive compactly represented reductions in systems with some inherent
structure. For example, in Figure 1.2, the transformation can be expressed simply
as an exchange of the z and y co-ordinates and of the suitable pair of actions. We

exploit the additional structure associated with symmetries to derive a polynomial-

time algorithm for minimization for structured problems modeled as factored MDPs
(Dean and Kanazawa, 1989).

While abstractions that lead to exact equivalences are very useful, they are often
difficult to achieve. In fact, to apply our approach to real-world problems we would
need to consider a variety of “relaxed” minimization criteria. For example, in the grid-
world in Figure 1.2 assume that the action E succeeds with probability 0.9 and the
action N succeeds with probability 0.8. When actions fail, you stay in the same cell.
We could still consider (A, E) and (B, N) equivalent for minimization purposes. We
explore various relaxations of our minimization framework to accommodate approxi-
mate equivalence of state-action pairs. We use results from Whitt (1978) and Givan
et al. (2000) to bound the loss in performance resulting from our approximations. We
also address issues of learning with approximate reduced models.

In large complex problem domains, it is often difficult to identify reduced models
of the entire problem. In such cases it is useful to consider partial equivalences that
do not hold over all parts of the state-action space. For instance, while navigating in
a building, there might be many rooms that can be treated equivalently, while each
wing in the building is unique and has to be considered separately. We extend our
definition of homomorphisms to accommodate this kind of partial equivalence. This
allows us to model context dependent equivalences as well. For example, for driving a
nail, a shoe may be the best example of a hammer available, although these objects
are not equivalent in general.

The minimization framework we develop for MDPs can be employed readily by RL
algorithms for spatial abstraction in “flat” systems. The options framework (Sutton
et al., 1999; Precup, 2000) enables RL algorithms to employ temporal abstractions
in the form of temporally extended actions, or options. Options are composed of
primitive actions are composed of primitive actions and take multiple time steps

to execute, but for the purposes of problem solving they are considered as a single

action. Thus we can think of walk-to-the-door as a single action, while in reality it
is composed of a multitude of muscle twitches. Extending our algebraic framework
to a hierarchical RL setting, such as the options framework, opens up additional
possibilities.

We introduce relativized options, an extension to the option framework based on
partial homomorphisms that allows us to define option policies without an abso-
lute frame of reference. This widens the applicability of an option and also enables
more efficient knowledge transfer across tasks and more efficient use of experience.
Relativized options are related to the notion of relativized operators introduced by
Iba (1989) as a compact representation of a family of related macro-operators. We
also investigate the use of relativized options under approximate abstractions and in
complex domains.

Options introduce new “behaviors” that enable abstractions that were not possible
earlier. For example, consider a robot whose mission involves grasping a cylinder.
Let us define an option to grasp the cylinder starting from any state in which the
robot is physically close to the cylinder. Without such an option the robot would
need to execute a different set of actions to grasp the cylinder from different starting
states. Now it just needs to use the grasp-cylinder option. Therefore we can, under
suitable circumstances, consider all these state-option pairs as equivalent. We extend
our abstraction framework to employ definitions of homomorphisms and symmetry
groups over options which allow us to model such option induced abstractions.

Another interpretation of relativized options is as a framework for defining op-
tion schemas. Option schemas are abstract templates of how to respond to a given
situation. We model an abstract template as a partial homomorphic image of the
original problem. When an agent invokes a schema it appropriately allocates, or
binds, various resources and sensory capabilities to make the schema relevant to the

specific instance. We model this as choosing the appropriate homomorphism to apply

in a given situation. We develop algorithms for learning the appropriate binding of
resources and empirically demonstrate the utility of employing option schemas.

Problems set in environments with objects often exhibit various symmetries and
considerable redundancy in the representation. One way to exploit such symmetry
is by employing representations known as indexical or deictic representations (Agre,
1988). The world is sensed via multiple pointers and the actions are specified with
respect to these pointers. In this work we show that in some cases employing such
deictic pointers is equivalent to identifying homomorphic reductions, and we develop
a principled deictic RL algorithm based on the relativized options framework.

We begin by providing some background regarding MDPs and RL in the next
chapter. We also introduce the notation that we will be using. In Chapter 3 we
introduce MDP homomorphisms and formulate the model minimization problem in
terms of homomorphisms. We develop the basic minimization algorithm and establish
the equivalence of MDP homomorphisms and stochastic bisimulations. In Chapter 4
we define symmetry groups of MDPs, and present methods that take advantage of
symmetry and structure. We also introduce approximate homomorphisms based on
relaxed minimization criteria and derive bounds in the loss of performance. Chapter
5 deals with several aspects of combining hierarchical RL and homomorphisms. We
introduce relativized options and present empirical demonstration of their utility. We
also explore the use of approximate homomorphisms in this setting. In Chapter 6 we
introduce option schemas and develop one approach to employing deictic represen-
tations within our framework. We present experimental results in complex domains.
We conclude in Chapter 7 by examining the import of this work and suggesting future

directions of research.

CHAPTER 2
BACKGROUND AND NOTATION

In this chapter we introduce some notation that we will use in the thesis. We also
provide some background on minimization approaches for various modeling paradigms

and a limited introduction to reinforcement learning.

2.1 Markov Decision Processes

A finite Markov decision process is a tuple (S, A, ¥, P, R), where S is the set of
states, A is the set of actions, ¥ C S x A is the set of admissible state-action pairs,
P : VU xS — [0,1] is the transition probability function with P(s,a,s’) being the
probability of transition from state s to state s’ under action a, and R : ¥ — IR is
the expected reward function, with R(s, a) being the expected reward for performing
action a in state s. We assume that the rewards are bounded. Let Ay = {a|(s,a) €
U} C A denote the set of actions admissible in state s. We assume that for all s € S,
A, is non-empty. In this work we assume that the set of states and set of actions are
finite, but the language of homomorphisms we employ extends to infinite spaces with
little work.

A stochastic policy 7 is a mapping from W to the real interval [0, 1] s.t. Y c4,7(s, a)
=1 for all s € S. For any (s,a) € ¥, 7(s,a) gives the probability of picking action a
in state s. The value of state s under policy 7 is the expected value of the discounted
sum of future rewards starting from state s and following policy m thereafter. The

value function V™ corresponding to a policy 7 is the mapping from states to their

values under 7. It can be shown (e. g., Bertsekas, 1987) that V'™ satisfies the Bellman

equation:

VT(s) = >_ m(s,a) |R(s,a)+~ Z P(s,a,s"\V™(s")]|,

a€As s'eS

where 0 < 7 < 1 is a discount factor. This formulation is known as the discounted
sum of rewards criterion.

Similarly, the value of a state-action pair (s,a) under policy 7 is the expected
value of the discounted sum of future rewards starting from state s, taking action a,
and following 7 thereafter. The action value function Q™ corresponding to a policy

7 is the mapping from state-action pairs to their values and satisfies:

Q" (s,a) = R(s,a) +v > P(s,a,s"\V™(s),
s'es
where 0 < v < 1 is a discount factor.

The solution of an MDP is an optimal policy m* that uniformly dominates all other
possible policies for that MDP. In other words V™ %" (s) > V™(s) for all s in S and
for all possible 7. It can be shown (Bertsekas, 1987) that the value functions for all
optimal policies is the same. We denote this optimal value function by V*. It satisfies

the Bellman optimality equation:

V*(s) =max »_ P(s,a,s') [R(s,a) + yV*(s)].

Ag
a€ % s'esS

Similarly the optimal action value function QQ* satisfies:

Q*(s,a) = Y_ P(s,a,s) |R(s,a) +~ max Q*(s',d’)| .

s a/GAS/

These two optimal value functions are related by V*(s) = max, Q*(s,a). Typically

MDPs are solved by approximating the solution to the Bellman optimality equations

10

(e. g., Bertsekas, 1987; Sutton and Barto, 1998). Given the optimal action value

function, an optimal policy is given by

m™(s,a) > 0 if Q*(s,a) = maxyea, Q*(s,a)

= 0 otherwise.

2.2 Semi-Markov Decision Processes

A finite discrete time semi-Markov decision process (SMDP) is a generalization
of a finite MDP in which actions can take variable amounts of time to complete. As
with an MDP, an SMDP is a tuple (S, A, ¥, P, R), where S, A and ¥ are the sets
of states, actions and admissible state-action pairs; P : ¥ x S x IN — [0,1] is the
transition probability function with P(s,a,s’, N) being the probability of transition
from state s to state s’ under action a in N time steps, and R : ¥ x IN — IR is the
expected discounted reward function, with R(s, a, N) being the expected reward for
performing action a in state s and completing it in N time steps.! We are adopting
the formalism of Dietterich (2000a). The traditional approach (Howard, 1960) is
to use two distributions to describe the state transitions, one of which is the usual
next state distribution of MDPs and the other is a distribution of holding times.
The holding time distribution is usually a function of the current state and action
alone. We agree with Dietterich that the joint distribution formulation is more useful
in modeling various hierarchical learning architectures, some of which we introduce

shortly.

2.3 Reinforcement Learning
Reinforcement learning (RL) (Sutton and Barto, 1998) refers to a collection of

learning algorithms that seek to approximate solutions to stochastic sequential de-

Here IN denotes the set of natural numbers.

11

cision tasks with scalar evaluative feedback. RL algorithms are designed to operate
online and in close interaction with the environment in which the agent is operating.
When a stochastic sequential decision problem is modeled as an MDP, RL algorithms
try to estimate the optimal value function and/or optimal policy.

Many of the popular RL algorithms are based on the Q-learning (Watkins, 1989)
approach that seeks to approximate the optimal action value function through online
experience. After experiencing a transition from state s to s’ under action a and

observing a reward of r, ()-learning employs the following update:

Q(s.0) — (1 -)Q"(5,) + a |+ max Q"(s'.a)

where « is a learning rate between 0 and 1. It has been shown that under suitable
conditions @Q)-learning converges to the optimal action value function (Watkins and
Dayan, 1992).

Bradtke and Duff (1995) introduced a straightforward extension of @Q-learning for
continuous time SMDPs, known as SMDP ()-learning. In the discrete time case,
after experiencing a transition from state s to s’ in k& time steps under action a and
observing a sequence of rewards 71, ---, 7, SMDP Q-learning employs the following
update:

Q(s,0) = (1=)Q*(s,0) + a |r +9* max Q(',a)

where rr = Z?;é Y141 is the discounted return and « is a learning rate between 0 and
1. It has been shown that under the same conditions as @)-learning, SMDP Q)-learning

converges to the optimal action value function (Parr, 1998).

2.4 Partitions, maps and equivalence relations
A partition B of a set X is a collection of disjoint subsets, or blocks, b; C X such

that U; b; = X. For any = € X, [z]5 denotes the block of B to which = belongs. Let

12

By and By be partitions of X. We say that Bj is coarser than By (or Bs is a refinement
of By), denoted By > By, if for all z,2" € X, [z]p, = [7']p, implies [z]5 = [2]5.
The relation > is a partial order on the set of partitions of X.

To any partition B of X there corresponds an equivalence relation, =, on X with
x =, 2’ if and only if [x]5 = [2']5 for all z,2" € X. Any function f from a set X into
a set Y defines an equivalence relation on X with » =, 2" if and only if f(z) = f(2').
We say that z and 2’ are f-equivalent when x =, 2’, and we denote the partition of
X corresponding to this equivalence relation by By.

Let B be a partition of Z C X x Y, where X and Y are arbitrary sets. For any
x € X, let B(x) denote the set of distinct blocks of B containing pairs of which x
is a component, that is, B(z) = {[(w,y)|z| (w,y) € Z,w = x}. The projection of
B onto X is the partition B|.X of X such that for any z, 2" € X, [z]py = [2/]py if

and only if B(z) = B(z'). In other words, x =, 2’ if and only if every block of B

x
containing a pair in which = (z’) is a component also contains a pair in which z’ ()
is a component.? Note that if B; and B, are partitions of Z, then By > B, implies
that B1|X > By|X.

A partition of an MDP M = (S, A, ¥, P, R) is a partition of ¥. Given a partition
B of M, the block transition probability of M is the function T': ¥ x B|S — [0, 1]

defined by T'(s,a, [5/]3\5) = el P(s,a,s"). In other words, when applying

5/]B|S
action a in state s, T'(s, a, [s] y|5) is the probability that the resulting state is in the
block [s'] 5. It is clear that since B[S is a partition of S, each of these block transition

probabilities is in the interval [0, 1].

*The more traditional definition of a projection is: x =, . 2’ if and only if (z,y) =, (', y) for all
y € Y. This projection is always a refinement of the our projection. We need the modified definition
to facilitate the development of some concepts below.

13

Example 1

Let M = (S,A, ¥, P,R) be an MDP with S = {s1, 892,53}, A = {a1,a2} and
U = {(s1,a1), (s1,a2), (s2,0a1), (S2,a2),(s3,a1)}. We give the projections under both
our definition and the traditional one (see footnote). The traditional projection does
not lead to aggregation of states in any of the cases, while our definition does in the

first two cases. In the last case both definitions result in singletons.

i) I By = {{(s1,01), (s, 2)}, {(51,a2), (2, 01), (3, 01)} },
then B;|S = {{51,32}, {33}} (ours); {{31}, {s2}, {53}} (traditional).

ii) If By = {{(s2,01)}, {(s1, 1), (51, 02), (52, 02), (3, 01)} }
then By|S = {{s1, 83}, {s2}}; {{s1}, {52}, {ss}}-

iit) If By = {{(s1,@1), (s2,a2)}, {(51. a2), (53, 01)}, {(s2, 1)} },
then Bs|S = {{31}, {s2}, {53}}; {{81}, {s2}, {53}}~

14

CHAPTER 3
MDP HOMOMORPHISMS AND MINIMIZATION

In this chapter we develop the mathematical formulation that underlies our ap-
proach to abstraction. In particular we want a notion of equivalence among state-
action pairs that can capture the various intuitive notions of redundancy and sim-
ilarity, such as aggregate representations, symmetries, object replacement etc. The
notion we adopt is that of a MDP homomorphism.

In order to be able to model a wide class of abstractions, we introduce a broad no-
tion of equivalence under which two states are considered equivalent if for every action
admissible in one state there is some action, not necessarily the same, admissible in
the other state that produces similar results. Earlier notions of equivalence for MDPs
required that the same action produce similar results in both states. Referring back
to Figure 1.2(a), states A and B are considered equivalent since for every action from
A there is an equivalent, though different, action in B. We characterize our notion
of equivalence by certain conditions on the transition probabilities and the expected
immediate rewards. While many mathematical formalisms can be employed here, we
choose to extend the notion of machine homomorphisms from the FSA literature. We

develop MDP homomorphisms starting from a simple case working our way up.

3.1 Group Homomorphism
Informally, a homomorphism of a structured system is some transformation of the
system that preserves aspects of this structure. One simple structured mathematical

concept is a group. A group G is a set, together with an operator, denoted +. This

15

GxG G
f\ f
G' x G G

Figure 3.1. A Group Homomorphism represented by Commutative Diagrams

associates with each pair of elements x and y of G another element x +y in G. A
group satisfies the properties of associativity ((z +y) + 2z = + (y + z)), existence of
an identity e (z+e = e+x = z), and the existence of an inverse x~! for each element
r (x+27' =27+ 2 =e). The set of integers with the operation of addition is an
example of a group, known as the additive group of integers.

Let G and G’ be two groups. A homomorphism, f, is a map from G to G’ having

the following property, for all z,y € G:

flx+y) = flx)+ fly)

The map f is said to commute with the group operator 4. We can start with two
elements in GG apply the operator and then f or we can apply f to each element
individually and then apply the operator in G’ and we end up the same result in G’.
This is illustrated in the commutative diagram shown in Figure 3.1. As an example,
consider the set of even integers. This is a group under addition. The function
f(z) = 2z from the additive group of integers to the additive group of even integers

is a homomorphism, since f(z +vy) = 2(z +y) =2z + 2y = f(z) + f(y).

16

3.2 Machine Homomorphism

The finite state automata (FSA) literature is rich in algebraic approaches to min-
imizing and decomposing machines. Most approaches are based on the concept of
machine homomorphism and notions of equivalence (of states and of machines) de-
rived from it. This thesis extends the concept of machine homomorphism to an MDP
homomorphism and develops similar notions of equivalence applicable in RL. In the
case of FSA we want the homomorphism to preserve the transition behavior and
output characteristics of automata.

Formally, an FSA is given by F = (S, s0, %, Z, 9, O), where S is the set of states,
So is the start state, 3 the set of input symbols, Z the set of output symbols, ¢ :
S x ¥ — S the transition function and O : § — Z the output function. A machine
(FSA) homomorphism from F = (S, s¢,%,7Z,0,0) to F' = (5',s(,%,7,,0') is a
surjection f from S to S’ such that f(d(s,0)) = §(f(s),0) and O(s) = O'(f(s)).!
The homomorphism f is said to commute with the dynamics and respect the output
function of . We can depict this using commutative diagrams as shown in Figure 3.2.
Here horizontal and diagonal arrows represent system dynamics and vertical arrows
represent homomorphisms. Starting from a particular element in S, regardless of
the pair of arrows we follow we end up with the same element in S’. Similarly, the
second diagram illustrates the commutative property for the output Z. A machine
homomorphism is also known as a dynamorphism in category theory (Arbib and
Manes, 1975).

The homomorphism f is only a surjection and often S’ is much smaller than S.
In such cases, we can construct a reduced model of an FSA from the partition of

the state space induced by f. This reduced model will be equivalent to F’' up to a

'If f is not a surjection then there exists a closed sub-machine of F’ that is a homomorphic image
of F and we consider this sub-machine as the image of the homomorphism. Such a map f is also
known as a simulation.

17

S1 '—’5(.7 ?) S92 o()

Figure 3.2. An FSA homomorphism represented by commutative diagrams.

relabeling of states and outputs and would have the same “block” transition behavior

as F.

3.3 MDP Homomorphism

We extend the notion of machine homomorphisms to MDPs by incorporating
stochasticity, decision making and rewards. An MDP homomorphism is a map on
U that commutes with the system dynamics and preserves the reward structure.

Formally, we define it as:

Definition: An MDP homomorphism h from an MDP M = (S, A, ¥, P, R) to an
MDP M’ = (S" A", W'/ P' R’} is a surjection from ¥ to ¥’ defined by a tuple of
surjections (f,{gs|s € S}), with h((s,a)) = (f(s),gs(a)), where f : S — S and

gs: Ay — A’f(s) for s € S, such that for all s,t € S, and a € A,:

P'(f(s),95(a), f(t)) = T(s,a,[t]5,s), (3.1)

R(f(s),95(a)) = R(s,a). (3.2)

We call M’ the homomorphic image of M under h. We use the shorthand h(s,a) to
denote h((s,a)). The surjection f maps states of M to states of M’, and since it
is generally many-to-one, it generally induces nontrivial equivalence classes of states

s of M: [s];. Each surjection g recodes the actions admissible in state s of M to

18

(s,a) ——— P R

sa (s,a) ——— T
(8/7 CL/> a ;’a’ (8/’ a,)

Figure 3.3. An MDP Homomorphism represented by Commutative Diagrams

actions admissible in state f(s) of M’. This state-dependent recoding of actions is a
key innovation of our definition, which we discuss in more detail below. Condition
(1) says that the transition probabilities in the simpler MDP M’ are expressible as
sums of the transition probabilities of the states of M that f maps to that same state
in M’. This is the stochastic version of the standard condition for homomorphisms
of deterministic systems that requires that the homomorphism commutes with the
system dynamics (Hartmanis and Stearns, 1966). Condition (2) says that state-action

pairs that have the same image under h have the same expected reward.

Let Py, : S — [0,1] be the distribution over states resulting from taking action a
in state s, i.e., Py (t) = P(s,a,t) for any t in S. The aggregation hPs,, of Py, over the
homomorphism h, is the distribution over S" such that hP(s") = e p-1(s) Psalt)
for each s’ € S. Here f~!(s') = {s € S|f(s) = s’} is the pre-image of s’ in S. A
homomorphism commutes with the one step dynamics of the MDP in the sense that
the aggregation hP, is the same distribution as Py g5(a) for all (s,a) € U. We can
depict this using commutative diagrams shown in Figure 3.3.

MDP homomorphisms lead to the following notions of equivalence of states and
state-action pairs which, as shown in the next section, lead to the intuitive notion of

equivalence we are interested in modeling.

19

Definition: State action pairs (sq,a1) and (s2,a2) € ¥ are (homomorphically) equiv-

alent if for some homomorphism h of M, (s1,a1) =, (2, as).

Definition: States s; and s, € S are equivalent if i) for every action a; € As,,
there is an action as € Ay, such that (s1,a;) and (sq,as) are equivalent, and ii) for
every action ay € As,, there is an action a; € Ay, such that (s1,a;) and (sg,ay) are

equivalent.

Thus the surjection f maps equivalent states of M onto the same image state in
M’ while g, is a state dependent mapping of the actions in M onto image actions in
M. For example, if h = (f,{gs|s € S}) is a homomorphism from the gridworld of
Figure 1.2(a) to that of Figure 1.2(b), then f(A) = f(B) is the state marked {A, B}
in Figure 1.2(b). Also ga(E) = gs(N) = E, ga(W) = gp(S) = W, and so on.

The rest of the chapter, and in some sense the rest of the thesis, focuses on
answering the questions: How useful is this formulation of MDP homomorphisms?
Is it general enough to model a wide class of abstractions? Is it powerful enough
to result in computational savings? Is it well-defined—is the optimality of solutions

preserved? We start by looking at the last question in detail.

3.4 Minimization Framework

Our approach to abstraction can be considered an instance of a general approach
known as model minimization. The goal of MDP minimization is to form a reduced
model of a system by ignoring irrelevant information. Solving this reduced model
should then yield a solution to the original MDP. Frequently minimization is accom-
plished by identifying states and actions that are equivalent in a well-defined sense
and forming a “quotient” model by aggregating such states and actions. We build

a minimization framework, that is an extension of a framework by Dean and Givan

20

(1997). It differs from their work in the notion of equivalence we employ based on
MDP homomorphisms.

In this section we show that homomorphic equivalence leads to preservation of
optimal solutions. We start with the following theorem on optimal value equivalence.
This theorem is an extension of the optimal value equivalence theorem developed in

Givan et al. (2003) for stochastic bisimulations.

Theorem 1: (Optimal value equivalence) Let M’ = (S’ A’, W' P’ R') be the ho-
momorphic image of the MDP M = (S, A, ¥, P, R) under the MDP homomorphism
h=(f{gsls € 5}). For any (s,a) € ¥, Q*(s,a) = Q*(f(s5),9s(a)).

Proof: (Along the lines of Givan et al. (2003)) Let us define the m-step optimal
discounted action value function recursively for all (s,a) € ¥ and for all non-negative

integers m as

Qm(s,a) = R(s,a +781§€:S (s,a,s) a{%&}‘}; Qm-1(s1,a1)
and set Q_1(s1,a1) = 0. Letting V,,(s1) = maXg, e, Qm(s1, ai), we can rewrite this
as:
Qm(s,a) = R(s,a) +v > [P(s,a,s1)Vim_1(s1)].
Now we prove by induction on m that the theorem is true. For the base case of
m = 0, we have that Qo(s,a) = R(s,a) = R'(f(s),9s(a)) = Qo(f(s),gs(a)). Now
let us assume that Q;(s,a) = Q;(f(s), gs(a)) for all values of j less than m and all

state-action pairs in W. Now we have,

Qm(s,a) = R(s,a)+v > P(s,a,8)Vpu_1(s)

= R(s,a)+~v Y. T(s,a, '] 3,15) Vin-1(5")

[s' 5,15 € BnlS

= R(f(5),95(a)) +7 D P'(f(s),95(a), s)WVn-1(s)

s'es’

21

= Qm(f(s),9s(a))

The second and third lines use the fact that A is a homomorphism. Since R is bounded

it follows by induction that Q*(s,a) = Q*(f(s), gs(a)) for all (s,a) € V. 0
Corollaries:

1. For any h-equivalent (s1,a1), (s2,a2) € ¥, Q*(s1,a1) = Q*(s2, as).

2. For all equivalent s1,s9 € S, V*(s1) = V*(s2).

3. Forall s € S, V*(s) = V*(f(s)) .

Proof: Corollary 1 follows from Theorem 1. Corollaries 2 and 3 follow from Theorem

1 and the fact that V*(s) = max,eca, Q*(s, a). O

As shown by Givan et al. (2003), optimal value equivalence is not a sufficient
notion of equivalence for our stated minimization goal. In many cases even when
the optimal values are equal, the optimal policies might not be related and hence
we cannot easily transform solutions of M’ to solutions of M. But when M’ is a
homomorphic image, a policy in M’ can induce a policy in M that is closely related.

The following describes how to derive such an induced policy.

Definition: Let M’ be an image of M under homomorphism h = (f, {gs|s € S}).
For any s € S, g;'(a’) denotes the set of actions that have the same image a’ € A%,
under g,. Let 7" be a stochastic policy in M'. Then 7’ lifted to M is the policy 7'y,
such that for any a € g;!(a'), 7\ (s,a) = W’(f(s),a’)/ lgt(a))].

Note: It is sufficient that 3=, -1, Ty (s,a) = 7'(f(s),a’), but we use the above

definition to make the lifted policy unique.

Example 2
This example illustrates the process of lifting a policy from an image MDP to the

original MDP. Consider MDP M from example 1 and M’ = (S’ A", V' P’/ R’) with

22

§'={s1, 5}, A" ={ay,ay} and W' = {(s1,a}), (s1,a3), (s5,a1)}. Let h = (f {gsls €
S}) be a homomorphism from M to M’ defined by

f(s1) = 51 f(s2) = 55 f(s3) = s
gsi(a1) = ay 9s,(a1) = @i 9ss(a1) = ai
91 (a2) = @y 9s,(a2) = ay

Let 7’ be a policy in M’ with

7'(s],ay) = 0.6 m'(s),ay) =04 7'(sh,a)) = 1.0

Now 7' lifted to M, the policy 7y, is derived as follows:

Th(s1,a1) = 7'(s),a) =04 mh(s1,a2) = 7'(s},a}) = 0.6
Th(s2,a1) = '(sh,a})/2=0.5 Thu(S2,a2) = 7'(sh,a})/2 = 0.5

(83, a1) = '(sh,a}) = 1.0
O

Theorem 2: Let M’ = (S’ A’, V' P’ R') be the image of M = (S, A, ¥, P, R) under
the homomorphism h = (f, {gs|s € S}). If 7'* is an optimal policy for M', then 75,

is an optimal policy for M.

Proof: Let ©”* be an optimal policy in M’. Consider some (s,a) € ¥ such that
7™ (f(s),gs,(a1)) is greater than zero. Then Q*(f(s1), gs,(a1)) is the maximum value
of the @* function in state f(s1). From Theorem 1, we know that Q*(s,a) =
Q*(f(s),gs(a)) for all (s,a) € W. Therefore Q*(s1,a1) is the maximum value of
the Q* function in state s;. Thus a; is an optimal action in state s; and hence 7§, is

an optimal policy for M. O

Theorem 2 establishes that an MDP can be solved by solving one of its homomor-

phic images. To achieve the most impact, we need to derive a smallest homomorphic

23

Figure 3.4. (a) Transition graph of example MDP M. This MDP is irreducible
under a traditional minimization framework. Our notion of homomorphic equivalence

allows us to minimize this further. (b) Transition graph of the minimal image of the
MDP M in (a).

image of the MDP, i.e., an image with the least number of admissible state-action

pairs. The following definition formalizes this notion.

Definition: An MDP M is a minimal MDP if for every homomorphic image M’ of
M, there exists a homomorphism from M’ to M. A minimal image of an MDP M

is a homomorphic image of M that is also a minimal MDP.

The model minimization problem can now be stated as: “find a minimal image
of a given MDP”. Since this can be computationally prohibitive, we frequently settle

for a reasonably reduced model, even if it is not a minimal MDP.

Illustration of Minimization: An Abstract MDP example

We illustrate our minimization framework on a very simple abstract MDP shown in
Figure 3.4(a). We will use this as a running example while we develop our framework
further. We chose such a simple example in order to make the presentation of the
computation involved in later stages easier. Note though that this MDP is irreducible

under the state-equivalence based MDP minimization framework of Dean and Givan.

The parameters of M = (S, A, U, P, R) are S = {s1, $2, 53,84}, A = {a1,a2}, ¥ =

24

S x A, P defined as in Table 3.1 and R given by: R(s2,a1) = R(s3,a2) = 0.8 and
R(s2,a3) = R(s3,a;) = 0.2. For all other values of 7 and j, R(s;,a;) equals zero.

to —

| from 51 52 53 54
51 0 0.8 0.2 0
S 0.2 0 0 0.8
S3 0.8 0 0 0.2
S4 0 0 0 1.0
(i)
lt(f?ro_;n 81 82 53 84
S1 0 0.2 0.8 0
S 0.8 0 0 0.2
S3 0.2 0 0 0.8
S4 0 0 0 1.0

(i)

Table 3.1. Transition probabilities for the MDP M shown in Figure 3.4(a): (i)
under action a;. (ii) under action as.

The MDP M’ shown in Figure 3.4(b) is a homomorphic image of M. It has
the following parameters: S’ = {o1,09,03}, A" = {aq, a0}, V' = {(01, 1), (09, 11),
(02, 2), (03, 1)}, P"as shown in Table 3.2 and R’ defined as follows: R'(03, 1) = 0.2,

R/(09,a5) = 0.8 and all other rewards are zero.

P/(O'l,Oél,O'g) =1.0 P/(U3,0él,0'3) =1.0
P'(0g,0a1,01) = 0.8 P'(03,02,01) = 0.2
PI(O'Q,Ozl,O'g) = 02 P/(O'Q,OZQ,O'g) = 08

Table 3.2. The transition probabilities of the MDP M’ shown in Figure 3.4(b).
One can define a homomorphism (f, {gs|s € S}) from M to M’ as follows: f(s1) =

o1, [(s2) = f(s3) = 02, and f(s4) = 03. g5, (@) = gs,(a;) = a, for i = 1,2,

Gs,(a1) = gss(a2) = ag and gs,(az) = gs,(a1) = .

25

3.5 Identifying Homomorphisms

Now that we have established that homomorphic equivalence is useful in deriving
reduced models, the natural next question is how do we identify homomorphisms?
Is it computationally feasible? In this section we develop the basic minimization
approach and introduce a simple minimization algorithm. This algorithm takes time
polynomial in the size of .

A homomorphism from M = (S, A, ¥, P, R) to M’ = (S’ A, V' P’ R’) induces a
partition on W. Classical FSA literature employs such partitions of the state set in
minimization of machines. Likewise, one approach to constructing a suitable image
MDP is to identify partitions of ¥ that correspond to equivalence classes of homo-
morphisms. For that we first need to establish conditions under which a partition

corresponds to a homomorphism.

Definition: A partition B of an MDP M = (S, A, ¥, P, R) is said to be reward
respecting if Bgr > B.? In other words B is reward respecting if (s1,a;) =, (s9,a2)

implies R(sy,a1) = R(sq,a9) for all (s1,a1), (s2,a2) € V.

Definition: A partition B of an MDP M = (S, A, ¥, P, R) has the stochastic substi-
tution property if for all (s1, a1), (s2,a2) € WV, (s1,a1) =,(s2, az) implies T'(s1, ax, [s] g 5)

= T(s2, a2, [s]p5) for all [s]p 4 € BIS.

In other words, the block transition probability is the same for all state-action pairs
in a given block. A partition that satisfies the stochastic substitution property is
an SSP partition. This is an extension of the substitution property for finite state
machines (Hartmanis and Stearns, 1966). The SSP block transition probability is the
function 7j : B x B[S — [0, 1], defined by Ty([(s1,a1)lp ., [s]ps) = T(s1,a1,[s]s)-

This quantity is well-defined only for SSP partitions.

2Recall, Bp is the partition of ¥ induced by the reward function.

26

Theorem 3: Let h be an MDP homomorphism from an MDP M = (S, A, U, P, R)
to an MDP M’ = (S§', A", V' P’ R'). Then By, the partition of ¥ induced by h, is a

reward respecting SSP partition.

Proof: Let h = (f,{gs|s € S}) be the homomorphism from M to M’. We need to
show that the partition B, is a reward respecting SSP partition.

First let us tackle the stochastic substitution property. Let (s1,a1), (s2,a2) € U, be

h-equivalent. From the definition of a homomorphism we have that f(s1) = f(s2)
s’ € 5" and g (a1) = gs,(a2) = @’ € A, Thus, for any s € S, T(s1,a1,[s]p,|5) =
P'(s',d', f(s)) = T(s2,a2,[s|p,). Hence By, is an SSP partition.

From condition 2 in the definition of a homomorphism, it is clear that the partition

induced is reward respecting. O

Theorem 3 establishes that the partition induced by a homomorphism is a reward
respecting SSP partition. On the other hand, given any reward respecting SSP
partition B of M it is possible to construct a homomorphic image. Let n(s) be
the number of distinct classes of B that contain a state-action pair with s as the
state component, and let {[(s,a;)]z |t = 1,2,---,7n(s)} be the blocks. Note that if

[s1]pjs = [s2] g5 then n(s1) = n(s2), hence the following is well-defined.

Definition: Given a reward respecting SSP partition B of an MDP M = (S, A, U, P,
R), the quotient MDP M/B is the MDP (S’ A", ¥ P’/ R'), where S’ = B|S; A’ =
Uls) s AES}B‘S where AES]BIS ={ay, a5, ay)} for each [s]p g € S5 P is given by
P'([s]y . a3, ') = To([(s, ai)] g [8'] ps) and R’ is given by R'([s] g5, a;) = R(s, a;).
Theorem 4: Let B be a reward respecting SSP partition of MDP M = (S, A, ¥, P, R).
The quotient MDP M/ B is a homomorphic image of M.

27

Proof: Given a reward respecting SSP partition B of M, we show by construc-
tion that there exists a homomorphism A from M to the quotient MDP M /B =
(S', A", W, P, RY).

The homomorphism h = (f, {gs|s € S}) between M and M/ B is given by f(s) =
[s]ps and gs(a) = aj such that T'(s, a,[s']pg) = P'([s]p|s: @i, [$]ps) for all [s]p 5 €
BI|S. In other words, if [(s,a)]ps is the i-th unique block in the ordering used in
the construction of M/B, then gs(a) = a. It is easy to verify that h is indeed a

homomorphism. O

The partition induced on M by h is only guaranteed to be a refinement of B and
is not always the same partition as B. In other words, B > Bj,. In fact, B is the
least coarse partition such that B,|S = B|S, and M/B is the same MDP as M/B,
up to a relabeling of states and actions. Thus the converse of the theorem, that for
every reward respecting SSP partition there exists a homomorphism that induces it,
is not always true.

It is easy to verify (by contradiction) that there exists a unique coarsest reward
respecting SSP partition for any MDP. Intuitively one would expect the quotient
MDP corresponding to the coarsest reward respecting SSP partition of an MDP M

to be a minimal image of M. The following theorem states that formally.

Theorem 5: Let B be the coarsest reward respecting SSP partition of MDP M.

The quotient MDP M /B is a minimal image of M.
Proof: The proof of this theorem is given in Appendix A.

Dean and Givan (1997) propose a polynomial time method to identify the coarsest
reward respecting SSP partition of an MDP. Though their method operates with
partitions on the state space only, it can easily be extended to ¥. Given an MDP

M = (S, A, ¥, P, R), the outline of a basic model-minimization algorithm is as follows:

28

1. Start with any reward respecting partition B of W. The most obvious choice is
to pick the one that is induced by the expected reward function R. This is the

coarsest possible reward respecting partition, but any suitable partition will do.

2. Pick some block b; of B that does not satisfy the SSP property and split b; so

that it does.

3. Repeat step 2 until all violations of the SSP property are resolved. Let By, be

the resulting partition.

4. Form the quotient MDP M /By, and identify the homomorphism between M

and M/B,.

Now one can solve M/ Bj, and lift the optimal policy to get an optimal policy for
M. Tt can be shown (Dean and Givan, 1997) that step 2 has to be performed only
once for each block in the partition and hence the algorithm runs in time quadratic
in |By| and linear in |¥|. The algorithm converges to the coarsest reward respecting

SSP partition, provided we started with a suitable reward respecting partition.

Ilustration of Minimization: An Abstract MDP example (revisited)
Let us return to the abstract MDP M from Figure 3.4(a), reproduced here in
3.5(a). We now derive the minimal model of this MDP. The admissible state action

pairs is given by S x A. We start with the partition induced by the reward function:

Br = {{(s2,01), (s3,02)}, {(52, 32), (s, 01)}, {51, 01), (51, 32), (54, 01), (5, 0) } }.

We denote the the blocks of the partition by by, by and bz respectively. Now Bgr|S =

{{81,84},{82,83}}, Ty(b1,{s1,84}) = Tp(ba,{s1,84}) = 1.0 and Ty(b1,{s2,53}) =

29

Figure 3.5. (a) Transition graph of example MDP M. Repeated from Figure 3.4(a).
(b) Transition graph of the quotient MDP M|B. See text for description. Note that
this is isomorphic to the MDP in Figure 3.4(b).

Ty (ba, {s2,53}) = 0.0. Hence b; and by satisfy the SSP property and do not need

to be split. Block b3 does violate the SSP property as can be seen below:

T(s1,a1,{s1,54}) = T(s4,a1,{s1,84}) = 1.0

S
| |
S

~
S

S1, A1, {SQa 83} = 1.0 S4, 01, {SQa 83}

() () =
(s1, a2, {s1,54}) (s4,a2,{s1,84}) = 1.0
() = () =
() = () =

T S1, A2, {52783} =1.0 T Sy4, A2, {52783}

We can fix this by splitting b3 into {{(51, ai), (s1,az2)}, {(s4,0a1), (84, aQ)}}. It is easy
to see that the resulting partition B given by B = {{(sl,al), (s1,a2)}, {(s2,a1),
(s3,a2)}, {(s2,a2), (s3,a1)}, {(s4,a1), (s4, aQ)}} is a reward respecting SSP partition.
We can derive the quotient MDP M|B = (S’ A, ¥, P’ R') as follows:
=B|S = {{31}, {s2, 83}, {54}} are the states of M/B.

Now, n(s1) = 1, n(s2) = n(s3) = 2 and n(sy) = 1. Let A’ = {a},a}}. Hence we
set A,y = {ar}, A,y = {01, db} and AY,y = {a}. Now P'({s1}, a1, {s2,53}) =
P(s1,a4,589) + P(s1,a1,83) = P(s1,a2,s2) + P(s1,a9,s3) = 1.0. Proceeding similarly,

we have

30

P'({s1},a),{s2,83}) = 1.0 P'({s4},d},{s4}) =10
P'({sq,s3},a},{s1}) =0.8 P'({sq9,s3},d5, {s1}) =0.2
P'({s9,s3},a}, {ss}) =0.2 P'({sq9,s3},a4, {ss}) =0.8

R'({s2,83},a}) = 0.2, R'({s2,s3}, a,) = 0.8 and all other rewards are zero. Figure
3.5(b) shows the transition graph for M/B. Note that this MDP is the same as
that shown in Figure 3.4(b) except for a relabeling of states and actions. The two
MDPs are examples of isomorphic MDPs, a notion we will develop further in the next
chapter. Now we can define a homomorphism (f,{gs|s € S}) from M to M/B as
follows: f(s1) = {s1}, f(s2) = {s2, 83}, f(s3) = {s2, 83} and [f(s4) = {s4}. g5, (a;) =

gsi(a;) = ay, for i = 1,2, g, (a1) = gs,(a2) = a5 and gs,(az) = gs,(a1) = a}.

3.6 Relation to Stochastic Bisimulations

This approach to minimization is closely related to earlier work on MDP min-
imization be Dean and Givan (1997). Their framework is based on the notion of
stochastic bisimulation homogeneity (Givan et al., 2003). The basic mathematical
notion underlying their framework is that of a stochastic bisimulation (Hennessy and

Milner, 1985). Formally a stochastic bisimulation is defined as follows:

Definition: Let M = (S, A, ¥, P/R) and M’ = (S, A,V P' R') be two MDPs
with the same action set, with every action being admissible in all the states. Let
E C S x 5" be a relation. We use the notation E(s, s’) to indicate that (s,s’), s € S
and s € S, belongs to E. E is a stochastic bisimulation if each s € S (and s’ € 57)
appears in some pair in F, and, whenever E(s, s’), both of the following hold for all

actions a € A:
L. R([s]pg.a) and R'([s'] ps ,a) are well defined and equal to each other.

2. For states t € S and t' € " s.t. E(t, '), T(s,a, [t]55) = T'(', a, [t'] g0)-

31

Here E|S is the reflexive, symmetric, transitive closure of E projected onto S. Sim-
ilarly E|S’" is the reflexive, symmetric, transitive closure of E projected onto S’.
R([s] g5, a) is well defined if there exists some K € IR, such that for every ¢ € [s] g,
R(t,a) = K. A stochastic bisimulation from M to M is also an equivalence relation
on S and leads to a “homogeneous” partition of S. As we shall establish shortly, a
homogeneous partition is a reward respecting SSP partition and hence can be used to
construct a reduced model of the MDP as described above. Note that the above def-
inition of a stochastic bisimulation considers relations on the state sets. If we extend
the definition to relations on ¥ x ¥’ we can model the same notion of equivalence as
that entailed by MDP homomorphisms.

We now formalize the relation between stochastic bisimulations and MDP ho-
momorphisms. For purposes of comparison we look at state homomorphisms, i.e.,
gs(a) = a for all (s,a) in W. Hence we consider a MDP homomorphism to be a map
between state sets in this section. It can be argued that stochastic bisimulations are
a more expressive concept than homomorphisms. They allow us to establish a di-
rect correspondence between two MDPs that have some similarity in their transition

behavior. But that is not necessarily the case as the following result shows.

Theorem 6: A stochastic bisimulation exists between two MDPs M = (S, A, U,
P,R) and M' = (S", A, ¥, P’ R') if and only if there exists an MDP M"” = (S” A, ¥",
P” R") that is a (state) homomorphic image of both M and M’.
Proof: (=) Let E C S xS’ be a stochastic bisimulation between M = (S, A, ¥, P, R)
and M' = (S" A, ¥ P R'). We show by construction that there exists M"” =
(", A, " P" R") which is a homomorphic image of both M and M.

First, we establish that F|S is a reward respecting SSP partition of M. By
definition of a stochastic bisimulation we have that R([s] E|S a) is well-defined for all
a € A. Hence E|S is reward respecting. Let s1,s, € S be s.t. [s1] g = [s2] - This

implies that there exists a “path” in E from s; to sy, ignoring arc directions. Without

32

loss of generality let us assume that for every s’ € S’ if F(sy,s’) then E(sy,s').> For
every t € S and t' € §" s.t. E(t,t'), the second condition of stochastic bisimulation
states that T'(s1,a, [t] 5) = T"(s', a, [t'] pjgr) = T(s2,a, [t]g) for all a € A. Thus we
have T'(s1,a, [t) = T(s2, a, [t] pg) for all [t] g € E|S and for all a € A. Thus E|S
is an reward respecting SSP partition.

Let M" = (5", A,¥", P" R") be the quotient MDP M/E|S. Let f: 5" — E|S,
be given by f(s') = [s1]ps if E(s1,5'). The map f is a surjection, since for every
s’ € S’ there exists at least one s; € S s.t. E(sy,s). It is well defined: if there
exist s1,82 € 5, s.t. E(s1,8') and E(ss, s'), then [s1]p g = [s2] 5. From the second
condition of a stochastic bisimulation, for every t € S and ¢’ € S" s.t. E(t,t') we have
(5,0, [ps) = T(s1,0:[ps) = P'([s1lms @ tlggs) = P'(F(s).a, f()) for al
a € A. From the first condition we have that ['(s',a) = R(s1,a) = R"([s1]5,a) =
R"(f(s'),a) for all a € A. Thus f is a homomorphism from M’ to M/E|S.

Therefore M/E|S (similarly M'/E|S’) is a homomorphic image of both M and
M.

(<) Let M” be a homomorphic image of M under f and a homomorphic image
of M" under f’. Define a relation F C S x 5" s.t. E(s,s’) if and only if f(s) =
f'(s"). Note that E|S is By and E|S" is Byr. Therefore R([s]y5,a) and R'([s'] 55 . a)
are well-defined. Also if E(s,s’) then R([s]pg.a) = R"(f(s),a) = R'(f'(5'),a) =
R([s']pg - a) for all a € A. For every t € S and ' € 5" s.t. E(t,t') we have
T(s,a,[tlgs) = T"(f(s),a, f(t)) = T"(f'(s),a, ['(¥')) = T'(s', a, ['] s/). Therefore

F is a stochastic bisimulation between M and M. O

3Strictly speaking we should consider induction on the length of the path in E in the proof. The
resulting properties are the same under the above assumption as under induction. In the interests
of clarity and brevity we make this assumption.

33

Corollary: Let f : S — S’ be a state homomorphism from M = (S, A, ¥, P, R) to
M = (5" A V' P R). The relation £ C S x S, defined by E(s,s) if and only if
f(s) = &, is a stochastic bisimulation.
Proof: Given that f is a state homomorphism from M to M’. Every MDP is ho-
momorphic to itself under the identity map. Thus M and M’ share a homomorphic
image, namely M’. From the construction in the proof of Theorem 6, we have that
a stochastic bisimulation, E, between M and M’ is defined by the relation E(s,s’)
if an only if f(s) = f'(s’), which in this case reduces to f(s) = ' a
The above results establish that every MDP state homomorphism induces a stochas-
tic bisimulation and every stochastic bisimulation can be modeled by a pair of MDP
state homomorphisms. It is straightforward to establish corresponding results for
MDP homomorphisms and stochastic bisimulations on the admissible state-action
pairs. Hence for the purposes of minimization, bisimulations do not provide any
additional power. But we believe MDP homomorphisms are a simpler notion than
bisimulations and help us to better understand the minimization process. Employing
homomorphisms allows us to easily cast various abstraction schemes as special cases

of MDP minimization.

3.7 Learning With Reduced Models

Traditionally minimization methods are thought of as a suitable pre-processing
step to planning methods, since both need complete specification of the model. As
has been demonstrated in the past, even in the presence of a complete model it is
advantageous to employ real-time dynamic programming or reinforcement leaning to
solve especially large MDPs, since these methods focus the search for the solution on
a relatively small but relevant area of the state space. Employing minimization as a
pre-processing step in such a scenario saves us further effort since we are now dealing

with a (possibly) smaller model.

34

In the Section 4.2 we show that under certain conditions we can derive reduced
models without having to enumerate the entire state space. Even if we do not know
the complete system model apriori, we often have sufficient prior knowledge on struc-
tural redundancy to derive abstract representation of MDPs using minimization ideas.
In particular in Chapter 6 we explore an approach where we can derive the reduced
model with limited experience in the “real-world” and then employ this model in
learning policies in the original MDP. Also casting abstraction as a minimization prob-
lem helps us in achieving greater insight into many existing abstraction approaches
and in developing new ones, even if the approach itself does not conform exactly to
the parameters of a minimization technique. In other words, we obtain useful ab-
stract representations for the problem, but do not derive minimal models, and do not
require complete knowledge of the system model.

In this work we adopt the notion of homomorphic equivalence of state-action
pairs to derive reduced models. Other notions of equivalence have been adopted
in the literature,* two of which are useful and in some sense more powerful than
homomorphic equivalence. The first is optimal value equivalence, where two state
action pairs are considered equivalent if their optimal action values are the same.
In other words, (s1,a1) =g+ (s2,a2) if and only in Q*(s1,a1) = Q*(s2,az). It can be
shown that the coarsest reward respecting SSP partition is a refinement of Bg+. Thus
optimal value equivalence might lead to a smaller quotient model than homomorphic
equivalence. The chief drawback is that it is not possible to determine Bg+ from the
problem parameters directly. Most often we need to solve the problem before we can
determine Bg+. Still it is a useful notion and some abstraction approaches try to

estimate By~ incrementally. They start with some coarse partition and successively

4Givan et al. (2003) discuss several such notions in some detail and put forth arguments as to why
stochastic bisimulation is a better notion of equivalence. Those arguments apply here too, since, as
demonstrated earlier, homomorphic equivalence is the same as stochastic bisimulation equivalence.

35

refine the partition with more learning or planning (e.g., Whitehead and Ballard,
1991; McCallum, 1995; Jonsson and Barto, 2001; Kim and Dean, 2001; Feng et al.,
2003).

The other notion of equivalence is optimal policy equivalence. Here two state
action pairs are considered equivalent if the probability of picking those actions in
those states under some optimal policy are same. In other words, (s1,a1) =, (s2, az)
if and only if 7(s1, a1) = 7*(s2, az) for some 7*. Both the coarsest reward respecting
SSP partition and B+ are refinements of B ~. As with B+, using B, requires that
we use some form of incremental estimation.

Both of these notions of equivalence are particularly attractive if we have little
prior knowledge about the structure of the problem being solved. We any way es-
timate the optimal policy and if we are using a value based solution approach, we
estimate the optimal value function. So why not use them as the basis for abstraction
also? But it is seldom the case that we start with absolutely no knowledge of the
problem. We often have some information about inherent symmetry in the problem
and we can also make certain independence assumptions about the various features
describing the problem. With such structural knowledge it is easier to specify reduced
images that exploit homomorphic equivalence than it is for other forms of equivalence.
We shall see examples of this in the later sections. However note that homomorphic
equivalence does imply both optimal value and optimal policy equivalence. We can
also combine different notions of equivalence and start with a reward respecting SSP
partition and coarsen it incrementally to achieve a more compact model corresponding

to By or Bx.

3.8 Related Work

There has been extensive work in algebraic minimization of finite state machines.

Hartmanis and Stearns (1966) present a excellent introduction to the notions of ma-

36

chine homomorphisms, SP partitions, FSA minimization and decomposition tech-
niques. The basic FSA minimization approach consists of identifying the coarsest
partition of the state set that satisfies the substitution property. This is the ana-
logue of the SSP property for deterministic FSA. Hartmanis and Stearns outline a
method to identifying the coarsest SP partitions based on the partial order on all
SP partitions. The method requires us to specify some SP partition of the system
before hand. Minimization algorithms for Markov chains follow similar lines, with
the equivalence criterion of lumpability, which is related to the substitution property.
Kemeny and Snell (1960) discusses equivalence of Markov chains in detail. They also
describe weak lumpability, a relaxation of the equivalence criterion.

Minimization approaches for other modeling paradigms, such as probabilistic au-
tomata (Paz, 1971) and probabilistic transition systems (Larsen and Skou, 1991), are
usually based on the notion of bisimulation and its stochastic extension. Bisimula-
tions were introduced by Hennessy and Milner (1985) and are a many to many map
between the state sets of two structures. They help to establish equivalence among
the elements, such that some aspect of the transition structure of the systems are
preserved when equivalent states are aggregated.

Checking models of concurrent processes, popularly called model checking, is an-
other field that widely employ minimization ideas (McMillan, 1993; Lee and Yan-
nakakis, 1992; Ip and Dill, 1996; Emerson and Sistla, 1996; Emerson and Trefler,
1998). Researchers employ various logical models of concurrent programs and sys-
tems and check them for correctness, i. e. if the program or system really does what
it is supposed to do. For example, if we are designing a system with an abort switch,
we want some assurance that when we throw the switch, the system really does abort
and does so in a “clean” way. The basic model checking process is not very relevant to
our work, but model checking systems frequently employ some form of minimization.

The goal is to derive a smaller model of the system, whose correctness implies the

37

correctness of the original model. Lee and Yannakakis (1992) base their approach
to minimization on bisimulations and Dean and Givan (1997) extend it to MDP
minimization.

Dean, Givan and colleagues have explored MDP minimization in detail. Their
model minimization framework (Dean and Givan, 1997) is based on the notion of
bisimulation homogeneity, which is equivalent to the SSP property restricted to the
state set of the MDP. They develop a simple algorithm that successively refines vio-
lations of homogeneity and produces the coarsest homogeneous partition of the state
set. The quotient MDP may then be constructed along similar lines as in Section
3.4. They establish many theoretical results (Givan et al., 2003) on the equivalence
of value functions and on the correctness of their algorithm. Many of the results we
presented in this chapter are extensions of their results to our framework.

Dean and Givan also examine several MDP abstraction algorithms (Dean and Gi-
van, 1997; Givan et al., 2003; Givan and Dean, 1997) and show them to be instances
of their minimization approach applied to special representation schemes. The vari-
ous algorithms take advantage of the structure in the system to develop polynomial
time algorithms for minimization. Boutilier and Dearden’s (1994) state aggregation
method employs Boolean features to represent the state space and look for homo-
geneous partitions among those described by logic formulae on the features. This
is equivalent to searching for a homomorphism among projections onto a subset of
features. Structured policy iteration of Boutilier et al. (1995) is a policy iteration
algorithm that implicitly does state abstraction. They represent the MDP via DBNs
and the CPTs and value function as decision trees. Dean and Givan show that their
algorithm implicitly computes homogeneous partitions among those partitions repre-
sentable by decision trees on the state features. In a recent presentation Givan (Parr
and Givan, 2001) mentions that Boutilier et al.’s (2001) symbolic dynamic program-

ming (SDP) is also an instance of an implicit minimization algorithm. SDP employs

38

situational calculus for state representations and searches for homogeneous partitions
among partitions representable as first order logic formulae in the calculus.

These approaches do not employ state-action equivalence, but Dean et al. (1998)
do consider homogeneous partitions of the state-action space in their minimization
algorithm. But they employ the traditional definition of projection of partitions. As
Example 1 in Chapter 2 demonstrated, this is a weaker concept and hence does not

lead to the greater reductions facilitated by our approach.

39

CHAPTER 4
SYMMETRY, STRUCTURE AND APPROXIMATIONS

In this chapter we further explore the power of MDP homomorphisms. We de-
velop an inclusive definition of symmetries in MDPs and show that this results in
a special case of homomorphic equivalence. We then explore several special forms
of homomorphisms suited for structured MDPs, where we exploit independence be-
tween features describing the state set. In many cases, even when the homomorphism
conditions are not met exactly, we can form useful abstractions using some relaxed
notion of equivalence. We develop two forms of approximate homomorphisms that

allow us to bound the loss when forming such abstractions.

4.1 Modeling Symmetries

Researchers in Al have long recognized the usefulness of abstracting away sym-
metry (Amarel, 1968) in a problem description. Informally, a symmetric system is
one which is invariant under certain transformations onto itself. An obvious class of
symmetries is based on geometric transformations, such as reflections, rotations and
translations. An example of a reflectional symmetry in an MDP settings was shown
in the example in Figure 1.2. But invariance often arise due to many other properties
of a system, especially structural properties. One of the interesting class of such sym-
metries that we will revisit later in this thesis is that due to object interchangeability.
Informally, these classes of symmetry arise when you can replace some objects in the
world with other similar objects and the dynamics of the world does not change as

far as achieving your primary objective is concerned. Such systems are usually not

40

thought of as being symmetric systems, but our definition of symmetry treats object
interchangeability the same way as it would reflection or rotation.

In this section we formalize the notion of MDP symmetries employing group theo-
retic concepts. Since we appeal to only the underlying mathematical structure of the
problem, this is a very inclusive definition of symmetry that is applicable to a variety
of problem domains. We also show that symmetric equivalence can be accommodated
naturally in our minimization framework and is in fact a special case of homomorphic

equivalence.

4.1.1 Symmetry Groups

Symmetries of a structure are usually characterized by the symmetry group — the
group of all automorphisms of the structure. Automorphisms are transformations of
a structure onto itself such that all the properties of the structure are preserved. We

first define MDP automorphisms and then symmetry groups of MDPs.

Definition: An MDP homomorphism h = (f, {gs|s € S}) from MDP M = (S, A, U,
P, R) to MDP M’ = (S" A", V', P', R') is an MDP isomorphism from M to M’ if
and only if f and g,, s € S, are bijective. M is said to be isomorphic to M’ and vice

versa.

Note that property (1) of a homomorphism reduces to a simpler form in this case:
P(s,a,s") = P'(f(s),gs(a), f(s')) for all s,s" € S and a € A,. Therefore, when two
MDPs are isomorphic, it means that the MDPs are the same except for a relabeling of
the states and a state-specific relabeling of the actions. Thus we can transfer policies
learned for one MDP to the other by simple transformations. Also note that an MDP
M is a minimal MDP if all M’ that are homomorphic to M are also isomorphic to
it.

Definition: An MDP isomorphism from an MDP M = (S, A, U, P, R) to itself is an

automorphism of M.

41

(a)

Figure 4.1. (a) A symmetric gridworld problem. Reproduced from Figure 1.2. (b)
Reflection of the gridworld in (a) about the N E-SW diagonal.

Intuitively one can see that automorphisms can be used to describe symmetries
in a problem specification. In the example of Figure 1.2(a), a reflection of the states
about the NE-SW diagonal and a swapping of actions N and E and of actions S and
W is an automorphism. It is easy to see that this mapping captures the symmetry

discussed earlier. Figure 4.1 shows both the original and the reflected MDP.

Proposition: The set of all automorphisms of an MDP M denoted by Aut.M, forms
a group under composition of homomorphisms. This group is the symmetry group of

M.

Let G be a subgroup of AutM denoted by G < AutM. The subgroup G defines an
equivalence relation =, on W: (s1,a1) =, (s2,a2) if and only if there exists h € G
such that h(s1,a1) = (s2,a2). Note that since G is a subgroup, this implies that there
exists a h™' € G such that h™(ss, a2) = (s1,a1). Let B, be the partition of ¥ induced

by =,. We need the following lemma to prove Theorem 7:

Lemma: For any h = (f,{gs|s € S}) € G, f(s) € [S]BQ|S.
Proof: The lemma follows from the properties of groups (Lang, 1967), namely closure

and existence of an inverse. O

42

Theorem 7: Let G < AutM be a subgroup of automorphisms of M = (S, A, ¥, P, R).

The partition B, is a reward respecting SSP partition of M.

Proof: Consider (s1,a1), (s2,a2) € ¥ such that (sy,a1) =, (s2,az). This implies that
there exists an h = (f, {gs|s € S}) in G such that f(s1) = s3 and gs, (a1) = as.

From the definition of an automorphism we have that for any s € S, P(s1, a1, s)
P(Sl, as, S/) = ZS/E[S]BQISP(SQ, as, S/).

Since we chose s arbitrarily, this holds for all s in S. Hence B, is an SSP partition.

= P(s2,as, f(s)). Using the lemma, Y yefy . s
g
Again from the definition of an automorphism we have that R(si,a;) = R(sq,as).

Hence B, is reward respecting too. O

Corollary 1: Let G < AutM be a group of automorphisms of M = (S, A, U, P, R).
There exists a homomorphism A9 from M to some M’ such that the equivalence

relation induced by h9Y, = ;. Is the same relation as =;.

Proof: We can prove this by constructing a homomorphism h¢ from M to M|B,,
given by h9 = (f,{gs|s € S}) where f(s) = [S]Bg|s and gs(a) = a} such that
T(s,a, [s’]Bg|S) = P’([S]ng,a;,[s’]Bgls) for all [s’]Bg|S € B,|S. In other words, if
[(s,a)] B,s is the i-th unique block in the ordering used in the construction of M/B,,

then g,(a) = a;. It is easy to verify that B¢ = B,,. O

The image of M under hY is called the G-reduced image of M. We say state action
pairs (s1,a;) and (sq9,aq) € ¥ are symmetrically equivalent if for some G < Aut M,
(s1,a1) =, (s2,a9).

Corollary 2: For any symmetrically equivalent (sq,a;), (s2,a2) € ¥, Q*(s1,a1) =
Q*(s2,a2) and hence the optimal action-value function of a symmetric MDP is also

symmetric, i. e., invariant under the transformations in the symmetry group of M.

Corollary 3: If 7™ is an optimal policy for some G-reduced image of MDP M, then

7% is an optimal policy for M.

43

Note that the converse of Theorem 7 is not true. It is possible to define SSP
partitions that are not generated by groups of automorphisms. Frequently the Aut.M-
reduced model of an MDP is a minimal image. We look to taking advantage of
structure inherent in a symmetry group and the related equivalence classes in deriving

symmetrically reduced images. This is a theme we will return to often in this work.

Illustration of Minimization: A Symmetric Abstract MDP Example

Let us return to the MDP M in Figure 3.5(a). The reduced MDP M /B shown
in Figure 3.5(b) is also the the AutM-reduced image of M. Let Z be the identity
map on ¥ and let h be the automorphism on M defined by: h(sy,a1) = (s1,a2),
h(s2,a1) = (S3,a2), h(se,a2) = (s3,a1) and h(sy,a1) = (s4,a2). The symmetry
group of M, AutM, is {Z,h} with the composition operator. The partition in-
duced by the symmetry group is Baum = {{(sl,al), (s1,a2)}, {(s2,a1), (s3,a2)},
{(s2,a2), (s3,a1)}, {(s4,0a1), (54, aQ)}}, which is the same as B from the previous ex-

ample.

Example of Reductions Not Modeled By Symmetry Groups

Figure 4.2(a) shows a very simple abstract MDP with a non-trivial symmetry
group. Each of the states depicted have just one action with the dynamics as shown
in the figure. The action causes a transition from state S to one of states A, B or C'
with equal probability. From each of the states, the action transitions to the absorbing
state G with probability 1 and obtains a reward of +1. The symmetry group for this
MDP consists of all permutations of the states A, B and C. The coarsest reward
respecting partition for this MDP is: {{S}, {A, B,C}, {G}} Since there is only one
action, we have not indicated that here. The minimal image of this MDP is shown
in Figure 4.2(c).

Figure 4.2(b) shows a similar MDP, with slightly different dynamics. Here the

action from state S causes transition to states A, B and C' with different probabilities.

44

Figure 4.2. (a) Transition graph of a symmetric MDP. (b) Transition graph of a
similar MDP, but with a trivial symmetry group. (c¢) Minimal image for both the
MDPs.

Therefore this MDP has only a trivial symmetry group consisting of just the identity
map. But, as with the other MDP, the coarsest reward respecting partition for this
MDP is: {{S}, {A,B,C}, {G}} The MDP in Figure 4.2(c) is a minimal image of
this MDP also.

This example demonstrates that not all reductions are generated by symmetry
groups. Another point to note in this example is that the MDP which has a non-
trivial symmetry group has a repeated structure. When we aggregate states together
while constructing a reduced model, the homomorphism conditions require only that
for each action in a state there is some other action from an equivalent state which has
the same block transition behavior. When the reductions arise from symmetry groups
for each action in a state there is some other action from an equivalent state which has
the same transition behavior with respect to each member of a given block. Therefore
not only are the homomorphism conditions satisfied, but a stronger condition is met.
In practice though symmetric reductions arise often and can be identified by a cursory
examination of system properties unlike non-symmetric reductions. All the examples

we encounter in the later chapters employ symmetric reductions.

45

4.1.2 Discussion on Identifying Symmetry Groups

In this section we have established that abstracting away symmetry in a problem
is equivalent to finding a homomorphic image of the MDP. This implies that we
can treat symmetries as a special case of homomorphic reductions and do not need
special mechanisms to handle them. In reality we can take advantage of the repeated
structure in the problem that a symmetry group captures to derive more efficient
algorithms. It is interesting to note that most of the reductions we are interested in,
as we shall see in later chapters, arise from symmetries of a system, so much so that
people tend to confuse homomorphisms and symmetries.

In the previous section we outlined a polynomial time algorithm to identify re-
ward respecting SSP partitions. While that algorithm also detects partitions induced
by symmetry groups, it is not an easy task to specialize the algorithm to look for
symmetry groups of MDPs. We need to make certain structural assumptions about
the MDP to derive tractable algorithms for symmetry group identification. In the
next section we explore factored MDPs and introduce special forms of automorphisms
and homomorphisms. By restricting our search to such special forms, it is possible
to derive more efficient abstraction algorithms.

In a large family of tasks the symmetry groups are known beforehand or can
be specified by the designer through a superficial examination of the problem. In
Section 4.2 we present an algorithm that efficiently constructs a reduced MDP given
a symmetry group, without having to enumerate all the states and actions explicitly.
In learning problems, it is possible achieve some speedup in the process even if we
have incomplete knowledge of homomorphisms and symmetry groups of the problem.

We explore this direction in greater detail in Chapters 5 and 6.

46

4.1.3 Related Work

The MDP minimization algorithms analyzed by Givan et al. (2003) do not consider
symmetries of MDPs. While it is possible to extend these algorithms to accommodate
symmetric equivalence of states, without considering state-action equivalence they
cannot model many interesting kinds of symmetry. Symmetry groups have been
employed in the minimization of other modeling paradigms. Jump (1969) employs
symmetry groups in decomposition of FSAs. His approach is an extension of an
approach proposed by Hartmanis and Stearns (1966) based on a notion related to
SP partitions. Glover (1991) employs symmetry groups for deriving shift invariant
models of Markov chains. The goal here is to form a representation of a Markov chain
that behaves similarly under sequences of inputs that are similar but shifted in time
by varying amounts.

Model checking literature abounds with examples of exploiting symmetry in mini-
mization. Most models of concurrent systems employ a factored representation, with
a feature for each process that indicates the current state of the process. The execu-
tion of the system is graphically modeled as a Kripke structure with the nodes of the
structure representing states of the system and the edges possible deterministic tran-
sitions (McMillan, 1993). Minimization algorithms for Kripke structures focus on the
special class of automorphisms that can be expressed as a permutation of the feature
values. Thus the symmetry group of concurrent process model will be given by per-
mutations of the feature values that leave the Kripke structure unaltered (Emerson
and Sistla, 1996; Ip and Dill, 1996; Emerson and Sistla, 1997; Emerson and Trefler,
1998; Emerson et al., 1997). Of particular interest to us is the work by Emerson and
Sistla (1996) in which they present an incremental algorithm for building a quotient
structure. In Table 4.2 we extend their algorithm to MDPs, by incorporating rewards
and stochasticity and are looking to further extend it to operate with a sample model.

Emerson and Trefler (1999) develop many relaxed symmetry criteria which lead to

47

useful reductions in the problem size. We look to extending their results to factored
MDPs and achieving similar reductions in problem size.

Researchers in AT have long recognized the usefulness of abstracting away symme-
try. The body of relevant literature on approximation is huge and it is fairly impossible
to present a complete survey here. We just mention a couple of works, one old and
one recent to indicate the continuing interest in this area. Amarel (1968) discusses
the Missionaries and Cannibals problem in detail, exploring various representation
schemes that lead to increasingly more efficient solutions. One of the schemes ab-
stracts away the time reversal symmetry in the problem. It does not matter if you
are going from the left bank to right bank or vice versa. So we can partly solve the
problem of going from one bank to the other and derive the complete solution by
using the time reversed partial solution for going in the other direction. This leads
to significant speed up in the planning procedure. Popplestone and Grupen (2000)
take a system theoretic approach to modeling permutation symmetries in the same
problem domain, to abstract away the identity of the various people in the problem.
They model the system dynamics by generalized transfer functions (GTF) and exam-
ine how various symmetries in the problem domain can be modeled as symmetries of
the GTF. They look at classes of symmetries generated by permuting the inputs and
the outputs separately and then permuting both simultaneously. They employ the
symmetry in generating a quotient structure that ignores the identity of the persons
involved and works only with relative numbers.

While various abstraction techniques have been successfully employed with RL
algorithms, there is not much work on explicitly employing symmetries. Zinkevich
and Balch (2001) define symmetries of MDPs employing equivalence relations on the
state-action pairs, but they do not make connections to group theoretic concepts or
to minimization algorithms. They show that the optimal action-value function of a

symmetric system is symmetric and suggest that the symmetrically equal action-value

48

function entries be duplicated. They also study in some detail symmetries that arise
in multi-agent systems. They restrict their analysis to flat RL systems and do not con-
sider hierarchical systems. Drummond (1998) employs a visual processing technique
to detect useful subgoals from the value function that a RL agent learns and defines
suitable macro-actions to achieve these subgoals. He employs various transformations
to the subgoals detected to identify similar situations and can detect symmetrically
equivalent situations also. But his method is limited to 2-D environments presently
and ones in which the symmetry is visually apparent in the value function. Hengst
(2002) presents AHRL, a hierarchical decomposition algorithm for factored MDPs.
AHRL can exploit symmetry in the environment to define subproblems, where sym-
metry is identified by “repeatability”. His approach presently is severely limited in

applicability and works only with special representation schemes.

4.2 Homomorphisms of Factored MDPs

The framework we have developed thus far assumes a monolithic representation of
an MDP. But many classes of problems that are modeled as MDPs often have some
inherent structure. We can exploit this structure using a feature based or factored
representation, and there are many efficient MDP solution techniques that take ad-
vantage of such representations (e.g. Boutilier et al., 1999). Similarly we can model
abstractions that arise from structured homomorphisms and exploit the structure to
derive more efficient minimization algorithms and compact representations of reduced
models and symmetry groups.

Another reason that drives us to look at special classes of homomorphisms is that
the polynomial time complexity of the algorithm presented in the previous chapter
results from assuming that determining membership in a block of a partition takes

constant time. This is not generally true and in fact, depending on how the MDP

49

is represented, this might be NP-hard. Dean and Givan (1997) clearly demonstrate
this difficulty with certain representation schemes.

Let us consider one such scheme used by a state-aggregation method (Boutilier and
Dearden, 1994). The states of the MDP are represented by several boolean features.
Each state in the MDP is represented by a specific assignment to these boolean
features. The partitions then are represented as boolean formulae. Determining
membership in these partitions, to check if they are empty or not, is boolean formulae
satisfiability. This is known to be NP-complete and hence deriving the minimal image
of an MDP in such cases is NP-complete. Dean and Givan examine algorithms that
obtain reasonable reductions in polynomial time, in special cases which use structured

representations for the MDP parameters.

4.2.1 Structured MDPs

A structured MDP is described by the tuple (S, A, ¥, P, R). The state set S is
now given by M features or variables, S C [J, S;, where S; is the set of permissible
values for feature i. Thus any s € S is of the form s = (s1,..., sy), where s; € S; for
all .1 A state s can also be thought of as an unique assignment to the state variables
Si-

The transition probability matrix P is usually described by two-slice dynamic
Bayesian networks (2-DBNs) (Dean and Kanazawa, 1989). A 2-DBN is a two layer
directed acyclic graph, one for each action, whose nodes are {si,...,s)} and {s}, ...,
shyt. Here s; denotes the value of feature ¢ at the present state and s, denotes the
value of feature 7 in the resulting state. Many classes of structured problems, as in

the example below, may be modeled by a DBN in which the arcs are restricted to go

IThe action set may also be similarly structured, defined via K components, A C Hfil A;, where
A; is the set of permissible values for action component i. Presently, we only consider monolithic
actions.

20

from nodes in the first set to those in the second. The state-transition probabilities

can be factored as:

P(s,a,s') = ﬁ Prob(s;|Parents(s;, a))
i=1

where Parents(s;, a) denotes the parents of node s} in the DBN corresponding to
action a and each of the Prob(s}|Parents(s}, a)) is given by a conditional probability
table (CPT) associated with node s;. This is the standard representation of transi-
tion probabilities in factored MDPs. In computing the conditional probabilities it is
implicitly assumed that the nodes in Parents(s},a) are assigned values according to
s. In cases we want to make the dependence of the probability on the previous state
explicit, we write Prob(s}|Parents,(s}, a)).

The reward function too may be similarly represented. Another representation
for the reward is to assume that the reward is the sum of linear functions on subset
of the features. Thus R(s,a) = Y% ri(s,a) where r; is linear and depends only on a

subset of features (Koller and Parr, 2000).

Example

Let us consider a toy robot domain to illustrate our ideas in this section. The
task of the robot is to deliver coffee to an office on a rainy day. The state of the robot
is described by the following boolean features: HC' - the robot has coffee, Loc - true
when the robot is in the office, false if it is in the cafe, HU - the robot has an umbrella.
The robot has the following actions available: go - toggles the location of the robot
with probability 0.9, dc - deliver coffee, results in a reward of +1 if HC A Loc is true
and sets HC to false with probability 0.8, gu - get umbrella, sets HU to true, if Loc
is true, with probability 0.75, nop - do nothing. In cases the actions fail, they leave

the state unaltered. This is a modification of the problem described in Boutilier et al.

o1

Figure 4.3. (a) The DBN of the coffee robot domain described in the text. The a
node is the action node and can take values dc, go, gu, nop. (b) The DBN of the
homomorphic image generated by a simple projection on to a subset of features.

(1995). The transition dynamics of the system is given by the DBN shown in Figure
4.3(a). O

4.2.2 Structured Morphisms

Adding structure to the state space representation allows us to consider morphisms
that are structured, i.e., surjections from one structured set to another. An example of
a structured morphism is a simple projection onto a subset of features. We introduce
some notation, after Zeigler (1972), to make the following definitions easier. Given
a structured set X C [[¥, X;, the i-th projection of X is a mapping p; : X — X;,
defined by p;({x1,...,xy)) = x;. We extend this definition to that of a projection on
a subset of features. Given a set J C {1,..., M} the J-projection of X is a mapping
ps: X = Iljes X;, defined by py = [Tjes p;-
Definition: A simple projection homomorphism h from a structured MDP M =
(S, A, ¥, P, R) to a structured MDP M’ = (S’ A", V' P’ R') is a surjection from ¥
to U, defined by a tuple of surjections (f,{gs|s € S}), with h(s,a) = (f(s), gs(a)),

where f = pp: S — S, where F C {1,...,M} and ¢, : A, — Al for s € S, such

52

that, Vs, s’ € S,a € A,:

P'(f(s),9s(a), f(5)) = T(s,a,[s]p,s) (4.1)
= H Prob(s’;|Parents(s}, a)) (4.2)
R'(f(s), gs(a)) = R(s,a). (4.3)

The first condition implies that F' must be such that for all j € F' and (s,a) € U,
si € Parents(s’, a) implies i € F'. In other words, the DBN of M’ is a sub-graph of
the DBN of M, such that no incoming arc to the nodes in the sub-graph is cut. The

second condition requires that no incoming arc to the reward node is cut either.

Example Continued
Going back to our toy robot example, a projection onto the HC and Loc features
with gs(a) = a for all s € S and a # gu and gs(gu) = nop for all s € S is a projection

homomorphism. The DBN of the image MDP is shown in Figure 4.3(b).

An algorithm to determine simple projection homomorphisms of factored MDPs
that runs in time polynomial in the number of features is shown in Table 4.1. This
algorithm assumes that the MDP dynamics is specified as a 2-DBN. The intuition
behind the algorithm is similar to the minimization algorithm from Chapter 3. We
start with the reward node in the image MDP. Then we iteratively add nodes and
connections that directly influence the nodes in the image MDP. This is equivalent to
starting with the partition induced by the reward function and successively refining it,
till we achieve a reward respecting SSP partition of the state space. The difference in
this case is that we end up the coarsest simple projection image and not the minimal
image of the MDP.

It is evident that the space of simple projections is much smaller than that of

general maps and may not contain a homomorphism reducing a given MDP. A more

23

1. Start the queue of nodes to be examined with the reward nodes of the DBN.

2. For node n in the queue, add to the set of nodes in the image DBN any node
s; such that there exists an arc from s; to n. Add s, to the set of nodes in
the image DBN and to the queue. Add the arc from s; to n and s; to s} (if
applicable) to the image DBN.

3. Repeat step 2 till queue is empty.

4. Form the CPTs for the image DBN by suitably marginalizing the original CPTs.

Table 4.1. Algorithm for finding simple projection homomorphisms assuming that
the MDP is completely specified.

general “structured projection” is one where each feature of S’ is computed as a
function of a subset of features of S, and the subsets corresponding to each feature
of " are disjoint (Zeigler, 1972). Without suitable constraints, often derived from
prior knowledge of the structure of the problem, searching for generalized structured
projections results in a combinatorial explosion. Boutilier and colleagues have inves-
tigated other forms of structured morphisms assuming various representations of the
CPTs of structured MDPs—when the morphism is defined by boolean formulae of
the features (Boutilier and Dearden, 1994), when it is defined by decision trees on the
features (Boutilier et al., 1995), and when it is defined by first-order logic formulae

(Boutilier et al., 2001).

4.2.3 Permutation Symmetry Groups

It can be shown that symmetry groups do not result in structured projection
homomorphisms, except in a few degenerate cases. A simple class of structured mor-
phisms that do lead to useful symmetry groups are those generated by permutations of
feature values. Let 3, be the set of all possible permutations of {1,..., M}. Given a
structured set X C [[¥, X; and a permutation ¢ €)7, we can define a permutation
on X by o((x1,...,2m)) = (Toq1),-- -, Tom)), and it is a valid permutation on X if

To) € X; for all 4 and for all (zy,...,za) € X.

o4

S (b) (©

Figure 4.4. Towers of Hanoi. The task is to move the disks from the darker position
to the lighter position. Panels (a), (b) and (c) show situations that are equivalent
under permutation symmetries.

Definition: A permutation automorphism h on a structured MDP (S, A, U, P, R)
is a bijection on ¥ defined by a tuple of bijections (f,{gs|s € S}), with h(s,a) =
(f(s):9s(a)), where f € ¥p; : S — S'is a valid permutation on S, and g, : Ay — A%,

for s € S, such that:

P(f(s),gs(a), f(s") = P(s,a,s'), Vs,s' € S,a € A,
M
= 11 Prob(s’s ;| f(Parents (o) (s}, a))
i—1
R(f(s),9s(a)) = R(s,a), Vs € S,a € A,

Here f(Parentsy()(s;,a)) = {sy;|s; € Parents(s},a)} with sy(;) assigned according
to f(s).

Permutation symmetries arise often in checking correctness of concurrent process
models, multi-agent systems and especially of interest to us, in environments with
objects in them, as in the towers of Hanoi problem (Figure 4.4). The symmetric MDP
shown in Figure 1.2(a) also has a permutation symmetry. If the states of the MDP
is described by the z and y co-ordinates, then exchanging these features and action
N with F and S with W is an automorphism on the MDP. This together with the
identity map, gives rise to the reflectional symmetry discussed earlier. Permutation
symmetries arise in such environments due to object interchangeability—when you
can exchange some objects in the world with other similar objects. This is represented

as a permutation in which the features corresponding to a object are permuted with

95

that of another object. If this permutation is part of a symmetry group, then the
objects are interchangeable.

In general, a permutation symmetry group, G, does not give rise to an G-reduced
MDP that requires fewer features than the original to describe the state set. Therefore
permutation symmetry groups do not necessarily yield a more compact description of
the problem, even if there are fewer states in the reduced MDP than in the original.
Except in some degenerate cases it is difficult to stipulate conditions under which
there is a reduction in the size of the feature set. A straight forward approach to
minimization using permutation symmetry groups would require us to enumerate all
the state-action pairs of the MDP. Even given a symmetry group, G, constructing the
quotient MDP by explicitly enumerating all the state-action pairs of the MDP, takes
time proportional to |¥| - |G|.

Table 4.2 presents a more efficient incremental algorithm for constructing the
quotient MDP given a symmetry group or subgroup. This algorithm constructs the
quotient MDP directly without first generating the induced partition. Here we need
to examine only one representative from each block of the partition induced by the
symmetry group. Since applying a permutation to the feature values takes time linear
in the number of features, this algorithm could run in time polynomial in the number
of features and the size of ¥’ in the best case. While in the worst case this algorithm
might take time proportional to |¥|, it will frequently run much faster than that.
This is an adaptation of an algorithm proposed by Emerson and Sistla (1996) for
constructing quotient models for concurrent systems. The algorithm as presented
assumes that all states of the MDP are reachable from any starting state. It is easy

to modify the algorithm to cases in which this is not true.

o6

Given M = (S, A, ¥, P, R) and G < AutM,
construct M/Bg = (S", A", W'/ P', R).
Set () to some initial state {so}, S" < {so}
While @ is non-empty
s = dequeue(Q)
For all a € A,
If (s,a) #Z, (s',a’) for some (s',a’) € ¥, then
U — V' U (s,a)
R'(s,a) = R(s,a)
For all ¢ such that P(s,a,t) >0

— / / !
Iftt=,, ¢, for some s’ € 5,

P'(s,a,s") < P'(s,a,s") + P(s,a,t)
else

S —S'ut

P'(s,a,t) = P(s,a,t)

add t to Q.

Table 4.2. Incremental algorithm for constructing the G-reduced image given MDP
M and some G < AutM. (@ is the queue of states to be examined. This algorithm
terminates when at least one representative from each equivalence class of G has been
examined.

4.2.4 Discussion

The structured morphisms we introduced in this section leverage the fact that
the state sets are structured and that the transition probabilities can be factored
and expressed as largely independent components. In order to further exploit the
structure in the transition dynamics we would employ more structure representations
of the CPT such as decision trees. Some of the existing work that operate with such
structured representations can be viewed as methods for incrementally determining
homomorphic projections. But such methods do not explicitly model the process as
a minimization approach. Givan et al. (2003) explore some methods that explicitly
exploit structure in minimization, but more work is needed in this direction. The
simple structured morphisms we introduced here are nevertheless powerful enough to

achieve reductions in a variety of problem domains, as illustrated by the examples

o7

earlier. In fact, many of the homomorphic reductions we consider later in the thesis
are in this class of structured morphisms. This class of morphisms is especially
useful when we consider partial reductions and reductions in a hierarchical setting.
For example, as we shall demonstrate later, Dietterich (2000a) considers the class
of simple projections in his work on safe-state abstraction in the Max(@) hierarchical

framework.

4.3 Approximate Equivalence

The MDP homomorphism conditions on which we base our notions of equivalence
are very strong conditions and are satisfied only in some restricted classes of problems.
Nevertheless in practice we frequently encounter problems for which we can derive
useful “approximate” reduced models by employing relaxed notions of equivalence.
We construct these approximate models by aggregating together states and actions
that differ slightly in their dynamics. For example, consider the gridworld shown in
Figure 4.5(a). This is a slightly modified version of the symmetric grid world from
Figure 1.2(a). While the MDP is more or less symmetric about the N E-SW diagonal
as before, there are a few states including A and B that are not symmetric. These
differences do not affect the optimal policy for reaching the goal significantly, and
we can form a reduced MDP (Figure 4.5(b)) which is similar to the MDP shown in
Figure 1.2(b). Here we need to treat the lightly shaded states differently, since these
are non-symmetric states.

In this section we introduce two concepts to model this approximate minimiza-
tion. An approzimate homomorphism uses the average behavior of the aggregated
states and is particularly useful in learning, while a bounded homomorphism employs
Bounded-parameter MDPs (Givan et al., 2000) and allows us to derive bounds on the

loss of performance resulting from the approximation.

o8

(a)

Figure 4.5. (a) A slightly asymmetric gridworld problem. The goal state is G and
there are four deterministic actions. The problem is approximately symmetric about
the NE-SW diagonal. (b) A reduced model of the gridworld in (a). The state-
action pairs (A, F) and (B, N) in the original problem both correspond to the pair
({A, B}, E) in the reduced problem. A solution to this reduced gridworld can be used
to derive an approximate solution to the full problem.

4.3.1 Approximate Homomorphisms

In many circumstances we can aggregate together states and actions that have
slightly different dynamics to form a reduced model. The most straight forward
choice for the dynamics of the reduced model is an average, possibly a “weighted”
average, of the dynamics of the state-action pairs that belong to the same equivalence
class. In the absence of additional knowledge about the problem, a useful heuristic
is to consider a simple average of the aggregated dynamics. Formally we define an

approximate homomorphism as follows:

Definition: An approzimate MDP homomorphism h from an MDP M = (S, A, ¥, P,
R) to an MDP M’ = (5", A", V', P’/ R') is a surjection from ¥ to U’ defined by a
tuple of surjections (f, {gs|s € S}), with h((s,a)) = (f(s),gs(a)), where f:S —5’

and g, : As — A’f(s) for s € S, such that for all s,s" in .S and a € A;:

P(f(s), gs(a). f(s) = 1 1)] S Tab) (49
5, @)l B,| (abel(sa)p,
R(f(s),g:(a) = ! S R(.b). (4.5)

[(s,0)] 5, | @v)elGas,

29

We call M’ the approximate homomorphic image of M under h. To determine the
transition probability P'(f(s), gs(a), f(s’)) in M’ we first compute the block transition
probability from each element of [(s,a)|p, to the block [s']5 g. Then we set the
transition probability to be the average of these block transition probabilities. Note
that if A is a homomorphism, then the induced partition satisfies the SSP property
and each of the block transition probabilities we compute above are equal to one
another. We do a similar computation for the reward function as well.

When we employ such approximate reduced models to do planning or learning,
the appropriate aggregate dynamics to employ is a weighted average of the dynamics
of the state-action pairs that belong to a given equivalence class, the weights being
determined by the frequency with which each member of the class is encountered in
the course of the solution process. As we shall see in later chapters, while learning
with online experience it is sufficient to specify only the state, action and reward
spaces of the image MDP and the trajectories through state-action space the agent
experiences implicitly induce the transition probabilities. In such cases, the induced

transition probabilities of the image MDP will account for the frequency of visitation.

Example of an Approximate Homomorphism

Consider the MDP shown in Figure 4.6(a). This represents a spatial navigation
task. The goal is to reach the set of shaded states in the center of the environment.
The darker regions are obstacles, while the clear regions are open space. Consider the
four quadrants formed by the dotted lines in the figure, it is clear that the environment
is more or less symmetric. An approximate homomorphic image of this MDP can be
formed as shown in Figure 4.6(b). Once again, the clear regions are open space and
the dark regions like C' are obstacles. The lightly shaded regions like A and B use

aggregate dynamics as described above. In particular, if we assume that the original

60

Figure 4.6. (a) A spatial navigation problem. The goal is to reach the shaded
region in the center. The environment is approximately symmetric about the dotted
lines. (b) An approximate homomorphic image of the task in (a). Transitions into
the lightly shaded regions are determined either by aggregate dynamics or specified
as intervals. See text for more details.

problem was deterministic, then the probability of being able to move into region A

is one half and that of being able to move into region B is three quarters.

4.3.2 Bounding the Approximation Loss

With the relaxation of the homomorphism conditions we lose some of the guaran-
tees we established earlier. In particular the optimal value equivalence theorem is no
longer guaranteed to hold. A policy that is optimal in an approximate homomorphic
image is not necessarily optimal when lifted to the original MDP. But if the approxi-
mation is a reasonable one, the lifted policy is not too far from the optimal. We would
like to bound the “distance” between the true optimal policy and the policy lifted
from the image. We do this by deriving an upper limit on the maximum difference
between the optimal value function in the original MDP and the value function of
the lifted policy.

We adopt results from Whitt (1978) to derive this bound. Whitt explored the is-

sue of approximation and abstraction in the contraction mapping formulation of a dy-

61

namic program due to Denardo (1967). This formulation is a generalization of MDPs,
stochastic games and other sequential decision making paradigms. Whitt explores the
issue of approximating a dynamic program from the point of optimal value preserva-
tion and considers state-action equivalence, along with state-action value functions.
He derives precise conditions for when an image accurately captures the optimal val-
ues of the original dynamic program and also looks at sequence of approximations
that in the limit converge to an exact image. He also derives bound on the loss in
the optimal value function when the image is an approximation. He specializes some
of the results to stochastic sequential decision problems, from which we can derive
the equivalent results for MDPs. More details of his results are in Appendix B. The
bounds depend on the differences in the resulting aggregate parameters and the ac-
tual parameters. Let h = (f,{gs|s € S}) be an approximate homomorphism from
an MDP M = (S, A, ¥, P, R) to an MDP M’ = (5", A", V' P’ R'). We define the

following quantities:

K, = ns1éasxl R(s,a) — R'(f(s),9s(a)) |
a€As
K, = max Y [T(s.afsi],) - P(F(s).gufa), f(s1) |
a€Ag [sl]fEBf
Oy = max R'(s',a’) — min R'(s',d’)
s'es’! s'es’
a/EAS/ a,EAs/

where K, is the maximum difference between the aggregate block reward and the
actual reward, K, is the maximum difference between the actual block transition
probabilities and the aggregate transition probabilities and d. is the range of the

reward function in the image MDP. Then the following theorem holds:

Theorem 8: Let 7'* be an optimal policy in M’ and 7% be that policy lifted to M.

Let v be the discount factor. Then:

2 K
BN PRI

-y

1—v " 2

62

Proof: Let h = (f,{gs|s € S}) be the approximate homomorphism from M to the
image M'. Let V™" be the optimal value function in M’. Let V™" be the function
constructed by lifting V™" to M, ie., V7" (s) = V™" (f(s)). Note that V™" is not
necessarily the same function as V™ since h is only an approximate homomorphism.

Let

Q(S,CL, V) - R(Saa) +7 Z P(S7a7 S/)V(5/>>

s'eS

for some real valued function V' on S. From Theorem 6.1 of Whitt (1978) stated in

Appendix B, we have the following:

o l* i KP
Q(S,&,V)_Q(f(s)>gs(a)7v)‘ S Kr"’ﬁ&r’ 9 .

K(V"™') = max

seS

Since M and M’ are MDPs, we employ corollary (b) of Theorem 6.1 here. From the

corollary to Lemma 3.1 we have:

2 .
< ——K(V™).

- v
-7

Since V™" is optimal in M’, we omit the terms that arise due to deviation from
optimality of the value function. We get the desired result put combining the above
two results. O

Here the distance between the value functions is measured using the max-norm,
ie., |[Vi — Va| = maxses |Vi(s) — Va(s)|. Thus Theorem 8 allows us to bound the
maximum deviation from the true optimal function that results from using a partic-
ular approximate homomorphic image. This result holds only for values of v < 1.
When + is 1, it is possible to construct examples where the error is unbounded. For
small value of v the overall error depends more on the difference in the immediate

reward, since the second term within the parenthesis is small. This is not surprising,

63

since small v leads to more myopic optimal policies. Similarly for large values of ~
the error depends more on the differences in the transition probabilities and the range
of the rewards function, since these quantities affect the long term return.

While the derivation of the bound does not depend on the details of the averaging
method used, the bounds themselves could vary, since how we average influences the
values of K, K, and d,». Therefore these bounds can be computed beforehand if
we are using simple averages or some fixed weighted averaging scheme. If we want
to use the visitation frequencies in order to derive our reduced MDPs, we need to
dynamically recompute our bounds as we gather more information. In order to avoid

this we look at another formulation of approximate homomorphisms.

4.3.3 Bounded Approximate Homomorphisms

Approximate homomorphisms provide a convenient tool for deriving approximate
homomorphic images. When we do not have access to the visitation frequencies, the
uniform average formulation we have adopted is somewhat unsatisfying. We chose
this formulation in the absence of additional information as per Occam’s razor. While
this is not a issue while learning, as pointed out earlier, it is something that needs to
be addressed in certain situations like planning domains and when we try to derive
bounds on the loss in asymptotic performance a priori.

Dean et al. (1997) addressed the same problem in the context of their model
minimization framework. They developed the concept of a Bounded-parameter MDP
(BMDP) (Givan et al., 2000) that allows one to model the differences in the block
transition probabilities of the aggregated states. A BMDP is an MDP in which the
transition probabilities and the rewards are specified as intervals. Formally a BMDP
M’ is given by the tuple (S, A, ¥, P;, R;) where S and A are the state and action
sets, W is the set of admissible state-action pairs, Py : ¥ x S — [0,1] x [0, 1] with

Py(s,a,s") = [Piow(s, a, "), Pyign(s,a,s")], for all (s,a) in ¥ and s" in S, is the range of

64

values for the probability of transiting from s to s’ under action @ and Ry : ¥ — IRxIR,
with Ry (s, a) = [Riow(s, a), Ruign(s, a)], for all (s, a) in ¥, is the range of the expected
reward on performing action a in state s. We extend their work to our abstraction
framework and develop the notion of a bounded approximate homomorphism, that

gives us an alternate way of modeling the reduction shown in Figure 4.6.

Definition: A bounded approximate MDP homomorphism h from an MDP M =
(S, A, U, P,R) to a BMDP M’ = (5, A", V', P|, R}) is a surjection from ¥ to W',
defined by a tuple of surjections (f, {gs|s € S}), with h((s,a)) = (f(s), gs(a)), where

f:8— S and g,: A, — A}(s) for s € S, such that, Vs, s’ € S and a € Aj:

Pi(f(s),9s(a), f(s) = [min 7'(t,a,[s]5,5), max T(ta, [s’}BHS)] (4.6)

t€lsp, s t€lslp, s
1(f(s)9s(a)) = | min R(t,a), max R(ta) (4.7)
tE[s]Bhls te[S]Bh\S

When aggregating states with slightly different block transition probabilities, we set
the transition probabilities in the image to be a range covering the maximum and
minimum of these block transition probabilities. As with an approximate homomor-
phism, if the block transition probabilities do not differ, then the above definition
reduces to that of a MDP homomorphism. In the example in Figure 4.6(b) if we
model the reduced MDP as the image of a bounded approximate homomorphism,
then the probability of being able to move into any of the lightly shaded regions is
given by the range [0, 1]. The clear regions indicate open space and the darkly shaded
regions obstacles as before.

Note that a bounded parameter MDP actually specifies a family of MDPs, each
member of which has transition probabilities and rewards drawn from the ranges
specified subject to the constraint that each row of P sum to 1. For example, if we use
aggregate dynamics to determine the parameters of the reduced MDP is Figure 4.6(b)

it is then a member of the family of BMDPs described by the bounded approximate

65

Figure 4.7. (a) Optimistic choice of parameters for the BMDP shown in Figure
4.6(b). (b) Pessimistic choice of parameters for the same BMDP. In both the figures,
dark squares are obstacles and the goal is to reach the shaded area in the lower right.
See text for explanation of parameter choices.

homomorphism. More generally, for any form of averaging we use in an approximate
MDP homomorphism the resulting image MDP is a member of this family.

The interval value iteration algorithm of Givan et al. (2000) allows us to derive
bounds for the optimal value function in a BMDP. These bounds can then be used
to bound the loss of performance that arises due to employing bounded approximate
homomorphisms. The basic idea behind interval value iteration is that at each time
step we assume that for the next iteration we pick parameters from the allowable range
that will give us the best (worst) possible returns to derive upper (lower) bounds on
the optimal policy. To illustrate this idea, let us return to the MDP in Figure 4.6(b).
The upper bound for the value function is given by solving the optimistic MDP shown
in Figure 4.7(a). Here all the light squares are considered as open space. The lower
bound is given by solving the pessimistic MDP shown in Figure 4.7(b). Here all the
light squares are considered obstacles.

The bounded optimal value function does not always tell us what the optimal
policy should be, such as in cases when the ranges of possible next state values
overlap. But these bounds do give us some intuition into whether the approximate
homomorphism we are using is a reasonable one. For example if the lower bound tells

us that for every policy in the MDP there is some selection of the parameters that

66

renders the problem impossible to solve, then we cannot use the current reduction

profitably.

4.3.4 Discussion

The definition of an approximate homomorphism we introduced here is very inclu-
sive. In fact, it is possible to define an approximate homomorphism from any MDP to
any other arbitrary MDP. But the bounds given by Theorem 8 will be very loose and
there is no practical utility in defining such homomorphisms. An useful approximate
homomorphism should be one in which the values of K, and K, are “reasonable”. One
measure of usefulness is to check if the loss in performance that results from lifting the
solution of the approximate image to the original problem is acceptable. In Chapters
5 and 6 we will see examples of such “acceptable” approximate homomorphisms.

Theorem 8 gives an upper bound on the loss of performance due to the approxi-
mation. The lower bound even when we use an approximate homomorphic image is
zero. In other words, it is still possible to recover the optimal solution of the origi-
nal problem by lifting the solution of an approximate homomorphic image. Such a
situation arises due to the fact that optimal policies when defined as acting greedily
with respect to the optimal value functions are sensitive only to the relative ordering
of the values. In fact, we need to identify correctly only the action with the highest
value in each state. This is possible in many situations when we apply approximate
homomorphic images and enhances the utility of such images. In Chapter 5 we see
an example of such an approximate homomorphic image.

Givan et al. (2000) developed the notion of a BMDP while studying approximate
minimization in the Dean and Givan minimization framework. They base their work
on related formulations of MDPs with imprecise parameters (e.g., Satia and Lave,
1973; White and Eldeib, 1986, 1994) from operations research. Apart from developing

BMDPs and the interval value iteration algorithm, Givan et al. also investigate in

67

detail the question of constructing reduced BMDP models of given MDPs. They
conclude that it is not usually possible to specify a unique reduced BMDP model,
and that we have to resort to some heuristic to choose between several equally viable
alternatives. They also show that we cannot guarantee that there is a heuristic which
in all cases will lead to the best possible BMDP, i.e., one that gives the best bounds
on the value functions and the smallest reduced models. The utility of the bounded
approximate homomorphism formulation is as a tool for deriving a priori bounds,
loose bounds in many cases, on the loss in performance when we employ a particular
abstraction.

Whitt (1978) uses a notion of approximation similar to our definition of approx-
imate homomorphism. His motivation was to develop an abstraction framework for
dynamic programs. He outlines a method to derive homomorphic images of dynamic
programs by successively refining the approximate image so that the error bounds
become tighter. Kim and Dean (2001) have developed a similar method for MDPs.
They also successively construct better approximate images of a given MDP, but the
criterion they use to refine the image is the actual performance of the image MDPs’
solutions when lifted to the original MDP. We believe that this is a more promising

direction for developing iterative algorithms to finding minimal images of an MDP.

68

CHAPTER 5
ABSTRACTION IN HIERARCHICAL SYSTEMS

One of the significant recent advances in RL has been the introduction of temporal
abstraction frameworks and hierarchical learning algorithms (Sutton et al., 1999; Di-
etterich, 2000a; Parr and Russell, 1997). Such frameworks allow us to systematically
ignore decisions at fine time scales and employ “temporally-extended” actions that
let us operate at coarser time scales. Humans routinely employ temporal abstrac-
tion. For example, consider the problem of getting a cup of coffee from a vending
machine. A typical plan would be “go to coffee machine, feed the machine change
and get coffee”. One does not plan at the level of individual steps or muscle twitches
or neuronal signals. The above policy can then be used for getting coffee as part of
a still higher level plan, say “get bagel, get coffee, go to conference room and start
meeting”. Being able to learn and reason at multiple temporal scales dramatically
widens the applicability of RL to large-scale, complex systems.

As discussed in Section 3.7, MDP homomorphisms can be readily employed by
RL algorithms for spatial abstraction in flat, or non-hierarchical systems modeled as
MDPs. Hierarchical organization of the learning architecture provides us with ad-
ditional opportunities for abstraction. One can consider abstractions specific to a
particular sub-problem in the hierarchy or to a family of sub-problems. In the repre-
sentation of higher level tasks, redundancy introduced by suitably defined lower level
problems in the hierarchy can be exploited. The lower level problems hide the small

differences in the one-step transition dynamics allowing us to capture higher level task

69

structure. The notion of MDP homomorphism can be extended to a convenient and
powerful formalism for modeling abstraction schemes in hierarchical systems also.

While the popular hierarchical frameworks differ in many of the details, they have
one thing in common: all of them model the hierarchical system as a family of semi-
Markov decision processes (SMDPs). Extending the notion of MDP homomorphism
to SMDPs allows the modeling of abstractions at various levels of a hierarchy using
equivalence notions similar to those developed in Chapter 3.

Typically, sub-problems at different levels of a hierarchy are defined over a subset
of the state-action space of the original problem. To enable the modeling of abstrac-
tions in such sub-problems we introduce the notion of a “partial homomorphism”.
Informally a partial homomorphism is a surjection from an MDP, or an SMDP, to a
corresponding image, such that the homomorphism conditions hold only over subsets
of the state-action space. This notion is very useful when considering sub-task specific
abstraction and also in developing a hierarchical task decomposition framework that

extends the options framework (Sutton et al., 1999).

5.1 SMDP Homomorphisms

Recall from Chapter 2 that a discrete-time semi-Markov decision process (SMDP)
is a generalization of an MDP in which actions can take variable amounts of time to
complete. Specifically, an SMDP is a tuple (S, A, ¥, P, R), where S, A and ¥ are the
sets of states, actions and admissible state-action pairs; P : ¥ x S x IN — [0, 1] is the
transition probability function with P(s,a,s’, N) being the probability of transition
from state s to state s’ under action a in N time steps and R : ¥ x IN — IR is the
expected discounted reward function, with R(s,a, N) being the expected reward for
performing action a in state s and completing it in NV time steps. Traditionally SMDP
transitions are modeled using two separate distributions—one for the next states and

one for the transition, or holding, times. We are adopting the formalism of Dietterich

70

(2000a) since it is more suitable for modeling hierarchical RL frameworks. When the
SMDP has well defined terminal states, the future rewards are often not discounted.
In such cases an SMDP is equivalent to an MDP and the transition times can be
ignored.

The natural generalization of an MDP homomorphism to SMDPs is as follows:

Definition: An SMDP homomorphism h from an SMDP M = (S, A, ¥, P, R) to
an SMDP M’ = (S" A", W' P’ R') is a surjection from ¥ to W’ defined by a tuple
of surjections (f,{gs|s € S}), with h((s,a)) = (f(s),gs(a)), where f : S — S’ and

gs: Ay — A}(S) for s € S, such that Vs, s’ € S,a € A; and for all N € IN:

Pl(f(s)vgs(a)af(sl)vN) - Z P(S,CL, S/I’N)’ (51)
s"€e[s'];
Rl(f(s)7gs(a)7N) - R(87a7 N) (52)

As before M’ is called a homomorphic image of M. Most of the results developed
in Chapter 3 for MDP homomorphisms hold for SMDP homomorphisms. The ho-
momorphism conditions, as discussed in Section 3.8, are rarely satisfied exactly in
practice and relaxed notions of equivalence have to be considered to obtain useful
abstractions. It is doubly difficult in the case of SMDPs to satisfy the homomor-
phism conditions exactly since the transition times are also considered. One useful
way to relax the equivalence notion, analogous to the earlier definition of approxi-
mate homomorphism, is to allow small variations in the transition times and assign a
suitable weighted average to the corresponding transitions in the image SMDP. Note
that since we are considering transitions that take multiple time steps, errors tend to
accumulate, and Theorem 8 on error bounds for approximate homomorphisms does
not apply. However, it is possible to derive similar, although looser, error bounds for
suitably defined relaxations of SMDP homomorphisms. But as we shall see later in

this chapter and the next, useful abstractions of SMDPs can be modeled using MDP

71

homomorphisms, completely ignoring transition times. Dietterich (2000a) argues that
such abstractions are valid in finite horizon problems, where the discount factor can
be set to 1. They are also valid in settings where any solution achieved quickly is

more desirable than a costly search for the optimal solution.

5.2 Partial Homomorphisms

One of the chief obstacles to using abstraction approaches based on homomorphic
equivalence is that often there exists no surjection from one MDP to another such
that both conditions of a homomorphism hold for the entire ¥ space of the MDP.
Even in such cases it is sometimes possible to derive useful abstractions by restricting
attention to a subset of W. For example, consider the problem of navigating in a grid
world like environment shown in Figure 5.1(a). Note that when the dark square is
the goal, the entire gridworld is homomorphic to the image shown in Figure 5.1(b).
If the goal is moved to one of the lighter squares, this is no longer true. In fact, it
is not possible to come up with non-trivial homomorphic images in these cases. But,
regardless of the position of the goal, it is possible to define a “partial” morphism
from the gridworld to the image shown in Figure 5.1(c), so that the homomorphism
conditions holds for the states in the room. All other state-action pairs are mapped
to a special absorbing state-action pair in the image, indicated by a dark oval and a
solid arrow.

Partial homomorphisms may also be formed by restricting the actions over which
the homomorphism conditions hold. This is especially useful in environments with
objects, where classes of objects would behave similarly under some set of actions
while not under others. For example, if the action under consideration is hitting a
nail, then both a hammer and a shoe behave similarly, while they are very dissimilar
in general. An analogous situation would be defining homomorphisms over only a

subset of actions. Formally, a partial homomorphism is defined as follows:

72

N 7
. ,
. ,
. A ‘
N ,
N ,
.
v’

(a) (b) (c)

Figure 5.1. (a) A gridworld task with rooms and the usual gridworld dynamics.
The dark square indicates the goal. The lighter squares are alternate locations for
the goal. (b) A homomorphic image when the dark square is the goal. The goal in
this image is the dark triangle at the bottom. The transitions wrap around the dotted
lines, i.e., actions W and S at the left edge will cause transitions to the right edge
and action E and N at the right edge cause transitions to the left edge. (¢) A partial
homomorphic image restricted to the room states. The dark oval is an absorbing
state.

Definition: A partial MDP homomorphism from M = (S, A, ¥, P, R) to M’ =
(S" AU PR, such that 7 € §', a € A’ (1,a) € ¥ and P'(1,,7) = 1.0, is a
surjection from T C W to W', defined by a tuple of surjections (f,{gs|s € S}), with
h(s,a) = (f(s),gs(a)), where f: S — 5" and g5 : Ty — A}, for s € S where T is
non-empty and given by T, = {a|(s,a) € T}, such that for all s € f~1(S'—7),s' € S

and a € T,:

P'(f(s), 9s(a), f(5)) = T(s,a,[s'] 5, 5) (5-3)

R'(f(s),9s(a)) = R(s, a). (5.4)

M/’ is called the partial homomorphic image of M under h. Partial SMDP homomor-

phisms can be similarly defined with the conditions above extended to hold for joint

73

distributions of next state and transition times. The state 7 is an absorbing state in
M’ with one action « that transitions to 7 with probability 1. The homomorphism
conditions hold only in states that do not map to 7. All the actions in states that map
to 7, map to «. Lifting policies defined in M’ yield policy fragments in M, with action
probabilities specified only for elements in the support of h,i.e., T = h=H (V' —(7,)).
Similarly, the support of f is the subset of S given by f~}(S’— 7). In the example in
Figure 5.1, 7 corresponds to the state represented as a black oval in Figure 5.1(c) and
« is indicated by the solid arrow. All state-action pairs, with the state component in
the central hall, map to (7, «) under the partial homomorphism. If the task in the
image MDP is treated as an episodic task, then an optimal way to exit the room can
be learned.

The above definition of a partial homomorphism facilitates the development of
the following material on hierarchical problem decomposition. In practice the exact
form of the above definition is seldom required. Partial homomorphisms are usually
employed in modeling abstraction in a particular sub-problem in a hierarchy. As
we shall see shortly, the description of the sub-task typically circumscribes the state
and action sets. Hence one can define homomorphisms that hold only over these
restricted sets, which when viewed with respect to the original MDP are partial

homomorphisms.

5.3 Sub-goal Options

In this work, the hierarchical framework we adopt is the options framework in-
troduced by Sutton et al. (1999). While the ideas developed here are more generally
applicable, we chose the options framework for the flexibility it offers.

In the options framework, in addition to the “primitive” actions that are part of
the problem definition, the learning agent can employ temporally extended actions

or options. For example, in addition to primitive actions such as, move one step

74

north, south, east or west, we would consider “options” such as get coffee, go to
conference room, etc., as additional actions. Formally, an option (Sutton et al., 1999)
in an MDP M = (S, A, ¥, P, R) is defined by the tuple O = (Z,x, 3), where the
initiation set Z C S is the set of states in which the option can be invoked, w is
the policy to be followed while the option is executing, and the termination function
B : S —|0,1] gives the probability of the option terminating in any given state. The
option policy can in general be a mapping from arbitrary sequences of state-action
pairs (or histories) to action probabilities. This allows us to model option policies
that are dependent of time, for example, do action a; 10 times. The set of states
over which the option policy is defined is known as the domain of the option. The
option policy might map to other options as well as primitive actions, in which case
the option is called a hierarchical option. An MDP with options is naturally modeled
as an SMDP with the transition time distributions induced by the option policies.
See Precup (2000) for more details on deriving the SMDP parameters and on learning
models of options.

While the options framework offers several advantages such as simplicity of rep-
resentation and flexibility in the hierarchical structure, it does not address several
key issues relating to hierarchical task decomposition. Specifically the framework as-
sumes that the option policies are fixed and does not address the question of learning
simultaneously at multiple levels of the hierarchy. Precup (2000) suggests a method
for learning the policies for a class of options, but it is largely an offline method and
does not address the issue of online learning. Other researchers have used standard
RL algorithms (McGovern and Barto, 2001; Jonsson and Barto, 2001) to learn option
policies in specific problem settings by but have not explored a general solution. This
issue is of particular interest to us, since our abstraction ideas not only lead to more

compact representations of the problem (and hence the policies) but also to more

5

efficient solution methods. So to take full advantage of the abstract representation
we want to learn the option policies as well as the solution to the original problem.
We introduce a modification of the options framework which we call sub-goal
options, that facilitates learning at multiple levels of the hierarchy simultaneously
and also allows us to employ abstractions that are specific to a particular level in the
hierarchy. We consider the class of options whose policies satisfy the Markov property
and terminate on achieving a sub-goal. In such instances it is possible to implicitly
define the option policy as the solution to an option MDP. We adopt the following

definition of a sub-goal option:

Definition: An sub-goal option of an MDP M = (S, A, ¥, P, R) is defined by O =
(Mo,Z,[), where Mo = (So, Ao, Vo, Po, Ro) is the option MDP, Z C S is the

initiation set of the option, and 3 : Sp — [0, 1], is the termination function.

The set Sp is a subset of S and constitutes the domain of the option, Ao is a subset
of A, and the reward function, Rp, is chosen to reflect the sub-goal of the option.
The transition probabilities, Py, are induced by P. The option policy 7 is obtained
by solving My, treating it as an episodic task with the possible initial states of the
episodes given by Z and the termination of each episode determined by (.

Figure 5.2 shows an example of a Markov sub-goal option. The task in this domain
is to gather the objects in each of the rooms. The task is described in greater detail
later in the chapter. For the time being, consider the sub-task of collecting the object
in Room 1. An option can be defined to achieve this, using the option MDP shown in
Figure 5.2(b). The states in the MDP are the cells in Room 1 along with a boolean
variable indicating possession of the object. The reward function is +1 on exiting
the room with the object, and 0 otherwise. The initiation set is all the cells in Room
1 and /3 is set to 0 in the room and 1 elsewhere. The option policy is given by the

optimal policy in this MDP.

76

] 11
- oR
n 7 5 Features:
rooms={0, 1, 2, 3,4, 5}
oI 1 x={0, .., 9}
I y={0, ..., 19} Features:
o binary: have,i=1,..,5 x={0,..., 9}
,I .4 ! y={0, ..., 9}
] binary: have
N By oo
\ RN V W*f"e |
: s g
- -

e B

| | & | [1]

(a) (b)

Figure 5.2. (a) A simple rooms domain with similar rooms and usual stochastic
gridworld dynamics. The task is to collect all 5 objects (black diamonds) in the
environment and reach the central corridor. The shaded squares are obstacles. (b)
The option MDP corresponding to a get-object-and-leave-room option. See text for
full description.

Sub-goal options model sub-tasks whose policies map to only primitive actions.
Correspondingly one can define hierarchical sub-goal options with policies mapping

to other options as well as primitive actions.

Definition: A hierarchical sub-goal option is given by the tuple O = (My,Z, 5),
where Mo = (So, Ao, Vo, Po, Ro) is the option SMDP, and Z and [are as defined

earlier.

The set Sp is the domain of the option and Ao contains other options as well as
primitive actions. As before, the reward function Ro is chosen to reflect the sub-
goal of the option. The policies of the lower level options influences the transition
probabilities Py. Hence, to derive Pp, it is assumed that the lower level options are
following fixed policies which are optimal in the corresponding option SMDPs.
Sub-goal options are only a special class of options and are not as inclusive as the

original definition of an option. But this class covers a wide range of useful options and

7

more importantly, the policies of sub-goal options are easily learned using standard
RL approaches. While policies for Markov options that represent continuing tasks
and do not have a well defined sub-goal are also easy to learn, the utility of such
options in a hierarchical architecture is not clear. Such options do not yield control
to higher levels of the hierarchy. So except when such an option is at the root level
of the hierarchy, indefinitely continuing execution is not a desirable property for an
option in a hierarchical setting.

The above definition of a Hierarchical sub-goal option associates a SMDP with the
option. Partial SMDP homomorphisms can now be employed to model abstractions
specific to an option. In the next section we develop a formal mechanism for employing

abstractions in option SMDPs.

5.4 Relativized Options

An option SMDP M can be expressed as a partial homomorphic image of the
MDP (S, A, ¥, P, Rp). To formally model My as a partial homomorphic image, we
add an absorbing state 7 to Sp, an absorbing action « to Ap and (7, @) to ¥o. Now

the partial homomorphism h = (f, {gs|s € S}) from M to My is defined as follows:

s, if s is in the domain of the option
fs) =

7, otherwise.

@ a, if sis in the domain of the option and (s,a) € Vg
gs\a) =
«, if s is not in the domain of the option.

gs(a) is not defined for (s,a) € ¥ such that s is in the domain of the option and (s, a)
is not in Wy. h is referred to as the option homomorphism corresponding to option
O. The equivalence classes of ¥ induced by h are mostly singletons, except for the
pre-image of (7,«). Thus this partial homomorphism does not result in any useful

abstraction of the original state space. In many cases it is possible to define partial

78

homomorphisms on the MDP (S, A, ¥, P, Rp) with non-trivial equivalence classes.
By suitably modify the definition of a sub-goal option, the resulting image MDP can
be used as an option MDP along with the corresponding homomorphism, allowing
option specific abstractions. The structure and redundancy not present over the
entire problem but present only when considering a sub-task can then be exploited in
forming abstractions. Before formally extending the definition of a sub-goal option,
let us look at another implication of using homomorphic images as option MDPs.
Again consider the problem of navigating in the gridworld environment shown in
Figure 5.2(a). The goal is to reach the central corridor after collecting all the objects
in the environment. The main task is naturally broken into several sub-tasks, the
goal of each is to collect the object and exiting from a room. One could define 5 sub-
goal options to model each of these sub-tasks as discussed in the previous section.
However these sub-tasks are very similar to each other and in fact the option MDPs
of the corresponding sub-goal options are isomorphic to one another. This similarity
can be exploited to define a single partial homomorphism from the original MDP to
any of the option MDPs, one of which is shown in Figure 5.2(b). Employing such an
abstraction gives rise to a compact representation of a related family of options, in
this case the tasks of collecting objects and exiting each of the five rooms, using a
single option MDP. This compact sub-goal option is referred to as a relativized option.
Such abstractions are an extension of the notion of relativized operators introduced

by Iba (1989). Formally we define a relativized option as follows:

Definition: A relativized option of an SMDP M = (S, A, ¥, P, R) is the tuple O =
(h, Mo,Z,3), where Mo = (So, Ao, Vo, Po, Ro) is the option SMDP, Z C S is the
initiation set, # : Spo — [0, 1] is the termination function and h = (f,{gs|s € S}) is
a partial homomorphism from the SMDP (S, A, ¥, P, Rg) to Mo with Rg chosen to

describe the sub-goal.

79

The set So is the image of the domain of the option under f plus an absorbing state
7, and Wo = h(¥). The option policy 7 : o — [0, 1] is obtained by solving Mo by
treating it as an episodic task as before. Depending on the sub-task, A can be defined
only over a subset of W, restricting the actions and options available in the option
SMDP.

The option policy m now encodes the policy for all the related sub-tasks in the
original problem that map onto the option SMDP. Going back to our example in
Figure 5.2(a), we can now define a single get-object-and-leave-room relativized option
using the option MDP of Figure 5.2(b). The policy learned in this option MDP can
then be suitable lifted to M to provide different policies in the different rooms. Thus,
if the optimal action in a particular state in the image MDP is F, it is lifted to give

E in Rooms 1 and 2, W in Rooms 3 and 4 and N in Room 5.

5.5 Hierarchical Problem Decomposition

Relativized options allow us to model a variety of abstract representations. As
described in the previous section, even a “regular” sub-goal option, i.e., one that
does not employ any abstraction, can be defined as a relativized option where the
option homomorphism is given by the identity map on the domain of the option and
a map to (7,) elsewhere. Given that relativized options facilitate hierarchy specific
abstractions, it is particularly desirable that we learn the option policies online, since
we can considerably speed up learning performance as we shall demonstrate shortly.
Although the options framework allows us great flexibility in specifying hierarchies, it
does not explicitly address the question of simultaneously learning at multiple levels
of the hierarchy.

In order to learn policies at different levels of the hierarchy we first need to specify
a suitable decomposition of the learning problem. We develop a hierarchical problem

decomposition approach, similar to MAXQ decomposition (Dietterich, 2000a), based

80

on relativized options. The decomposition divides the learning problem into several
components— one component each for learning the various relativized option policies
and one root component for learning to solve the original task using the various option
policies.

Suppose we are given an SMDP M whose action set contains a set O of relativized
options, O; = (h;, M;,Z;, 3;), i = 1,---n. The relativized options may call other
options in O, subject to the constraint that there are no loops in the resulting call
graph. This implicitly encodes a hierarchy, with the options whose action sets consist

of only primitive actions being at the lowest level.

Definition: The hierarchical decomposition of M = (S, A, ¥ P /R) is given by
{0y, 04, --,0,}, where Oy = (ho, Mo, Zy, Bo), is a relativized option describing the
root task, with My a homomorphic image of M under hgy. Zy is the set of start states
and [y, the termination function indicating the set of terminal states for the original

task.

Note that while M; for ¢ > 0 are partial homomorphic images of M with the reward
function replaced by the suitable option reward, Mg is a homomorphic image of M
with the original reward function. If all the actions and options in A are considered
while defining Oy it frequently results in a very inefficient decomposition in which
solving the root task is equivalent to solving the entire problem. In such cases the
root task is defined by using a partial homomorphic image of an MDP formed from
M by restricting the homomorphism to some subset of W. In other words, certain
options and actions are only allowed to be chosen in a smaller set of states than in
which they are admissible.

Consider the example in Figure 5.2(a). A single relativized option get-object-and-
leave-room which is admissible in all states in the rooms, including the doorways,

can be defined. The primitive actions are admissible everywhere. If the root task is

81

formed by minimizing this MDP, the reduced task is the same as the original task.
Instead only the relativized option is allowed to be picked in the states in the room.
Remember that the option terminates on exiting the room. Thus, when it is invoked
in a room, there are four possible states the option can cause a transition to—the two
corridor cells adjacent to the doorway, with or without the object. The probabilities
of transitioning to these states varies with the location the options were started in
the room. Thus to achieve useful reductions, there is a need to consider approximate
homomorphisms. With suitable relaxations of the homomorphism criterion, an ap-
proximate image of the original task can be formed, which consists of only the hallway
and doorway states, with only the relativized option admissible in the doorway states.
The hierarchical decomposition for this example is given by the root task described
by the above approximate image and the get-object-and-leave-room option.

For the above example it is clear that some prior knowledge about the structure of
the task is needed before finding a suitable hierarchical decomposition. This has been
the bane of all hierarchical RL frameworks. Autonomously finding such decomposi-
tions has been the focus of recent work by McGovern and Barto (2001) and Hengst

(2002), but a universal task decomposer is unlikely to be developed in the near future.

5.5.1 Hierarchical Policies

Definition: A hierarchical policy in M with a hierarchical decomposition of {Oy, - - -,
O,} is specified by the tuple 7 = (mg,m, -+, m,), i.e., a policy for each O;. An
optimal hierarchical policy, 7, consists of the tuple of optimal policies in each of the

component options, i.e., 7" = (7}, wt, -+,).

Our definition of a hierarchical sub-goal option assumes that the lower level options
are following a fixed policy that is optimal in their respective option SMDPs. There-
fore the above notion of optimality is equivalent to that of recursive optimality (Di-

etterich, 2000a). A recursively optimal hierarchical policy is one in which policies at

82

Figure 5.3. The modified option MDP corresponding to the get-object-and-leave-
room relativized option. The lightly shaded squares in the middle of the room indicate
states with a negative reward. The dashed line indicates the optimal policy for this
modified option MDP. The dotted line indicates a component of the hierarchically
optimal policy, when using this option in the task described by Figure 5.2

each level of the hierarchy is optimal given that the policies of all the lower level tasks
are (recursively) optimal. A recursively optimal hierarchical policy is not necessarily
the optimal policy of an MDP.

The hierarchical decomposition and the associated call graph restrict the class of
representable policies to only a subset of all possible policies over ¥. Optimality in
this restricted space can be defined analogous to the definition for flat MDPs—a hier-
archical policy is said to be hierarchically optimal is it uniformly dominates all other
hierarchical policies consistent with the given hierarchical decomposition. Under this
definition lower level option policies need not be optimal in the corresponding op-
tion MDP. Recursive optimality is a still weaker form of optimality. Thus recursively
optimal policies are not guaranteed to be hierarchically optimal.

Returning to the example in Figure 5.2. Suppose that the sub-task modeled by the
option is modified by introducing a negative reward in the 4 states in the middle of the
room (Figure 5.3). Now the optimal policy for this option is to avoid these squares

and take a more circuitous route (dashed line in Figure 5.3). Thus, a hierarchical

83

policy that is recursively optimal will use that policy for this option. But for the
overall goal of gathering all the objects, the policy that goes straight to the goal is
better (dotted line in Figure 5.3). Thus a hierarchically optimal policy will use that
policy for this option.

A hierarchically optimal policy usually yields a better performance on a particular
problem instance, while a recursively optimal policies lead to better option policies.
Learning better option policies is a desirable property when we are learning to solve
many related problems instead of a single instance of a problem. Therefore we adopt
recursive optimality as the optimality criterion in this work. Dietterich (2000a) in-
troduced these notions of optimality to the RL community and discussed the issue of
hierarchical versus recursive optimality in more detail.

The hierarchical decomposition framework is similar to the MAXQ task decompo-
sition framework (Dietterich, 2000a). MAXQ does allow simultaneous learning at all
levels in the hierarchy, but imposes a more rigid hierarchical structure on the possible
policies. MAXQ employs a form of value function decomposition in which the optimal
value function of a task is constructed as a combination of the optimal value function
of its children in the call graph. This is a compact representation of the value function
and is an essential part of the MAXQ-Q-learning algorithm. This requires that the
children maintain a value function that reflects the task objectives of their parent.
Dietterich uses a pseudo-reward function in addition to the task reward function to
specify the objectives of a sub-task. Thus, MAXQ requires that the sub-task policies
be optimal with respect to a combination of the sub-task objectives and the root task
objectives. This can in some cases inhibit sub-task sharing and reuse, since changes
in the root task’s objectives make the sub-task non-optimal. Since we focus only on
learning optimal policies in our framework, one consequence of adopting our approach
is that we cannot always recover the optimal value function in all the states for our

root task. If the root task is described by a homomorphism restricted to a subset of

84

W, the optimal value function of the root task will not be defined for the part of ¥
over which the homomorphism is not defined. In order to recover the optimal value
function for all elements of ¥ we would need to formulate our framework to use a
MAXQ like value function decomposition. But we are not exploring that direction in

this thesis.

5.5.2 Learning with Hierarchical Decompositions

The simplest choice for a learning algorithm with our hierarchical decomposition
framework is to use)-learning for learning the lowest level option policies and SMDP
Q)-learning at the higher levels. Dietterich (2000b) calls this hierarchical SMDP Q-
learning. By arguments similar to that used by Dietterich (2000a) it can be shown

that the following result holds:

Theorem 9: Let M = (S, A, U, P, R), be an episodic SMDP with well defined termi-
nal states and discount factor v. Let {Og, Oy, - - -, O, } be a hierarchical decomposition

of M. Let ay(i) > 0 be a sequence of constants for each option i such that

lim iai(t) =o00 and lim ia?(t) < 0.
T—ooi 4 T—ooiH

Let the exploration policy in each option be a GLIE policy (Jaakkola et al., 1994),
i.e., one such that: (i) each action/option is chosen infinitely often in each state
during learning and (ii) in the limit of infinite exploration they become greedy with
respect to the value function. Then with probability 1 hierarchical SMDP @-learning
converges to a recursively optimal policy for M consistent with the given hierarchical
decomposition.

Proof: (sketch) This is a restatement of Theorem 3 from Dietterich (2000a). The
proof follows an argument similar to those introduced to prove the convergence of)-

learning (Bertsekas and Tsitsiklis, 1996). The conditions on the learning rates, (i),

are required for the convergence of ()-learning and SMDP ()-learning. The reason the

85

exploration policy needs to satisfy the above conditions is the following. Consider an
option in the hierarchy which in turn calls other options. If the lower level option
continues to execute a non-greedy exploratory policy, the dynamics perceived by the
higher level corresponds to that policy and not to the true optimal policy of the
option. Hence learning in the higher level option does not converge to a recursively
optimal solution. Given the above conditions the proof proceeds by induction from
the options at the lowest level to the root level task. O

One consequence of Theorem 9 is that now learning can proceed simultaneously
at all levels of the hierarchical decomposition—the higher levels do not need to wait
until the lower levels converge before they begin learning. All that is required is
that the learning in the lower levels eventually converge to their optimal policies and
we are still guaranteed to converge overall to a recursively optimal policy. In all the
hierarchical learning results reported in this work we employ our hierarchical problem
decomposition framework with hierarchical SMDP @Q-learning.

The question that naturally arises in this setting is how would one define option
homomorphisms if the lower level option policies are not known apriori. We answer
this criticism along similar lines as Dietterich (2000a). Often the designer has prior
knowledge of the structure of the problem and can identify some subgroup of the
symmetry group or a partial homomorphism to employ in minimization. For example,
in navigation tasks, regardless of the policies of the lower level tasks, it is possible to
define spatial symmetries. In Chapter 6 we present a experimental design in a control
framework in which a viable hierarchical control structure is available due to prior
design. In cases where this is not possible, we can employ online abstraction ideas such
as Jonsson and Barto (2001) to refine our option MDP homomorphism as learning
progresses. Such an approach would start from a very approximate homomorphic

image and successively refine the approximation till we obtain a satisfactory model.

86

5.6 Illustrative Example

We now provide a complete description of the simple gridworld task in Figure
5.2(a) and some experimental results to illustrate the utility of relativized options
and our hierarchical decomposition. The agent’s goal is to collect all the objects in
the various rooms by occupying the same square as the object. Each of the rooms
is a 10 by 10 grid with certain obstacles in it. The actions available to the agent
are {N, S, E,W} with a 0.1 probability of failing, i.e., going randomly in a direction
other than the intended one. This probability of failing is referred to as the slip.

The state is described by the following features: the room number the agent is in,
with 0 denoting the corridor, the and y co-ordinates within the room or corridor
with respect to the reference direction indicated in the figure and boolean variables
have;, 1 = 1,...,5, indicating possession of object in room ¢. Thus the state with the
agent in the cell marked A in the figure and having already gathered the objects in
rooms 2 and 4 is represented by (3,6,8,0,1,0,1,0). The goal is any state of the form
(-,+,-,1,1,1,1,1) and the agent receives a reward of +1 on reaching a goal state.

We compared the performance of an agent that employs relativized options with
that of an agent that uses multiple regular options. The “relativized” agent employs
a single relativized option, O,, whose policy can be suitably lifted to apply in each of
the 5 rooms. The relativized option MDP corresponds to a single room and is shown
in Figure 5.2(b). The state space S’ of the option MDP is defined by 3 features: x
and y co-ordinates and a binary feature have, which is true if the agent has gathered
the object in the room. There is an additional absorbing state-action pair (7, a),
otherwise the action set remains the same. The stopping criterion 3 is 1 at 7 and
zero elsewhere. The initiation set consists of all states of the form (7,), with i # 0.
There is a reward of 41 on transiting to 7 from any state of the form (x, 1), i.e. on
exiting the room with the object. One can see that lifting a policy defined in the

option MDP yields different policy fragments depending on the room in which the

87

option is invoked. For example, a policy in the option MDP that picks F in all states
would lift to yield a policy fragment that picks W in rooms 3 and 4, picks N in room
5 and picks E in rooms 1 and 2.

The “regular” agent employs 5 regular options, Oq,---,Os;, one for each room.
Each of the option employs the same state space and stopping criterion as the rela-
tivized option. The initiation set for option O; consists of states of the form (i, *).
There is a reward of +1 on exiting the room with the object. Both agents employ
SMDP Q-learning Bradtke and Duff (1995) at the higher level and Q-learning Watkins
(1989) at the option level.

In both cases the root task, Oy is described as follows: The state set of M is
described by the the room number the agent is in, the various have; features and if
the agent is in the central corridor, then the x and y co-ordinates of the agent; the
admissible actions are the primitive actions in the corridor and the corresponding
options in the room doorways; the transition and reward functions are those induced
by the original task and the option policies. The initiation set is the set of states in
the corridor with all have; features set to false. The termination condition is 1 for
states in the corridor with all have; features set to true. It is 0 elsewhere.

We also compared the performance of an agent that employs only the four prim-
itive actions. All the agents used a discount rate of 0.9, learning rate of 0.05 and
e-greedy exploration, with an € of 0.1. The results shown are averaged over 100 in-
dependent runs. The trials were terminated either on completion of the task or after
3000 steps. Figure 5.4(a) shows the asymptotic performance of the agents. This a
hard problem for the primitive action agent and it takes around 30,000 iterations
before it learns a reasonable policy and another 15,000 before it even approaches
optimality. This is often the case when employing RL on even moderately large prob-
lems and is one of the chief reason for choosing a hierarchical approach. Since we are

more interested in comparing the performance of the option agents, we do not present

88

further results for the primitive action agent. In fact in some of the later tasks, the
primitive action agent does not learn to solve the task in any reasonable amount of
time.

Figure 5.4(a) also demonstrates that the option agents perform similarly in the
long run, with no significant difference in performance. This demonstrates that there
is no loss in performance due to the abstractions we employ here. This is not surprising
since the homomorphism conditions are met exactly in this domain.

Figure 5.4(b) shows the initial performance of the option agents. As expected, the
relativized agent significantly outperforms the regular agent in the early trials'. Fig-
ure 5.5 graphs the rate at which the agents improved over their initial performance.
The relativized agent achieved similar levels of improvement in performance signifi-
cantly earlier than the regular option. For example, the relativized agent achieved a
60% improvement in initial performance in 40 trials, while the regular agent needed
110 trials. These results demonstrate that employing relativized options significantly
speeds up initial learning performance, and if the homomorphism conditions hold
exactly, there is no loss in the asymptotic performance.

Employing a hierarchical approach results in a huge improvement in performance
over the primitive action agent. While there is a significant improvement in perfor-
mance while employing relativized options, this is not comparable the initial improve-
ment over primitive actions. One might ask is this improvement worth the additional
expense of relativizing the options. Our answer to this two fold. First, the relative
magnitudes of improvement is an artifact of this problem domain. In more com-
plex domains, with more redundancy a greater improvement in performance is to be
expected. In many cases employing some form of an hierarchy is the only feasible

approach and in such cases we can obtain further improvement in performance for

LAll the significance tests were two sample t-tests with a p-value of 0.01.

89

3000

2500
20001 Primitive Actions

1500 -

1000 |

Average Steps per Trial

@
3
3

Options

0

L L L L L L
0 05 1 15 2 25 3 35 4

Number of Trials

(a)

L
45 5

Average Steps per Trial

2500

2000

1500

1000

‘.. Regular Options

Relativized Option ST

L L L L L L L
50 100 150 200 250 300 350

Number of Trials

(b)

L
400

L
450

500

Figure 5.4. (a) Comparison of asymptotic performance of various learning agents on
the task shown in Figure 5.2. See text for description of the agents. (b) Comparison
of initial performance of the regular and relativized agents on the same task.

some additional cost by relativization. Second, using relativized option opens up the
possibility of being able to train an agent to perform a sub-task in some prototypical
environment. Once the agent acquires a reasonable policy in this training task then it
is able to generalize to all instance of this task. This is particularly useful if training

experience is expensive, for example in the case of real robotic systems.

5.7 Approximate Equivalence

The various rooms in the test bed above map exactly onto the option MDP in
Figure 5.2(b). In practice, such exact equivalences do not arise often. To study the
usefulness of relativized options in inexact settings, we conducted further experiments
in which the rooms had different dynamics. In the first task, the rooms had the same
set of obstacles, but had different slips. In the corridor actions fail with probability
0.1 and in rooms 1 through 5 with probabilities 0.2, 0.3, 0.25, 0.5 and 0.0, respectively.
The relativized option in this case used an approximate homomorphic image, with the
transition probabilities of the option MDP being determined by a weighted average of

the various slips, the weights being determined by how often the rooms were visited in

90

i
1)
3

Percent Improvement

N
S}
T

101

L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50

Number of Trials x 10

Figure 5.5. Comparison of the rate of improvement to final performance of the
regular and relativized agents on the task shown in Figure 5.2.

a trial. When the learning converges the probabilities are determined by just a simple
average of the slips. Figure 5.6(b) shows the initial performance of the relativized
agent and the regular agent on this task. Again the relativized agent significantly
outperforms the regular agent initially and the asymptotic performance, Figure 5.6(a),
shows no significant difference.

In the second task, the rooms have differently shaped obstacles, as shown in Fig-
ure 5.7(a). The relativized option uses an approximate homomorphic image whose
transition probabilities were determined by the various obstacle locations and visi-
tation frequencies of each room. Again there is a significant improvement in initial
performance, but the asymptotic performance of the relativized agent is slightly, but
significantly, worse than the regular agent, as shown in Figures 5.8(a) and 5.8(b).
This loss in asymptotic performance is expected and is observed in other inexact sce-
narios we tested the agents on. This loss was not observed in the previous example
since there was a single policy that was optimal in all the rooms and in the option

MDP, despite the various slips. In some cases the loss due to approximation reaches

91

3000
I
l
@ 2001 S 2500
= =
0 \
Gh) 2000 : E 2000
a Q \
2 2 ' Regular Options
9 1500 Q@ 1500 \\
=
n n
g_’)
1000 Oiooot-
('G (‘5 11000
S S
2 2
< soor |, Relativized Option L™ Relativized Option e
amtiabl ittt ettt b et Al A AN m o
Regular Options
0 10‘00 20‘00 30‘00 AD‘DD 5[;00 60‘00 70‘00 BD‘DD 9[;00 10000 oO 5‘0 150 1;0 2(‘10 2&1;0 360 3;0 460 4;0 500
Number of Trials Number of Trials

(a) (b)

Figure 5.6. (a) Comparison of asymptotic performance of the regular and rela-
tivized agents on the modified rooms task. See text for description of the task. (b)
Comparison of initial performance of the two agents on the same task.

unacceptable levels, with the relativized agent failing to successfully complete the
task on certain trials even after considerable training.

This loss can be bounded by modeling the relativized option using a bounded
approximate homomorphism from each of the rooms to the image BMDP shown in
Figure 5.7(b), where the probabilities of transitioning into the lightly colored states
range from 0 to 1. We can now use interval value iteration to bound the range of
the optimal value function. The tasks on which the agent fails would have zero lower
bounds that indicate that the task cannot be solved. In this example such a scenario
would arise if the obstacles in the various rooms were placed in such a way that there
was a chain of light and dark colored cells across the length of the room, cutting of
access to the object from the doorway. In the case shown in Figure 5.7(b) the lower
bound for the optimal value for the doorway states is 72®, pessimistically assuming
that all the light colored cells are obstacles. The upper bound is 7?4, 24 being the
length of the shortest path to the goal, assuming that all the light colored cells are

clear.

92

| & [

| x r Features:
'IJ i rooms={0, 1, 2, 3, 4, 5} Features:

x={0, ..., 9} x={0, ..., 9}
y={0, ..., 19} y={0, ..., 9}
binary: havel, i=1,..,5 binary: have

I
[T[]

m
[
_f

(a) (b)

Figure 5.7. (a) A simple rooms domain with dissimilar rooms. The task is to
collect all 5 objects in the environment. (b) The option BMDP corresponding to a
get-object-and-leave-room option. See text for full description.

5.8 Relation to MAXQ Safe State-abstraction

Dietterich (2000a) introduced safe state-abstraction conditions for the MAXQ
architecture. He states a few intuitive “rules” to ignore certain features of the state
space. These conditions ensure that the resulting abstractions do not result in any
loss of performance. This was the first systematic study of abstraction in hierarchical
RL frameworks. He established that performing abstraction using these rules does
not change the value function learned, since there is no loss of necessary information.
Many of the conditions for safe abstraction are applicable only to the MAXQ value
function decomposition and to the particular form of MAXQ task decomposition. The
following condition is more universal and applies to the our hierarchical decomposition

framework as well:

Definition: A Projection py is safeif: (i) for all (s,a)in ¥ and " in S, P(s,a,s’, N) =
Prob(ps(s'), N|ps(s),a) x Prob(py—s(s')|s,a), and (ii) for all (s,a),(t,a) in U, if
pJ(S) = pJ(t)7 then R(S, a, N) = R(ta a, N)

93

3000

2500 25001

2000

2000}

1500

1500 -

1000 1000

Average Steps per Trial

Average Steps per Trial

o
8
—

Relativized Option] I Relativized Option

__Regular Options

0 L L L L L L L L L
4 45 5 0 50 100 150 200 250 300 350 400 450 500

15 2 25 3) 35 .
Number of Trials x10' Number of Trials

(a) (b)

L L
0 05 1

Figure 5.8. (a) Comparison of asymptotic performance of the regular and relativized
agents on the task in Figure 5.7. (b) Comparison of initial performance of the two
agents on the same task.

Condition (i) states that the transition probability can be expressed as a product
of two probabilities, one of which describes the evolution of the subset of the fea-
tures describing the abstract state space and depends only on that subset. Condition
(ii) states that if two states project to the same abstract state, then they have the
same immediate reward. From our earlier definitions of projection and SMDP ho-
momorphisms (Equations 4.2, 4.3, 5.1 and 5.2), it is evident that a safe p; is also a
projection homomorphism. Thus, the above conditions are equivalent to the SMDP
homomorphism conditions restricted to simple projection homomorphisms and not
considering action remapping. Thus, the SMDP homomorphism conditions general-
ize Dietterich’s safe state-abstraction condition as applicable to the our hierarchical

problem decomposition.

5.9 Related Work

Hierarchical architectures enable hiding low level details, but much of recent work

on hierarchical RL has focused on hiding the temporal scale and not the spatial de-

94

tails. To the best of our knowledge, ours is the first work to apply minimization
ideas and symmetry based reductions to hierarchical RL. We present our approach
using the options framework, but our ideas are equally applicable to the other ma-
jor hierarchical RL frameworks—MaxQ (Dietterich, 1998) and hierarchy of abstract
machines (HAMs) (Parr and Russell, 1997). In the MaxQ framework, the given
MDP is decomposed into a hierarchy of sub-MDPs and each MDP is treated as a
sub-task, that might employ the solutions of the MDPs at lower levels. The options
framework with Markov options that follow our definition is very close to the Max(Q
framework. But Max(Q imposes a rigid hierarchy on the various sub-MDPs, while the
options framework allows for a lot of flexibility in the formation of hierarchies during
learning.

While model minimization as such has not been applied to hierarchical RL, there
has been some work in hierarchy specific abstraction. We mentioned Dietterich’s
(2000c) results on “safe” abstraction in Section 6. He states a few intuitive “rules”
that allow us to ignore certain features of the state space. Some of the rules are
general, for example, ignore certain features at a particular level if they do not affect
the value function at that level. Other rules are specific to the Max(Q framework. He
establishes that performing abstraction using these rules does not change the value
function learned, since there is no loss of necessary information. Andre and Russel
(2001b) presents similar results for the HAM framework. While Dietterich’s general
rules apply to the options framework as well, their application to options has not
been studied in detail.

Jonsson and Barto (2001) develop an algorithm for automatically forming option
specific abstractions. Their algorithm is based on McCallum’s (1995) U-trees, a deci-
sion tree based automatic abstraction scheme for POMDPs. The U-trees algorithm
performs abstraction by using a decision tree over histories of experience and makes

sufficient distinctions so as to represent the value function accurately. Jonsson and

95

Barto apply the algorithm to building option specific state abstractions, by modify-
ing the definition of histories to include information about the option being executed.
Hernandez-Gardiol and Mahadevan (2001) propose a hierarchical POMDP model that
at different levels of the hierarchy, considers histories that consist of decisions made
at that level. This too is a hierarchy specific abstraction scheme, but one tailored to
a POMDP setting.

Programmable HAMs (PHAMSs) (Andre and Russel, 2001a) are an extension to
the HAM framework that among other things allow us to define parameterized HAMs.
For the purposes of this discussion we can assume that a HAM is equivalent to an
option with partly specified policies and during learning the agent needs to fill in the
unspecified parts of the policy. In the PHAM framework, a family of HAMs can be
specified as a single parameterized HAM, with the HAM policy also depending on
the value of the parameters passed from the higher level. The corresponding notion
of a parameterized option is yet to be proposed but it is fairly easy to conceptualize.
A relativized option is a special case of a parameterized option in which the policies
corresponding to various parameter settings are isomorphic to one another and hence
may be compactly represented in a relative space. We can similarly relativize a
parameterized HAM or a parameterized sub-MDP in the Max(Q framework.

Feudal reinforcement learning (FRL) (Dayan and Hinton, 1993) is an early hi-
erarchal RL framework that considers both spatial and temporal abstraction. FRL
assumes a rigid hierarchy, consisting of “super-managers”, “managers” and “sub-
managers”’. A manager is aware only of the task it super-manager sets it and in turn
can assign some sub-task to its sub-managers that would help it accomplish its task.
Each manager is also aware of the state-space only at a granularity sufficient to be
able to accomplish the tasks set it. If it needs anything done at a finer level, then it
passes the control to one of its sub-managers. There is a significant amount of work

for the designer here, including specifying the hierarchy and also the granularity of

96

the state space at various levels of the hierarchy. Dayan and Hinton do not provide
any insight as to how to design such a hierarchy or a useful measure of sufficient
granularity. The work is more in the nature of a preliminary investigation and is yet

to be taken further.

5.10 Summary

Partial and SMDP homomorphisms extend our abstraction framework to hierar-
chical RL architectures. We introduced relativized options as a way of compactly
representing a related family of sub-tasks in a hierarchical setting. Relativized op-
tions facilitate speed up in initial learning performance and enable greater transfer
of experience and knowledge between related problem instances. Hierarchical decom-
position provides a convenient RL framework that supports simultaneous learning at
multiple levels of an hierarchy. We illustrated the utility of relativized options and
hierarchical decomposition in a simple grid environment. Employing approximate
homomorphisms expands the applicability of relativized options to situations that
model a family of similar but not isomorphic tasks.

While relativized options are useful theoretical constructs how applicable are they
in practice? If we restrict ourselves to exact homomorphic images, we seldom have
situations where relativized options can be applied. But with approximate homomor-
phisms we can hope to profitably employ them in various problem settings. Rel-
ativized options can also form the basis for modeling more powerful abstraction
schemes. Abstractions that are useful in learning and adapting a range of skills
in the course of a learning agents lifetime. In the next chapter, we discuss some such

schemes.

97

CHAPTER 6
OPTION SCHEMAS AND DEIXIS

In this chapter, we discuss two abstraction approaches that have their roots in
developmental models of learning and models of human cognition. Some aspects of

these representation can be modeled using extension of relativized options.

6.1 Relativized Options as Option Schemas

In the previous chapter, we introduced relativized options as a way of modeling
abstraction in a hierarchical framework. Each relativized option employed its own
abstract representation independent of the representation used by the other levels in
the hierarchy, and can compactly represent a related family of tasks, like the problems
of navigating the 5 rooms in Figure 5.2. We now look at another interpretation of
relativized options that is related their ability to model family of tasks.

Let us return to the rooms example from Section 5.6. The one relativized option
in the example represents the task of gathering the object in a room and exiting the
room. The state space of the option MDP is described by the x and y coordinates
and a boolean variable indicating the possession of the object in the room. There
are 4 actions: N, S, E, and W. Let us consider what it means when we say that the
agent is in the abstract state (3,7,0). Depending on the room in which the agent
invoked the option, this represents different states in the original MDP. In room 1,
this means that the agent is in location (3, 7) in the room without the object. In room
2, this means the agent is in location (3, 2) in the room, again without the object. In

room 5, this means that the agent is in location (7,7), again sans object. Thus, the

98

numbers 3 and 7 in the option MDP mean different things depending on the context
in which the option was invoked. They are in reality placeholders or variables that are
assigned values when the option is invoked. Thus, the state set of the option MDP
is described by a set of 10 x-coordinate variables, 10 y-coordinate variables and one
boolean feature. Similarly, the action set is described by 4 action variables that get
assigned different actions depending on the context. For example, in room 2, abstract
action N is assigned action S and abstract action S is assigned action N.

Thus, a relativized option can be viewed as an option schema where a skeleton of
an option policy is specified in an abstract space. Evans (1967) defines a schema as:
“... a characteristic of some population of objects, and consists of a set of rules serving
as instructions for producing a population prototype (the concept).” An option MDP
is the prototype for a family of problems, and the option homomorphism is the rule
for constructing the prototype. When the option is invoked, a particular instantiation
of the prototype is chosen by binding the appropriate resources to the schema.

Relativized options can be used to model certain behavioral schemas. Behavioral
schemas are abstract templates for how to respond to a given situation. When an
agent invokes a schema it appropriately allocates various resources and sensory ca-
pabilities to make the schema relevant to the specific instance. They provide a very
efficient mechanism for generalizing existing skills to new situations.

In the example from Section 5.6, the agent can be trained to navigate in room
1, say, and then in room 2, be instructed to use the same policy as in room 1, with
north and south exchanged. As an example closer to the real world, suppose the task
of a robot is to assemble different parts of an automobile which require repeated use
of a limited set of skills such as tightening a nut, screwing in a bolt, etc. The motor
commands required to tighten a nut is the same irrespective of the identity of the
nut, but depending on the location and size of the nut, the robot might be required

to use different resources, such as different sized wrenches. A robot can be trained to

99

tighten a nut, nutl, of some given size. Once the robot learns the skill to a desired
level of proficiency, it can be given instructions in terms of the already learned policy,
such as “use the same policy as with nut nutl but use a 6.2 head wrench”. Instead
of learning the policy from scratch, the robot learns to modify the existing policy to
accommodate the new situation.

The notion of behavior schemas is a very general one and does not require that
we limit our abstract models to homomorphic images of the original system. The
schema might take into consideration any arbitrary subset of the local features in-
volved. While it is straightforward to define a hierarchical framework that allows us
to represent arbitrary schemas, further analysis of such a framework is difficult and in
many cases the practical utility of such arbitrary definitions is not clear. Relativized
options that use strict homomorphic images seldom lead to useful schemas in practice.
But using approximate homomorphic images allows us to define behavioral schemas
in a wide variety of problem settings. In Section 6.3, we demonstrate the utility of a

“very” approximate homomorphic image in defining schemas.

6.2 Related Work

The notion of schemas have been widely employed to model a variety of psycholog-
ical and behavioral phenomena. Bartlett (1932) introduced schemas into psychology.
His thesis is that when people recount dreams, they do not do so via a rote memoriza-
tion of details. They try to “fit” the dream by binding to a set of familiar schemas.
Schmidt (1975) proposes a theory of humans motor skills acquisition based on memory
and schemas. The initial conditions, response, and consequences are gathered while
repeatedly performing some motor commands. Then the skill acquired is stored as a
schema specified using the common features of the data gathered across the various
trials. Piaget (1952, 1954) proposes a model of cognitive development in children that

is based on acquiring sensorimotor schemas. Piaget postulated that at a certain stage

100

of their development children acquire sensorimotor schemas of the world that apply
to classes of related instances. When encountering a new situation, the child either
“assimilates” it as part of an existing schema or “accommodates” the novel features of
the instance by adapting the schemas, acquiring new ones if necessary. Sensorimotor
schemas are modeled as being grounded in physical activity and resulting perceptions.

Arbib (1995) proposes schema theory as a basis for distributed computing. This
theory builds on the robot schema language of Lyons and Arbib (1989). While Arbib
demonstrates the viability of the approach in the context of neural computation it
is a far more general theory. The basic approach consists of generating schemas,
representing interacting sub-problems, which can be combined to produce a solution
to the original task. The schemas can be combined sequentially, concurrently or even
hierarchically to achieve more complex goals.

In traditional AI literature, one can find notions that are similar to schemas. A
production rule can be converted to a rule schema (Russel and Norvig, 1995) by
incorporating variables in the pre and post conditions, resulting in a skeleton of a
rule. When applying this rule, it is instantiated with a particular assignment to the
variables. Knowledge frames (Russel and Norvig, 1995) can be also be considered as
schemas. A frame is a description of an scenario with slots for typical objects that
are part of the scenario. Assigning objects to these slots corresponds to instantiating
a schema.

Drescher (1991) introduces a schema mechanism aimed at emulating the construc-
tive model of cognitive development due to Piaget (1952). Drescher’s schema consists
of a context, an action and a result. The context and result are abstract represen-
tations, specified by assignments to a subset of the features describing the problem.
As with Arbib (1995), Drescher also provides a mechanism for generating hierarchi-
cal schemas. Composite schemas can be formed by concatenating simple schemas to

achieve a particular result. Once a composite schema is formed it may be used in con-

101

structing other schemas. But representing stochasticity and probabilistic outcomes
in this setting is difficult.

One framework that can accommodate stochasticity and dynamics is the control
basis framework (Huber and Grupen, 1999). This framework is built on a set of
controllers formed by instantiating abstract control schemas, specified as artificial
potentials, with a set of sensors and effectors. The control basis approach is described
in more detail in Section 6.7. We also outline one approach to using relativized options

in deriving hierarchical option schemas in the control basis framework.

6.3 Choosing Transformations

Given an SMDP, defining a relativized option requires the use of extensive prior
knowledge, namely the transition and reward structure of the entire SMDP, at the
very least the parts of the SMDP spanned by the desired domain of the option,
the parameters of the option SMDP, and the homomorphism that maps the original
state and actions onto the option SMDP. It is not often that all this knowledge is
available a priori. Even when such knowledge is available, finding the correct option
homomorphism is in general NP-hard.

In the absence of complete knowledge about the system, we need methods for
learning some of the required components of a relativized options given the others.
One useful case is when the agent is given the parameters of the option SMDP and
is required to choose the right transformations that constitute the option homomor-
phism, without complete knowledge of the parameters of the original SMDP. We
assume that the agent has access to a set of candidate transformations. The agent
learns, using online experience, the right transformation to apply depending on the
circumstances under which an option is invoked. When combined, the chosen trans-

formations define the option homomorphism.

102

Such a scenario would often arise in cases where an agent is trained in a small
prototypical environment and is required to later act in a complex environment where
skills learned earlier are useful. In the example from Section 5.6, the agent may
be trained to gather the object in a particular room and then be asked to gather
the objects in the different rooms in the environment. The problem of navigating
in each of these rooms can now be considered simply that of learning the suitable
transformation to apply to the policy learned in the first room. An appropriate set
of candidate transformations in this case are reflections and rotations of the room.

Learning the right homomorphism through experience, can also be viewed as on-
line minimization without a completely specified model. Recall from the previous
chapter, that an option SMDP, My = (Sp, Ao, Vo, Po, Ro), is a homomorphic im-
age of the original MDP and hence is constructed from the reward respecting SSP
partition corresponding to the option homomorphism. Each element of Wy is there-
fore an unique representative of some block of the partition induced by the option
homomorphism. Finding the right transformations is then equivalent to identifying
the other members of each of the blocks. Since the agent is restricted to a limited set
of transformations, the search for a reward respecting SSP partition of the original
SMDP is limited to some fixed family of partitions of V.

The interpretation that is intuitively more appealing is the one afforded by viewing
relativized options as option schemas. Under this interpretation, the schema, i.e., the
option SMDP and the policy, is assumed to be given. The problem is then one of
choosing the right bindings to the abstract states and actions from a set of possible
bindings. This interpretation yields a better motivation for studying this particular
formulation involving insufficient prior knowledge. This is a natural interpretation
of our approach to choosing homomorphisms and suggests many problem domains in

which this approach may be used.

103

6.3.1 A Bayesian Algorithm

Formally the problem maybe stated as: Given a set of candidate transformations
H and the option MDP Mo = (So, Ao, Yo, Po, Ro), how do we choose the right
transformation to employ at each invocation of the option? We assume that M =
(S, A, ¥, P,R) is the MDP describing the actual task, and that P and R are not
known.! Let ¢(s) be a function of the current state s that captures the features
necessary to distinguish the particular context in which the option is invoked. In
the example in Figure 5.2, the room number is sufficient, while in an object-based
environment some property of the target object, say color, might suffice. Often in
practice, ¥(s) is a simple function of s like a projection onto a subset of features, as
in the rooms example. The features, 1(s), can be thought of as distinguishing various
instances of the family of sub-problems represented by the relativized option. The
problem of choosing the right transformation is formulated as a family of Bayesian
parameter estimation problems, one for each possible value of 1 (s).

There is one parameter, 6, that can take a finite number of values from H. Let
p(h,1(s)) denote the prior probability that § = h, i.e., the prior probability that A is
the correct transformation to apply in the sub-problem represented by ¥(s). The set
of samples used for computing the posterior distribution is the sequence of transitions,
(s1, a1, S2,as,---), observed when the option is executing. Note that the probability
of observing a transition from s; to s; ;1 under a; for any i, is independent of the other
transitions in the sequence. Recursive Bayes learning is used to update the posterior
probabilities incrementally.

Let pn(h,1(s)) be the posterior probability that & is the correct transformation
to apply in the sub-problem represented by (s) after n time steps from when the
option was invoked. Initialize po(h,1(s)) = p(h,1(s)) for all h and 9 (s). Let E, =

"'We describe the algorithm in terms of MDPs for simplicity of exposition. The ideas extend to
SMDPs naturally.

104

(Sn, G,y Snr1) be the transition observed after n time steps of option execution. The

posteriors for all h = (f,{gs|s € S}) are updated as follows:

palh () = TE s 01), (6.1)

where Pr(E,|h,1¥(s)) = Po(f(sn), gs, (an), f(snt1)) is the probability of observing the
h-projection of transition E,, in the option MDP and N = e Po((f'(sn), g (a),
1 ($ps1))pn—1(W',(s)) is a normalizing factor. When an option is executing, at time
step n, h = arg max, pn(h,1(s)) is used to project the state to the option MDP and
lift the action to the original MDP. After experiencing a transition, the posteriors of
all the transformations in ‘H are updated using equation 6.1.

The term Pr(E,|h,1(s)) is a measure of how likely the transition F, is in the
option MDP assuming that the agent is in the sub-problem represented by #(s) and h
is used to project the transition onto the option MDP. Accumulating this “likelihood”
over a sufficiently long sequence of transitions gives the best possible measure of how
correct a transformation is for a given sub-problem. N is a normalizing factor that
prevents the values of p,, from decaying to very small numbers with large n. Without

normalization, p,,’s are likely to decay to zero since the probability of observing any

long sequence of transitions is very low even under the correct transformations.

6.3.2 Experimental Illustration

We tested the algorithm on the gridworld in Figure 5.2. The agent, referred to as
the Bayesian agent, has one get-object-and-exit-room relativized option defined in the
option MDP in Figure 5.2(b). H consists of all possible combinations of reflections
about the x and y axes and rotations through integral multiples of 90 degrees. There
are only 8 unique transformations in H. Since the rooms delineate the sub-tasks
from one another, (s) is set to room . For each of the rooms in the world, there is

one transformation in H that is the desired one. This is a contrived example chosen

105

to illustrate the algorithm and reduction in problem size is possible in this domain
by more informed representation schemes. We will discuss, briefly, the relation of
such schemes to relativized options later in this section. As with earlier experiments
reported in Chapter 5, the agent employs hierarchical SMDP @Q)-learning with e-greedy
exploration, with e = 0.1. The learning rate is set at 0.01 and the discount factor, =,
at 0.9. The root task description is the same as in Section 5.6. The priors in each of
the rooms were initialized to a uniform distribution with po(h,(s)) = 0.125 for all
h € H and (s). The trials were terminated either on completion of the task or after
3000 steps. The results shown in Figure 6.1 are averaged over 100 independent runs.

Recall from Section 5.6, that the probability that an action produces a move-
ment in a direction other than the desired one, is called the slip of the environment.
The greater the slip, the harder the problem, since the effects of the actions are
more stochastic. As shown in Figure 6.1 the agent rapidly learned to apply the
right transformation in each room under different levels of stochasticity. Compare
this performance to the agent learning with primitive actions alone (Figure 5.4(a)).
The primitive action agent didn’t start improving its performance until after 30,000
iterations and hence is not employed in further experiments. Figure 6.1 compares
the performance of the Bayesian agent with an agent that knew the right transfor-
mations apriori. As is illustrated in the figure, the difference in performance is not
significant.? In this particular task our transformation-choosing algorithm manages
to identify the correct transformations without much loss in performance since there
is nothing catastrophic in the environment and the agent is able to recover quickly
from wrong initial choices.

Figure 6.2 shows how the various posteriors evolve during a typical run. The graph

plots the posteriors in room 5 for the transformations composed of pure rotations or

2All the significance tests were two sample t-tests, with a p-value of 0.01, on the distributions of
the learning times under the two algorithms.

106

1800

--- know transforms
—— choose transforms

1600

= e =

) I kN

3 S S

3 3 3
T

®

<]

3
T

Average Steps per Trial

slip=0.1 \

L L L L L
0 100 200 300 400 500 600

Trial Number

Figure 6.1. Comparison of initial performance of agents with and without knowledge
of the appropriate partial homomorphisms on the task shown in Figure 5.2 with
various levels of stochasticity.

reflections followed by rotations. The pure reflections were quickly discarded in this
case. As is evident, by iteration 10 the posteriors of the incorrect transformations
have decayed to 0. The posterior for transform 5, a rotation through 90 degrees,

converges to 1.0.

6.4 Handling Approximate Equivalence

The task in Figure 5.2(a) exhibits perfect symmetric equivalence. We return to
our modified task shown in Figure 5.7, reproduced as Figure 6.3. Here the different
rooms have differently shaped obstacles. As in the earlier experiments, the agent can
employ the same features for the option MDP described in Figure 5.2(b) and learn
the option policy online. Since the differences between the various rooms are ignored,
there is a slight loss in asymptotic performance. But as discussed earlier, this loss can
be bounded and reasonable performance can be obtained in this example. In general,
the quality of performance in a particular task would depend on the suitability of the

approximation employed and the corresponding error bounds.

107

o
©
T

o
@
T

o
3

—— transform5

transform6
—— transform7
- - - transform8

o
Y
T

o
=
T

Posterior Probability

o
N
T

\
\
\
\

o
[

-

)

L s
12 14

Number of Updates

Figure 6.2. Typical evolution of posteriors for a subset of transforms in Room 5 in
Figure 5.2, with a slip of 0.1.

The method developed in the previous section for choosing the correct transfor-
mations cannot be applied with approximate homomorphisms. In some cases even
the correct transformation causes a state transition the agent just experienced to
project to an impossible transition in the image MDP, i.e., one with a Py value of
0. For example, consider moving south from the state marked A in Figure 5.7. This
is a valid transition in this room. But when projected onto the option MDP using
a rotation through 180 degrees, the correct transformation for this room, the result
is an invalid transition. Thus, the posterior probability of the correct transformation
might be set to zero, and once the posterior reaches 0, it stays there regardless of the
positive evidence that might accumulate later.

To overcome this problem a heuristic may be employed to update Equation 6.1 us-
ing a lower bound for Py values. A weight is computed for each of the transformations
using:

Po((f(s), gs(a), f(5") - wa1(h, 2(s))

wa(h 0(s)) = = 6:2)

where Pp(s,a,s') = max (v, Po(s,a,s")), and N' = Spen Po((£/(s),4.(a), f'(s")

wn_1(h',1(s)) is the normalizing factor. This weight serves the role of the poste-

108

rior probability. Thus, even if the projected transition has a probability of 0 in the
option MDP, a value of v is used for the update. Initialize wq(h,1(s)) = p(h,¥(s))
for all h and ¥(s). The weight w,(h,(s)) is a measure of the likelihood of h being
the right transformation in v (s) after n transitions, and this weight is used instead
of the posterior probability.

We compared the performance of this heuristic on the gridworld in Figure 6.3 to
a relativized agent that knew the right transformations for each room. The same pa-
rameter settings as described in the previous section were used and the value of v was
set to 0.01. As shown in Figure 6.4 the agent rapidly learns the correct transformation
to apply in each room. As was the case earlier, there is no significant difference in
performance compared to an agent that already knows the correct transformations.
Figure 6.5 shows the evolution of the weights in room 5 during a typical run. Note
that the weights decay more slowly than the posterior probabilities do in Figure 6.2.

We presently adopt a “winner take all” transformation selection mechanism, pick-
ing the transformation with the largest weight at each time instant. In some situations
it is profitable to use the weights as a probability distribution over transformations
and select the transformation to use in a given sub-problem by sampling from this
distribution. A desirable property of the update rule Equation 6.2 is that it allows the
correct transformation’s weight to converge to 1 if there is sufficient positive evidence.
Hence this heuristic is well suited if one wishes to employ the weights as a probability

distribution.

6.5 Experiments in a Complex Game Environment

The experiments reported earlier are more in the nature of a proof of concept. The
domains are very simple gridworlds and served to illustrate the concepts developed
thus far. Now these ideas are applied to a complex game environment inspired by

Pengi (Agre, 1988). Pengi is a learning agent that learns to play the video game

109

| & [

:; i B I Features:
rooms={0, 1, 2, 3, 4, 5}
[* - x=1{0, ... 9}
y={0,.., 19}
binary: havel, i=1,..,5

s
p

L

Figure 6.3. A simple rooms domain with dissimilar rooms. The task is to collect all
5 objects in the environment.

Pengo. The protagonist of Pengo is a penguin whose objective is to survive in a
hostile world inhabited by killer bees. Pengi tries to outrun the bees and can also
slide around ice cubes that can be used to crush the bees. The earlier example s
modified by adding autonomous adversaries. The task of the agent in the game is to
avoid hostile robots while gathering certain objects (diamonds) in the environment.
It differs from Pengo in that the agent does not have any weapons available to it.

The layout of the game is shown in Figure 6.6. The environment has the usual
gridworld dynamics, i.e., 4 actions, each of which might fail with some probability.
When an action fails, it results in a movement in one of the four directions with
uniform probability. There are 4 rooms in the world connected by a corridor. The
goal of the agent is to collect all the 4 diamonds in the world, one in each room, and
return to the central corridor. The agent collects a diamond by occupying the same
square as the diamond.

Each room also has several autonomous adversaries. The adversaries may be of

two types—benign or delayer. If the agent happens to occupy the same square as

110

2000

1800 [

1600 [

r Trial

1400

pe

1200

1000 [

800

@

8

]
T

IS

S

S
T

Average Steps

N

S

S
T

L L L L L L
100 200 300 400 500 600 700

Trial Number

Figure 6.4. Comparison of initial performance of agents with and without knowledge
of the appropriate partial homomorphisms on the task shown in Figure 5.7 with a
slip of 0.1.

the delayer it is captured and is prevented from moving for a random number of time
steps determined by a geometric distribution with parameter hold. Thus, at each time
instant the delayer might release the agent (move away) with probability (1.0—hold).
When not occupying the same square, the delayer pursues the agent with probability
chase. The benign robots execute random walks in the rooms and act as mobile
obstacles. None of the adversaries leave the rooms to which they are assigned. Thus,
the agent can escape the delayer in a particular room by exiting to the corridor.

The complete state of the game is described by (1) the position of the agent—the
number of the room in which it currently resides (the corridor being 0), and the x and
y coordinates in the room; (2) the position of each of the adversary—the number of
the room to which they are assigned and the x and y c-ordinates in the room; and (3)
boolean variables have;, 1 = 1,...,4, indicating possession of the diamond in room .
The agent is not aware of the identity of the delayer in each room.

Each room is a 20 by 20 grid, with the origin at the top left corner. The shaded
squares in Figure 6.6 are obstacles. The delayers are shown in black and the benign

ones are shaded. Note that room 2 does not have a delayer. Each adversary occupies

111

-

o
©

o
®

—— transform5
- - - transform6
-— transform7

transform8

o
3

o
o

Normalized Likeolihood Measure

L
20 25

Nurﬁober of UBdates

Figure 6.5. Typical evolution of weights for a subset of transforms in Room 5 in
Figure 5.7, with a slip of 0.1.

Room | slip hold chase

0 0.1 - -
1 0.15 0.6 0.6
2 0.15 - -

3 0.1 0.5 0.9
4 0.2 0.4 0.5
option | 0.1 0.8 0.5

Table 6.1. Parameter settings in various rooms in Figure 6.6.

one cell in the room. The corridor is 41 cells long. The other parameters in each
of the rooms is shown in Table 6.1. The total number of states in this problem is

approximately 2.5 x 10°6.

Hierarchical decomposition

In the room example we saw earlier the reduction achieved was due to geometric
symmetries such as rotations and reflections. While these symmetries exist in this
domain also, we have another source of symmetry that arises dues to the presence
of the various adversaries. Therefore apart from considering the usual geometric

transformations, we also need to consider permutations of the features corresponding

112

L 2
S
. I@-
S S -

S - S
H@ -. I
2 3 ¢
1 S 4 TS
] I

S
S S S
[]
S n
" []
0I§

Figure 6.6. A game domain with interacting adversaries and stochastic actions.
The task is to collect all 4 objects, the black diamonds, in the environment. The
adversaries are of two types—benign (shaded) and delayers (black). See text for
more explanation.

to the adversaries. Since a delayer has a very different dynamics from a benign
adversary, the permutations should take a delayer’s features to another delayer’s
features. When forming a reduced image of the problem, we want the delayers in
each of the rooms to project onto the same adversary in the image.

Our agent has access to one get-object-and-leave-room relativized option. The
option MDP (Figure 6.7) is a symmetrical room with just one adversary—a delayer
with fixed chase and hold parameters. The features describing the state space of the
option MDP are the x and y coordinates, relative to the room, of the agent and of
the adversary, and a boolean variable indicating possession of the diamond. None of
the rooms in the game match the option MDP exactly and no adversary has the same

chase and hold parameters as this delayer. The initiation set for the option is the set

113

of states in the room, including the doorways. The option terminates on entering the
hallway, with or without the diamond.

The root task is as described as follows. The state set of M is described by the
number of the room in which the agent currently resides, the various have; features
and if the agent is in the central corridor, then the x and y coordinates of the agent.
The admissible actions are the primitive actions in the corridor and the relativized
option in the room doorways. The transition and reward functions are those induced
by the original task and the option policy. The initiation set is the set of states
in the corridor with all have; features set to FALSE. The termination condition is
1 for states in the corridor with all have; features set to TRUE. It is 0 elsewhere.
This ignores the positions of the adversaries completely, since their positions are not
relevant to the root task, given the get-object-and-leave-room option.

Note that the option MDP employed here does not conform to either formulation
of an approximate homomorphic image we developed in Chapter 3. Both formulations
require prior knowledge of the transition dynamics of the MDP, or good estimates
of the transition probabilities. In addition, estimates of the visitation frequencies
can more accurately reflect the applicability of the option. Usually, when acquiring
option schemas access to just one instance of a family of problems is available. The
problem designers often have access to idealized models of the problem and can train
the agent only in such situations. The option MDP in this experiment was chosen
to model such a scenario. One way to overcome this problem is to allow the agent
to constantly update the option policy to adapt for situations not encountered in the
initial training. Piaget (1952) calls such adaptations of a schema as accommodation.
However, the results of Theorem 8 can still be used to bound the maximum loss in
this setting, provided the parameters of the original MDP are known.

The relativized agent, i.e., the agent that uses the relativized option, has access to

a set, H, of 40 transformations consisting of combinations of various spatial transfor-

114

Figure 6.7. The option MDP corresponding to the sub-task get-object-and-leave-
room for the domain in Figure 6.6. There is just one delayer in the option MDP.
The state is described by the x and y coordinates of the agent and the delayer and a
boolean feature indicating possession of the diamond.

mations and projections. The spatial transformations consists of various reflections,
rotations and their compositions. The reflections are about the x and y axes and
about the z = y and z = —y lines. The rotations are through multiples of 90 degrees.
Compositions of these change the orientation of the rooms to which they are applied.
There are a total of 8 unique spatial transformations. To identify the delayer in each
room, the transformation takes the form of a projection, projecting the x and y co-
ordinates of the adversary under consideration onto the option MDP under suitable
spatial transformations. There are as many projections as there are adversaries in
the room, leading to a maximum of 5 projections. Thus, a total of 40 transformations

are available to the agent.

Learning Algorithm

The performance of an agent using one relativized option and 40 candidate trans-
formations s compared with an agent using 4 regular sub-goal options, one for each
room. Both the agents employ hierarchical SMDP Q-learning to simultaneously learn
the higher level policy and the option policies. The learning rate is set at 0.05 for the

higher level and 0.1 for the option. The discount factor v is set to 0.9 and € to 0.1

115

for both the higher level and the option. The learning trials are terminated either on
completion of the task or after 6000 steps.

The prior weights are initialized for each of the transformations in each of the
rooms to a uniform distribution wq(h,1(s)) = 0.025 for all h € H and for all ¥(s).
The agent uses equation 6.2 to update the weights for the transformations, with v set
to 0.01. Since none of the rooms match the option MDP, keeping the option policy
fixed leads to very poor performance. So, as mentioned earlier, we allowed the agent

to continually modify the option’s policy while learning the correct transformations.

Results

The experiments are averaged over 10 independent runs. As shown in Figure
6.8, the agent using the heuristic shows rapid improvement in performance initially.
This supports the contention that it is easier to learn the correct transformations
than to learn the policies from scratch. As expected, the asymptotic performance
of the regular agent is better than the relativized agent. The heuristic could not be
compared against an agent that already knows the correct transformations since there
are no correct transformation in some of the cases. Figure 6.9 shows the evolution of
weights in room 4 during a typical run. The weights have not converged to their final
values after 600 updates, but transformation 12, the correct transformation in this
case, has the largest weight and is picked consistently. After about thousand updates
the weight for transformation 12 reach nearly 1 and stay there. Figure 6.10 shows
the evolution of weights in room 2 during a typical run. The weights oscillate a lot
during the runs, since none of the transforms are entirely correct in this room. In this
particular run, the agent converges to transformation 5 after about 1000 updates, but
that is not always the case. But the agent can solve the sub-task in room 2 as long as
it correctly identifies the orientation and employs any of transformations 1 through

D.

116

6000

5500 §

a
<
5]
3

n Regular Options
1"

IS
&
3
3

T

4000(- LTI
I ' [

3500 TR
RN

3000 ‘\’m

2500~

N
S
S
]

Average Steps per Trial

Choose Transforms
1500~

1000 L L
0 5000 10000 15000

Trial Number

Figure 6.8. Comparison of the performance of an agent with 4 regular options and
an agent using a relativized option and no knowledge of the correct transformation
on the task shown in Figure 6.6(a). The option MDP employed by the relativized
agent is shown in Figure 6.6(b).

Discussion

For some problems it is possible to choose representation schemes to implicitly
perform the required transformation depending on the sub-task. While employing
such representations largely simplifies the solution of a problem, they are frequently
very difficult to design. Our work is a first step toward systematizing the transfor-
mations needed to map similar sub-tasks onto each other in the absence of versatile
sensory mechanisms. The concepts developed here will also serve as stepping stones
to designing sophisticated representation schemes. Examples of such schemes include
ego-centric and deictic representations (Agre, 1988).

Agre (1988) used the Pengo environment to demonstrate the utility of deictic rep-
resentations. Deictic representation is a form of indexical representation and consists
of sensing the world through a set of pointers. In the Pengo domain, the agent used
pointers like bee-attacking-me, icecube-next-to-me etc., to model the world. In our do-
main, the option MDP models the behavior of a delayer, i.e., that of chasing the agent

and capturing it. Finding the right projection to the option MDP can be thought of

117

-

— transform 12

— - transform 17
transform 2

—— transform 7

d
©
T

e vl
~ ®
T T

[d
=
T

Normalized Likelihood Measure

[100 200 300 400 500 600

Number of Updates

Figure 6.9. Typical evolution of weights for a subset of transformations in Room 4
in Figure 6.6(a), with a slip of 0.1.

as trying to place a pointer on the adversary-chasing-me. Thus, relativized options
along with a mechanism for choosing the right transformations can be used to model

certain aspects of deictic representations.

6.6 Deictic Representation

A wide variety of complex tasks are naturally modeled as collections of objects,
their properties and their interactions. Objects might range from simple blocks and
tools to clouds and adversaries. One approach to describing such environments is by
a set, of predicates, one for each property of a object that is relevant. Operators act on
one or more objects, changing certain properties of the objects. In an MDP framework
a naive way to represent such an environment is to model it as a structured MDP,
with the state set described by a huge array of features, one for each predicate needed
in a classical representation, and the actions affecting only a subset of such features.
In other words, in an object-based factored MDP, M = (S, A, U, P, R), the state set
S is described by mN + B features, where m is the number of objects in the world,

N the number of predicates needed to describe each object and B is the number of

118

— transform 5
— - transform 10

o
@
T

—~ - transform 35
x__transform 40

o o 14 o

~ w IS @

T T T
— ==

o
e

i

Normalized Likelihood Measure

0 20 40 60 80 100 120 140 160 180 200

Number of Updates

Figure 6.10. Typical evolution of weights for a subset of transformations in Room
2 in Figure 6.6, with a slip of 0.1.

features needed to represent other aspects of the environment. Each action a € A
acts only on one object and affects only a subset of these features. This is a special
case of a factored MDP, one in which there is a lot of independence among features
and effects of actions. The 2-TBNs representing such MDPs are largely decoupled
and hence amenable to various, possibly partial, homomorphic abstractions.

The above approach to modeling object-based environments invariably leads to
a plethora of features and associated problems. Researchers have employed various
ideas to make operating in such environments feasible (e.g. Boutilier et al., 2001;
Koller and Pfeffer, 1998; Getoor et al., 2001). Deictic representation (Agre, 1988; Agre
and Chapman, 1987; Ballard et al., 1996), based on pointing, is one such paradigm.
The environment is sensed via multiple pointers and actions are specified with respect
to these pointers. Consider the example in Figure 6.11. The task in Figure 6.11(a) is
to place block B on block A and in Figure 6.11(b) is to place block X on block Z. If
we have a pointer indicating the lower block (shown as a +) and a pointer indicating
the upper block (shown as a x), then both the problems reduce to that of placing

the block pointed to by x on the block pointed to by +.

119

In this example, the effective state of the system is represented by the attributes
of the blocks on which the pointers are placed, attributes like color and location.
Thus, in effect the pointers project the complete state of the system described by the
attribute of all the blocks in the domain, to an abstract space described the attributes
of two blocks. The blocks whose attributes are projected are determined by the two
pointers. Actions in this abstract space are of the form “move the + block to the top
of the x block”, “move the x block to the top of the table”, etc. Depending on the
actual location of the pointers, the blocks moved vary.

Deictic pointers might be simple physical locators like those above or maybe ar-
bitrarily complex. Agre and Chapman (1987) employ pointers that need substantial
pre-processing and domain knowledge, that let the agent precisely locate important
components of the system. While solving the arcade game Pengo, their agent Pengi
employs complex pointers such as bee-attacking-me, ice-cube-next-to-me, etc. The
actions of the agent are then defined with respect to these pointers, for e.g. push ice-
cube-next-to-me toward bee-attacking-me. This enables them to reduce an intractable
problem to a more manageable size and results in a satisfactory player.

In general, deictic representations can be used in rich environments with incredible
amounts of detail. Deixis helps limit the attention of the agent to a few features in the
environment that are relevant to the task at hand. It is also useful in systems where
there are physical limitations on the sensory capabilities and perforce they have to

use some form of attentional mechanism (Minut and Mahadevan, 2001).

6.6.1 Modeling Aspects of Deixis with Relativized Options

As mentioned briefly in Section 6.5, some transformations applied to the state
space of a MDP to project it onto an option MDP can be viewed as a form of deictic
representation. Looking at it from another perspective, some set of deictic pointers,

together with their possible configurations, specify a set of candidate transformations,

120

(a) (b)

Figure 6.11. Deixis in a simple blocks world domain: The task in (a) is to place
block B on A, while in (b) is to place X on Z. The two tasks reduce to that of placing
block pointed to by x over block pointed to by +.

or bindings, for an option schema. The agent learns to place the pointers in specific
configurations to effect the correct bindings to the schema. We call such option
schema together with the set of pointers a deictic option schema. Formally a deictic

option schema is defined as follows:

Definition: A deictic option schema of a factored SMDP M = (S, A, ¥, P, R) is
the tuple (K, D, O), where O = (h, Mo, Z, [3), is a relativized option in M, K is the
number of deictic pointers available and D = { Dy, Dy, - - -, D } is the set of admissible
configurations of the deictic pointers. For all i, D; C 285M} ig the collection of all
possible subsets of indices of the features that pointer ¢ can project onto the schema.

M is the number of features used to describe S.

The set D; indicates the set of objects that pointer ¢ can point to in the envi-
ronment. In the blocks world example in Figure 6.11, this is the set of all blocks.
Therefore each element of D, or Dy comprises of the indices of the features corre-
sponding to the attributes of any one block in the environment. Thus, if features 1
and 2 are the color and position of block A, and features 3 and 4 are the color and
position of block B, and so on, the elements of D; are of the form {2j — 1,2j} for
7 =1,---m, where m is the number of blocks in the environment.

Recall from Chapter 5 that the option MDP M, is a partial homomorphic image

of the original SMDP with a suitable reward function. Let H denote the set of

121

candidate transformations from among which the option homomorphism, A, should be
constructed. Each member of H has a state transformation of the form]/ | p;,, where
Ji € D; for all © and p; is the projection of S onto the subset of features indexed by
J. If h is known a priori then the pointer configurations can be chosen appropriately
while learning. In the absence of prior knowledge the Bayesian algorithm developed
in Section 6.3.1 can be used to determine the correct bindings to the schema from
among the possible pointer configurations. But, the algorithm is not entirely suitable
for deictic option schemas for the following reason.

The algorithm assumes that the candidate transformations are not structured and
maintains a monolithic weight vector, w,(+,). In the case of deictic option schemas
the transformations are structured and it is advantageous to maintain a “factored”
weight vector, w,(-,+) = (wk(-,-),w2(-,),---). Ideally each component of the weight
should be the likelihood of the corresponding pointer being in the right configuration.
But usually there is a certain degree of dependence among the pointers and the correct
configuration of one pointer depends on the configuration of other pointers.

Therefore, three cases need to be considered. Assume that there are only two
pointers, ¢ and 7, for the following discussion, but the concepts generalize to arbitrary

number of pointers.

1. Independent pointers: For every J; € D;, p; satisfy the homomorphism con-
dition on transition probabilities given by equation 4.2. Then, the right as-
signment for pointer i is independent of the other pointers and there is one
component of the weight vector corresponding to pointer ¢ and the updates for

this components depends only on the features indexed by some .J;.

2. Mutually dependent pointers: For each J; € D; and J; € Dy, ps, X p;, satisfies
equation 4.2. But p;; and p;, do not satisfy equation 4.2 for some J; and Jj.
Thus, they cannot be treated separately and the composite projections given

by their cross-products has to be considered. There is one component of the

122

weight vector that corresponds to this cross-product projection. The update for

this component will depend on the features indexed by some J; and J;.

3. Dependent pointer: For each J; € D; and J; € Dy, py, X p;, satisfies equation
4.2, as does pJ;. But p;; does not satisty equation 4.2 for at least some value of
J;. This means pointer 7 is an independent pointer, while j is a dependent one.
There is a separate component of the weight vector that corresponds to pointer

J, but whose update depends on the features indexed by both J; and J;.

The weight vector is chosen such that there is one component for each independent
pointer, one for each dependent pointer and one for each set of mutually dependent
pointers. Let the resulting number of components be L. A modified version of
the update rule Equation 6.2 is used to update each component [of the weight
independently of the updates for the other components:

wiz(hiu w(5>) — PO((fZ<S),g;(CL), fZ’(CS,))) wnfl(hla w(s)) (63)

where P}(s,a,s') = max (V, PlO(s,a,s’)) and K = Spicy P5(f(s), ¢ (a), f(s')
wy_1(h'",1(s)) is the normalizing factor. Ph(s,a,s’) is a “projection” of Po(s,a,s’)
computed as follows. Let J be the set of features that is required in the computation

of w! (hi,1(s)). This is determined as described above for the various cases. Then

P}(s,a,s") = [Prob(s;|Parents(s), a)).
jeJ

6.6.2 Experimental Illustration in a Complex Game Environment

We now apply a deictic option schema to learning in a modified version of the
game environment introduced in Section 6.6. The layout of the game is shown in
Figure 6.12. The environment has the usual gridworld dynamics as described earlier.

Unlike in the previous example there is just one room in the world and the goal of the

123

Figure 6.12. A modified game domain with interacting adversaries and stochastic
actions. The task is to collect the black diamond. The adversaries are of three
types—benign (shaded), retriever (white) and delayers (black). See text for more
explanation.

agent is to collect the diamond in the room and exit it. The agent collects a diamond
by occupying the same square as the diamond.

The room also has 8 autonomous adversaries. The adversaries may be of three
types—benign, delayer or retriever. The behavior of the benign and delayer adver-
saries are as described earlier. The retriever behaves like the benign adversary till the
agent picks up the diamond. Once the agent picks up the diamond, the retriever’s
behavior switches to that of the delayer. The main difference is that once the retriever
occupies the same square as the agent, the diamond is returned to the original po-
sition and the retriever reverts to benign behavior. The adversary returns to benign
behavior if the agent is also “captured” by the delayer.

The complete state of the world is described by (1) the position of the agent—
the number of the room it is currently in (the corridor being 0), and the z and y
coordinates in the room; (2) the position of each of the adversaries given by the z
and y coordinates in the room; and (3) a boolean variable have indicating possession
of the diamond. The other parameters of the task are as defined earlier. The agent is

not aware of the identity of the delayer or the retriever. The shaded squares in Figure

124

Figure 6.13. The option MDP corresponding to the sub-task get-object-and-leave-
room for the domain in Figure 6.12. There is just one delayer and one retriever in
this image MDP.

6.12 are obstacles. The delayers are shown in black, the retrievers in white and the
benign ones shaded.

The option MDP (Figure 6.13) is a symmetrical room with just two adversaries—a
delayer and a retriever with fixed chase and hold parameters. The features describing
the state space of the option MDP consists of the x and y coordinates relative to the
room of the agent and of the adversaries and a boolean variable indicating possession
of the diamond. The rooms in the world does not match the option MDP exactly and
no adversary in the world has the same chase and hold parameters as the adversaries
here. The root task is the same one described earlier in Section 6.6.

The deictic agent has access to 4 pointers: A self pointer that projects the agent’s
location onto the image MDP, a have pointer that projects the have feature onto the
image MDP, a delayer pointer that projects one of the adversaries onto the delayer in
the image MDP and a retriever pointer that projects one of the adversaries onto the
retriever in the image MDP. The self pointer is an independent pointer. The delayer
pointer is dependent on the self pointer and the retriever pointer is dependent on all
the other pointers. Note that the self and have pointers are fixed projections and

have very restricted domains. The sets Dgcayer Dretriever are given by the 8 pairs

125

of features describing the adversary coordinates. D¢ is a singleton consisting the
agent’s x and y coordinates with respect to the room and Dpg,e is also a singleton
consisting of the have feature.

Traditionally, such pointers are not viewed as deictic pointers, but would form
part of the “background” information provided to the agent. But we treat them as
special pointers in our formulation. The actions of the agent in the image can then
be expressed with respect to the self pointer. Note that since the option MDP is
an approximate homomorphic image, the homomorphism condition 4.2 is not strictly
met by any of the projections. Therefore, in computing the weight updates, the
influence of the features not used in the construction of the image MDP are ignored

by marginalizing over them.

Experimental Results

The performance of the deictic agent is compared with a relativized agent that
employs the same option MDP but chooses from a set H of 64 monolithic transfor-
mations, formed by the cross product of the 8 configurations of the deictic pointers.
Both agents employ hierarchical SMDP @Q-learning, with the learning rates for the
option and the root task set to 0.1. The agents are both trained initially in the op-
tion MDP to acquire an approximate initial option policy that achieves the goal some
percentage of the trials, but is not optimal. Both agents use € greedy exploration.

On learning trials both agents perform similarly, with the monolithic agent hav-
ing better initial performance. This is not surprising, if we look at the rate at which
the transformation weights converge. Figure 6.14 shows that the monolithic agent
identifies the right transformation rapidly just as the deictic agent identifies the de-
layer rapidly (Figure 6.15(a)). But as Figure 6.15(b) shows, identifying the retriever
takes much longer, and the deictic agent performs poorly till the retriever is correctly

identified consistently.

126

-

o
©

4
®

o
3

o
@

—— Transform 18
- -~ Transform 19
Transform 27

o
=

o
w

o
N

o
a

Normalized Likelihood Measure

TR

o

L
25 30

Number of Updates

Figure 6.14. Typical evolution of a subset of weights of the monolithic agent on the
task shown in Figure 6.12.

This result is not surprising, since the correct position for the retriever depends
on position of the delayer pointer. Therefore, while the delayer is being learned,
the weights for the retriever receive inconsistent updates and it takes a while for
the weights to get back on track. Further, the monolithic agent considers all possible
combinations of pointer configurations simultaneously. Therefore, while it takes fewer
update steps to converge to the right weights, both agents make comparable number

of weight updates, 1300 vs. 1550.

Discussion

The algorithm used above updates the weights for all the transformations after
each transition in the world. This is possible since the transformations are assumed
to be mathematical operations and the agent could use different transformations to
project the same transition onto to the option SMDP. But deictic pointers are often
implemented as physical sensors. In such cases, this is equivalent to sensing every
adversary in the world before making a move and then sensing them after making

the move, to gather the data required for the updates. Since the weights converge

127

1 . 1 . 7
£ ® BRI
(:,S) 0.9 a 0.9 I\ : : :
S 08 — Robot 3 8 08 : ‘ : L
S --- Robot 6 s | }
- % Robot 4 — :]
o o \ i — Robot 6
8 061 8 o6r ! --- Robot1 |
= . = ! ! Robot 8
g g | |
= = i | i
—1 o4l - o4l H 1
2 S : |
q o3r N 037’\‘:::‘ ‘ ! |
-C_E 02f C__U ozah':‘\] . i
B 01 ! | B o1fl! 4 | . o i
=z | zZ ;“ ‘\ | ﬂ' | \‘l‘
I SN | | | | | | / i .
° 10 15 20 25 30 35 40 45 50 % 50 ' 100 150 200
Number of Update Number of Updates

(a) (b)

Figure 6.15. (a) Typical evolution of a subset of the delayer weights of the deictic
agent on the task shown in Figure 6.12. (b) Typical evolution of a subset of the
retriever weights on the same task.

fairly rapidly, compared to the convergence of the policy, the time the agent spends

“looking around” would be a fraction of the total learning time.

6.6.3 Perceptual Aliasing with Deictic Representations

The power of deixis arises from its ability to treat many perceptually distinct
states in the same fashion, but it is also the chief difficulty in employing deictic
representations. Consider the example in Figure 6.16. In both situations depicted in
the figure, the pointers return the same information, and hence both situations are
considered equivalent. If the task is to stack three different colored blocks on top
of each other, we can move x block on top of + block in Figure 6.16(b), while in
the other case, moving + to the top of x is a better choice. Thus two qualitatively
different states are mapped onto the same representation here. This phenomenon is
known as perceptual aliasing (Whitehead and Ballard, 1991).

One approach to overcome perceptual aliasing is a class of methods known as

Consistent Representation Methods. These methods split the decision making into

128

X X

R G B B G R
(a) (b)

Figure 6.16. Perceptual aliasing in a simple blocks world domain: Both (a) and
(b) map to the same representation and are treated as equivalent. But the task is to
stack blocks of three different colors and the desired action in the two situations are
different.

two phases: in the perceptual phase the agent looks around the environment to
find a consistent representation of the underlying state. A consistent representation
(Whitehead and Ballard, 1991; Whitehead and Lin, 1995) of a state is one such that
all states that map to the representation have the same optimal action-value function.
In the overt phase the agent picks an action to apply to the environment based on
the current sensory input. Learning takes place in both phases. The Lion algorithm
(Whitehead and Ballard, 1991) is an example of a consistent representation algorithm.
Here Q-learning is used in the overt phase and a simple learning rule based on one
step error information is used to train the sensory phase. If the one step error in the
() update rule for a particular configuration is negative then that representation is
considered perceptually aliased and is ignored in the future. This simple rule limits
the applicability of this algorithm to deterministic settings alone.

If the representation used is a homomorphic image then it is a consistent repre-
sentation, from Theorem 1. By restricting the definition of deictic option schema to
employ partial homomorphic images as option MDPs, it is guaranteed that a consis-
tent representation is always employed. In the absence of knowledge of the option
homomorphism, finding the right transformation to employ constitutes the search for
a consistent representation and we employ Bayes learning in this phase. As with the

Lion algorithm, a form of ()-learning is used in the overt phase.

129

Another approach to dealing with perceptual aliasing is to use memory based
methods (McCallum, 1995; Finney et al., 2002). The basic idea is to remember suffi-
cient history information to be able to distinguish states that are perceptually aliased.
These methods use statistical tests to determine how much memory is required and to
selectively determine which experiences to retain. These can also be viewed as consis-
tent representation methods, since they aim to remember sufficient data so that the

current memory and sensory input together constitute a consistent representation.

6.6.4 Related Work

Deixis originates from the Greek word deiknynai which means to show or to point
out. It is employed by linguists (Jarvella and Klein, 1982) to denote the pointing
function of certain words, like here and that, whose meaning could change depending
on the context. Deictic representations are used in developing models of cognition and
visual attention (Land et al., 1998; Ballard et al., 1996; Howarth and Buxton, 1993).
Deixis was introduced to the AT community by Agre (1988). Agre and Chapman
(1987) used deictic representations to design an agent, Pengi, that plays the arcade
game Pengo. Pengi was designed to play the game from the view point of a human
player and hence used visuals from a computer screen as input. Agre employed
Ullman’s visual routines (Ullman, 1984) to extract information and maintain complex
deictic pointers such as bee-attacking-me. Chapman (1991) later designed Sonja, an
instruction taking agent that plays the game amazon, employing deictic commands
and representations.

Whitehead and Ballard (1991) were the first to use deictic representations in a
RL system, with their Lion algorithm. Unfortunately, the method the Lion algo-
rithm employs to determine consistency works only in deterministic environments.
McCallum (1995) takes a more direct approach to overcoming perceptual aliasing.

He employs deixis to solve a car driving task and models the problem as a partially

130

observable MDP (Kaelbling et al., 1998). He uses a tree structure, known as U-trees,
for representing “states” and identifies the necessary distinctions so that the resulting
representation is consistent. But his approach is not divided into explicit perceptual
and overt phases. There has not been much work on using hierarchical RL and deixis.
The only work we are aware of is by Minut and Mahadevan (2001). They develop a
selective attention system that searches for a particular object in a room. It operates
by identifying the most salient object in the agent’s visual field and shifting its visual
field to center and focus on that object. They employ an option to identify the most
salient object in the current visual field. Though they do not state it thus, this is a
“deictic” option, whose effect depends on the current visual field.

Another recent successful application of deixis albeit in a carefully hand crafted
fashion is due to Cleary (1997). He solves a robot navigation task by programming a
small number of deictic commands and using expert knowledge to position the point-
ers required by these commands. He demonstrates that with a fairly small number of
deictic commands the robot is able to successfully navigate open environments such
as the college grounds.

A systematic study on using deictic representations with RL was reported by
Finney et al. (2002). They employ a straightforward deictic representation with
two pointers on a blocks world task. They use the G-algorithm to represent past
information as a tree. They report that their approach does not work well for a
variety of reasons. First the tree grows very large rapidly. The deictic commands are
defined with respect to the two focus pointers. When long sequences of actions are
required with a small number of pointers, it is easy to lose focus. While they try to
address this by redesigning the pointers, they do not have much success. One way to
alleviate this problem is by adopting a hierarchical approach as we do in this work.
If the number of pointers required by each deictic level to maintain focus is not large,

we can avoid some of the problems encountered by Finney et al. (2002).

131

6.6.5 Discussion

While deixis is a powerful paradigm ideally suited for situations that are mainly
reactive, it is difficult to employ a purely deictic system to solve complex tasks that
require long-range planning. Our hierarchical deictic framework allows us to employ
deictic representations in lower levels of the problem to leverage their power and gen-
eralization capacities, while at the higher levels we retain global context information
in a non-deictic fashion. Mixing such representations allows us to exploit the best of
both worlds and to solve tasks that require maintaining long term focus. It is our
belief that there is no pure deictic system in nature. While it has been established
that humans employ deixis in a variety of settings (Ballard et al., 1996; Land et al.,
1998), we certainly maintain some higher level context information. While gathering
ingredients for making tea, we might be using deictic pointers for accessing various
containers (Land et al., 1998), but we also are continuously aware of the fact that we
are making tea.

The various approaches to learning with deictic pointers (Whitehead and Ballard,
1991; Finney et al., 2002) usually employ simple pointers similar to those in Figure
6.11. Agre (1988) uses complex pointers, but hand coded the policy for maintaining
the focus of these pointers. For example, a set of rules are used to determine which is
the bee-attacking-me and the pointer is moved suitably. Our approach falls somewhere
in between. We start by defining a set of simple pointers. As learning progresses the
agent learns to assign these pointers consistently that some of them take on complex
roles. We can then assign semantic labels to these pointers such as robot-chasing-me.

It should be noted that a homomorphic image implies a consistent representation
but the reverse is not true. The notion of a consistent representation is a more
general concept than a homomorphic image and corresponds to optimal-action value
equivalence discussed in Chapter 3. By restricting ourselves to homomorphic images

we are limiting the class of deictic pointers that we can model. Further work is needed

132

to extend our framework to include richer classes of deictic pointers and to employ
memory based methods. Nevertheless in this thesis we have taken the first steps in

accommodating deictic representations in a hierarchical decision theoretic framework.

6.7 Applications of Homomorphisms in the Control Basis

Framework

Discrete MDPs and SMDPs are useful mathematical constructs that allow us to
model a variety of stochastic decision problems. Thus far, we have developed our
framework in settings that are idealized representations of the environment. This
enabled us to rigorously formulate the concepts of homomorphisms and abstraction.
In order to apply our ideas to real problems however, several steps that formalize the
domain knowledge are needed.

The problem must first be formulated as an MDP or SMDP. This involves selecting
a suitable state and action representation. Second, the problem must be hierarchically
structured. Any available knowledge about the various sub-problems of the original
task can be exploited in this step. In this section, we explore the applications of our
techniques in a domain that is modeled using the control basis framework, a flexible
and powerful hierarchical architecture. It is also possible to learn the hierarchical
structure, and this is an active research area (Digney, 1998, 1996; McGovern and
Barto, 2001; Pickett and Barto, 2002; Hengst, 2002). This hierarchical structure is
then be used to create appropriate option schemas.

Finally, a family of transformations for the option schema must be selected. Since
this family may consist of all plausible transformations, it is possible to specify it
with very little domain knowledge. In navigation tasks, it consists of all reasonable
geometric transformations, as in the rooms example. In worlds with objects, it con-
sists of all possible permutations among features corresponding to distinct objects,

followed by a suitable projection onto the option SMDP. Once the option schema is

133

Figure 6.17. The UMass Torso holding a ball in a two handed grasp.

acquired, then the agent can learn to solve the task, using the Bayesian algorithm as
described in Section 6.3.

In this section, these issues are explored in the context of a robotics application
domain. The platform adopted is the UMass Torso (Platt Jr. et al., 2003, 2004), a
partial humanoid robot, with two hands, two arms and a stereo vision head (Figure
6.17). Successful robots must operate in open environments that are not completely
controllable. It is almost impossible to model the interaction of the UMass Torso with
its environment at a joint and sensor level as an MDP or SMDP. Therefore we turn
to a control architecture known as the control basis framework proposed by Huber
(2000). This control architecture has been used as the basis for learning walking gaits
on a quadruped walking platform (Huber and Grupen, 1999), learning multi-fingered
grasps (Coelho and Grupen, 1997), designing controllers for whole body grasps (Platt
Jr. et al., 2003, 2004), and in controlling ad hoc mobile robot networks (Sweeny,
2003).

6.7.1 Control Basis Framework
The control basis approach is a framework for combining closed loop controllers

in a systematic way to accomplish a variety of different objectives. In this approach

134

a controller ‘®¢ is constructed by associating, or binding, a set of sensors, S, and a
set of effectors, £, with an objective function, or artificial potential, ‘®. The artificial
potential describes the objective i, where ¢ might be a stable leg configuration or a
firm grasp on an object. When the controller achieves the minimum potential it is
said to have converged (to its objective).

In terms of the terminology developed earlier, the artificial potential that describes
the control objective can be viewed as an option schema and the various sensor and
effector bindings are the transformations. For example, in the quadruped walking
task (Huber, 2000), a schema specifies how to achieve a stable 3 legged stance, and
the transformations choose 3 of the 4 legs of the robot to bind to the schema. Huber
achieves a turning gait by executing this schema repeatedly with a suitable sequence
of transformations.

This framework also allows two or more controllers to execute concurrently in
a prioritized manner. Since control actions are derived by descending artificial po-
tentials, a secondary control action will not interfere if it moves the robot along an
equipotential line of the primary control potential. This can be achieved if the sec-
ondary controller is constrained to operate in the null space of the primary controller.
The term subject to is used to describe this prioritization and ’@g’ ad q)fj indicates
that ‘@ operates subject to / (ID‘ESJ’

Closed-loop controllers as defined above are robust to noise and transform a con-
tinuous state space into a set of discrete states corresponding to the convergent states
of the various controllers. For example, a controller for grasping an object descends
an artificial potential, such that the basin of attraction corresponds to a good grasp
configuration. When invoked, this controller causes a transition from an arbitrary
initial state to a state corresponding to a good grasp. If all the actions are drawn
from closed-loop controllers, only a discrete set of states comprising of the equilibrium

states of the controller need be considered. Thus the problem can be modeled at the

135

level of the controllers as an MDP with a set of closed-loop controllers as the actions
and the states described by the convergence status of the controllers (Huber, 2000;
Huber and Grupen, 1999). The transition times of the primitive controllers can be
incorporated by modeling the problem as an SMDP. The next step in the design is
to specify a hierarchical task decomposition that uses these closed-loop controllers as

primitive actions.

6.7.2 Designing Option Schemas

For the purposes of this discussion we focus on tasks based on whole body grasping
(Platt Jr. et al., 2003, 2004). The goal is to achieve a certain objective that requires
the robot to manipulate objects while using different contact resources to maintain
a good grasp. Platt Jr. et al. (2004) define a set of controllers suitable for this
setting. They formulate this problem as an MDP and report preliminary learning
experiments in which a ball is either moved to a certain location or is rotated 180
degrees. The nature of the manipulation task is that certain classes of controllers
have to be executed in sequence to achieve an objective. The exact controllers used
depend on the nature of the object being manipulated and the objective. But there
is a higher level structure to the task that can be exploited to produce more efficient
generalization. Before examining this structure, let us look at some of the classes of

controllers used by Platt Jr. et al. (2004).

1. Localize, “®, uses the stereo vision system to locate a salient object, or a target
position, in the work space. If the localize controller is formed by binding to a
some feature of the object such as color or size, the resulting controller locates

an object with that attribute.

2. Contact, “®, places the specified effector(s) in contact with the last localized
object. The possible effectors are the left hand, [or the right hand, r or both,

Ir. Since the states of the underlying MDP are given by convergence states of

136

Figure 6.18. The UMass Torso holding a ball by opposing gravity with the left

the controllers, the sensory resources available are also denoted by the same
symbols as the controllers. Thus ¢®! denotes the controller that makes contact

with an object using the left hand.

. Grasp, “®, obtains a good grasp on the object the hand is currently in contact
with. In the whole body grasping domain, controllers are formed by binding
to a subset of one or both hands and gravity: {l,r,g}. For example, if the
robot grasps an object by placing it on its left palm, it is modeled as holding
it using the hand and gravity (Figure 6.18). The controller that achieves this
configuration is then denoted by G@ﬁg . Since gravity is not under the control of

the robot and it is not assigned as an effector.

. Reach, f®, reaches to the last localized location. The sensors and effectors that

can be used to form controllers are the same as with the grasp controller.

Additional controllers may be formed by suitably combining these basic controllers

using the subject to constraint. Thus to move an object to a particular location while

holding it with both hands, the robot would employ #®!"<“®!". Two grasp controllers

can be combined, allowing the robot to change the grasp on an object. Thus to put

137

Localize Ly

Contact “ ! Cor Clr

GFHlr GFHla GHrg GHlrg
Grasp o 08 o7 D,
Reach Replr Rl Rer

l l
Grasp < Grasp | 9@ «Gdlr Gora qGlr Golr G Gplr qGpry
l
Reach < Grasp | B0l o Golr Rl a9 RPpr qCry

Rl qGoplr Epr oGolr

Table 6.2. Subset of controllers for accomplishing two handed grasps of large objects.

an object that the robot is holding with both hands onto the left palm, it would
employ Gq)gg qGlr.

Employing this set of controllers the robot can manipulate a variety of objects in
its workspace. As an example, the subset of controllers appropriate for two handed
manipulation is shown in Table 6.2. The state of the system is described by a vector
with one component for each controller. When actions are combined with subject to
constraint, two or more bits of this representation are affected. A transition graph
of a sub-task in the underlying MDP is shown in Figure 6.19. The task represented
here is to localize on some object and, depending on its location and size, use the
appropriate hand(s) to grasp it and move it to a specified target location. The left,
central and right branches correspond to the cases when the object is grasped using
the left hand, both hands and right hand respectively. Note that if the object is in
the center and is small, it can be grasped using either the right or left hand. For
large objects, both hands are needed. If a large object is in the right or left side of
the workspace, the robot fails to grasp it.

Obviously there is a lot of redundancy in this representation. While different
parameterization is needed for each branch in the graph, the over all structure of

each path is the same: a contact, followed by a grasp and a reach. We can exploit

138

localize

contact

grasp

&

reach

O—@—@—(})
@

©—&—E

&

Figure 6.19. The transition structure of a family of sub-tasks for manipulating
objects in the workspace. A state labeled ¥ ¢, means that the controller X @7 has
converged in that state.

this structure to define a relativized option. The transition graph of the relativized
option that models this family of sub-tasks, parameterized by the object size and
location, is shown in Figure 6.20. The actions in the option MDP are the control
objectives or potentials, without a specific parameterization. Similarly the state is
represented by a vector with one component for each potential surface. The possible
transformations from the original sub-task to this schema are the set of possible
bindings to the basic potentials. The function 1 (s) returns the size and location of
the target object. Thus if there is a small object in the left side of the workspace, the
correct transformation is to bind the sensor and effectors to [. For a large object in

the center, the correct transformation is to bind to [r.

139

(stary) |
localize
<>
contact
l grasp
l reach

Figure 6.20. A relativized option that represents the family of tasks shown in Figure
6.19. A state labeled ¥*® means that for some j, the controller X<I>§- has converged in
that state.

The relativized option is derived under the implicit assumption that the entire
workspace is reachable even holding an object with both hands. This is obviously not
true in general. If the task is to pick up an object in the left side of the workspace
and move it to right edge of the workspace, then the robot needs to transfer the left
handed grasp on the ball to a right handed one before executing a reach. Similarly
when picking up a large object and moving it to either edge of the field, a two handed
grasp must be changed to a single handed grasp with gravity. As mentioned earlier
this requires running a grasp controller subject to another grasp controller. This
additional manipulation is not captured in the relativized option shown.

We would like to incorporate this additional maneuvering while still maintain-
ing the transition structure shown in Figure 6.20, since it captures the underlying

structure when the additional maneuvering is not required. Robert Platt suggests

140

the following solution.> We introduce another relativized option with the transition
structure shown in Figure 6.21. We distinguish between two kinds of grasps, good
and bad. Good grasps are those that allow us to reach to the target location. The
actions in this MDP are regrasp and reach. The reach action is the same as before.
The regrasp action consists of controllers of the form GCD;} 19®k, where j, 5" and k, &’
are different parameterizations for the grasp controller. There are three states: good
grasp, poor grasp, and reach converged. The function ¢ (s) returns the target loca-
tion, current location and size of the object. If no regrasping is required, the robot is
in the good grasp state and transitions to the terminal state by executing a reach. If
not the robot is in a poor grasp state and needs to execute the appropriate regrasp
action to acquire a good grasp. This relativized option replaces the reach action in
the option MDP in Figure 6.20.

We are currently working on validating this design on a simple task. The overall
task is to clear a workspace of different sized balls, ranging from tennis balls to beach
balls. There are two bins, one each at the left and right edges of the workspace. An
operator indicates the target location, i.e., which of the bins into which a ball should
be dropped. This task can be solved by repeatedly applying the relativized option
shown in Figure 6.20. Note that since the transformations are different bindings to
resources, effecting a change in the transformation is not as trivial as described in our
earlier experiments. In order to change the transformation a sequence of regrasping
actions have to be executed. Platt Jr. et al. (2004) address this issue in the context

of learning to regrasp a given object.

6.7.3 Discussion
We have described the preliminary design of a very simple experimental demon-

stration of our ideas. This design is joint work with Robert Platt and Roderic Gru-

3In private discussion.

141

good

=

regrasp ' '

bad

Figure 6.21. A relativized option that represents the regrasp before reach sub-task.
A state labeled ¥ ®, means that the controller ¥ ®¢ has converged in that state, where
1 depends on the transformation chosen.

pen at the Laboratory for Perceptual Robotics at the University of Massachusetts,
Ambherst. Though conceptually it is straightforward, conducting even this experiment
on the UMass Torso is not trivial. There are many issues to be addressed, including
designing the software architecture, handling of error conditions, and implementing
the transition choosing mechanism. With more experience on the real robot, the hier-
archical decomposition could also be refined further. If successful, this work will be a
first step in integrating the control basis architecture and our abstraction framework,
specifically option schemas. This interface we feel would facilitate greater collabora-
tion between the two approaches and lead to better synthesis of ideas. The abstraction
notions developed in this work are generally applicable to complex problem domains.
But in order to expand the applicability of our option schema framework we need to

further enrich its capabilities. We discuss some promising directions in Chapter 7.

142

CHAPTER 7
CONCLUSIONS

7.1 Summary

In this thesis we introduced MDP homomorphisms as a paradigm for expressing
various forms of abstractions in Markov decision processes. We showed that MDP
homomorphisms are powerful and flexible enough to represent a wide variety of ab-
stractions. We established theoretical guarantees as to the goodness of the abstract
model formed. In particular we showed that an optimal solution of the reduced model
can be used to induce an optimal solution for the original problem. This allows the
definition of “ideal” abstraction, one that results in no loss of information relevant to
solving the task at hand.

MDP homomorphism helps establish notions of equivalence—among states and
actions and also between MDPs. The crucial innovation in our definition of MDP
homomorphism is considering state-action equivalence. Much of the earlier work uses
just state equivalence. Expanding the notion of equivalence allows one to model a
wide class of abstractions as was established in this thesis.

Forming reduced models that preserve some aspect of the original system is the
goal of model minimization algorithms. We develop a model minimization algorithm
based on MDP homomorphisms. This algorithm is an extension of earlier work by
Dean and Givan (1997). We also show that the notion of stochastic bisimulation
homogeneity, which is the basis of the earlier framework, is equivalent to MDP homo-
morphism in the context of minimization. Employing state-action equivalence means

that our minimization framework is strictly more powerful than Dean and Givan’s.

143

We also extend a polynomial time minimization algorithm due to Lee and Yannakakis
(1992) and Dean and Givan (1997) to our minimization framework.

In Chapter 4 we introduce the notion of symmetry groups of MDPs based on
MDP homomorphisms and show that this can model symmetries of the system. This
definition uses the mathematical structure of the MDP and does not rely on any
special geometric properties of the system. While it can model usual notions of
symmetry such as reflections, rotations etc, it is not limited to them. In particular,
in problems with objects, symmetry groups can model symmetries arising for object
interchangeability.

Factored MDPs are a compact paradigm for representing MDPs with structure.
We explored certain forms of structured homomorphisms that can take advantage of
the inherent redundancy and independence in a factored MDP representation. The
minimal model of an MDP cannot usually be modeled by a structured homomorphic
image. But searching for reduced models in a restricted space imposed by some
structure is often the only feasible approach.

Factored symmetry groups do not necessarily lead to a smaller description of
the reduced MDP, and a complete enumeration of the state space is required to
derive the reduced model. We introduce a modification of an algorithm by Emerson
and Sistla (1996) that uses MDP symmetry groups and constructs a reduced model
incrementally without requiring complete enumeration of the state space.

The MDP homomorphism conditions are rather strict, and hence exact homo-
morphic equivalence is seldom obtained in practice. We introduce two notions of
approximate homomorphisms derived from Whitt (1978) and Givan et al. (2000)
that allow us to consider states that differ slightly in their dynamics as equivalent.
Reduced models constructed under a relaxed notion of equivalence no longer guaran-

tee the preservation of the optimality of solutions. We show how to bound the loss

144

that result from approximations. These bound can be used as a guide in selecting
appropriate approximations.

In Chapter 5 we develop a hierarchical decomposition framework that combines
spatial abstraction with temporal abstraction. Partial SMDP homomorphisms form
the basis for spatial abstraction in this framework. We extend the options framework
(Sutton et al., 1999) to model temporal abstraction over Markov sub-goal tasks and
spatial abstraction specific to the sub-task represented by the option. We introduce
the notion of a relativized option that is a compact representation of a related family
of family of tasks. We also show that the abstraction conditions developed earlier by
Dietterich (2000a) for a related hierarchical framework are in fact a specialization of
the more general SMDP homomorphism conditions. The utility of relativized options
is empirically demonstrated on simple test beds.

In Chapter 6 we develop more sophisticated abstract representations based on
relativized options. First we develop the concept of option schema, a prototype
of an option, which is specified by an abstract state and action space. A learning
agent can acquire skills or policies in this prototypical setting and then generalize
them to other situations by suitably transforming this abstract space. We propose a
Bayesian algorithm for selecting the right transformation to apply in a given setting
and demonstrate that it is empirically correct. We apply option schemas to a complex
game problem inspired by the the Pengi domain (Agre, 1988).

We also introduce deictic option schemas, where the class of permissible trans-
formations applicable to the abstract space are defined via a set of pointers. Deixis
is an indexical representation introduced to Al by Agre (1988). We show that un-
der certain assumptions we can model methods that employ deictic representations
as attempting to identify homomorphic reductions. We empirically demonstrate the

utility of this view in a modification of the game domain.

145

MDP homomorphisms provide a formalism for expressing various abstractions and
also guidelines for designing appropriate abstractions. Applying such abstractions in
real world problems requires much design, guided by domain knowledge. We explore
the design of an experimental setup involving a humanoid robot. We build on the
control basis framework (Huber and Grupen, 1999; Huber, 2000) for hierarchical con-
trol and introduce suitable relativized options that enable efficient knowledge transfer

at higher levels of the hierarchy.

7.2 Future Work
Efficient Minimization Algorithms

The minimization algorithms presented in this thesis do not explicitly exploit the
structure of symmetry groups. As outlined in Chapter 4, partitions that arise from
symmetry groups are structured. This is in addition to the structure modeled in
factored MDPs. It is our contention that taking advantage of this structure would
allow us to develop more efficient minimization algorithms.

The minimization algorithms presented in Chapters 3 and 4 assume the availabil-
ity of a complete system model. While this assumption is valid in planning problems,
a complete model is not available in typical learning formulations. The approach we
take to forming abstraction is to leverage domain knowledge to define a family of
transformations in which to search for homomorphisms. One could also incremen-
tally construct a reduced image based on experience gained by interacting with the
environment. McCallum (1995) and Jonsson and Barto (2001) approach the problem
of abstraction along similar lines but use a different notion of equivalence. One useful
direction of further research is to explore incremental construction techniques that

employ MDP homomorphisms.

146

Automatic Discovery of Relativized Options

One of the chief difficulties in using relativized options, or any hierarchical RL
approach, is designing an appropriate hierarchal decomposition. Autonomously dis-
covering hierarchical structure is an active topic of research recently (Digney, 1998;
McGovern and Barto, 2001; Hengst, 2002; Pickett and Barto, 2002). Many of these
algorithms for hierarchy discovery require extensive experience, simulated or real.
This experience can be used to construct a model of the environment and, in combi-
nation with a minimization algorithm, can be used to derive a reduced representation
of the option discovered. This is a promising direction to pursue for constructing
useful relativized options. The model itself would be an approximation of the true
system dynamics and hence would introduce additional error while forming reduced
models. We can use the approach due to Kearns and Singh (1998), specifically their

simulation lemma, to characterize the accuracy of the constructed model.

Applications

This thesis lays the theoretical foundation for a flexible abstraction paradigm and
provides tools for constructing powerful representational idioms. As we saw in Section
6.7, applying these ideas to specific domains requires significant amounts of domain
knowledge and design. Relativized options and MDP homomorphisms provide us with
tools for efficiently using this domain knowledge. Applications using the control basis
framework are particularly suitable since much of the prior work that needs to be
done in codifying the domain knowledge is in place and we can use our framework to
build upon it. We desire to build general guidelines for exploiting domain knowledge

in other application domains as well.

Deictic Representations
Memoryless consistent representation (CR) algorithms are a weak approach to

learning with deictic representations. The only other memoryless CR algorithm, the

147

Lion algorithm, works only in deterministic environments. We can employ deictic
option schemas in stochastic environments, but the assumption that the set of deictic
pointers available is sufficient to express a CR is a restrictive assumption. In the
Bayesian approach we employ in Chapter 5 we assume the existence of a fixed set
of correct pointer configurations that do not change during the execution of a sub-
task. This is seldom the case, especially when we assume that the transformations
are implemented by physical sensors and effectors. In order to make deictic option
schemas more flexible we need to allow the correct pointer configuration to change
during a sub-task. One approach is to incorporate more features in the parameter
estimation algorithm, which can evolve during the execution of a task. In addition to
the current pointer values, using memory to derive the abstract representation also
vastly enhances the power of deictic option schemas. More exploration is needed in

this direction in order to verify the plausibility of these ideas.

Extending the Bayesian Algorithm

We formulate the problem of identifying the right transformation to apply in a
given sub-task as a parameter estimation problem in which the agent chooses the right
value from a discrete set of transformations. We can extend this approach to cases
where the transformations are not known in advance, but a family of transformations
is determined by some set of parameters. Such situations arise especially in domains
with continuous system dynamics. The transformations may be determined by some
continuous valued parameters, which can then be estimated using a Bayesian approach
similar to the one presented in this thesis.

The algorithm presented in Chapter 5 considers only the transition dynamics. This
is sufficient in many cases to identify the correct transformations, as demonstrated
in the experiments. In some domains it becomes imperative to pay attention to

the reward structure also in order to choose the correct transformations. One way

148

to achieve this is to keep track of the wvalue of each transformation along with the
posterior probabilities. The values are updated using a stochastic approximation
rule, but with the immediate rewards weighted by the current posteriors for the
transformation. This is a simple intuitively appealing approach to incorporating
reward structure in our search for the right transformation, and we are presently

working on empirically validating it.

7.3 Closing Remarks

In this dissertation we developed an algebraic framework for describing abstrac-
tion in MDPs. One of the key insights in this work is that a wide variety of commonly
used abstractions are in fact different aspects of the same underlying mathematical
structure captured by MDP homomorphisms and symmetry groups of MDPs. This
work is largely theoretical in nature, with limited empirical validation. In the later
part of the dissertation we built powerful representational idioms, namely relativized
options, option schemas and deictic option schemas, based on the notion of homo-
morphic equivalence. We envision these representational idioms forming part of the
basis for lifelong learning in a situated agent. The agent would build a repertoire of
schemas and transformations based on past training and experience. When confronted
with a new situation the agent tries to use an existing schema under an appropriate

transformation or acquire a new schema, building on its already acquired knowledge.

149

APPENDIX A
PROOF OF THEOREM 5

Definition: Let h = (f, {gs|s € S}) : M1 — My and I/ = (f',{g.|s € S}) : My —
M3 be two MDP homomorphisms. The composition of h and h’ denoted by h o A’ is
a map from M; to Ms, with (hoh')(s,a) = h'(h(s,a)) = (f’(f (s)),g}(s)(gs (a))) for
all (s,a) € W. Tt can be easily verified that h o b’ is a homomorphism from M; to
M.

Theorem 5: Let B be the coarsest reward respecting SSP partition of MDP M =

(S, A, ¥, P R). The quotient MDP M /B is a minimal image of M.

Proof: We will prove this by proving the contrapositive: if M/B is not a minimal
image of M, then B cannot be the coarsest reward respecting SSP partition of M.

Let h be the homomorphism from M to M/B. If M/B is not a minimal MDP,
then there exists a homomorphism A’ (that is not an isomorphism) from M/B to
some MDP M. Therefore there exists a homomorphism (h o A') from M to M.
From the definition of composition, it is evident that Bj < Bon.

We need to show that B is not coarser than B .. In other words we need to
show that either B < B0y or they are not comparable. From the construction of a
quotient MDP it is clear that B,|S = B|S since we use B|S as the states of M/B.
Since M’ is a homomorphic image of M /B but is not isomorphic to it, either (i) M’
has fewer states than M /B or (ii) some states in M’ have fewer actions than M/B.
In case (i) we have that B|S < B(non|S. We know that this implies that B is not

coarser than B(nopy. In case (ii) we have that B|S = Bon)|S. Let [s]5 (= [s]B(h h/))

150

be a state with fewer admissible actions in M’. This implies that s appears in fewer
unique blocks in Bjepry than in B. Thus B < Bjony. Therefore B is not the coarsest
reward respecting SSP partition. Hence M /B is a minimal image if B is the coarsest

reward respecting partition of M. O

151

APPENDIX B

SOME RESULTS ON APPROXIMATIONS OF DYNAMIC
PROGRAMS

In this appendix we present, without proofs, some results due to Whitt (1978) on
error bounds in approximations of dynamic programs. Whitt develops these bounds
for a general formulation of dynamic programs developed by Denardo (1967), known
as the monotone contraction operator model. MDPs are a special case of such operator

models. Much of the material presented in this section is derived from Whitt’s (1978)

paper.

B.1 Contraction Operator Model of Dynamic Programs

Definition: A dynamic program is defined by the tuple (S,{As,s € S}, h,7). Here
S is the (non-empty) set of states and Ay is the set of actions admissible in state
s. Let the policy space II be the Cartesian product of the action spaces.! Let V
be the set of all bounded real-valued functions on S, with the supremum norm:
V|| = sup{|V(s)| : s € S}. The local income function h assigns a real number to
each triple (s,a,V), with s € S, a € A;and V € V. The function h generates a return
operator H, on V for each m € II, with [H,(V)](s) = h(s,n(s),V). The following

assumptions are made about the return operators:

(B) Boundedness: There exist numbers K and K, such that ||H, V|| < K;+ K|V
forall V € V and 7 € IL.

IThis implies we are only considering deterministic policies.

152

(M) Monotonicity: If V> U in V, ie., if V(s) > U(s) for all s € S, then H,V >
H, U in V for all = € II.

(C) Contraction: For 0 <~ < 1, ||H,U — H,V| < ~||U = V||, for all U,V € V and

7 e II.

The contraction assumption implies that H, has a unique fixed point in V' for each
7 € II, denoted by V™ and called the return function of 7. Let V* denote the optimal
return function defined by V*(s) = sup{V"(s) : m € II}. Let H* be the maximization
operator on V defined by [H*(V)] (s) = sup{[H(V)] (s) : m € I1}. The key property
of this model is that the operator H* also has the properties (B), (M) and (C) and it
fixed point is the optimal value function V*.

To make this more accessible, let us see how this model can represent an MDP,
M = (S,A, ¥, P,R). The states and action sets of the MDP are the states and
actions of the corresponding dynamic program. The parameter v has to be chosen
apriori as is usually done. We define the local return function corresponding to M
as follows:

h(s,a,V) = R(s,a)+ ’yz P(s,a,s")V(s)

where V' is a real valued function on S. If V' corresponds to the value function for
some fixed policy 7, then the function A is in fact the) function corresponding to the
policy 7. In traditional MDP notation, we restrict attention to only value functions
corresponding to some policies and do not consider all elements of V. Hence the
traditional notation depends only on the policy and not on the function V.

For a fixed policy 7, the operator H, converges to the value function for the policy
in M. The operator models a technique known as iterative policy evaluation. The
maximization operator H* converges to the optimal value function for M and models

the MDP solution technique known as value iteration (Puterman, 1994).

153

B.2 Whitt’s Approximation Results

We present a brief description of Whitt’s approximation framework for dynamic
programs and state just the results we use in this thesis. For a more complete de-
scription and the proofs see (Whitt, 1978). Let D = (S,{As,s € S}, h,7v) and
D = (5" {A,,s €S} ,v) be two dynamic programs. We say D and D’ are com-
parable and D’ is an image of D is the following maps are well-defined: (1) a map f
from S onto S’, (2) a map g, from A, onto Ay, (3) a map f’ from S’ into S such
that f(f'(s")) = s for all s € S" and (4) a map g, from Ay into A, such that
gs (9.(a’)) = a' for all a’ € Ay, and s € S.

Given two comparable dynamic programs, the distance between them can be

expressed in terms of the following quantity, for all V' € V:

K(V) = sup |h(s,a,V) = W' (f(s), gs(a), f(V))]

a€As
seS

where f(V) :S" — R with f(V)(s') = V(f'(s')) for each s’ € S'. We then define

KV = K(f'(V')) where f'(V'): S — IR with f'(V')(s) = V'(f(s)) for each s € S.
We state the following without proof:

Lemma 3.1: For al U, V' € V', |[K(U') — K(V")| < (v +7) JU" = V]

Corollary: If 7' is an e-optimal policy in II' then:?

v v

2 " v+
< ——K(VT” 1
71, ()+<+1_7>e

where 77 is the policy formed by lifting 7'* to the dynamic program D.?

2If 7 is an e-optimal policy, then [|[V* — V7| <.

3Under Whitt’s definition of lifting, we need to ensure that the lifted policy is also deterministic.
Hence instead of assigning equal probabilities to all the pre-image actions, we just pick one.

154

The following result applies to stochastic sequential decision models like MDPs.

For the sake of simplicity we present the Theorem as it applies to finite MDPs. In the

previous section we saw how to construct a dynamic program to represent a MDP.

Let us define the following quantities:

max | R(s,a) ~ R(/(s),0,(@) |

max Y | T(s.a,[s],) = P'((s). g.(a), f(s1) |
a€As [sﬂfGBf

max V(s) — min V(s)

o(f' (V)

max R'(s',a’) — inf R'(s',d)
s'es’ s'es’!
a’GAS/ a,’EAS/

Theorem 6.1 For any V' € V', K(V') < K, + 7 5(‘/’)%,

Corollary: K(V™") < K, + {20, “2.

155

BIBLIOGRAPHY

Agre, P. E. (1988). The dynamic structure of everyday life. Technical Report AITR-
1085, Massachusetts Institute of Technology.

Agre, P. E. and Chapman, D. (1987). Pengi: An implementation of a theory of
activity. In Proceedings of AAAI-87.

Amarel, S. (1968). On representations of problems of reasoning about actions. Ma-
chine Intelligence, 3:131-137.

Andre, D. and Russel, S. (2001a). Programmable reinforcement learning agents. In
Dietterich, T. G., Tresp, V., and Leen, T. K., editors, Proceedings of Advances
in Neural Information Processing Systems 13, pages 1019-1025, Cambridge, MA.
MIT Press.

Andre, D. and Russel, S. J. (2001b). State abstraction for programmable reinforce-
ment learning agents. Submitted to NIPS 2001.

Arbib, M. A. (1995). Schema theory. In Arbib, M. A.| editor, The Handbook of Brain
Theory and Neural Networks, pages 830-834. MIT Press, Cambridge, MA.

Arbib, M. A. and Manes, E. G. (1975). Arrows, Structures and Functors. Academic
Press, New York, NY.

Ballard, D. H., Hayhoe, M. M., Pook, P. K., and Rao, R. P. N. (1996). Deictic
codes for the embodiment of cognition. Technical Report NRL95.1, University of
Rochester.

Bartlett, F. C. (1932). Remembering. Cambridge University Press, Cambridge Eng-
land.

Bertsekas, D. P. (1987). Dynamic Programming: Deterministic and Stochastic Models.
Prentice-Hall, Englewood Cliffs, NJ.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming. Athena
Scientific, Belmont, MA.

Boutilier, C., Dean, T. L., and Hanks, S. (1999). Decision theoretic planning: Struc-
tural assumptions and computational leverage. Journal of Artificial Intelligence
Research, 11:1-94.

156

Boutilier, C. and Dearden, R. (1994). Using abstractions for decision theoretic plan-
ning with time constraints. In Proceedings of the AAAI-94, pages 1016-1022. AAAL

Boutilier, C., Dearden, R., and Goldszmidt, M. (1995). Exploiting structure in pol-
icy construction. In Proceedings of International Joint Conference on Artificial
Intelligence 14, pages 1104-1111.

Boutilier, C., Reiter, R., and Price, R. (2001). Symbolic dynamic programming for
first-order MDPs. In Proceedings of the Seventeenth International Joint Conference
on Artificial Intelligence, pages 541-547.

Bradtke, S. J. and Duff, M. O. (1995). Reinforcement learning methods for
continuous-time Markov decision problems. In Minton, S., editor, Advances in

Neural Information Processing Systems, volume 7, pages 393-400, Cambridge, MA.
MIT Press.

Chapman, D. (1991). Vision, Instruction, and Action. MIT Press, Cambridge, MA.

Cleary, M. E. (1997). Systematic use of Deictic Commands for Mobile Robot Navi-
gation. PhD thesis, Northeastern University, Boston, MA, USA.

Coelho, J. A. and Grupen, R. A. (1997). A control basis for learning multifingered
grasps. Journal of Robotic Systems, 14(7):545-557.

Dayan, P. and Hinton, G. E. (1993). Feudal reinforcement learning. In Advances in
Neural Information Processing Systems 5, pages 271-278. Morgan Kaufmann.

Dean, T. and Givan, R. (1997). Model minimization in Markov decision processes.
In Proceedings of AAAI-97, pages 106-111. AAAL

Dean, T., Givan, R., and Kim, K.-E. (1998). Solving planning problems with large
state and action spaces. In Proceedings of the Fourth International Conference on
Artificial Intelligence Planning Systems.

Dean, T., Givan, R., and Leach, S. (1997). Model reduction techniques for computing
approximately optimal solutions for Markov decision processes. In Proceeding of
UAI-97.

Dean, T. and Kanazawa, K. (1989). A model for reasoning about persistence and
causation. Computer Intelligence, 5(3):142-150.

Dean, T. and Lin, S.-H. (1995). Decomposition techniques for planning in stochastic
domains. In Proceedings of the 1995 International Joint Conference on Artificial
Intelligence.

Denardo, E. V. (1967). Contraction mappings in the theory underlying dynamic
programming. SIAM Review, 9:165-177.

157

Dietterich, T. G. (1998). Hierarchical reinforcement learning with the MAXQ value
function decomposition. In Proceedings of the 15th International Conference on
Machine Learning ICML’98, San Mateo, CA. Morgan Kaufmann.

Dietterich, T. G. (2000a). Hierarchical reinforcement learning with the MAXQ value
function decomposition. Artificial Intelligence Research, 13:227-303.

Dietterich, T. G. (2000b). An overview of MAXQ hierarchical reinforcement learning.
In Choueiry, B. Y. and Walsh, T., editors, Proceedings of the Fourth Symposium
on Abstraction, Reformulation and Approximation SARA 2000, Lecture Notes in
Artificial Intelligence, pages 26-44, New York, NY. Springer-Verlag.

Dietterich, T. G. (2000c). State abstraction in MAXQ hierarchical reinforcement
learning. In Solla, S. A., Leen, T. K., and Muller, K., editors, Proceedings of Ad-

vances in Neural Information Processing Systems 12, pages 994-1000, Cambridge,
MA. MIT Press.

Digney, B. (1996). Emergent hierarchical control structures: Learning reac-
tive/hierarchical relationships in reinforcement environments. In Maes, P. and

Mataric, M., editors, From animals to animats 4: The fourth conference on the
Simulation of Adaptive Behavior SAB 96. MIT Press/Bradford Books.

Digney, B. (1998). Learning hierarchical control structure for multiple tasks and
changing environments. In From animals to animats 5: The fifth conference on the
Simulation of Adaptive Behavior: SAB 98.

Drescher, G. L. (1991). Made-Up Minds. MIT Press, Cambridge, MA.

Drummond, C. (1998). Composing functions to speed up reinforcement learning in a
changing world. In Furopean Conference on Machine Learning, pages 370-381.

Emerson, E. A.; Jha, S., and Peled, D. (1997). Combining partial order and symmetry
reductions. In Brinksma, E., editor, Tools and Algorithms for the Construction and
Analysis of Systems, pages 19-34, Enschede, The Netherlands. Springer Verlag,
LNCS 1217.

Emerson, E. A. and Sistla, A. P. (1996). Symmetry and model checking. Formal
Methods in System Design, 9(1/2):105-131.

Emerson, E. A. and Sistla, A. P. (1997). Utilizing symmetry when model-checking
under fairness assumptions: An automata-theoretic approach. ACM Transactions
on Programming Languages and Systems, 19(4):617-638.

Emerson, E. A. and Trefler, R. J. (1998). Model checking real-time properties of
symmetric systems. In Mathematical Foundations of Computer Science, pages 427—
436.

158

Emerson, E. A. and Trefler, R. J. (1999). From asymmetry to full symmetry: New
techniques for symmetry reduction in model checking. In Conference on Correct
Hardware Design and Verification Methods, pages 142—156.

Evans, S. H. (1967). A brief statement of schema theory. Psychonomic Science,
8:87-88.

Feng, Z., Hansen, E. A., and Zilberstein, S. (2003). Symbolic generalization for on-line
planning. In Proceedings of the Nineteenth Conference on Uncertainty in Artificial
Intelligence (UAI 2003).

Finney, S., Gardiol, N. H., Kaelbling, L. K., and Oates, T. (2002). That thing
we tried didn’t work very well: Deictic representation in reinforcement learning.
In Proceedings of the 18th International Conference on Uncertainty in Artificial
Intelligence.

Getoor, L., Friedman, N., Koller, D.; and Pfeffer, A. (2001). Learning probabilistic
relational models. In Dzeroski, S. and Lavrac, N., editors, Relational Data Mining.
Springer-Verlag.

Givan, R. and Dean, T. (1997). Model minimization, regression, and propositional
strips planning. In Proceedings of the International Joint Conference on Artificial
Intelligence ’97.

Givan, R., Dean, T., and Greig, M. (2003). Equivalence notions and model minimiza-
tion in Markov decision processes. Artificial Intelligence, 147(1-2):163-223.

Givan, R., Leach, S., and Dean, T. (2000). Bounded-parameter Markov decision
processes. Artificial Intelligence, 122:71-109.

Glover, J. (1991). Symmetry groups and translation invariant representations of
Markov processes. The Annals of Probability, 19(2):562-586.

Hartmanis, J. and Stearns, R. E. (1966). Algebraic Structure Theory of Sequential
Machines. Prentice-Hall, Englewood Cliffs, NJ.

Hengst, B. (2002). Discovering hierarchy in reinforcement learning with HEXQ. In
Proceedings of the 19th International Conference on Machine Learning, pages 243—
250.

Hennessy, M. and Milner, R. (1985). Algebraic laws for nondeterminism and concur-
rency. Journal of the Association for Computing Machinery, 31(1):137-161.

Hernandez-Gardiol, N. and Mahadevan, S. (2001). Hierarchical memory-based re-
inforcement learning. In Dietterich, T. G., Tresp, V., and Leen, T. K., editors,
Proceedings of Advances in Neural Information Processing Systems 13, pages 1047—
1053, Cambridge, MA. MIT Press.

159

Howard, R. A. (1960). Dynamic Programming and Markov Processes. MIT press,
Cambridge, MA.

Howarth, R. J. and Buxton, H. (1993). Selective attention in dynamic vision. In
Proceedings of the Thirteenth IJCAI Conference, pages 1579-1584.

Huber, M. (2000). A Hybrid Architecture for Adaptive Robot Control. PhD thesis,
University of Massachusetts, Amherst, Massachusetts, USA.

Huber, M. and Grupen, R. A. (1999). A hybrid architecture for learning robot control
tasks. In Proceedings of the 1999 AAAI Spring Symposium Series: Hybrid Systems
and Al: Modeling, Analysis and Control of Discrete + Continuous Systems, Stan-
ford University, CA.

Iba, G. A. (1989). A heuristic approach to the discovery of macro-operators. Machine
Learning, 3:285-317.

Ip, C. N. and Dill, D. L. (1996). Better verification through symmetry. Formal
Methods in System Design, 9(1/2).

Jaakkola, T., Jordan, M. I., and Singh, S. P. (1994). On the convergence of stochastic
iterative dynamic programming algorithms. Neural Computation, 6(6):1185-1201.

Jarvella, R. J. and Klein, W. (1982). Speech, place, and action: studies in deizis and
related topics. John Wiley & Sons Ltd.

Jonsson, A. and Barto, A. G. (2001). Automated state abstraction for options using
the u-tree algorithm. In Dietterich, T. G., Tresp, V., and Leen, T. K., editors,
Proceedings of Advances in Neural Information Processing Systems 13, pages 1054—
1060, Cambridge, MA. MIT Press.

Jump, J. R. (1969). A note on the iterative decomposition of finite automata. Infor-
mation and Control, 15:424-435.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998). Planning and acting
in partially observable stochastic domains. Artificial Intelligence, 101(1-2):99-134.

Kearns, M. and Singh, S. (1998). Near-optimal reinforcement learning in polynomial
time. In Proceedings of the 15th International Conference on Machine Learning,
pages 260—268. Morgan Kaufmann, San Francisco, CA.

Kemeny, J. G. and Snell, J. L. (1960). Finite Markov Chains. Van Nostrand, Prince-
ton, NJ.

Kim, K.-E. and Dean, T. (2001). Solving factored MDPs via non-homogeneous par-
titioning. In Proceedings of the Seventeenth International Joint Conference on
Artificial Intelligence, pages T47-752.

160

Knoblock, C. A. (1990). Learning abstraction hierarchies for problem solving. In
Proceedings of the Fighth National Conference on Artificial Intelligence (AAAI-
90), volume 2, pages 923-928, Boston, MA. MIT Press.

Koller, D. and Parr, R. (2000). Policy iteration for factored MDPs. In Proceedings of
the Sixteenth Uncertainty in AI Conference, pages 326-334.

Koller, D. and Pfeffer, A. (1998). Probabilistic frame-based systems. In Proceed-
ings of the Fifteenth National Conference on Artificial Intelligence, pages 580-587,
Madison, WI. AAAT Press.

Land, M. F., Mennie, N., and Rusted, J. (1998). Eye movements and the roles of
vision in activities of daily living: making a cup of tea. Investigative Ophthalmology
and Visual Science, 39(S457).

Lang, S. (1967). Algebraic Structures. Addison Wesley, Reading, MA.

Larsen, K. G. and Skou, A. (1991). Bisimulation through probabilistic testing. In-
formation and Computation, 94(1):1-28.

Lee, D. and Yannakakis, M. (1992). Online minimization of transition systems. In
Proceedings of 24" Annual ACM Symposium on the Theory of Computing, pages
264-274. ACM.

Lyons, D. M. and Arbib, M. A. (1989). A formal model of computation for sensory-
based robotics. IEEE Transactions on Robotics and Automation, 5:280-293.

McCallum, A. (1995). Reinforcement Learning with Selective Perception and Hidden
State. PhD thesis, Computer Science Department, University of Rochester.

McGovern, A. and Barto, A. G. (2001). Automatic discovery of subgoals in rein-
forcement learning using diverse density. In Proceedings of the 18th International
Conference on Machine Learning ICML 2001, pages 361-368.

McMillan, K. L. (1993). Symbolic Model Checking. Kluwer Academic Publishers,
Norwell Massachusetts.

Minut, S. and Mahadevan, S. (2001). A reinforcement learning model of selective vi-
sual attention. In Proceedings of the Fifth International Conference on Autonomous
Agents, Montreal.

Parr, R. (1998). Hierarchical Control and learning for Markov decision processes.
PhD thesis, University of California at Berkeley.

Parr, R. and Givan, R. (2001). Large state space techniques for Markov decision
processes. Invited presentation at Dagstuhl Seminar 01451, Exploration of Large
State Spaces.

161

Parr, R. and Russell, S. (1997). Reinforcement learning with hierarchies of machines.

In Proceedings of Advances in Neural Information Processing Systems 10, pages
1043-1049. MIT Press.

Paz, A. (1971). Introduction to Probabilistic Automata. Academic Press, New York,
NY.

Piaget, J. (1952). The Origins of Intelligence in Children. International Universities
Press.

Piaget, J. (1954). The Construction of Reality in the Child. Basic Books.

Pickett, M. and Barto, A. G. (2002). Policy blocks: An algorithm for creating useful
macro-actions in reinforcement learning. In Proceedings of the 19th International
Conference on Machine Learning.

Platt Jr., R., Fagg, A. H., and Grupen, R. A. (2003). Extending fingertip grasping
to whole body grasping. In Proceedings of the IEEE International Conference on
Robotics and Automation.

Platt Jr., R., Fagg, A. H., and Grupen, R. A. (2004). Manipulation gaits: Sequences
of grasp control tasks. Submitted to the IEEE International Conference on Robotics
and Automation.

Popplestone, R. and Grupen, R. (2000). Symmetries in world geometry and adaptive
system behaviour. In Proceedings of the 2nd International Workshop on Algebraic
Frames for the Perception-Action Cycle (AFPAC 2000), Kiel, Germany.

Precup, D. (2000). Temporal Abstraction in Reinforcement Learning. PhD thesis,
University of Massachusetts, Amherst.

Puterman, M. L. (1994). Markov Decision Processes. Wiley, New York, NY.

Russel, S. and Norvig, P. (1995). Artificial Intelligence - A Modern Approach.
Prentice-Hall, Englewood Cliffs.

Satia, J. K. and Lave, R. E. (1973). Markovian decision processes with uncertain
transition probabilities. Operations Research, 21:728-740.

Schmidt, R. A. (1975). A schema theory of discrete motor skill learning. Psychological
Review, 82(4):225-260.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning. An Introduction.
MIT Press, Cambridge, MA.

Sutton, R. S., Precup, D., and Singh, S. (1999). Between MDPs and Semi-MDPs:
A framework for temporal abstraction in reinforcement learning. Artificial Intelli-
gence, 112:181-211.

162

Sweeny, J. D. (2003). Active QoS flow maintenance in robotic, mobile, ad hoc net-
works. Synthesis Project Report, University of Massachusetts, Amherst.

Ullman, S. (1984). Visual routines. Cognition, 18:97-159.

Watkins, C. J. C. H. (1989). Learning from delayed rewards. PhD thesis, Cambridge
University, Cambridge, England.

Watkins, C. J. C. H. and Dayan, P. (1992). Technical note: g-learning. Machine
Learning, 8(3/4):279-292.

White, C. C. and Eldeib, H. K. (1986). Parameter imprecision in finite state, finite
action dynamic programs. Operation Research, 34:120-129.

White, C. C. and Eldeib, H. K. (1994). Markov decision processes with imprecise
transition probabilities. Operations Research, 43:739-749.

Whitehead, S. D. and Ballard, D. (1991). Learning to perceive and act by trial and
error. Machine Learning, 7:45-83.

Whitehead, S. D. and Lin, L.-J. (1995). Reinforcement learning of non-Markov deci-
sion processes. Artificial Intelligence, 73:271-306.

Whitt, W. (1978). Approximations of dynamic programs . Mathematics of Operations
Research, 3(3):231-243.

Zeigler, B. P. (1972). On the formulation of problems in simulation and modelling
in the framework of mathematical system theory. In Proceedings of the Sizth In-
ternational Congress on Cybernetics, pages 363-385. Association Internationale de
Sybernétique.

Zinkevich, M. and Balch, T. (2001). Symmetry in Markov decision processes and its
implications for single agent and multi agent learning. In Proceedings of the 18th
International Conference on Machine Learning, pages 632640, San Francisco, CA.
Morgan Kaufmann.

163

