
Hierarchical Control and Learning

for

Markov Decision Processes

by

Ronald Edward Parr

A�B� �Princeton University� ����

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge�

Professor Stuart Russell� Chair
Professor Jitendra Malik
Professor Thomas Marschak

���	



�



The dissertation of Ronald Edward Parr is approved�

Chair Date

Date

Date

University of California at Berkeley

���	



�



�

Abstract

Hierarchical Control and Learning

for

Markov Decision Processes

by

Ronald Edward Parr

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Stuart Russell
 Chair

This dissertation investigates the use of hierarchy and problem decomposition as a

means of solving large� stochastic� sequential decision problems� These problems are framed

as Markov decision problems �MDPs�� The new technical content of this dissertation begins

with a discussion of the concept of temporal abstraction� Temporal abstraction is shown

to be equivalent to the transformation of a policy de	ned over a region of an MDP to an

action in a semi
Markov decision problem �SMDP�� Several algorithms are presented for

performing this transformation e�ciently�

This dissertation introduces the HAM method for generating hierarchical� tempo


rally abstract actions� This method permits the partial speci	cation of abstract actions in

a way that corresponds to an abstract plan or strategy� Abstract actions speci	ed as HAMs

can be optimally re	ned for new tasks by solving a reduced SMDP� The formal results show

that traditional MDP algorithms can be used to optimally re	ne HAMs for new tasks� This

can be achieved in much less time than it would take to learn a new policy for the task from

scratch�

HAMs complement some novel decomposition algorithms that are presented in

this dissertation� These algorithms work by constructing a cache of policies for di�erent

regions of the MDP and then optimally combining the cached solution to produce a global

solution that is within provable bounds of the optimal solution�

Together� the methods developed in this dissertation provide important tools for



�

producing good policies for large MDPs� Unlike some ad
hoc methods� these methods

provide strong formal guarantees� They use prior knowledge in a principled way� and they

reduce larger MDPs into smaller ones while maintaining a well
de	ned relationship between

the smaller problem and the larger problem�

Professor Stuart Russell
Dissertation Committee Chair
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Chapter �

Introduction

This chapter is intended to be a mostly non
technical introduction to the topics

addressed in this dissertation� It provides an overview of the basic concepts and terminology

that will be used and outlines� at a high level� the novel contributions contained in the

following chapters�

��� Introduction to the Introduction

This dissertation addresses the topic of hierarchical learning and control for stochas


tic� sequential decision problems� Loosely speaking� a stochastic� sequential decision prob


lem is one that involves decision making in an environment where there is uncertainty� The

sequential aspect of the decision problem re�ects the fact that the immediate cost or bene	t

of any state of the environment may play only a small part in determining the true value of

any state� This permits the appropriate distinctions between states that have an apparent

immediate bene	t �e�g� being served ice cream� and those that have an apparent bene	t

but look less desirable when viewed in a larger context �e�g� being served ice cream before

a trip to the gallows��

The decision
making problem is framed from the perspective of an agent that is

situated in an environment� An agent can be a person executing a strategy to solve some

task� a robot roaming about an o�ce� or a faceless control program managing an industrial

process� The term serves both as a placeholder and as a convenient anthropomorphization�

The aim of algorithms for stochastic� sequential decision making is to develop a

conditional plan� or policy� that describes a strategy that maximizes the bene	t �or min
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imizes the cost� of acting in a particular environment over an extended period of time�

This broad view encompasses countless problems in the intersection between operations

research� arti	cial intelligence� and control theory� Some well
known examples include

equipment maintenance �Puterman� ������ inventory management �Puterman� ������ au


tonomous robot control �Mahadevan  Connell� ������ elevator scheduling �Crites  Barto�

������ and factory automation �Mahadevan� Marchalleck� Das�  Abhijit� ������

The formal framework that is used to describe stochastic� sequential decision prob


lems is the Markov decision process �MDP�� When a problem description satis	es the re


quirements of the MDP framework� well
known algorithms can be used to determine an

optimal policy� In principle� these algorithms could be used to solve a wide range of prob


lems of great practical and economic importance� autonomous control of automobiles� the

design of treatment schedules for medical patients� the planning of space missions or pol


lution minimization and mitigation� Unfortunately� while many problems can be modeled

as MDPs� not all of these problems can be solved easily within this framework� Models

that satisfy the requirements of a valid MDP model tend to be extremely large� requiring

unreasonable amounts of memory and run
time using standard methods�

This work describes a collection of methods for attacking the complexity of large

MDPs through hierarchy and decomposition� It presents novel results on the use of com


plex� temporally extended actions within the MDP framework and proves the stability and

optimality of these methods as a consequence of their relationship to Semi
Markov Deci


sion Processes �SMDPs�� These results are 	rst shown to unify a number of approaches

developed independently by other authors� This uni	ed view is then used to develop a

new class of algorithms called symbolic methods� that generalize and extend existing MDP

algorithms to handle complex action descriptions and a new class of optimality criteria

based upon these descriptions� The new algorithms developed in the beginning of the dis


sertation provide the basis for a method called Hierarchies of Abstract Machines �HAMs��

which allows the incorporation of prior knowledge into the search for good policies� The

knowledge contained in a HAM is used to transform a large MDP into a smaller one that

makes provably optimal use of the knowledge provided�

This dissertation also attacks large MDPs from another angle� presenting a novel

approach to the decomposition of MDPs into independent� or nearly independent subprob


lems� These subproblems can be solved separately by devising a cache of solutions for each

subproblem� and 	nding the optimal way to combine the cached solutions in a relatively






light
weight step� This will produce a global policy that is a bounded distance from the op


timal policy� A new polynomial time algorithm for measuring the quality of a set of cached

solutions is presented and used as the basis for developing new solution caches� Since this

type decomposition may not always be practical if the size of the required solution cache is

very large� a method of partially decomposing an MDP into subproblems and intelligently

allocating computational resources between the subproblems is also presented� This method

uses a novel geometric approach to prove bounds on the distance from the optimal policy

based upon a sparse solution cache�

Together� these decomposition methods provide a framework for the transfer of

knowledge and experience across problems with similar structures� a long
sought goal of

MDP research� The HAM algorithms and the decomposition algorithms are complementary

in a very natural way� allowing the incorporation of prior knowledge into the MDP solution

process� the use of this knowledge to simplify the MDP� the decomposition of the MDP

into separate subproblems based upon the HAM hierarchy� and the transfer of knowledge

acquired from solving one problem to new problems�

First� however� the remainder of the introductory section establishes some of the

context in which this work resides�

��� Decision Making Under Uncertainty

Uncertainty happens� Men� machines� and the universe in general do not always

behave in the expected way� There is a temptation to dig in one�s heels in the face of

uncertainty and insist that all uncertainty is the result of inadequate modeling� This touches

on a deep philosophical issue� but also upon an extremely practical one� there is a point

of diminishing returns� where the return on e�ort invested to construct more complicated

models no longer merits the investment� At such a point� it may be most e�cient to account

explicitly for the uncertainty in the environment in order to achieve intelligent behavior�

The algorithms discussed here are intended to provide optimal behavior under precisely

these conditions�

����� Some Examples of Uncertainty in Real Problems

A common example used in arti	cial intelligence is that of a robot moving through

some sort of obstacle strewn environment� typically represented as a grid with some squares
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$

S

Figure ���� A simple navigation MDP� S indicates the starting state� � indicates a goal
state� the attainment of which yields reward�

blocked o� and others empty as in Figure ���� This representation is meant to model the

di�culties faced by a �domestic� robot which might be assigned tasks such as the delivery

of parcels from one room to another� Uncertainty is present at many levels even in such

simple problems� The robot�s motors may not always perform as expected� moving the robot

too far� not far enough� or in the wrong direction� The robot�s sensors can malfunction�

producing erratic or unreliable readings� and errors due to the discrepancy between the

robot�s representation of the environment and the true dynamics of the environment� can

all contribute to make this problem highly non
deterministic from the robot�s perspective�

Uncertainty is widespread in many more practical MDPs as well� Inventory man


agement problems �Puterman� ����� must account for uncertainty in demand levels� while

maintenance problems �Puterman� ����� must deal with the inherent unpredictability of

component failures� Elevator scheduling �Crites  Barto� ����� involves uncertainty in the

location and time of the next �oor
call� and the number of passengers entering and leaving

the elevator at each stop� Industrial plant automation �Mahadevan et al�� ����� involves all

of these issues� as parts and personnel must be shu!ed from work area to work area in the

most e�cient manner�

The more ambitious tasks become� the more it appears they are fraught with

uncertainty� Controlling an automobile involves massive uncertainty about both the road

conditions and the intentions of other drivers� The design of proper treatment regimes for

patients involves critical and unpredictable factors such as a patient�s tolerance for various
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drugs� Space missions are highly uncertain due to man�s limited ability to determine� in

detail� the speci	c conditions that exist on other planets� These types of uncertainty won�t

go away� drivers can�t take time to call each other on cell phones to communicate their

intention to change lanes" patients often need life
saving medicines without delay and in

the highest dose they can be expected to tolerate" the planets won�t reveal their mysteries

unless probes are sent to explore them�

����� Di�erent Types of Uncertainty

The types of uncertainty faced by agents can be characterized along several di


mensions�

� Modeled vs� unmodeled

� Uncertainty in action outcomes

� Uncertainty in perception

� Uncertainty in time

Uncertainty is modeled and algorithms using a model are model�based if the agent

has a representation of the e�ects of actions� typically a probability distribution over pos


sible outcomes� Uncertainty can be unmodeled or model�free if no such representation is

maintained� Clearly� the presence of a good model can only help in the planning process�

In many cases� however� it is impractical to construct a good model a priori� and it is nec


essary to use some form of sampling or learning from the environment to compensate� Most

of the algorithms discussed here will work with both modeled and unmodeled uncertainty�

Uncertainty in action outcomes is the best
understood and most tractable form of

uncertainty� In this case� the next environment state typically is expressed as some probabil


ity distribution over the states of the environment� conditioned on the current environment

state and action taken therein� E�ectors for simple robots� for example� exhibit this form

of uncertainty� Malfunctions or inaccuracy in the robot�s control circuitry can cause a joint

or even the entire robot to move in a manner that di�ers from the intended outcome� This

uncertainty in the result of the movements can be modeled with a probability distribution�

The algorithms discussed here will all work with uncertainty in action outcomes�

Uncertainty in perception or partial observability refers to an agent�s uncertainty

about the current state of the environment� This form of uncertainty is extremely important
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and extremely common due to the practical impossibility of perceiving accurately all of

the relevant features describing a particular situation with ���# accuracy� For example�

inexpensive sonars used on robots can have large errors in their distance estimates due to

re�ections� background noise� or general failures� These can cause signi	cant errors in the

robot�s own estimation of its position in the environment� General algorithms for this type

of partially observable MDP �POMDP��Lovejoy� ����� are complicated and can be very

ine�cient� Moreover� the problem in general is known to be intractable �Papadimitriou  

Tsitsiklis� ������ Some of the algorithms presented here can be useful in attacking special

cases of POMDPs� but a discussion of the application of this work to general POMDP

models is reserved for future work�

Uncertainty in time refers to uncertainty in the time duration between actions�

Problems with this form of uncertainty are called Semi
Markov decision problems or SMDPs

�Puterman� ������ Action uncertainty can arise in many ways� In one view of these situ


ations� the environment is a discrete event system �Ramadge  Wonham� ������ in which

the decision
making situations arise as events in the environment and the time between

such events is modeled as a probability distribution� A simple example of this is a queuing

system� in which the need for a decision� an assignment of a request to queue� arises as a

consequence of some exogenous event� the issuance of a request� In another view of SMDPs�

actions can be interpreted as complex events that take place over a period of time� For ex


ample� a robot action that moves the robot forward until an obstacle is hit is a temporally

extended event with uncertainty in both the duration of the action and terminating state

of the action� Since robots do not move in perfectly straight lines� the next obstacle the

robot hits� the obstacle�s distance from the robot�s present location� and� thus� the time

spent moving will all have uncertainty�

Note that when there is no uncertainty� �classical� AI techniques of search and

planning can be used to determine optimal strategies for most domains� These methods

can be quite successful when the assumption of zero uncertainty is a valid one� Hierarchical

methods for deterministic domains �Tate� ����� have shown that classical planning methods

can scale to solve some very large problems� One interpretation of the work presented here is

as an e�ort to apply the lessons learned from hierarchy and decomposition of deterministic

problems to their stochastic counterparts�
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����� Models of planning and acting

An important issue for any planning method is the relationship between the time

spent planning and the time spent acting� When there is no overlap between these two�

an optimal plan is constructed o��line and then used on�line without modi	cation� In

the example of a robot plan� one could imagine a large� powerful computer producing an

optimal plan which is then downloaded to a smaller� mobile computer inside of a robot�

The smaller computer is entrusted solely with executing the plan� O�
line planning is the

simplest and most easily understood form of planning and is the perspective from which

any new approach to stochastic planning should be tested and understood 	rst� All of the

algorithms presented in this dissertation can be used for o�
line planning�

While o�
line planning is the most straightforward form of planning� it also makes

the most restrictive assumptions� It assumes that a full model of the environment is available

a priori and that enough time is available� before the plan must be executed� to construct

a full plan covering all states in the environment� even those that are extremely unlikely

to occur when the plan is executed� For large problems� this can create an unreasonably

di�cult planning task�

One approach to loosening the requirements of a full plan is to allow some on
line

planning� where the agent executing the plan is allowed to construct or re	ne a plan as it

acts in a modeled environment� This route is desirable in situations where it is impractical

to construct a complete plan that covers every possible state an agent might encounter�

In such cases it often su�ces to use an approach that focuses on the states an agent will

most likely encounter while using heuristic or worst
case bounds to handle states for which

the agent does not have a full plan� Methods such as Plexus �Dean� Kaelbling� Kirman�  

Nicholson� ����� and real time dynamic programming �RTDP� �Barto� Bradtke�  Singh�

����� use this approach� This type of on
line planning or plan re	nement is not addressed

explicitly with the algorithms presented here� but they can be modi	ed in an obvious way

to work with Plexus or RTDP�

A more general loosening of the assumptions used in on
line planning allows an

agent to start acting in an environment with no initial plan and no model of the environment

at all� This regime can be forced upon an agent when it encounters a new environment or

any time when a complete environment model is too large or otherwise unwieldy� In such

situations� an agent must learn to act optimally the hard way� through experience� The
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agent can do this by constructing a model as it goes �Sutton� ����" Moore  Atkeson� ���
"

Andre� Friedman�  Parr� ����� or with no model at all �Watkins� ������ These methods�

which work by incrementally updating estimates of the value of each state� are referred

to as reinforcement learning �RL�� where �reinforcement� refers to the incremental nature

of the updates� and the relationship between this type of machine learning and biological

models of learning� �See Kaelbling� Littman� and Moore ������ for a survey�� The approach

to temporally extended actions presented here and the HAM
based hierarchical methods

are extended to reinforcement learning� The problem decomposition approach presented in

Chapter � has a less obvious application to RL� but some elements can be carried over to

the RL framework�

��� The State of MDP Solution Methods

This subsection provides a very brief overview of the current state of the art in

MDP algorithms and describes some of the limitations of current methods� The three basic

categories for for MDP algorithms are�

�� Algorithms that will provably converge to an optimal solution

�� Algorithms that will provably converge to a solution that is some characterizable

distance from the optimal solution


� Algorithms that sometimes converge to something that might not be too far from the

optimal solution $ maybe�

Since all MDP algorithms are iterative in some sense� convergence means that the algorithm

will reach a stable 	xed point or� at worst� oscillate in some reasonable area around a 	xed

point� This is in contrast to divergence� where an algorithm could produce meaningless

answers�

����� Provably Convergent and Optimal Algorithms

Provably convergent and optimal algorithms exist for both o�
line and on
line

planning� In the o�
line case� well
known algorithms such as value iteration� policy iteration

or linear programming �see e�g� Puterman ������� will produce optimal policies� In the on


line case� Q
learning or Prioritized Sweeping will produce optimal behavior� In their pure
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form� these algorithms all work by maintaining a big table� with one entry for every state

in the environment� They assign a utility value to every state in the environment� working

iteratively to successively improve their estimates of the utility of each state� When each

state is assigned the correct utility value� the optimal action is just the one that maximizes

the expected utility� The run time of these algorithms is linked directly to the number of

states and actions in the environment and will grow super
linearly in these factors� �See

Littman ������ for a more thorough discussion of the complexity of solving MDPs��

This explicit state representation provides the strongest convergence and optimal


ity guarantees of any approach to MDPs� but it also is the most restrictive approach� Large

problems will require large amounts of memory and even larger amounts of computational

resources �or environment experiences in the RL case�� Thus� problems with millions of

states will not be amenable to this type of direct approach� and such problems are not at

all far
fetched� In a robot control program� for example� every possible con	guration of

the robot and environment would be a distinct state� If the robot is unfortunate enough

to have something as simple as a single chess board in its environment� an explicit state

representation would require an astronomical number of states� making it quite impractical�

In some cases it will be possible to avoid an explicit representation of the state space

while maintaining desirable convergence and optimality properties� Boutilier� Dean� and

Goldszmidt ������ show that it is possible� in some cases� to replace a tabular representation

with a compact representation such as a decision tree� Dean and Givan ������ provide

further insight into when a compact representation of a value function can be achieved by

assigning the same utility to similar states� In theory� this makes it possible to manipulate

vast numbers of states that have the same utility as if they were a single state� These

are promising and theoretically appealing methods� but their usefulness depends upon the

existence of non
trivial problems with the right kinds of regularity and structure� The

density of these types of problems in the set of problems that are of practical interest is not

yet known�

Parallelization o�ers another line of attack for large problems� Papadimitriou and

Tsitsiklis ������ show that this approach does not appear to be very promising in general

due to the provable computational di�culty of general MDPs� However� parallel MDP

algorithms will converge �Bertsekas  Tsitsiklis� ����� and some special cases of MDPs

that are amenable to parallelism have been explored �Dean  Lin� ����" Lin� ������
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����� Provably Convergent Algorithms

If a suboptimal solution is acceptable� a number of approximate� but provably

convergent methods are available� One family of methods works by state aggregation� in

which states that are �similar� are grouped together and treated as a singled state� This

reduces the size of the state space� creating a smaller and easier
to
solve problem� Approx


imate versions of the Boutilier and Dearden approach and the Dean and Givan approach

mentioned above fall under this category when states are grouped together even if they

cannot be shown a priori to have the same value�

State aggregation can be approached from many di�erent angles� depending upon

the notion of similarity that is used to group states together� Boutilier and Dearden use

another approach to aggregation �Boutilier  Dearden� ����� in which states are grouped

together based upon their relevance to the agent�s expected performance in the environment�

If� for example� a robot receives no bene	t from playing or winning chess� then a chess board

in the environment� and the vast number of states it induces� would all be ignored� In less

contrived examples� few features of the environment are totally irrelevant� so the decision

to ignore certain features and group states together results in an approximation�

These are just a few of a large number of possible state aggregation methods� each

with its own advantages and pitfalls� For o�
line solution algorithms� any state aggregation

method that produces a valid MDP model will converge to an answer� The di�cult part is

deciphering how the solution to the aggregated model relates to the original problem� The

most conservative aggregation methods group states together only when certain bounds on

the relationship between the aggregated states and the original states can be established�

providing a roadmap to construct an approximately optimal policy for the original problem

based upon the solution to the aggregated problem� Bolder methods group states together

based upon expert knowledge or intuition about the similarity of states� These methods

provide no performance guarantees� but can work quite well in practice if careful choices

are made when the states are aggregated�

There is a signi	cant gap between theory and practice for state aggregation meth


ods� Conservative methods with provable performance guarantees have not yet been demon


strated to be useful for large� practical problems� while bolder methods based on intuition

appear to be used either implicitly or explicitly in almost every successful MDP application�
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Another important issue with state aggregation is that it may not behave stably

in a reinforcement learning context� O�
line state aggregation methods construct and then

solve a model that is an approximation of the original problem� On
line methods rely

upon the environment to produce a consistent probability distribution for the outcomes of

actions� If an agent internally treats two states that are signi	cantly di�erent as the same

state� then the agent may not perceive a consistent probability distribution over outcomes�

which can lead to oscillations or divergence in the agent�s estimate of the utility of states�

Function approximation is closely related to state aggregation� and can be used

in provably convergent algorithms in some cases� It replaces the tabular representation

for the utilities of states in the explicit state representation with a parameterized function

that maps from the states to values� If the table is simply replaced with a smaller table�

where several entries in the original table map to a single entry in the smaller table� then

function approximation is very similar to state aggregation� It di�ers signi	cantly from state

aggregation when more advanced function approximation methods are used� For example�

a neural network could be used to represent the utility of states� making it possible to

represent a utility function for a large number of states implicitly with a much smaller

number of network parameters� In this way� function approximation is much more versatile

than state aggregation is since it permits smoothing and generalization across similar states�

rather than simply forcing them to have the same value�

Gordon ������ establishes the convergence of a class of function approximation

methods for MDPs� This guarantees that for a fairly restricted class of approximation

methods� a stable utility function that is within some well
characterized distance from

the true one will result� Baird ������ establishes convergence for more general classes of

approximators� such as neural networks� but this method is awkward to use in practice�

the convergence may be extremely slow and the relationship between the resulting utility

function and the true utility function is extremely di�cult to characterize�

����� Algorithms that Might Converge to Something � Maybe

Some of the most ambitious function approximation methods use approximators

like neural networks in a reinforcement learning context and in a manner that is not guar


anteed to converge at all� In fact� there are well
known examples where such combinations

will diverge �Boyan  Moore� ������ Still� there are some intriguing examples of success
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with this approach� in Backgammon �Tesauro� ������ in job shop scheduling �Zhang  

Dietterich� ������ and in elevator scheduling �Crites  Barto� ������

Getting function approximators to work with reinforcement learning is a delicate

art� requiring careful adjustment of the parameters to the neural network and making the

discovery of the right set of parameters a tedious process of trial and error� The draw of

methods such as these� which lack performance guarantees or provable properties of any

kind� underscores the gap between theory and practice� Too many problems of practical

interest are simply too big for the formally certi	ed tools that are available�

��� Contributions of this Dissertation

The outlook for algorithms that have attractive formal properties and that can be

used to solve large MDPs is not all depressing� Beginning with the concept of temporal

abstraction� this dissertation develops new methods involving hierarchy and decomposition

that provide tools with provable optimality and convergence properties for solving large

MDPs� These tools provide a principled basis for the transfer of knowledge and experience

across problems and will help narrow the gap between theory and practice�

����� Temporal Abstraction

Temporal abstraction refers to the use of �high
level� actions� the execution of

which can take varying amounts of time� This is in contrast to �primitive� or �low
level�

actions which are used in the standard MDP framework and which are assumed to take

a uniform amount of time� Temporal abstraction permits a richer notion of actions� such

as the action of moving to the end of a hallway� driving to one�s house� or scratching until

an itch goes away� These complex actions take variable amounts of time that cannot be

determined a priori�

Many on
line and o�
line MDP algorithms have used implicitly or explicitly some

form of temporal abstraction �Forestier  Varaiya� ����" Lin� ���
" Sutton� ����" Dean  

Lin� ������ Chapter 
 uni	es these varied approaches by demonstrating that a temporally

abstract action is equivalent to the transformation of a policy de	ned over a region of an

MDP into an action in a related Semi
Markov Decision Process �SMDP�� This connection

between temporal abstraction and SMDPs permits the establishment of convergence and

optimality results for temporal abstraction algorithms as a consequence of the convergence
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and optimality results for standard SMDP algorithms� Chapter 
 also proves the conver


gence of a variant of Q
learning that has been modi	ed to work with SMDPs �Bradtke  

Du�� ������ de	nes a notion of equivalence between SMDPs� and proves basic theorems

about the soundness of operations for transforming temporally abstract MDP actions into

SMDP actions�

Chapter � presents a new class of algorithms designed to e�ciently execute the

transformations of Chapter 
 in direct� indirect� on
line and o�
line fashions� This chapter

also demonstrates the connection between temporal abstraction and asynchronous dynamic

programming� showing that a temporal abstraction is equivalent to a speci	c ordering of

asynchronous dynamic programming operators� The new understanding of temporal ab


straction that is developed in these chapters allows the description of a new set of optimal


ity criteria for MDPs� These criteria can be used to generate temporally abstract actions

according to high level criteria such as the maximization of the probability of reaching a

particular group of states� A new algorithm is presented for such high
level criteria that will

simultaneously discover the optimizing policy and the equivalent SMDP action description�

����� Knowledge Transfer and Reuse

Many problems can seem large or di�cult when viewed from the ground up� but

when they are viewed in the context of previous experience with similar problems� or when

a knowledgeable expert is available as a guide� these problems suddenly become much eas


ier� With a few exceptions �Thrun  Schwartz� ����� MDP algorithms have not employed

sophisticated or principled means for reusing and transferring knowledge� Chapter � intro


duces the HAM language for transferring knowledge from human to machine and machine

to machine� This language takes the form of a partially speci	ed� hierarchical� 	nite state

controller that can be interpreted as a set of constraints on the solutions that are considered

for a new MDP� This view of knowledge as a constraint may seem peculiar at 	rst� but it

is consistent with the way people approach problems� For example� when planning a trip

from one�s house the grocery store� one does not replan the detailed control decisions needed

to operate a motor vehicle or try to invent a hovercraft� Basic skills and assumptions are

taken for granted and solutions that involve discovering a new mode of transportation are

implicitly ruled out� HAMs exploit this basic idea and Chapter � shows how the structure

of a HAM is used to transform large MDPs into simpler SMDPs in such a way that the
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solution to the simpler SMDP makes provably optimal use of the knowledge contained in

the HAM� This transformation uses the concepts of temporal abstraction developed in the

previous chapters by using temporally abstract actions to implement machine subroutine

calls� The e�ectiveness of this approach is demonstrated on a large MDP�

Chapter � takes a di�erent and complementary approach to the reuse of knowledge�

While HAMs transfer procedural knowledge� the decomposition algorithms in this chapter

exploit structural similarities between di�erent problems to transfer experience from one

problem to another� These algorithms exploit the idea of a stored cache of policies that can

be used for recurring problem substructures� When a new problem is encountered� a solution

from the policy cache can be employed� or a simple linear program can be constructed to

prove bounds on the cost of using a cached solution instead of constructing a new one�

For example� a robot might have a cache of policies for moving around the 	rst �oor of a

building� When the robot encounters a new problem that speci	es a goal of reaching the

basement� the robot can plug in a 	rst
�oor policy from its cache or it can construct an

entirely new policy for the 	rst �oor� taking the new goal into account� Chapter � provides

insight into and a quanti�able measurement of the tradeo�s between reusing transferred

knowledge and discovering new knowledge�

����� Hierarchy and decomposition

Hierarchical representations are crucial to the e�cient representation of knowledge�

Knowing how to turn a steering wheel or operate a gear shift� by themselves� are fairly

useless� Knowing that these things can come together in service of the task of driving

a vehicle and that driving a vehicle is a means of transportation are necessary bits of

conceptual glue that make the di�erence between an unstructured heap of knowledge and

knowledge that is useful to accomplish real tasks� HAMs provide a hierarchical language

that permits tasks to be described as loose combinations of lower
level tasks� This separates

high
level decisions from low
level decisions and provides guidance as to the appropriate time

to make low level decisions� HAMs can convey the obvious but crucial information� that

one should decide how to go to the grocery store before even considering the mechanics of

turning a steering wheel or moving a gear shift� They are an e�cient and compact means

of transferring knowledge�
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HAMs also provide a natural decomposition of a task into subproblems� By creat


ing distinctions between di�erent types of activities� they create a hierarchy of task
related

subproblems� For example� choosing a mode of transportation constitutes one high
level

problem� Choosing optimal bus transfers or automobile routes constitute di�erent sub


problems that are activated depending upon the high
level transportation mode choice�

Since MDP subproblems tend not to be completely independent except in special cases

�Singh� ����" Lin� ����� some care must be used when problems are decomposed� Chap


ter � presents a new approach to the decomposition of MDPs� This approach applies to

the special� but frequently occurring type of MDPs that can be divided into subproblems

where the number of states connecting the subproblems is small� These problems can� in

principle� be divided into completely independent subproblems� where each subproblem is

solved by constructing a cache of solutions� Each solution in the cache is interpreted as a

temporally abstract action in the sense of Chapter 
 and the optimal combination of the

cached solution is determined e�ciently� The relationship between the combined solution

and globally optimal solution can be determined a priori with a new algorithm that will

produce solution caches that guarantee optimality within pre
speci	ed bounds� This rela


tionship can also be determined on
the
�y by using the same techniques used for knowledge

transfer� Thus� a fairly sparse cache of policies can be constructed for each subproblem�

and bounds can be proven as the subproblem solutions are combined� This quanti	es the

cost of using a sparse solution cache versus the cost of augmenting the cache with more

solutions� The e�ectiveness of these algorithms is demonstrated with some examples�

����� The Big Picture

This dissertation presents powerful new algorithms for solving large MDPs� These

algorithms assume an explicit state representation of the MDP� but aim to avoid the dif


	culties of explicit representations by never solving a large problem in its entirety� First�

knowledge in the form of a HAM can be used to produce a smaller SMDP� then the structure

of the HAM can be used to hierarchically decompose the SMDP into subproblems that are

solved �mostly� independently� This divide
and
conquer approach has the potential for a

dramatic reduction in the computational e�ort required to solve large MDPs� The advan


tages of these algorithms are that they provide a principled means of incorporating prior

knowledge� they have well
characterized convergence and optimality properties� and they
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use novel error
bounding methods to minimize the interaction between subproblems�

State aggregation and function approximation are largely orthogonal to the ap


proach advocated here� but some possible synergies are discussed brie�y in Chapter � along

with the issue of partial observability� Several extensions to the HAM language are sketched

in this chapter as well� providing a few examples of the many interesting areas of future

research that can build on the ideas in this dissertation�

The ideas developed here point in a direction that is signi	cantly di�erent from

that taken by much of the applied research in this area today� Those seeking to solve large

MDPs today typically ask themselves two questions�

�� What is a relatively well
behaved function approximation or state aggregation method

for this problem�

�� How do I select the inputs to this function approximation method�

These questions are very di�cult to answer and the answers tend not to be very general�

The resulting solutions are sometimes quite impressive� but are often quite frustrating� The

tools presented in this dissertation suggest some di�erent questions�

�� How can I bring knowledge and experience to bear on this problem�

�� How does this problem decompose�

For many domains� the answers to these questions are both more readily available and more

easily transferred to new problems� The algorithms in this dissertation provide the means

for exploiting these answers in a principled way� making the solution of large MDPs more

of a science and less of an art�
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Chapter �

Markov Decision Processes

This chapter introduces the Markov Decision Process �MDP� formalism� In this

formalism� an environment is divided into states� A set of actions induce stochastic state

transitions in the environment and determine the evolution of the process� The aim is to

devise a conditional plan� or policy that will maximize the expected bene	t �or minimize

the expected cost� of interacting with the environment� Several standard algorithms rooted

in operations research will 	nd an optimal policy for an MDP as a mapping from states to

actions� These algorithms are presented along with common notation and terminology that

are used throughout the dissertation� On
line variants� called Reinforcement Learning that

are more closely tied to Arti	cial Intelligence and that learn the optimal policy through

experience with a previously unknown domain are also presented�

The standard algorithms for MDPs are e�cient in the number of states and actions

in the MDP� However� the formal requirements of the MDP framework� speci	cally the

Markov property� force representations of problems that use a very large number of states�

This chapter explains� in a more mathematical sense� the di�culties with large state spaces

that were outlined in the previous chapter and then presents a more technical discussion of

some common methods for dealing with large state spaces�

��� Basic Terminology

Formally� an MDP is a �
tuple� �S�A� T �R�� S is a set of states� In general� S

may be of in	nite cardinality� but for the purposes here it is assumed to be 	nite� A set of

actions� A� de	nes the actions that are possible or under consideration in the environment�
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It may be the case that only a subset of A is possible in any given state� so As is used

to refer to the set of actions possible in s � S� A will generally be 	nite although it will

sometimes be useful to consider in	nite cardinality A� usually when an action corresponds

to selecting some parameter in a continuous range� T is the transition model for the system

and is a mapping from S � A � S into probabilities in ��� ��� T �s� a� s�� � P �s�js� a�� the

probability that the next state will be s� when action a is taken in state s�

R is a reward function that maps from S�A�S to real
valued rewards� R�s� a� s��

is interpreted as the mean of a stochastic function that returns rewards upon transitions

from state s to state s� under action a� R�s� a�� s� must be 	nite for all s� a� and s�� From the

perspective of determining an optimal policy for an MDP� there is no distinction between

a reward function de	ned on S �A�S and one de	ned on S �A� as the destination state

can be averaged out with no e�ect on planning�

R�s� a� � Es� �R�s� a� s
��� �

X
s�

T �s� a� s��R�s� a� s���

The two representations are used interchangeably here� It is sometimes more convenient to

associate rewards with states rather than in either of these more general forms�

The states and transitions functions must be de	ned in such a way that they satisfy

the Markov property� the probability of the next state must be a function of the current

state and action only� not any of the previous states� More formally� for any action a and

string of states s� � � � st� T �s� a� s
�� � P �St�� � sja� st � � � s�� � P �st�� � sja� st�� where st is

a random variable for the state of the environment at time t�� The Markov property makes

it possible to write P �sxjsy� a� with no references to time� as the probability that the next

state will be sx given that the current state is sy and action a is taken� For discrete S and

discrete A� T can be thought of as a set of transition matrices representing the conditional

probability of the next state given the current state� and each a � A can be thought of as

selecting an element from this set�

A policy� �� for an MDP is a scheme for assigning actions in A to states in S�

Policies may be stationary� which means that they make a simple mapping from states to

actions� or they may be non�stationary which means that the action assigned to a particular

state may change depending upon some other factor� like the number of steps the agent

�Authors in this �eld use a subscripted s somewhat inconsistently� Sometimes si is a random variable
indicating the state at time i and sometimes it is a label for ith element of S� The latter usage is the default
here� and whenever the former is intended� the reader will be warned explicitly that si is a random variable�



��

has taken in the environment� or some function of the agent�s past experiences in the

environment� A family of policies that optimize the agent�s behavior with respect to some

optimality criterion is referred to as %�� Algorithms for MDPs typically search for some

optimal �� � %� or an approximation thereof�

A value function� V � is a mapping from elements of S to real values� A value

function is usually thought of as representing the utility of a state or the �cost
to
go� for

a state� which is some measure of the cost �or reward� for continuing in the environment

from that state� If a policy � assigns to each state s � S the action that maximizes the

expected value of s given the values assigned to s and states reachable from s in one step

by some value function V � then � is said to be greedy with respect to V � These concepts

will become more concrete in the following section where optimality criteria are de	ned�

��� Optimality Criteria

For there to exist an optimal policy� there must exist an optimality criterion that

places some kind of ordering on di�erent policies� A typical optimality criterion is the

expected� discounted sum of rewards received by the agent�

NX
t��

�tR�st� ��st��

where st is a random variable indicating the state of the environment at time t� and � is a

discount factor in �� � � � ��� The discount factor re�ects the value of time and indicates that

one unit of utility one time step in the future is worth � units at the present� In economic

terms� if the in�ation rate is i� then � � �� i� Note that since rewards are 	nite� the sum

above must also be 	nite even if N ��� In some cases � � � can be allowed if it does not

cause the summation to be unbounded�

Expected discounted total reward is the focus in this dissertation� However� other

optimality criteria are possible� In many problems where there is no reason to consider

in�ation� the average reward per time step is a more natural criterion �Mahadevan� ������

The size of N � the last time step� determines the form of the target solution� When

N is 	nite� the aim is to 	nd a �nite�horizon policy� The optimal 	nite horizon policy may

be non
stationary in the sense that di�erent actions may be selected for the same state

at di�erent time steps� In problems with hard time deadlines� 	nite horizon policies are

a natural choice� In problems without hard deadlines� N � �� and an in�nite�horizon
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policy is desired� It is a theorem �Blackwell� ����� that the optimal in	nite horizon policy

is stationary� This is a very useful property� if it were non
stationary it could require an

in	nite amount of storage space to represent the optimal policy for every possible state and

time step� Such a policy would not be computable�

Unless stated otherwise� in	nite
horizon policies that maximize expected� dis


counted reward will be the focus of what follows�

��� Value functions and the Bellman Equation

MDP algorithms work by assigning values to states and manipulating these values

in a manner that reveals the optimal policy� Any policy� �� de	nes a value function� V� over

the states in the model such that�

V��s� � R�s� ��s�� &
�X
t��

�tR�st� ��st��

where the st are random variables for states encountered t steps in the future�

The Bellman equation �Bellman� ����� from dynamic programming establishes a

relationship between V��s� and and V� for other states in the model�

V��s� � R�s� ��s�� & �
X
s�

T �s� a� s��V��s
��� �����

This says that the value of state s under policy � is the immediate reward received in state

s plus the expected value of the succeeding state�

There exists a unique� optimal value function� V �� �Blackwell� ����� resulting from

any optimal policy� ��� such that�

V ��s� � R�s� ���s�� & �
X
s�

T �s� a� s��V ��s��

Since the optimal policy assigns the best action to every state�

V ��s� � max
a
�R�s� a� & �

X
s�

T �s� a� s��V ��s��� �����

Notation adapted from Bertsekas and Tsitsiklis ������� provides a convenient way

to express the right
hand
sides of these frequently occurring forms of the Bellman equation�

�The style of notation is adopted� but the symbols are di�erent� In Bertsekas and Tsitsiklis ���	�
 J is
a value function a T is an operator�
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Ja is an operator that is applied to a value function and that determines the right hand

side of the Bellman equation for state s under action a�

V��s� � J��s�V�

When there is no policy subscript� J applies a maximization over actions as in equation ���

for V � above� This yields�

V ��s� � J���s�V
� � J�s�V ��

When there is no state argument to J � it operates on vectors� i�e� entire value functions�

and the subscript indicates a policy that is applied to the entire state space�

V� � J�V�

and

V � � J��V
� � JV ��

��� Value Determination

Value determination is the process of determining the expected� discounted sum

of rewards that will be accrued from each state under a particular policy� The Bellman

equation establishes a relationship that must hold between all states in the model for a

particular policy� It also provides a means of computing this value function� For a 	xed

policy� �� there are two main o�
line methods� successive approximation and linear equation

solving� For on
line value determination� the method of temporal di�erences �Sutton� �����

determines V� through experience with the environment�

����� Successive approximation

The method of successive approximation� which is an instance of Gaussian iter


ation� starts with an arbitrary value function� V �� and treats the right hand side of the

Bellman equation as an assignment� Speci	cally�

V i � J�V
i���

With each application of J�� V
i will get closer to V�� It is a theorem �Blackwell� ����� that�

V� � J�� V � � V�
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where J�� expresses an in	nite number of applications of the J� operator� This is true

because J is a contraction mapping in maximum norm� The maximum norm� k 	 k� between

V j and V k is expressed as�

kV j � V kk � max
s
jV j�s�� V k�s�j

and the contraction property of J ensures that

kV j � V kk � �kJ�V
j � J�V

kk

where � is the discount rate for the model� This de	nes a 	xed point for the J operator

and de	nes a rate� �� at which successive approximation approaches the 	xed point� Note

that this does not provide a closed form solution for V�� but provides a means of getting

arbitrarily close to V� at an exponentially fast rate�

����� Asynchronous successive approximation

Standard successive approximation works by updating the entire value function in

one step� V i � J�V
i��� A more general form of this operation is possible by considering

asynchronous updates in the spirit of Gauss
Seidel iteration� At each step� some G 
 S is

chosen and for each s in G�

V i�s��

��
� J��s�V

i�� if s � G

V i���s� if s �� G

If the strategy for selectingG at each stage ensures that every s is updated in	nitely

often� then V� will contract to V � �Bertsekas  Tsitsiklis� ������ The contraction rate will

depend upon � and the frequency at which the least frequently updated state is updated�

Asynchronous value determination is signi	cant both because it provides insight into on


line learning methods such as TD �Section ������ and because it provides an avenue for

the parallelization of value determination� For example� di�erent groups of states could be

parceled out to di�erent processors� The processor assigned to s and the processor assigned

to some s� reachable from s may not be the same� forcing the processors to communicate

with each other about their current estimate of V�� Since the bandwidth between the

processors will be 	nite� communications may be subject to delays and V� may not be

synchronized or consistent across all of the processors� The convergence of asynchronous

value determination ensures that as long as the processors eventually convey updated value

information to each other� and can do so in	nitely often� the value functions will converge�
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����� Linear equation solving

A second method for value determination works by solving a system of linear

equations� This approach uses the observation that the Bellman equation for policy � is

linear in the values of the other states� By writing out the Bellman equation for each

s� � � � sn � S� this produces a system of linear equations�

V��s�� � J��s��V�
���

V��sn� � J��sn�V�

where the V��si�� � � i � n are the free variables in the system� In matrix form� this system

is expressed as�

�
BBBBBB�

�� �T �s�� ��s��� s�� �T �s�� ��s��� s�� �T �s�� ��s��� s	� � � � R�s� ��s���

�T �s�� ��s��� s�� �� �T �s�� ��s��� s�� �T �s�� ��s��� s	� � � � R�s� ��s���

�T �s	� ��s	�� s�� �T �s	� ��s	�� s�� �� �T �s	� ��s	�� s	� � � � R�s� ��s	��
���

���
���

� � �
���

�
CCCCCCA

The solution to this system of equations produces V�� The system can be solved using

Gaussian Elimination in O�n	� time� where n is the number of variables in the system�

This can be driven closer to O�n�� with methods that exploit sparseness in the matrix�

����� Temporal di�erences

Temporal di�erence �TD� learning �Sutton� ����� is an on
line method that as


sumes no a priori knowledge of T � the transition function or� R� the reward function�

Instead� these factors are accounted for implicitly by sampling from the environment and

applying an incremental variant of the J operator� When the agent executes ��s�� observes

a transition from state s to state s� and receives reward r� TD adjusts V�s� as follows�

V i�s�� �i�s��r & V i���s��� V i���s��

where � � �i�s� � � is a learning rate� that is indexed by state and that decays over time�

and r & V i���s�� is the sampled right
hand
side of the Bellman equation� For t �� s�

V i�t�� V i���t�



��

TD adjusts the value of state s in the direction of the right
hand
side of the Bellman

equation with a step size of �i�s�� Adopting the notation from the o�
line algorithms� an

operator� J��s�� applies the TD operator to a value function at state s� which makes TD

expressible as

V i�s�� J��s�V
i���

It is a theorem �Sutton� ����� that with probability �� V i will converge to V� when the J�

TD operator is applied to the in	nite sequence of states� s� � � � s�� that results when policy

� is applied in the environment and when ��s� is decayed at a suitable rate� i�e� whenP
i �i�s� �� and

P
i �

�
i �s� ���

The intuition behind this result is that the J� operator is an incremental� sam


pled version of the asynchronous J� operator and that it is a contraction in expectation�

This describes just one speci	c variant of TD called TD���� TD can be generalized to

propagate information across trajectories of states� not just across pairs of states and this

generalization� which is called TD���� also converges�

��� Algorithms that determine �
�

The following algorithms extend the tools and intuitions developed for determining

the value of a single policy to determine the optimal policy� ���

��	�� Value Iteration

Value iteration is very similar to value determination� It starts with an arbitrary

value function� V �� but instead of applying J� for a particular policy� it applies the general

J operator� which contains a max over all actions�

V i � JV i���

and it is a theorem that

V� � J�V � � V ��

As in the value determination case� this result follows from the contraction property

of the J operator� which means that V i will approach V � at contraction rate �� The optimal

policy can be extracted from V � by using the operator greedy�V �� which maps from value



��

functions to policies�

greedy�V� s� � argmax
a

Ja�s�V

greedy is so named because it greedily chooses the action with the highest apparent value

in each state�

Since the contraction property of J ensures only that V i will get arbitrarily close to

V �� it is useful to have some means of determining the value of �i � greedy�V i�� Williams

and Baird ����
� provide a bound which is based upon the Bellman error or Bellman

residual� which is de	ned for a state s and value function V as�

BE�V� s� � J�s�V � V �s��

When the s argument is dropped� BE refers to the maximum norm of the Bellman error�

BE�V � � kJV � V k

Baird and Williams show that for �i�� � greedy�V i��

V �i���s� � V ��s��
�BE�V i�

�� �
���
�

which has the obvious implication that the value of the greedy policy for V i will move closer

to V � as V i contracts towards V �� However� it does not guarantee that this progress will be

monotonic as the maximum Bellman error may increase or oscillate slightly initially� even

as V i makes progress towards V ��

��	�� Asynchronous Value Iteration

As with value determination� value iteration can be generalized to the case where

not all states are updated at once� At each step� some G 
 S is chosen and for each s in G�

V i�s��

��
� JV i�� if s � G

V i�� if s �� G

This will contract to V � as long as a scheme for selecting G ensures that every state will be

updated in	nitely often� The contraction rate will depend upon the discount factor and the

frequency with which the least frequently updated state is updated� Asynchronous value

iteration provides the basis for establishing the convergence of Q
learning �Section ������

and for the parallelization of value iteration�
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��	�� Policy Iteration

While value iteration works by incrementally updating the value function and

policy together� policy iteration works iteratively by 	rst freezing the policy� determining

the value function for the policy� determining a policy that improves upon the old one based

upon this value function and then repeating the process until the policy cannot be improved

upon� This can be expressed in pseudo
code as�

procedure policy�iteration

�� � an arbitrary policy

j � �
continue � true

While continue

Compute V�j
�j�� � greedy�V�j �
if �j � �j�� then

continue � false

else

j � j & �
return��j�

Policy iteration converges at least as quickly as value iteration �Puterman� ����"

Littman� Cassandra�  Kaelbling� ����� and must 	nd the optimal policy in a 	nite number

of iterations since the policy improves at every step and there is a 	nite number of policies� It

is generally believed to produce optimal policies faster than value iteration does in practice�

The greedy policy bound �equation ��
� can be used to bound the di�erence in expected�

discounted reward between following the optimal policy and following policy �j in terms of

the maximum Bellman error of policy j � �� A result from Williams and Baird ����
� also

bound the distance between V �j and V � in terms of the maximum Bellman error of the

current policy�

V�j �s� � V ��s��
BE�V i�

�� �

Although policy iteration is considered to be the faster route to �� in practice�

it is by no means computationally inexpensive� Each phase must solve a system of linear

equations with one equation for each state� The only bound on the number of bound on the

number of policies produced before discovering the optimal policy is �Littman et al�� ������

�

�� �
log

�

�� �
�
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��	�� Asynchronous Policy Iteration

Asynchronous policy iteration combines elements of asynchronous value determi


nation� asynchronous value iteration and policy iteration� In its most general form �Singh

 Gullapalli� ���
" Bertsekas  Tsitsiklis� ������ asynchronous policy iteration operates on

subsets G� 
 S and G� 
 S� performing�

V i�s��

��
� J�i��V i�� if s � G�

V i�� if s �� G�

and

�i�s��

��
� greedyV i���s� if s � G�

�i���s� if s �� G�

with no restrictions on the relationship between G� and G�� A necessary condition for

convergence is that the scheme for selecting G� and G�� as in the other asynchronous

algorithms� guarantees that both the policy and the value are updated in	nitely often�

Ensuring convergence for asynchronous policy iteration requires some additional provisions

as well� Singh and Gullapalli require that value updates be �single
sided� which means that

the assignment� V i�s�� J�i��V
i�� is replaced with

V i�s�� max�Vi��� J�i��V
i����

They also require V � � V �� Bertsekas and Tsitsiklis require only J��V
� � V ��

If asynchronous value iteration is initialized with a phase that performs a single

synchronous value iteration or policy iteration step� these conditions are satis	ed easily�

This extremely general algorithm is intriguing because it encompasses a large variety of

algorithms� Policy iteration� value determination� value iteration� asynchronous value de


termination� asynchronous value iteration� and modi	ed policy iteration �Puterman� �����

are all special cases of asynchronous policy iteration�

��	�	 Linear Programming

The optimal value function� V �� can be expressed as the solution to a linear pro


gram� The right
hand
side of the Bellman equation is treated as a constraint�
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Minimize� X
s

V ��s�

Subject to�

V ��s� � JaV
� 
s� a

It may seem counterintuitive that this minimization would produce V �� which is the highest

attainable value function� Note� however� that any value function less than the true V �

would violate one of the constraints� Any value function greater than the true V � could be

changed to improve the objective function by reducing the value of some state�

The linear programming formulation for the value function also provides a quick

means of extracting the optimal policy� Each constraint in the system corresponds to

an action selection for a state� A non
zero slack variable for an inequality in the linear

program indicates that the corresponding action is maximizing� This also means that each

point in the simplex corresponds to a speci	c policy for the MDP� This makes iterative

linear programming methods that work by moving between simplex vertices instances of

policy iteration�

In spite of the elegance of this formulation� linear programming does not appear

to be the best approach to solving large MDPs� Anecdotal evidence suggests that policy

iteration performs better for most problems� This may be because policy iteration uses a

more powerful method of selecting new policies �Littman� Dean�  Kaelbling� ����� than the

method used by most linear programming methods to select new simplex vertices� However�

there is not yet a de	nitive analysis of this issue�

��	�
 Q�learning

One would think that an incremental form of asynchronous value iteration would

converge to V �� just as TD���� which is the incremental form of asynchronous value deter


mination converges to V�� This approach would require that the agent also learn a model

of the environment that it could use to determine the greedy action based upon the current

value function� While intuitively appealing� this scheme is not guaranteed to converge�

Q
learning �Watkins� ����� is a variation on this basic idea which guarantees

convergence� It maintains an indexed version of a value function called a Q function� where

Q�s� a� represents the value of taking action a in state s� Q��s� a� represents the value of

taking action a in state s and continuing under policy � afterwards� Q��s� a� represents



��

the value of taking action a in state s and acting optimally thereafter� Clearly� V��s� �

Q��s� ��s��� V
��s� � maxaQ

��s� a�� and ���s� � argmaxQ��s� a�� Upon a transition from

state s to state s� under action a and with reward r� a Q
learning agent performs the

following TD��� style update�

Qi�s� a�� Qi���s� a� & �i�s� a���V i���s�� & r �Qi���s� a��

where �i�s� a� is a learning rate that is indexed by state and action and that decays as in

the TD��� case� For t �� s or a� �� a�

Qi�t� a��� Qi���t� a��

It is a theorem that Q� will converge to the optimal Q� values with probability

� �Jaakkola� Jordan�  Singh� ����� as long as
P

i �
i�s� � � and

P
i �

�
i �s� � �� This

has the peculiar side e�ect of forcing the agent to take actions that are not greedy� i�e�

appear suboptimal� In fact the agent must try every action in every state in	nitely often

to ensure that the summation over � is in	nite� Thus� in order to obtain an optimal policy�

the agent must act suboptimally � forever� In practice it is often best to choose the greedy

action most of the time and suboptimal actions a smaller percentage of the time� with

this percentage decreasing as i increases� A common strategy is to select action a with

probability determined by the Boltzmann distribution with temperature T �

eQ
s�a��TP
a� e

Q
s�a���T
�

This assigns probability � to the maximizing action as T � �� but will approach a uniform

distribution for large T � Typically T is initialized to some large value and decayed over

time�

��� Abstraction and Approximation in MDPs

The algorithms described in the previous section all assume an explicit state repre


sentation of the MDP � the value function is a vector with one element for each state� This

representation is impractical for very large problems� both in terms of the space required

to store the value function and in terms of the run time required to produce an optimal

policy� Standard methods for avoiding this di�culty still use the same basic algorithms�

but employ some form of abstraction or value function approximation�
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��
�� State Abstraction

State abstraction or state aggregation refers to a general class of methods where a

single state is used to represent a large group of states� This produces a reduced state space�

which is easier to solve using the standard MDP algorithms discussed in this chapter� Note

that state abstraction is common in traditional planning� where only the relevant features

of any state� typically some set of state variables� are used to represent a large class of states

where the other variables have �don�t care� values�

Di�cult questions for state abstraction in MDPs arise because of the complex

value relationships that can exist between seemingly unrelated states� Where traditional

planning assumes a deterministic model with a goal of achievement� the stochasticity of

MDPs and optimality criteria for MDPs can easily induce an optimal value function that

assigns di�erent values to every state and an optimal policy that implies some form of utility

relationship between any two states� In some cases� it is possible to show that MDP states

can be aggregated without any e�ect on solution quality �Lin� ����" Dean  Givan� ������

but state abstraction generally involves a tradeo� between optimality and compactness�

Di�cult issues that must be resolved are

�� The manner in which a transition model and reward function for the abstract model

are derived from the original model�

�� The relationship between the solution to the abstract model and the solution to the

original model�

Di�erent decisions about these two questions can lead to di�erent tradeo�s between

e�ciency and solution quality� Conservative approaches �Dean� Givan�  Leach� �����

aggregate states if they have similar reward and transition functions� This approach permits

reasonable bounds on the relationship between the optimal solution to the aggregated model

and the optimal solution to the original model� Unfortunately� such methods also fail to

capture some of the intuitive notion of an aggregated state� For example� it would seem

that all states within a particular room of a house should� at some level of abstraction� be

grouped together as a single �room� state� The fact that actions might have di�erent e�ects

in di�erent parts of the room would prevent this�

Bolder methods of aggregating states can be quite successful in practice� but are

subject to some dangerous pitfalls� If states that are not similar in the right way are clustered
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together� it may be impossible to use the solution to the aggregated problem to reconstruct

a useful policy for the original problem� Things get worse in a reinforcement learning

context� Since the transition probabilities for all of the states within an aggregated state

are not known a priori� the agent must use experiences from any of the states represented by

the aggregated state to determine a value function� If the aggregated states are dissimilar�

TD or Q
learning may not converge to a consistent value function� resulting in divergence

or oscillation�

While state abstraction has many pitfalls� it ultimately must play a role in the

toolbox of MDP solution methods� Since no two situations are ever truly the same� some

implicit temporal abstraction is performed whenever a model is constructed and irrelevant

features are discarded� Moreover� people appear to use some form of state abstraction in

their own representations of the environment� Nevertheless� for the sake of clarity� state

abstraction is treated as an orthogonal issue to the ideas presented in this dissertation

and speculation on synergies between temporal abstraction and state space abstraction is

reserved for the future work section�

��
�� Value Function Approximation

Value function approximation is a technique that has been applied to almost every

direct MDP solution method� Value function approximation uses a parameterized function�

F �W� s� or F �W� s� a�� to represent a value function or a Q
function� where W � �w� � � � wk�

is a set of weights or parameters� Typical candidates for F could be a neural network

or a multidimensional lattice with interpolation between lattice points� O�
line methods

generally work in two phases� a dynamic programming phase and a function approximation

phase� For example� value iteration with a neural network would start with some random

set of weights� w�� which imply a V �� Some set of candidate states� G� would be selected

and pushed through the Bellman equation to produce a set of values representative of V ��

A neural network would then be trained on this representative set of states to learn a new

set of weights� w� that approximates V � and that� hopefully� generalizes well to cover the

states not in G�

Value iteration with neural networks is not guaranteed to converge� However�

Baird ������ shows that by modifying the weight adjustment rule for the neural network� it

is possible to ensure convergence to a local optimum� However� this modi	cation tends to
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produce very slow convergence in practice and there do not appear to be any examples of

the successful application of this method to large problems� Gordon ������ shows that for

a class of function approximation methods called averagers� value iteration based methods

will converge to a stable solution� Averagers use a 	xed candidate set� G� and compute

the value of states outside of G as a convex combination of the values of the states in

G� The point to which value function approximation will converge with an averager is

well characterized� This appears to be a useful method for problems that are amenable

to this form of value function approximation� problems with relatively smooth� locally

approximately linear value functions�

Value function approximation for temporal di�erence learning or Q
learning ad


justs the weight in the function approximator by taking a gradient� For TD���� the update

rule is

wi � wi�� & ���F �s�W � & r � F �s��W ��rwF �s�W �

and for Q
learning it is

wi � wi�� & ���F �s� a�W � & r � F �s�� a�W ��rwF �s� a�W �

Unfortunately� value function approximation is subject to even more di�culties

when it is used with reinforcement learning� Convergence is guaranteed only in a few spe


cial cases �Bertsekas  Tsitsiklis� ������ and simple examples of divergence are available

with common function approximators such as neural networks �Boyan  Moore� ������

Nevertheless� function approximation has been used successfully in some high
pro	le ap


plications �Tesauro� ����" Zhang  Dietterich� ����" Crites  Barto� ������ and it is a

promising area for investigation since it captures the intuitive idea that value functions

ought to have compact representations� Value function approximation is a largely orthog


onal issue for most of the topics covered in this dissertation� although some prospects for

the use of function approximators are discussed for the temporal abstraction algorithms in

the following two chapters� The application of value function approximation to the HAM

and decomposition algorithms presented here is discussed as future work�

��
�� Temporal Abstraction

Temporal abstraction aims to manage large MDP state spaces by introducing more

complicated actions that take place on larger time scales� Simple examples of abstract







actions could be the action of doing something until a condition is satis	ed� e�g�� moving

forward until some point is reached� This type of action can have a stochastic time duration

as well a distribution over possible next states� The notion of temporal abstraction was

introduced to the AI community in ���� in the context of reinforcement learning by Sutton

������ and in an o�
line context by Dean and Lin �������

Chapter 
 shows that the AI notion of temporal abstraction corresponds to a less

well
known� but well
documented �Puterman� ����� generalization of MDPs called Semi


Markov Decision Problems �SMDPs�� This relationship allows general and powerful theo


rems about SMDPs to be applied to temporal abstraction and provides new insight into AI

algorithms that have used temporal abstraction�

While SMDPs generally have been used for event
driven systems where exogenous

events drive the environment into a state that requires a control input� their use from an AI

perspective permits the modeling of complex behaviors as single actions� Chapter � takes

this approach to an extreme� where the HAM language for describing complex actions with

subroutine calls is introduced� The most intriguing aspect of this language is that it permits

partial or abstract descriptions of actions that can be optimally re	ned�

Temporal abstraction also plays an indirect role in the hierarchical decomposition

algorithms of Chapter �� where policies de	ned over entire regions of the state space are

manipulated as if they were primitive actions� This form of temporal abstraction plays an

important role in the hierarchical decomposition and solution of MDPs�

Although temporal abstraction does not reduce directly the size of the state space

in the way state space abstraction does� it can reduce indirectly the state space through the

introduction of behaviors that skip over large parts of the space� For example� if an agent

uses temporally extended actions that repeat until certain conditions are met� the states in

which no stopping conditions are satis	ed are e�ectively removed from the state space since

the agent is always executing some prede	ned behavior in those states� This type of state

space reduction is discussed in the following chapters and exploited in the HAM algorithms

of Chapter ��

A 	nal� appealing property of temporal abstraction is that it is less prone to the

di�culties encountered by state space abstraction and value function approximation when

it is used in a reinforcement learning context�
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Chapter �

Temporal Abstraction

The previous chapter presented the standard MDP framework� which implicitly

assumes that all actions in all states have a uniform time duration� This chapter addresses

the question of temporal abstraction in MDPs� in which actions can have complex e�ects

that take place over a variable number of time steps� Numerous techniques that have

been developed for this type of reasoning in MDPs are summarized and uni	ed herein�

including Sutton�s mixture models� A major conceptual contribution of this chapter is

the understanding of many methods for temporal abstraction as transformations from a

policy over a region of an MDP to an action in an equivalent semi
Markov decision process

�SMDP��� This chapter also contains a convergence proof for Q
learning in SMDPs�

��� Semi	Markov Decision Processes

The standard MDP framework models the environment at the granularity of a

single time step� Time is not mentioned explicitly because all actions are presumed to

take place at the same time scale� Consider the simple navigation problem in Figure 
���

Variations of this problem will be a running example� Two rooms are connected by a �door��

with a start state in one room and a reward state in the other� The problem of 	nding

the optimal policy for reaching the reward state easily can be stated as a Markov decision

problem�

�The connection between SMDPs and the author�s previous work on temporal abstraction was �rst
suggested by Sridhar Mahadevan at the AAAI ���� Fall Symposium�
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Figure 
��� A simple navigation problem� Similar representations are used in Precup and
Sutton ������ and Hauskrecht et al� �������

One way in which the problem can become a bit more interesting is to suppose that

the policy is to be carried out by a robot with unreliable actuators� When the robot attempts

to move in the desired direction� it successfully activates its motors with probability p� but

with probability ��p� it will be forced to reset its actuators and try again on the next time

step� After each time step� the robot can try again� so the probability of an action taking

n time steps is ��� p�n��p�

Examples of actions that have variable durations with this type of distribution are

quite common in the real world � consider how long it takes to 	nd the right key on one�s

keychain in the dark� Semi
Markov decision processes �SMDPs� are a generalization of

Markov Decision processes that handle this and more general time distributions for actions�

Speci	cally� an SMDP is just like an ordinary MDP� with the di�erence that transitions may

have a stochastic time duration� Alternatively� the process can be thought of as passing

through some number of uncontrolled states where the agent has no in�uence over the

progression of the process before returning to a controlled state� As long as the process is

Markovian in the controlled states� these two interpretations are equivalent�

The formal MDP de	nition is generalized for SMDPs as follows� An additional

element F is added to the standard MDP components to de	ne an SMDP as �S�A� T �R�F��

where F is a function that de	nes the cumulative probability distribution over the number

of time steps until the next controlled state� The probability that the next controlled state

has been reached by time t when action a is taken in state s is written� F�tjs� a�� In general�

t may be real valued and range from � to &�� It is assumed that the distribution over the
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number of time steps taken does not change on subsequent trials of a in s� The focus of

this chapter will be the case where the state space and action space are 	nite� so F can be

thought of as a table indexed by pairs� �s� a�� where each table entry describes a probability

distribution over t� Clearly� MDPs are a special case of SMDPs� where F is a step function

with a discontinuous jump from � to � at t � ��

The reward function must be reinterpreted to account for the fact that rewards

may arrive at di�erent times during the delay between controlled states� For example� on a

transition from state s to s�� rewards received immediately upon exit from state s should be

treated di�erently from rewards received upon entry in state s�� It is assumed that rewards

arrive stochastically and are weighted in some manner upon arrival� 	�s� a� t� describes the

mean� weighted� accrued reward rate on transitions from s to s� under action a and taking

time t� and

R�s� a� �
Z �

�

Z t

�
	�s� a� t�dtdF�tjs� a�

is a convenient way of summarizing the expected reward associate with a particular state and

action� It is a requirement of the SMDP framework that R�s� a� is 	nite� As with MDPs�

it is possible to include the destination state� s�� in the speci	cation of R� and 	� but s�

can be averaged out to produce the standard form� Nevertheless� it is sometimes useful to

leave the destination state in the de	nition of R when it is necessary to disambiguate the

reward received upon transition to the next controlled state and the reward received upon

transition to the next possibly uncontrolled state� It also is possible to include a destination

state in the time distribution� F�tjs� a� s��� The destination state also can be removed in

this case� but this operation requires some slight modi	cations to the transition model as

well�

Although this formulation may seem somewhat dry and mathematical now� SMDPs

capture the essence of temporal abstraction� Each action is not necessarily an atomic event�

but may be the launching point for a complex series of events that take place over a vari


able number of time steps� The transition model� T � and the time distribution� F � give a

potentially compact description of the e�ects of this type of action� The following section

demonstrates that SMDPs are no harder to manipulate and solve than regular MDPs�
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��� Algorithms for SMDPs

Optimality for SMDPs can be de	ned using the same optimality criteria as used

for standard MDPs� For discounted total reward optimality� which is the focus here� the

Bellman equation becomes�

V ��s� � max
a�A

R�s� a� &
X
s��S

T �s� a� s��
Z �

�
�tV ��s��F�tjs� a�dt

The maximizing actions of this equation de	ne a class of optimal policies� %�� Since the

state values are essentially constants whenever the integral is computed� V ��s�� can be

pulled out of the integral yielding�

V ��s� � max
a�A

R�s� a� & ��s� a�
X
s��S

T �s� a� s��V ��s��

where

��s� a� �

Z �

�
�tF�tjs� a�dt� �
���

and is interpreted as a discount rate that varies with the state and action� The dynamic

programming operator for a particular action is then�

Ja�s� � R�s� a� & ��s� a�
X
s��S

T �s� a� s��V �s��

and in general�

J�s� � max
a
�R�s� a� & ��s� a�

X
s��S

T �s� a� s��V �s���

It is easy to see that the dynamic programming operators described in Chapter �

are contractions at rate �max � maxs�a ��s� a�� and generalizations of the standard MDP

algorithms �Chapter ��� such as linear programming� value iteration and policy iteration to

SMDPs are well
known �White� ���
" Puterman� ������

On
line algorithms� including Q
learning and Temporal Di�erence learning have

also been adapted to SMDPs �Bradtke  Du�� ������ although formal convergence results

do not appear to have been published� Q
learning is modi	ed for SMDPs as follows� On

a transition from state s to s� under action a that has taken time t and received reward r

�which is assumed to be the appropriately weighted sum of rewards received during t��

Q�s� a�i � Qi���s� a� & �i�s� a��r & �tV i���s���Qi���s� a��
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where� as in Chapter �� �i�s� a� is a learning rate that can depend upon the state� action�

and number of learning steps taken so far�

When jAsj � � for all s� i�e� there are no controlled states or the policy is 	xed�

this results in the TD��� learning rule for SMDPs� The convergence of this modi	ed form of

Q
learning for SMDPs is proved here� based directly on the convergence proof of Q
learning

in Jaakkola et al� �������

Theorem � �Jaakkola et al�� �		
� A random iterative process 'i���x� � ����i�x��'i�x�&

�i�x�Gi�x� converges to zero with probability one �w�p��� under the following assumptions�

�� x � S� where S is a �nite set�


�
P

i �i ���
P

i �
�
i �x� �� uniformly over s and a w�p����

�� VarfGi�x�jPi� �ig � C�� & k'ikW ��� where C is some constant�


� kEfGi�x�jPi� �igkW � �k'ikw� where 
 � ��� ���

Here Pi � fxi� xi��� � � � � Fi��� � � � � �i��� � � �g i�e� the complete history up to step i� Gi�x�

and �i�x�� are allowed to depend on the past� and �i�x� is assumed to be nonnegative� The

notation k 	 kW refers to some weighted maximum norm�

This general stochastic process theorem uses the fact that G is a contraction in

expectation and permits the following theorem on Q
learning for SMDPs�

Theorem � The SMDP Q�learning rule converges to the optimal Q��s� a� values if

�� The state and action spaces are �nite�


�
P

i �i�s� a� �� and
P

i �
�
i �s� a� �� uniformly over s and a w�p���

�� Varfrg is �nite�


� � � �max � �

Proof� The proof follows closely the convergence proof for Q
learning in Jaakkola et al�

������� The SMDP Q
learning update rule is shown to be a process of the appropriate form

where 't�s� a� � Qt�s� a��Q��s� a� and

Gi�s� a� � r & �t & V �s���Q��s� a��



��

This mirrors the Q
learning update rule with a constant equaling the optimal Q��s� a�

subtracted o�� Since 'i is the di�erence between the estimated and optimal Q
values�

convergence of 'i to zero will prove the convergence of Q
learning for SMDPs�

Condition � and � of this theorem satisfy conditions � of �� respectively� of The


orem �� Condition 
 of this theorem follows from the fact that R�s� a� is bounded and

satis	es condition 
 of Theorem ��

What remains to be shown is that G is a contraction in expectation� which is done

as follows�

EfGt�s� a�g � R�s� a� &

�X
s�

T �s� a� s��
Z �

�
�tV i�s��dF�tjs� a�

	
�Q��s� a�

� JaV
i �Q��s� a�

where J is the value iteration operator for action a as in Chapter �� To satisfy property 


of Theorem �� it must be the case that�

kJaV
i �Q��s� a�kW � �maxkQi�s� a��Q��s� a�kW

which is true since the Ja operator applied to V
i is a contraction with rate �max and 	xed

point at Q��s� a��

As with the proof for regular Q
learning� this proof requires that the learning

rate does not decay too quickly� and requires a 	nite state and action space� which is

a restriction on the standard MDP de	nition� The learning rate requirements implicitly

require that every action be tried in	nitely often in every state� The SMDP version also

requires �max � �� while the MDP version can tolerate some cases where � � �� The SMDP

result can be generalized if zero
discount cycles are forbidden�

��� Equivalence of SMDPs

In the previous sections� the general representation of an SMDP with an �almost�

arbitrary distribution over time durations between transitions was reduced to a representa


tion where each transition in the model took a single step� but where di�erent state
action

combinations could have di�erent discount factors �
���� When it is possible to integrate

over the reward and duration functions to produce the equivalent discrete time representa


tion� the representation of and computations required by SMDPs are greatly simpli	ed�



��

wait p
1-p

p

1-p

Figure 
��� An uncontrolled wait states is inserted into the simple top
left corner of the
navigation problem�

This section further explores the notion of equivalence between di�erent represen


tations of SMDPs with the aim of developing a de	nition of equivalence that can be applied

to SMDPs with di�erent numbers of uncontrolled states� Suppose� for example� there are

two models of the robot�s behavior� one that uses di�erent discount factors to re�ect the

unreliability of the robot�s motor� and one that uses an uncontrolled �wait� state between

transitions as in Figure 
��� These two models will be equivalent if they can be used inter


changeably for the purposes of planning� i�e� if there is mapping between supersets of the

controlled states such that for any state
action pair� the reward and transition functions

from one model can be subsituted into the second without changing the Bellman equation�

Consider two SMDPs� M� � �S��A��T ��R�� ��� and M� � �S��A��T ��R�� ����

where the time distribution�F � has been replaced with the equivalent state
action dependent

discount functions� Let S�
C 
 S� and S�

C 
 S� be the sets of controlled states in S� and S��

respectively� M� and M� are equivalent if there exists a function� f��� that maps states of

M� to states of M�� and actions of A� to actions of A�� a function� f��� that maps states



��

of M� to states of M�� and actions of A� to actions of A� and sets S�
C 
 S�

E 
 S� and

S�
C 
 S�

E 
 S�� such that 
s � S�
E and 
a � A

�
s�

���s� a�
X
s��S�

E

T ��s� a� s���R��s� a� s�� & V �s���

� ���f���s�� a�
X
s��S�

E

T ��f���s�� a� s���R��f���s�� a� s�� & V �f���s����

and 
s � S�
E and 
a � A

�
s�

���s� a�
X
s��S�

E

T ��s� a� s���R��s� a� s�� & V �s���

� ���f���s�� a�
X
s��S�

E

T ��f���s�� a� s���R��f���s�� a� s�� & V �f���s����

�Note that f�� and f�� are overloaded in the sense that they are de	ned on both actions

and states�� This de	nition of equivalence would� of course� need to be changed for di�erent

optimality criteria�

Consider again the navigation problem of Figure 
��� Call the top� left state� s��

and the state one square to the right� s�� If a robot in s� has an unreliable actuator and is

trying to move right� this can be modeled with a wait state as in Figure 
���� Call the wait

state� s�w� and call the action that moves the robot to the right� a�� The value of moving

right is�

Q�s�� a�� � R�s�� a�� & ��pV �s�� & ��� p�V �s�w��

and

V �s�w� � ��pV �s�� & ��� p�V �s�w���

The equivalent model with no wait state can be determined by solving the second

equation for V �s�w� and substituting into the 	rst equation� yielding

Q�s�� a�� � R�s�� a�� &
�p� ��p� ��p� & �p� �p�

�� � � �p
V �s���

which can be thought of as a model with a probability � transition to s� and a discount

factor of �p���p���p���p��p�

�����p � This shows that the wait
state representation of the robot�s

�Note that this presentation is somewhat simpli�ed for expository purposes� It assumes that there is no
uncertainty in the next state and considers only a single action that moves the robot to the right� If the
robot could move in each of the four coordinate directions� then there would need to be additional wait
states for each direction�



�


actuator uncertainty is equivalent to a representation that uses a di�erent discount factor�

This somewhat awkward de	nition of equivalence comes in handy here because it permits

an equivalence statement about models with di�erent numbers of states by requiring in


terchangeability of the right
hand
side of the Bellman equation for only a superset of the

controlled states and not the entire state space�

Equivalent SMDPs have several straightforward properties which are stated here

as theorems to underscore their importance�

Theorem � Equivalence of SMDPs is a symmetric relation�

Proof� This follows immediately from the de	nition of equivalence�

In the following theorem� which establishes the relationship between policies of

equivalent SMDPs� the functions describing the mappings between two SMDPs will be

overloaded further to map from policies to policies� f����� maps policies de	ned over

states in M� to a policies de	ned over states of M� such that if �� � f������� then

���s� � f������f���s���

Theorem � For any equivalent SMDPs� M� and M�� where f�� is the mapping from

elements of M� to elements of M� that satis�es the de�nition of equivalence� V���s� �

Vf��
����f
���s��� for all �� de�ned on M� and all s in S�

E�

Proof� V�� can be determined by solving the system of equations that results when the

actions of �� are assigned to the states of S�� By the de	nition of equivalence� Vf��
��� can

be determined by solving a system of equations that is isomorphic to the system for V��

and where f�� describes the renaming of the variables from one system to the other� Thus�

the solutions to the systems must be identical up to a renaming of the variables�

This theorem veri	es the intuition that a policy for one MDP has a corresponding

policy in all equivalent MDPs� This also applies to optimal policies and the resulting optimal

value functions�

Corollary � For any equivalent SMDPs� M� and M�� V ��s� � V ��f���s��� 
s � S�
E�

Corollary � For any equivalent SMDPs� M� and M�� if �� � %�� then f����
�� � %���

It is possible to de	ne a variable discount MDP �VDMDP� as a variation on the

standard MDP de	nition� but with a discount factor� ��s� a�� that can depend upon the
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state and action� Note that the optimality criterion of discounted total reward is� in some

sense� implicit in the this de	nition� The previous section showed that any SMDP can be

expressed as a VDMDP� In fact� the two classes of problems are equivalent�

Theorem � SMDPs and VDMDPs are equivalent under the discounted total reward opti�

mality criterion�

Proof� The subset relationship is established in both directions�

�� SMDPs 
 VDMDPs� This was established as part of the de	nition of SMDPs �
����

�� VDMDPs 
 SMDPs� Any VDMP can be transformed into an SMDP� by setting � for

the SMDP as �max � maxs�a ��s� a� and setting F�tjs� a� to be a step function that

jumps from � to � at t � log �
s�a�
log �max since�

R�s� a� & ��s� a�
X
s�

T �s� a� s��V �s�� � R�s� a� & �
log ��s�a�
log �max

X
s�

T �s� a� s��V �s���

More generally�

Theorem 	 For any Markov decision process for which the Bellman equation for each

state�action pair can be expressed as

Q�s� a� �
X
s�

cs�a�s�V �s
�� & k
s�a�

where� � �
P

s� cs�a�s� � � and cs�a�s� � � for all s� a and s
�� there exists an equivalent SMDP�

Proof� Construct the new MDP reward function by assigning R�s� a� to the constant

of the linear function for state s and action a� The discount function for the SMDP is

��s� a� �
P

s� cs�a�s� and transition function is just T �s� a� s
�� �

cs�a�s�
�
s�a� �

To summarize� the preceding two theorems show that there are three equivalent

representations for SMDP actions� a transition function with a 	xed discount factor and a

time distribution� a transition function with a variable discount factor and a 	xed time step

size" a linear value relationship between states such that the coe�cients sum to be less than

�� These results summarize and generalize observations made in Puterman ������� Bradtke

and Du� ������� and White ����
��

The following results formally establish the intuition that any uncontrolled states

can be removed from any SMDP to produce an equivalent SMDP�



��

Lemma � For any SMDP� M� � �S��A��T ��R�� ��� with n � � uncontrolled states� at

least one of which is non�absorbing� there exists an equivalent SMDP with n�� uncontrolled

states�

Proof� Create a new SMDP� M� � �S��A�� T ��R�� ���� by modifying the original� so

that S� � S� � si� where si is some non
absorbing uncontrolled state� The new transition

function is de	ned as follows�

T ��s� a� s�� � T ��s� a� s�� &
T ��s� a� si�T

��si� s
��

�� T ��si� si�
�

The reward function is de	ned as follows 	�

R��s� a� s�� �
T ��s� a� s��R��s� a� s�� & T �
s�a�si�T �
si�s��T �
si�si�R�
si�si�

���T �
s��si�
���T �
si�si���
si�si�

& T �
s�a�si�T �
si�s��R�
si�s��

��T �
si�si���
si�si�

T ��s� a� s��
�

and the discount factor is de	ned as follows��

���s� a� s�� �
T ��s� a� s�����s� a� s�� & T �
s�a�si�T �
si�s����
si�s��

��T �
si�si���
si�si�

T ��s� a� s��
�

The Bellman equation for M� is equivalent �after some algebra� to the Bellman

equation for M� when the Bellman equation for si�

V �si� �
T ��si� si�R��si� si� &

P
s��fS��sig T

��si� s
���R��si� s

�� & ���si� s
��V �s���

�� T ��si� si����si� si�
�

is substituted for V �si� in the Bellman equation for any sj � j �� i� in S��

An absorbing cycle is a cycle from which the probability of exit is �� Note that if

there are no absorbing cycles in a model� the removal of a state by the above lemma cannot

create one�

Theorem � For any SMDP with n uncontrolled states and no absorbing cycles� there exists

an equivalent SMDP with � uncontrolled states�

Proof� The proof follows trivially by induction on n using the previous lemma�

There is a strong conceptual connection between this notion of equivalence and the

notion of stochastic bisimulation homogeneity �Dean  Givan� ������ The main di�erence

is that the Dean and Givan work focused on aggregating similar states� while the focus here

is on the complete removal of irrelevant states�

�The T � in the denominator is not a typographical error�
�The T � in the denominator is correct here too�
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��� Temporally extended actions

The preceding sections described SMDPs and the basic machinery used to remove

uncontrolled states and otherwise transform between di�erent� but equivalent� representa


tions of SMDP transition functions� This section discusses several approaches to temporal

abstraction that have been proposed in the literature and shows that these super	cially

di�erent approaches have a fundamental connection� the transformation of a policy de	ned

over a region of the state space into an action in an SMDP�

The notion of a temporally extended or abstract action has appeared in many

places in the MDP literature� The earliest may be in Forestier and Varaiya ������� where

the approach was more from the perspective of control theory� with a focus on the average

reward optimality criterion� Nevertheless� Forestier and Varaiya uncovered basic insights

that were subsequently rediscovered by many authors� including this one �Parr� ������

Subsequent research in the arti	cial intelligence community has focused mainly on

reinforcement learning applications� but the basic ideas are quite similar� While none of

the authors used the SMDP framework� they had a common vision of temporal abstraction

that can be related directly to SMDPs� These relationships are detailed below� along with

some commentary on the advantages a�orded by temporal abstraction in each case�

����� Origins in Control Theory

Control theorists tend to think of MDPs modeling industrial plants instead of

agents wandering through an environment� Forestier and Varaiya addressed the issue of

controlling a plant for which the state space is presumed to be very large� large enough

that 	nding the optimal action for every state would be impractical� Instead of solving the

full MDP directly� a simpli	cation of the problem is proposed� A set of candidate policies

and a set of boundary conditions are identi	ed� The boundary conditions can be thought of

as dangerous states that must be avoided� and the candidate policies can be thought of as

heuristics designed to keep the system out of the dangerous states� Once a candidate policy

is chosen� this policy will be active until the system reaches a boundary condition� When a

boundary condition is reached� a new policy is selected from one of the candidate policies�

Forestier and Varaiya showed that the problem of making the optimal assignment of policies

to boundary states can be thought of as another MDP where the states correspond to the

boundary conditions and the actions correspond to the candidate policies�
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Normal

Boundary

Boundary

Figure 
�
� A state space with boundary regions�

This approach is not that far from what could happen if one were to design a

controller for a real system that was previously controlled by humans� People employ rules

of thumb� which would correspond to candidate policies� They also are trained to identify

boundary conditions which would require intervention of some kind� While it may not

be possible to make the optimal decision for every possible state of the plant� it could be

possible to switch optimally between the di�erent rules of thumb used by humans in all

of the circumstances that previously required human attention� Such a policy would be

guaranteed to do at least as well at controlling the plant as the people who contributed the

rules of thumb � and might do better�

Figure 
�
 shows the partitioning of a state space into normal and boundary con


ditions� Suppose that there are just two candidate policies� �� and ��" then the problem

becomes one where there are two controlled regions and two uncontrolled regions� as seen

in Figure 
��� The controlled regions correspond to the boundary areas in the original state

space� and the uncontrolled regions correspond to the �normal� region of the original state

space� When a candidate policy is selected in a boundary region and the system enters the

normal region� it runs without intervention until another boundary state is reached�

In the language of SMDPs� each state in the boundary region becomes a controlled

state� For each normal state� two uncontrolled states are created� one where the action

recommended by �� is taken� and one where the action recommended by �� is taken�

Theorem � can be applied to this process� and all of the uncontrolled states can be removed�

yielding an SMDP where the number of states is equal to the number of states in just
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Figure 
��� Process that switches between candidate policies�

the border regions� An action in this new SMDP corresponds to the decision to apply

a candidate policy until the next boundary condition is reached� This transformation is

signi	cant because the solution to this smaller SMDP can be found with less computation

than that required to solve the full MDP� Of course� there is a computational cost to be

paid for the conversion� Algorithms for performing this type of conversion are described in

the following chapter�

Another interesting property of this transformation is that while the optimal

SMDP policy must be stationary� the implementation of this policy may be non
stationary

and suboptimal at the level of the original MDP� Suppose that ���s�� �� ���s�� for some

s� in the �normal� region� then the action taken in state s� will depend upon which policy

was adopted at the previous boundary state� This is a natural consequence of abstraction

when the language of the more abstract problem �the SMDP� is not the same as the lan


guage of the low
level problem �the original MDP�� Fortunately� the relationship between

the problems is still very tight� The solution to the SMDP corresponds to an actual� sensible

policy in the original problem� a fact that is not always guaranteed when other methods�

such as state abstraction� are used� Moreover� the value relationship between states in the

original problem and states in the SMDP is clear� the value assigned to an abstract action

in the SMDP is the true expected value of following the corresponding policy in the original

problem� This is in contrast to value function approximation or state aggregation methods�

which generally provide only loose guarantees on the value relationship between the solution

to the abstract problem and the solution to the original problem�
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Room 2Room 1

Room 4Room 3

Figure 
��� A four
room version of the navigation problem�

����� Freezing and Compiling Policies

In the AI community Dean and S�
H� Lin � introduced a method of policy compila


tion �Dean  Lin� ������ This method� which was part of a larger approach to hierarchical

solution methods for MDPs �see also Chapter ��� used the trick of �freezing� the policy for a

particular region of the state space� then �compiling out� this region� It is then possible to

determine the optimal policy for the remaining states� conditioned on the fact the policy in

the removed region cannot change� This is shown for a four
room example in Figure 
�� and

Figure 
��� The actions that connected the other regions to the removed region are replaced

with �abstract actions�� which are simply temporally extended actions that correspond to

the execution of the frozen policy over the removed region� In the SMDP framework� when

the policy in room � is 	xed� the states in room � become uncontrolled and can be removed�

according to Theorem �� to produce a equivalent SMDP� Thus� the freezing and compiling

process can be interpreted as a transformation to an SMDP in which the behavior in the

removed region is expressed as an SMDP action�

	Two people named Lin recently made contributions to this area� L�
J� Lin worked in reinforcement
learning with Tom Mitchell� while S�
H� Lin worked on the o�
line methods of the previous subsection with
Thomas Dean�
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2π

Room 1

Room 4Room 3

Figure 
��� Policy �� is 	xed for room � and then states of room � are removed� summarizing
the e�ects of �� with SMDP actions de	ned at the connecting states in rooms � and ��

This approach has much in common with the Forestier and Varaiya approach� The

states at the borders between the rooms can be thought of boundary states and the interior

of the rooms can be thought of as normal states� An important di�erence between the Dean

and Lin approach and the Forestier and Varaiya approach is that the abstract actions were

not simply determined a priori and used unchanged throughout the solution process in the

former� The approach advocated by Dean and Lin works by 	rst de	ning a partitioning of

the state space into disjoint regions� S � G� � G� � � � � �Gm� de	ning a set of policies on

these regions� solving the SMDP that combines theses policies� updating the policy for each

region based upon the solution to the SMDP� and repeating until none of the individual

region policies can be improved�

The mechanism for updating a policy based upon the SMDP solution deserves

some further explanation and is best illustrated with the example in Figure 
��� If each

room in this model is a region� then the SMDP that combines the policies in each region

contains just � states� the states connecting the rooms� The solution to this SMDP assigns

values to each of these states� The policy in room �� for example� can be updated in light

of these value assignments� by solving a small MDP that contains just the states in room �

and the states in rooms � and � that connect to room �� The connecting states are treated
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Figure 
��� The four
room navigation MDP with Xs marking the states in the corresponding
SMDP

as absorbing states� with values V �s�� and V �s�� determined by the SMDP solution as in

Figure 
�� and Figure 
���

Note that if the solution to the SMDP happens to assign the values of V � in the

original MDP to each of the corresponding states in the SMDP� then the policies that are

determined for each room will be consistent with some optimal �� for the original MDP�

The algorithm can be stated in pseudocode as follows�

� � initial set of policies �� � � � �m for G� � � � Gm

�� � solution to the reduced SMDP induced by �
Repeat until �� cannot be improved
For each Gi

Determine the optimal policy for Gi given V��
Replace �i in � with the new policy

�� � solution to SMDP induced by �

This algorithm will provably converge to the optimal policy� The proof of this was

originally established through a connection to the Dantzig
Wolfe decomposition of linear

programs �Dantzig  Wolfe� ������ However� in the SMDP interpretation� convergence to

the optimal policy follows directly as a consequence of the convergence of policy iteration for

SMDPs� To see this� consider again the navigation MDP and corresponding �
state SMDP�
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Figure 
��� The new SMDP state space with states labeled s� � � � s��
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Figure 
��� The policy for room � is revised based upon the solution to the SMDP�
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The space of possible actions for each state in the SMDP is the space of possible policies

in the enclosing room� The above algorithm uses the SMDP value function to construct a

greedy policy for the SMDP� and repeats this process until the policy is optimal� This is

precisely the policy iteration algorithm�

The understanding of this form of temporal abstraction as an operation on an

SMDP also suggests other variants on the basic algorithm� For example� several policies

could be de	ned for each region� as in the previous subsection� or the regions could be

updated asynchronously� These options are explored further in Chapter ��

����� Subtasks for neural networks

L�
J� Lin ����
� rediscovered the basic insight in Forestier and Varaiya ������ in

his work on reinforcement learning with neural networks for robot control� Lin took the

approach of dividing complex tasks into subtasks and using Q
learning with neural networks

as function approximators to solve separate learning problems� one for each subtask� A

higher
level learning task was then solved in which the policies learned for the subtasks

were treated as actions�

A subtask in Lin�s framework was similar to the method used by Dean and S�


H� Lin for updating policies in regions� For each subtask� some states were identi	ed as

constituting achievement of the subtask and some guess was made about the value of those

states� These states were then treated as absorbing states with values 	xed at the guessed

value� and an MDP was solved based upon this assumption� The policies resulting from

these subtask solutions were then treated as actions�

The conversion from Lin�s approach to the SMDP framework is not as clear as the

Forestier and Varaiya approach simply because Lin was not as clear on when the agent could

switch between policies� Lin recognized the need for some mechanism that would reduce

the number of times switches could take place as an important element for simplifying the

problem� Without such a mechanism� the agent might thrash during the learning process�

switching between policies at every state� If the number of policies considered at each state

is the same or greater than the number of actions� then the learning task would not be any

easier�

Conceptually� Lin�s approach can be seen as an attempt to transform the origi


nal learning task into an SMDP learning task� where learned policies become temporally
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abstract actions that can take place over several time steps� A mechanism that prevents

the agent from thrashing can be seen as a mechanism that pushes the agent into an uncon


trolled region of the SMDP space� much like the normal�boundary mechanism in Forestier

and Varaiya ������� The advantage of Lin�s approach from a reinforcement learning stand


point was that several subtasks were often easier to learn� i�e� required fewer environment

experiences and placed lighter demands on a function approximator� than a single mono


lithic task� If the subtasks were chosen well� combinations of the subtasks could quickly

move the robot to useful parts of the state space that would otherwise require long periods

of trial and error to reach in the original� low
level problem�

����� Mixture models

Mixture models �Sutton� ����� take a somewhat more formal approach to L�
J�

Lin�s notion of subtasks� Sutton began with the perspective of a 	xed policy� with the aim

of learning a value function or predictive model� Sutton used the notion of a discounted

transition matrix� which is equivalent to an SMDP transition matrix with the discount rate

multiplied into the matrix� Together with a �discounted� reward function� these de	ne a

dynamic programming operator� J�� Sutton observed that a family of di�erent J operators

could lead to the same V�
� � Since V� � J�V�� then J

��V � � J�J�V ��� which is interpreted

as a ��
step� operator� is an obvious candidate� but it turns out that there are many other

possible J operators that work as well� Two dynamic programming operators� J� and J��

are interchangeable� if�

J�� �V � � J�� �V �

for all V �

Clearly� interchangeability is re�exive� symmetric and transitive� Sutton made

several useful observations about interchangeable backup operators�

�� If J� and J� are interchangeable� then J	�V � � J��J��V �� is interchangeable with J�

and J��


Sutton uses the term valid� which is a unary predicate referring to a single dynamic programming
operator� Implicit in his usage is the assumption that there is a fundamental model to which all others are
compared� In controlled problems� where there is more than one possible action� it doesn�t make sense to
distinguish one as valid and others invalid in this way� The binary predicate interchangeable is used instead�
which re�ects that the two models can be used interchangeably without a�ecting the value function�
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�� The weighted average of a set of operators� J� � � � Ji� produces an operator that is

interchangeable with any of J� � � � Ji�


� The above two observations may be applied to the pointwise dynamic programming

operator� J�s�� for individual s� i�e� applied asynchronously�

�� For any operator� J�� it is possible to create an interchangeable operator� J�� that is

a weighted combination of the i
step versions of J as i ranges from � to � and where

the weights can depend upon the trajectory taken through the model �full �
models�

as described below��

The term �
model should not be confused with the SMDP convention of allowing

the discount factor to vary at di�erent states� Sutton did not use the SMDP framework�

but used a similar approach in which the discount factor was multiplied directly into the

transition and reward functions� This has the advantage of providing a cleaner notation in

some cases� but has the disadvantage that the transition model is no longer a probability

distribution since the discounted probabilities no longer sum to ��

It turns out that each of Sutton�s observations has a fairly straightforward in


terpretation in the SMDP framework using the theorems described in this chapter� This

provides a framework that uni	es Sutton�s work with other temporal abstraction methods

and provides a straightforward interpretation of Sutton�s full �
model�

Multi�step operations

A dynamic programming operator propagates information to the current state from

states one step in the future� Two successive applications of a dynamic programming opera


tor can be interpreted as propagating information from two states in the future� In general�

n applications a dynamic programming operator� J�� propagate the e�ects of following pol


icy� �� for n steps� The interchangeability of a mulit
step operators� Jn�V � J��J��� � � J�V ���

with its constituent single step operator� J� follows immediately from the contraction prop


erty of J�� i�e�� if J� is a contraction� then J
n
� is necessarily a contraction to the same 	xed

point� Sutton shows that a new discounted transition matrix implementing this operator

can be determined by a sequence of matrix multiplications�

The act of following a policy for n steps also can be interpreted in the SMDP

framework� It can be seen as an unrolling of the model �think of loop unrolling by a
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s’s

Figure 
���� A model with a transition from s to s� highlighted�

compiler� so that n copies of the model are created� Wherever there was previously a

transition from s to s�� there is now a transition from st�i to s
�
t�i��� except for st�n� which

would have a transition to s�t��� See Figure 
��� and Figure 
����

Using Lemma �� all states for t � � can then be removed from the model to create

an SMDP� the transition and reward function of which will express the n
step discounted

probabilities and rewards that result when � is followed for n steps�

Composition of operations

That the composition of two interchangeable operators produces an equivalent

operator also follows from the contraction property of the corresponding DP operators�

Clearly� if J� and J� are both contractions with the same 	xed point� then J	�V � �

J��J��V �� must also be a contraction to that 	xed point�

There is also� however� an illuminating interpretation of this operation in the

SMDP framework� The approach used is similar to that of unrolling� with the di�erence

being that one copy of the states obeying J� is rolled into another copy of the states which

obey J�� which are then directed back to the J� states� as in Figure 
���� Suppose� for

example� that state s made a transition to s� with probability T��s� s�� and discount ��

in J� and probability T��s� s�� and discount �� in J�� then s�� in copy �� would make a

transition to s��� in copy � with probability T��s� s
�� and discount �� and s�� in copy ��

would make a transition to s�� in copy � with probability T��s� s
�� and discount ���

If Lemma � is used to remove the states added for the J� dynamics� the resulting

model will be equivalent to �not just interchangeable with� J	� Thus� operator concatenation

has a direct interpretation as an operation on an SMDP state space�
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s’s

Copy 1

Copy 2

Copy n

s

s’s

s’

Figure 
���� Model M has been unrolled n steps by making n copies and connecting them
serially�



��

(s)
1

T (s,s’)
1

β 

s’s

β (s)
2 2

T (s,s’)

Copy 2

Copy 1s’s

Figure 
���� Two operators are composed by creating two copies of the state space and
connecting according to the dynamics implied by the operators�
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Averages of operators

The weighted average of a set of operators� J� � � � Ji� by some weights� w� � � � wi

�
P

j wj � ��� is interpreted as the construction of new transition and reward functions so

that

Ttotal�s� s
�� �

X
j

wjTj�s� s
���

and

Rtotal�s� s
�� �

X
j

wjRj�s� s
���

Alternatively� this can be thought of as a stochastic operator JA� which chooses

Ji with probability wi� The stochastic update will be interchangeable with any of the

individual update rules because each of the Ji is a contraction with the same 	xed point�

so the order or relative frequency in which they are applied has no bearing on convergence�

There is also an interpretation of the averaging operation in terms of a manipula


tion of an SMDP� This is done by creating i& � copies of the states� The kth copy of state

s operates according to the reward function and transition function expressed in Jk� but

makes transitions to the �th copy of the destination state� That is�

TA�sk� s
�
�� � Tk�s� s

���

The reward function is carried over directly�

RA�sk� � Rk�s�

as is the discount�

�A�sk� � �k�s�

The �th version of state s �ips a coin and moves to the kth version with probability wk�

TA�s�� sk� � wk

The time required for transitions from � version states is �� i�e� ��s�� � � and the reward

is also �� �

�Discount factors of � are generally avoided here because they can cause di�culties in contraction proofs�
In this case� the model is immediately transformed to an equivalent model with all discounts less then �� so
there is no cause for concern�
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The intuitive interpretation of this is that for each state� the model instantaneously

�ips a biased i
sided coin and then proceeds with the version of the model dynamics corre


sponding to the result of the �ip as in Figure 
��
� When every state except the � version

states is removed �Lemma ��� the resulting model will have transition and reward functions

that are weighted combinations of the original transition and reward functions and the

backup operator will be equivalent to the average backup operator� Jtotal�

Pointwise combinations of operators

The convergence of pointwise combinations of the above operators follows as a

straightforward generalization of their counterparts due to the convergence of asynchronous

value determination� They will not be covered here beyond this observation�

Full ��models

A full �
model is a weighted multi
step operator� This combines the features of

multi
step operators and averaged operators in a way that can assign di�erent weights to

di�erent trajectories through the model� Each state can have a unique weighting factor�

�s�
� The weight attributed to step i in the model is

w � ��� �s
i��
i��Y
k��

�s
k��

where s�i� is the state at time i�

The assignment of di�erent weights to di�erent states leads to the unusual property

of full �
models by which di�erent trajectories through the model can have di�erent weights�

For example� if �s � �� then any trajectories that pass through state s will have weight �

after the 	rst occurrence of s� However� states in the portion of the trajectory before s is

reached may have non
zero weight� In general� instead of having a termination condition

that speci	es a 	xed number of steps in a multi
step model� full �
models can be interpreted

as assigning an exponentially decayng weight scheme to all possible multi
step trajectories

through the model�

Full �
models have a surprisingly simple interpretation in the SMDP framework�

They are expressed as a combination of the coin �ipping gadget used to average operators

�Sutton used �� hence the name �
models� However� this would cause too much confusion with the use
of � here as a discount factor�
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Figure 
��
� A coin �ipping state that chooses stochastically between states s� � � � si� which
implement J� � � � Ji�
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and the unrolling trick used for multi
step operators� Starting with some original transition

function� T � and reward function� R� two copies of the states in the original model are

made� For states s and s�� there are now states s� � � � s� and s�� � � � s
�
�� The process stays

inside the 	rst version of the state space with probability ���s� Thus� if the original state

space had a transition T �s� s��� the version � copies of the states obey�

T �s�� s
�
�� � T �s� s

���� � �s��

and

T �s�� s
�
�� � T �s� s

���s

with

R�s�� � R�s�� � R�s�

and

��s�� � ��s�� � ��s�

The second version stays inside the second copy of the states with probability �s

and returns to the 	rst with probability �s�

T��s�� s
�
�� � T �s� s

����� �s�

and

T��s�� s
�
�� � T �s� s

���s�

This is shown conceptually in Figure 
���� When all of the states except those in

the 	rst version are removed �Lemma ��� the resulting transition model will be equivalent

to the � transition model that would result if the in	nite summation over every possible

trajectory were to be computed�

To see this� consider the interpretation of averaging as a stochastic DP operator�

The weight assigned to a particular operator corresponds to the probability that this opera


tor is applied� The number of steps corresponds to the number of coin �ips before the model

returns to version �� Suppose that the process has gone through a trajectory� s��� � � � s�k��

where s�i� is the state at time i� Given this trajectory� the probability of returning to

version � in exactly k steps is

��� �s
k��
k��Y
i��

�s
i��
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s’s Copy 1
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ω 

(s)ω (1-        )T(s,s’)

Figure 
���� A transformation on the original model and transition function� T � that is
equivalent to a full �
model
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which is exactly the weight assigned to this trajectory by the �
model� This makes the model

a stochastic implementation of the exponentially decaying average implicit in �
models�

Note the similarity between this interpretation of full �
models and the unreliable

robot actuation earlier in this chapter� In both cases� an in	nite summation over time turns

out to be equivalent to an SMDP model with some extra� uncontrolled states� This inter


pretation makes �
models easier to work with and makes them amenable to the algorithms

of Chapter ��

Macros and Options

Recent work by Precup� Sutton and Singh �Precup  Sutton� ����" Sutton� Precup�

 Singh� ����� has considered the more general case where an agent may have a choice

between executing several temporally extended policies of the form described above� The

policies are used as abstract actions and are called macros �Precup  Sutton� ������ in

the spirit of macro operators in classical planning� or� more recently �Sutton et al�� �����

options�

Options are� essentially� a more formal version of S�
H� Lin�s robot subtasks for

reinforcement learning �Lin� ���
�� While Lin speci	ed 	xed points at which subtasks

terminated� options can use the exponentially decaying stopping conditions speci	ed by

full �
models� However� the overall e�ect is much the same� As has been shown above�

options also have an interpretation as SMDP actions� and the convergence of value iteration�

policy iteration or reinforcement learning with options all follow as a consequence of the

convergence of these algorithms for SMDPs�

The authors of the option literature have advocated a use of temporal abstrac


tions that is somewhat di�erent from that advocated by other authors� Typically� temporal

abstractions have been viewed as a replacement for low
level actions� Forestier and Varaiya

������ and Dean and Lin ������ both used temporal abstractions as a way of simplifying

reasoning about the e�ects of policies over large regions of the state space� These applica


tions of abstract actions can be called reductive since they aimed to use abstract actions as

a means of reducing the size of the state space� L�
J� Lin did not aim explicitly to remove

states from the state space� but did mention the need for reducing the number of points at

which actions could be initiated or stopped� e�ectively reducing the size of the state space�

In contrast� the advocated use of options is concurrent with low
level actions� placing no
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restrictions on which abstract or low
level actions can be initiated at any time�

The concurrent use of temporally abstract actions with low
level actions does

have some advantages� It merely adds actions to the original MDP and since the actions

correspond to actual policies over regions of the MDP� the optimal solution to the MDP will

not change� This is in contrast to the Forestier and Varaiya approach� where the optimal

policy for the simpli	ed MDP may not be the optimal policy for the original MDP� However�

the added �exibility of the option
style use of temporally abstract actions comes at a price�

The new decision problem will have the same size state space and more actions� making each

iteration of policy iteration or value iteration more costly� and potentially requiring more

environment experiences in reinforcement learning� The advocates of options argue the use

of options will speed convergence� requiring fewer iterations with o�
line methods and less

random roaming about in the environment in reinforcement learning� This may only be

the case� however� if the temporally abstract actions are well
chosen� Recent arguments by

Hauskrecht et al� ������ indicate that abstract actions that move an agent away from the

interesting parts of the state space actually can slow convergence�

��� Conclusion

This chapter presented the SMDP framework and showed that this framework

captures the essence of a large number of approaches to temporal abstraction that have been

adopted in the MDP 	eld� It presented a new convergence proof for Q
learning for SMDPs

and showed that the convergence and optimality properties of other temporal abstraction

methods all follow as a consequence of SMDP convergence and optimality results� The

following chapter discusses algorithms for converting temporally abstract actions into SMDP

action descriptions�



��



��

Chapter �

Symbolic Methods � Algorithms

that Convert Policies to Actions

The previous chapter described the semi
Markov decision process framework and

showed that a variety of temporal abstraction methods could be understood within this

framework� A common mechanism in these methods is the step of 	xing the policy in some

region of the state space and then removing the states for which the policy is 	xed� The act

of executing the policy over the region then becomes a temporally abstract action that can

be launched by the states bordering the region� The process of removing states to produce

an abstract action was shown to be equivalent to a sequence of state removal operations

performed on an SMDP�

In spite of this clear formal connection between SMDP actions and the act of

executing a policy over a region of the state space� there has been some confusion in the

AI community about mechanisms for e�ciently converting a policy� or piece thereof� to

an action� This chapter presents a new class of algorithms called symbolic methods� with

on
line and o�
line variations� that achieve this transformation� and a table is presented

showing the advantages and disadvantages of each algorithm� The relationship between

these algorithms and standard MDP algorithms also is demonstrated�

The representations and techniques used in some of the algorithms in this chap


ter suggest a new class of optimality criteria for MDPs� The chapter concludes with a

generalization of MDPs called symbolic MDPs �SyMDPs�� This generalization retains the

formal properties of the MDP framework� but permits more interesting optimality criteria
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that can trade o� rewards or costs with weighted combinations of probabilities of event

outcomes at prespeci	ed rates� This makes it possible to 	nd policies that will choose an

outcome only if its expected value is greater than some constant� or policies that will trade

the likelihood of terminating in one state against the likelihood of terminating in another

at some prespeci	ed rate�

��� O
	line algorithms

This section describes o�
line algorithms that convert policies de	ned over regions

of a state space into SMDP action descriptions�

����� The one�at�a�time algorithm

The one�at�a�time algorithm follows directly from the proof of Theorem � �Chap


ter 
�� The 	rst step is to augment the state space of the original MDP adding uncontrolled

states that execute policy � on region G 
 S� This is done as follows� for each state� s � G�

add state s�� For s
� �� G� de	ne T �s�� s��� � T �s� ��s�� s��� so state s� mimics the behav


ior of state s under policy �� There is no action in the transition function of s� because

s� is an uncontrolled state� For s
� �� G� de	ne T �s�� s�� � T �s� ��s�� s��� so the process

returns to the controlled region upon leaving G� For each s in G from which � can be

started� create a new action� a�� such that T �s� a�� s��� � T �s� ��s�� s�� for all s� � G and

T �s� a�� s�� � T �s� ��s�� s�� for all s� �� G� Thus� action a� shifts from the regular states in

the MDP to a set of uncontrolled states that model the e�ects of policy � on G� In general�

the termination conditions do not need to be this sharply de	ned� For example� using the

structures developed in Section 
����� stochastic termination conditions can be added to the

region�

According to Lemma � from Chapter 
� the uncontrolled states can be removed

from the process� creating an equivalent SMDP in which the act of launching � is summa


rized with a single SMDP action� Let function sremove�M�s� remove state s from MDP M

as speci	ed by Lemma � �This is not reproduced here in pseudocode because the equations

are too big�� The following algorithm will remove all of the uncontrolled states�
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function oaat�reduce �M�
Let s � some uncontrolled state in M

if s � nil then
return M

else

return oaat�reduce�sremove�M�s��

The worst case complexity of sremove is O�jAjjSj��� which would occur if every state makes

transitions to the removed state for every action� and if the removed state has transitions

to every other state as well� This results in a worst case complexity of O�jjAjjSj�� for

oaat�reduce where j is the number of states removed� In the more realistic case� where

the connectivity of the state space is bounded by k� the complexity is O�jjAjk��� under

the assumption that connectivity never grows above k while oaat�reduce is running� Note

that while the connectivity of the model can indeed grow as states are removed� the total

number of edges in the transition graph representing the MDP cannot increase� Thus� the

cost of value determination for the model that results when the states are removed can be

no greater than the cost would be if the states were left in the model� Unless every state

inside of the region is connected to every state outside of the region� the cost will be lower�

Whether this lower cost will amortize the expense of removing the states will depend upon

other factors such as the topology of G� the number of times the abstract action is used by

value iteration or policy iteration in the reduced model� and even the order in which the

states are removed�

As a simple example of state removal� consider a room from the four
room naviga


tion problem with the policy speci	ed as shown in Figure ���� Suppose that the states are

labeled as shown in Figure ���� For this example� assume the following transition model�

Each action will move the agent in the intended direction with probability ���� and in one

of the remaining axis
parallel directions with probability ��� for each� Bumping into walls

has no e�ect� For this policy� T �s��� s��� � ���� T �s��� s�� � T �s��� s�	� � T �s��� s��� � ����

When state s�� is removed from the model� the new transition probabilities for state s� will

be T �s�� s�� � T �s�� s�� � T �s�� s�� � T �s�� s��� � T �s�� s�	� � ���� and T �s�� s��� � ����

The discount factors are ��s�� s�� � ��s�� s�� � ��s�� s�� � � and ��s�� s��� � ��s�� s�	� �

��s�� s��� � ��� A uniform discount factor can be obtained by normalizing the Bellman

equation coe�cients for s� to turn each coe�cient into a probability� The normalizing factor
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Figure ���� A labeling of the states in room ��

Figure ���� A policy for room ��

becomes the new discount rate�

�� �
X
i

T �s�� si���s�� si�

� 
������ & �������� & �����

� ��
� & ������

The new transition probabilities become T �s�� s�� � T �s�� s�� � T �s�� s�� �
����
�� � T �s�� s��� �

T �s�� s�	�
�����

�� � and T �s�� s��� �
�����

�� �

Note that in this case� the connectivity of state s� has increased from � to ��

However� the total number of edges in the state transition graph for this model has decreased

since state s��� which also had a connectivity of �� is now removed�

����� The all�at�once algorithm

The all
at
once algorithm works by directly manipulating the system of linear

equations that de	nes the values of the uncontrolled states in terms of the values of the

controlled states� The goal is to achieve a form that expresses the value of every uncontrolled
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state as a linear function of just the controlled states� As in ordinary value determination�

the Bellman equation for each uncontrolled state becomes a row in a system of equations�

However� the system is not square � there will be no rows for controlled states� If the

states are sorted so that the controlled states are numbered higher than the controlled ones�

the system can be expressed as the following partitioned matrix�

�
BBB�

u�� u�� � � � c�� c�� � � � k�

u�� u�� � � � c�� c�� � � � k�
���

���
� � �

���
���

� � � k	

�
CCCA

where row i comes from the Bellman equation of state i� uij comes from the coe�cient

of uncontrolled state j in terms of controlled state j� cij comes from the coe�cient of

uncontrolled state i in terms of uncontrolled state j� and ki comes from the constant in the

Bellman equation� i�e�� the reward�

When this system is solved to determine the values of the uncontrolled states it

produces the following form� �
BBB�
� � � � � f�

� � � � � f�
���
���
� � �

���

�
CCCA

where the functions f� � � � fn are linear functions that express the values of the uncon


trolled states in terms of the controlled states� For any state that executes an action that

moves to state ui� the expression V �ui� can be replaced in the Bellman equation with

fi�V �c��� � � � � V �cj�� if there are j uncontrolled states�

The complexity of removing a block of states by this method will depend upon

several factors� the number of states in the uncontrolled region� the number of controlled

states to which the uncontrolled region makes transitions� and the topology of the connec


tions inside the region� If the uncontrolled part of the system can be arranged in a block


diagonal fashion� then this method can be quite e�cient� Heuristics exist for rearranging

�ill
conditioned� matrices to make them more amenable to elimination methods� See Lip


ton� Rose� and Tarjan ������� which develops fundamental matrix conditioning algorithms

that are still the basis of the current best heuristic methods�

In the four
room example� suppose that the two states in which the policy can

terminate are the states in the adjoining rooms� labeled s�� and s�� as in Figure ��
� States

s� through s�� would form the left
most square block of the system of equations� and states
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Figure ��
� Terminating states s�� and s�� for policy ��

s�� and s�� would form a two
column strip between these states and the constant� The

solution to this system yields a � � � identity matrix and a three
column strip that shows

the value of each state in the room in terms of s�� and s��� This is shown in Table ��� for

the policy in Figure ��� for � � �����

����� Symbolic value determination

The all
at
once algorithm of the previous section solves a system of linear equations

directly to determine the value of the states in an uncontrolled region of an SMDP in terms

of the values of the neighboring states� If this system of equations is too large� it may be

necessary to use an indirect method� such as Gaussian iteration� to solve the system� The

iterative value determination algorithm from Chapter � can be modi	ed to ful	ll this role�

There are two ways to think of this modi	cation� If there are j bordering� controlled states�

�� The value of controlled state si that borders the uncontrolled region is a token Vi that

is propagated back through the Bellman equation for each state� The value of each

state is then a symbolic expression in terms of these tokens and a constant�

�� The value of controlled state si is a vector� V with V�i� � � and V�k� � �� for k �� i�

and the value of any uncontrolled state is a linear combination of these vectors�

These two representations are equivalent since they are just di�erent ways of ex


pressing linear functions� The vector representations turns out to be somewhat tidier� the

�value� assigned to each uncontrolled state is a j & � dimensional vector� where the ith

position of the vector indicates the value as a function of controlled state i� The j & �st

position of the vector is used to carry reward information�
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State Value

� ����V �s��� & ����V �s���
� ����V �s��� & ����V �s���

 ����V �s��� & ���
V �s���
� ���
V �s��� & ����V �s���
� ����V �s��� & ����V �s���
� ����V �s��� & ����V �s���
� ����V �s��� & ����V �s���
� ����V �s��� & ����V �s���
� ����V �s��� & ����V �s���
�� ����V �s��� & ����V �s���
�� ����V �s��� & ����V �s���
�� ����V �s��� & ����V �s���
�
 ����V �s��� & ����V �s���
�� ����V �s��� & ����V �s���
�� ����V �s��� & ����V �s���
�� ����V �s��� & ���
V �s���
�� ����V �s��� & ����V �s���
�� ����V �s��� & ����V �s���
�� ����V �s��� & ����V �s���
�� ����V �s��� & ����V �s���
�� ����V �s��� & ����V �s���
�� ����V �s��� & ���
V �s���
�
 ����V �s��� & ����V �s���
�� ����V �s��� & ���
V �s���
�� ����V �s��� & ����V �s���

Table ���� Values of states � � � � �� in terms of V �s��� and V �s���� Coe�cients are rounded
to two decimal places�
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In the room example from the previous subsection� s�� would have its value 	xed

at ��� �� �� and s�� would have its value 	xed at ��� �� ��� �The third position is reserved for

rewards�� If the state values for this model are initialized to ��� �� ��� the 	rst step of value

determination would modify state s�	 as follows�

V �s�	� � �����V �s��� & ���V �s��� & ���V �s��� & ���V �s����

� ����� �� �� & ��� �� �� & ��� �� �� & ��� �� ���

� ��� �� ��

If there were a reward r associated with this step� than this reward would occupy the last

position in the vector� ��� �� r��

Symbolic value determination returns the same answer as the all
at
once algorithm�

Theorem 
 Symbolic value determination for a region� G� of an MDP will converge to

an assignment of vectors to states such that the ith component of the vector value for state

s equals the coe�cient of the linear function for the value of state s in terms of state i�

Furthermore� the value of the last component of each vector will be the expected� discounted�

sum of rewards received upon proceeding from state s to the next controlled state�

Proof� Each update in symbolic value determination performs j & � independent value

determination steps in parallel� Each of these is individually a contraction at rate ��

The following is stated without proof and follows directly from the above theorem

and the convergence of asynchronous value determination�

Theorem � Asynchronous symbolic value determination will converge to the same answers

as regular value determination under suitable non�starvation conditions�

An important di�erence between symbolic value determination and the all
at


once algorithm is that symbolic value determination lends itself naturally to value function

approximation� While value function approximation is not a focus of this dissertation� it

is worth mentioning brie�y how symbolic value determination could be combined with this

method� Suppose that there is a large� uncontrolled region� G� that is to be removed from

the state space� Since G is very large� it will be impractical to assign a value to every state

in G and� instead� a function approximator will be used to estimate the value of the states

in G based upon the values of some set of exemplars� H � G� Symbolic value determination
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takes on the usual form for this type of function approximation method� where f�s�W � is

the form of the function approximator and W is a set of parameters or weights determining

the behavior of the approximator�

procedure approximate�value�determination

W � an initial �random� weight vector

Until termination do

For all s � H
V �s�� R�s� & �

P
s� T �s� s

��f�s��W �
Fit f�s�W � to V �s�

return�f�s��W ��

Termination conditions for these types of algorithms are typically de	ned by a

function of the maximum Bellman error at each of the states in H� i�e� the maximum

di�erence between V �s� at one iteration and V �s� at the next iteration� What makes

symbolic value determination di�erent from ordinary function approximation methods is

that f�s��W � must return a vector� This can be achieved by using a neural network with

several outputs� by using separate function approximators for each component of the vector�

or by making the vector component an input to the function approximation method and

cycling through di�erent values of this input to construct the vector�

����� Non�contraction of Symbolic Value Iteration

It is natural to ask if symbolic value determination could be extended beyond

simple value determination so that optimal policies could be determined at the same time

as the symbolic representation of the value of following the policy� In Dean and Lin�s

iterative abstraction method �Dean  Lin� ����� �see also Chapter 
�� for example� new

policies are generated for regions of the state space by determining the optimal policy under

the assumption that states outside the region have a 	xed� constant value� A method such

as the all
at
once algorithm or symbolic value determination must then be applied before

the new policy can be treated as an abstract action� Unfortunately� it appears that these

two steps cannot be compressed into a single step in a straightforward way�

The natural combination of value iteration with symbolic value determination

�symbolic value iteration� would maintain two value tables� a regular� scalar value table� as

is typical with ordinary value iteration� and vector value table as is used for symbolic value

determination� The update procedure for each state would work as follows�
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A1/0.9

A2/0.1

A1/0.9

A2/0.1
S3

S2

S1

Figure ���� A model for which symbolic value iteration will not contract�

�� Update the scalar value table using value iteration

�� Update the vector value table using using the maximizing action from ��

The problem with this is that the operation may no longer be a contraction in

the maximum norm of the error in the coe�cients� Consider the example in Figure ����

where the task is to determine the value of state s� in terms of the value of s� and s	 at

the same time a policy is determined for these states using value iteration� Suppose that

the maximizing action for value iteration for state s� changes from a� to a�� the symbolic

representation of the value of s� would change from ������ ����� �� to ������ ����� ��� In

the course of value iteration� the maximizing action may change many times� causing the

symbolic representation to �ip
�op between these two possibilities� Clearly� this is not a

contraction in the maximum norm of the coe�cient errors as it was in the simple value

determination case�

Once value iteration becomes 	xed upon an optimal policy� this hybrid sym


bolic�scalar approach will converge to the correct symbolic representation� If there is more

than one optimal policy� the maximizing action for value iteration may be unstable for quite

some time� Still� it may be useful to use the hybrid approach before the policy is known to

be stable if there is reason to believe that nearly optimal policies will have similar coe�cient

values to the optimal one�

����	 Relationship to Asynchronous Dynamic Programming

There is a relationship between state removal and asynchronous policy iteration�

Recall that for each phase of asynchronous policy iteration� a region� G� is de	ned� and one
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or both of the following operations are performed� in any order� for each s in G�

�� Update the policy� �� for state s�

�� Update the value for state s using action ��s��

State removal algorithms operate on a region of the state space where the policy is

	xed� producing a symbolic representation that instantaneously propagates value informa


tion across the removed states� Thus� every application of an abstract action is equivalent to

an in	nite number of value propagation steps in asynchronous dynamic programming� i�e��

steps of the second type above� Moreover� an iterative abstraction algorithm such as the

Dean and Lin algorithm can be interpreted as using two di�erent phases of asynchronous

policy iteration� Determining a new policy for region G under the assumption that the

states bordering G have constant value is the same as performing an in	nite number of

both types of asynchronous policy iteration operators on the region G� while using the

policy as an abstract action corresponds to an in	nite number of value propagation steps

with no policy improvement steps� This connection shows an alternate means of proving

the convergence of iterative abstraction algorithms as a special case of asynchronous policy

iteration�

��� Reinforcement Learning Methods

This section discusses on
line variants of the algorithms of the previous section�

In this case� the problem is similar to the basic Temporal Di�erence �TD� learning problem

�Sutton et al�� ����� �Chapter ��� In ordinary TD� the task is to learn the value of every

state� In this section� the task is to learn the value of every state in some region� G� in

terms of the states reachable from G in one step�

����� The Direct Method

It is worth pointing out that the simplest way to learn the value of any state under

a 	xed policy is to collect statistics� For any state� s� initialize the cumulative discounted

reward� 	 � � and and the cumulative discount� �c � �� For each transition after s� that

receives reward r�
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	� 	& �cr

and

�c � ��c�

When a controlled state is reached� the destination is recorded� and these data are used

for statistics on the discounted reward� the cumulative discount factor� and the transition

probabilities between s and any controlled state bordering G� As shown in Chapter 
� these

are su�cient to represent a transition from state s as an SMDP action�

This direct approach can be interpreted as a special case of TD��� and is called

TD���� This approach is not necessarily the most e�cient in either case� Since TD���

does not assign values to any of the intermediate states� there is no information shared

across di�erent trajectories through the model that share paths� Moreover� recent results

by Sutton et al� ������� described in more detail below� show that by learning the values of

intermediate states� it is possible to remove states corresponding to several di�erent abstract

actions simultaneously�

����� Symbolic TD

One of the most important properties about the convergence proof for symbolic

value determination �Theorem �� is that it opens the door for symbolic temporal di�er


ence learning� �symbolic TD�� As with symbolic value determination� if there are j states

bordering region G� then the value function for every state is a j & � dimensional vector�

The value of state i that borders region G is a vector where component i is � and all other

components are �� A sampled reward� r� is treated as a vector� all components of which are

�� except the j &�st� which is just r� As with the transformation from value determination

to symbolic value determination� symbolic TD is implemented by replacing the regular TD

operators with vector operations�

Theorem �
 The Symbolic TD learning rule converges to true expression for V �s� in terms

of the states in C if

�� The state and action spaces are �nite�


�
P

i �i�s� a� �� and
P

i �
�
i �s� a� �� uniformly over s and a w�p���

�� Varfrg is �nite�
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Figure ���� Solving the two
room navigation value determination problem as two separate
symbolic TD problems�


� � � � � �

Proof The proof mirrors the proof of the convergence of Q
learning for SMDPs since sym


bolic value determination is a contraction�

There are many potential applications of symbolic TD� It makes possible the reso


lution of �what if� scenarios� Suppose� for example� that a large system is under evaluation

and the designer wishes to determine how an improvement in the overall system perfor


mance in one area depends upon another �critical� area� Symbolic TD could be used to

determine the values of the states in the critical area in terms of the values of the states

in the area that is under review� If the relationship between the areas is weak� i�e�� the

coe�cients are small� this would indicate that a local improvement in the policy would not

have a large e�ect on the critical area�

Several symbolic TD problems can be solved simultaneously and their solutions can

be combined to produce the solution to the traditional� scalar TD problem� This approach

may be faster than a direct solution to the scalar TD problem� Consider the two
room

example� which has been split into two pieces in Figure ���� Given a policy for each of the

rooms� the agent could use standard TD to 	nd the value of each of the states� As with

most algorithms based on dynamic programming� the time required to do this accurately

will depend upon the �diameter� of the model� roughly the number of states through reward

information must travel to be communicated to any other state� and the discount factor�

which will bound the convergence rate� For this model� the diameter is roughly the width

of two rooms�

Instead of directly learning the value of each state� the agent could learn the value

of each state in the right room in terms of the value of s��� and the agent could also learn

the value of every state in the 	rst room just in terms of state s	�� The agent might learn
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that value of state s�� is ����V �s	�� and the value of state s	� is ���V �s��� & ����� This

small system of equations could be solved to determine the values of s�� and s	�� which

could then be substituted directly into the value functions for the other states� A key point

here is that there is the potential for faster learning since the greatest distance information

will travel is one room� not two as in the original� scalar TD learning problem� The tradeo�

is that more work is required� in the form of solving a small system of equations� before

a scalar value function can be produced� Another way to view this approach to temporal

di�erence learning is as an exploration of a tradeo� between two extremes� Traditional TD�

which directly learns a value function without learning anything like a transition model� is

one extreme� while the other extreme would be a system that learns a complete transition

model 	rst and then solves for the state values o�
line� This application of symbolic TD

permits a tradeo� between the amount of computation that is done on
line in the form of

TD updates� and the amount that is done o�
line� The optimal point in this range will

depend upon the relative cost of on
line vs� o�
line computation as well as the form of the

model� Models with �choke points� or small �interface� regions �Dean  Lin� ����� �see

also Chapter ��� such as the example here� will partition the state into easily decoupled

regions and are good candidates since they will produce small systems of equations�

Another interesting property of symbolic TD is that when combined with the state

space transformations of the previous chapter� it provides an alternative interpretation to

the method introduced by Sutton ������ for learning mixture models� A mixture model can

be learned by symbolic TD by implicitly performing the state space manipulations described

at the end of the previous chapter� Recall that these transformations involve augmenting

the state space with several copies of the original states� While an agent operating in

an environment does not have the option of augmenting the environment� the agent can

simulate the e�ects of an augmented state space by maintaining internal state that tracks

the agent�s idea of which version of a particular state it is in�

For example� suppose that the agent is simulating a two
step model� which is

implemented by unrolling the original model by one step and then connecting the sec


ond step back to the 	rst �see Section 
������ Thus� any sequence of states� s�� s�� s	� s��

where si is a random variable for the state at time i� would be interpreted by the agent as

s����� s����� s����� s����� where the parenthesized number denotes the alternation between

the original and the unrolled version of the state space� By maintaining internal state in


formation� the agent is able to simulate the e�ects of acting in the augmented state space
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Figure ���� An alternate policy for the same room�

while still acting in the original one� constructing the unrolled state space from Chapter 


in its �mind�� This e�ect works for transformations with coin
�ipping gadgets as well� since

the agent can internally �ip a coin� implementing a stochastic transition between internal

states�

A further bene	t of the Symbolic TD approach is that it is amenable to an approach

recently suggested by Sutton et al� ������ for simultaneously learning the value of several

di�erent abstract actions based upon a single set of environment experiences� Consider

the policy shown in Figure ���� Suppose that an agent is trying to use symbolic TD to

learn vector state values for both this policy and the policy of Figure ���� The agent would

need to alternate between di�erent policies� updating vector state values for two di�erent

copies of the state space� This alternation may not be avoidable� but it is possible to share

information between the two policies� Notice that while the policies produce signi	cantly

di�erent behaviors� they assign the same action to many states� Thus� whenever the agent

is in the top two rows of the model� any �state� reward� next
state� triple can be treated

as if it occurred in both copies simultaneously and a step of symbolic value determination

can be performed for both copies of the state space simultaneously� This observation can

be seen as a generalization of a result in Harada ������ in which an agent used a single

experience to simultaneously update Q
values for di�erent time slices in a 	nite horizon

MDP�

Finally� it should be noted that as in symbolic value determination� function ap


proximation can be used to approximate the coe�cients in symbolic TD� with all of the

standard pitfalls� bene	ts� and caveats�
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����� Avoiding state elimination

So far� this chapter has focused on algorithms for removing states from the state

space under the assumption that it is always useful to remove uncontrolled states� However�

there is at least one case where it may may not be desirable to remove uncontrolled states�

This situation arises in Q
learning� where the agent avoids explicitly constructing a model

of the environment� In this case� the agent would like to learn the value of launching an

abstract action directly� without incurring the overhead of symbolic TD� This can be done

by applying the TD��� version of symbolic TD� The agent initializes 	 � � and �c � ��

For each transition after s� that receives reward r�

	� 	& �cr

and

�c � ��c�

When the agent reaches a controlled state� s�� it performs a Q
learning update on the

transition from s to s�� treating the policy used over the region of the space as an action�

treating 	 as the reward� and treating �c as the discount factor� This must converge to the

optimal policy since 	 and �c are the true discount and reward for this trajectory in an

SMDP and Q
learning was proven to converge for SMDPs in Chapter 
�

This shows that it is not necessary for a Q
learning agent to maintain state value

estimates for the values of uncontrolled states� However� it could still be useful for the agent

to do so for the reasons suggested in the previous subsection� faster convergence� and the

sharing of information gained from a single experience across several di�erent actions�

��� A Summary of State Removal Algorithms

This section presents Table ��
� summarizing the properties of the algorithms

presented so far in this chapter� They are categorized along several dimensions� The async�

column indicates if the algorithm must be used synchronously or if it permits asynchronous

versions� The func� approx� column indicates if the method is compatible with function

approximation� The prob� type column indicates� in informal terms� the types of problems

for which each method will excel� The on
line column indicates whether the method can be

applied for reinforcement learning�
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Algorithm Async� Func� Approx� Prob� Type On
line

one
at
at
time Yes No Small No
all
at
once No No Block
diagonal No

symbolic value determination Yes Yes Large No
symbolic TD Yes Yes Large Yes

Table ���� Features of the di�erent algorithms in this chapter�

��� Crafting Actions � New Optimality Criteria

A negative result in this chapter is the example showing that the simultaneous de


termination of an optimal policy and a symbolic representation of this policy is not possible

in a straightforward manner� In spite of the instability in the symbolic value representations

when the maximizing action at a particular state changes� there is some underlying stability

in symbolic value determination which is maintained when the maximizing action changes�

This stability can be captured with a new type of optimality criterion� permitting speci


	cation of di�erent types of policies that make explicit tradeo�s between the discounted

likelihood of reaching various states� This class of optimality criteria does not appear to

have been investigated before in the MDP community�

Consider again a single room as in Figure ��
� If the values of states s�� and s�� are

known� then the optimal policy for this room can be found by solving an MDP that contains

just the states shown in the 	gure and has the values of s�� and s�� 	xed at their correct

values� If nothing is known about the value of s�� and s��� some guess can be made� as is

done in the initial phase of the Dean and Lin approach �Dean  Lin� ������ In some cases�

however� it is more natural to devise an abstract property that the policy must satisfy than

it is to produce a sensible guess about a state value� For example� it might be worthwhile

to start o� with two policies� one that maximizes the expected� discounted probability of

reaching state s�� and one that maximizes the expected� discounted probability of reaching

state s��� More interesting options may be desirable if some heuristic information is available

about the region� For example� it might be desirable to 	nd the policy that maximizes the

expected� discount sum of the rewards received inside the room plus one half expected

utility received for exiting through state s���

A decision problem that achieves this type of abstract requirement on a policy can

be constructed using symbolic optimality criteria� A symbolic optimality criterion identities

a set of terminal states� and a function of the expected� discounted probability of reaching
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these states and the expected� discounted sum of rewards�

A decision problem with a symbolic optimality criterion is called a a symbolic MDP

�SyMDP�� which can be de	ned as a �
tuple� �S�A�T �R� f� C�� where C is a set of boundary

states in terms of which the other state values will be de	ned� and f is a function from

vectors of size jCj & � to reals� The value for each state is a vector of size jCj & � and the

Bellman equation for state s �� C is�

V �s� � fmaxaR�s� a� & �
X
s�

T �s� s��V �s��

where fmaxa is the value of the maximizing vector in maxa f�	� and R�s� a� is a vector with

component jCj & � equal to the reward for taking action a in state s� For si� the ith state

in C� V �si� is a unit vector with the ith component equal to �� The dynamic programming

operator� J � is de	ned as�

V t � J�V t��� � fmaxa�R�s� a� & �
X
s�

T �s� s��V t���s����

In Figure ��
� a symbolic MDP that maximized the expected� discounted sum of

rewards inside the room plus one half the expected� discounted probability of reaching state

s�� would specify the set of boundary states as C � fs��� s��g� The value of state s�� would

be 	xed at ��� �� ��� and the value of state s�� would be 	xed at ��� �� ��� The value of each

non
boundary state would also be a vector and the function� f � implementing the optimality

criterion would be a function from state vector values� V� to scalars� In this case it would

be ���V��� & ���V�
��

Theorem �� If f is a linear function� then the value iteration operator for SyMDPs is a

contraction in the maximum norm of f applied to the individual state values�

Proof� Consider 	rst the case of a 	xed policy� Suppose the maximum distance between Vx

and Vy is �� i�e�� maxs jf�Vx�s��� f�Vy�s��j � �� Consider an update to Vy at state s under

conditions that would maximize the di�erence between Vx and Vy at s� all successors of s

di�er by � as well� For each state� construct an alternative representation of Vx such that

Vx�s� � Vy�s�&Vs� � For all s� an appropriate V
s
� vector such that f�V

s
� � � f�Vx�s���f�Vy�s��

must exist because f is linear� Vx is updated at state s as follows�

V t
x�s��R�s� & �

X
s�

T �s� s���Vt��
y �s�� & Vs

�

� ��
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The update for Vy is�

V t
y �s��R�s� & �

X
s�

T �s� s���Vt��
y �s����

and by the linearity of f �

jf�V t��
x �s��� f�V t��

y �s��j � f��
X
s�

T �s� s��Vs
�

� �

� �
X
s�

T �s� s��f�Vs
�

� �

� �
X
s�

T �s� s���

� ��

What remains to be shown is that update is a contraction when the action changes�

The above argument shows that for any state� s� jf�Qt
x�s� a��� f�Qt

y�s� a��j � ��� Suppose

that a� is maximizing for Vx and a� is maximizing for Vy� then

f�V t
x�s�� � f�Qt

x�s� a��� � f�Qt
x�s� a���

f�V t
y �s�� � f�Qt

y�s� a��� � f�Qt
y�s� a���

Assume� without loss of generality� that f�V t
x�s�� � f�V t

y �s��� then since f�V t
y �s�� �

f�Qt
y�s� a���� and f�V

t
x�s��� f�Qt

y�s� a��� � ��� f�V t
y �s��� f�V t

x�s�� � ���

A choice of f that returns the ith component of the value vector and ignores all

others will produce a policy that maximizes the discounted probability of reaching the ith

state in C� If f ignores all but the jCj&�st component of the value vector� then the optimal

policy will maximize the rewards received inside of the region� A choice of f that assigns

the same coe�cient to the ith component of the value vector and the last component will

trade rewards inside of the region at a rate of � to � against the value of the ith state in C�

Some of the e�ects of these optimality criteria could be achieved using scalar

methods by making a clever guess about the values of the states in C and 	xing the values

at this guess� For example� if there are no rewards in the SyMDP then the policy that

maximizes the discounted probability of reaching the ith state in C is the same as the

optimal policy for the region when the value of the ith state is 	xed at � and the values of

all other states are 	xed at �� There does not appear to be an obvious way to guess state

values to induce a speci	c tradeo� between internal rewards and bordering state values�
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The following claims are veri	ed easily using the techniques described in this chap


ter and are stated without proof�

�� SyMDPs with linear f can be solved using policy iteration�

�� SyMDPs with linear f can be solved using linear programming�


� SyMDPs with linear f can be solved using Q
learning �with the standard assump


tions��

�� SyMDPs with linear f can be generalized to Symbolic semi
Markov decision processes

�SySMDPs� as can the theorems and results for SMDPs discussed in the previous

chapter�

These results are related to an observation made in Szepesv(ari and Littman ������

that the max in the Bellman equation can be replaced by any non
expansion� However� the

scope here is somewhat di�erent since the state values are vectors� not scalars� and linear

functions can be expansions� The behavior of SyMDPs for non
linear symbolic optimality

criteria is an open question�

��� Conclusion

This chapter presented several new algorithms for transforming policies de	ned

over regions of a state space into SMDP actions� This is done by treating the states in which

the policy is executing as uncontrolled states� and then removing the uncontrolled states

from the state space� These algorithms are the nuts and bolts of the temporal abstraction

methods described in the previous chapter and will be used heavily in the following two

chapters�

The investigation of symbolic methods in this chapter also led to the consideration

of some new optimality criteria for MDPs� These optimality criteria permit explicit trade


o�s between immediate rewards and the likelihood of reaching certain states� This chapter

proved that when the tradeo�s in the optimality criterion are linear� stable dynamic pro


gramming methods can be used to 	nd the maximizing policy�
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Chapter �

Hierarchies of Abstract Machines

��� Introduction

Chapter 
 presented temporal abstraction as a transformation of a policy de	ned

over a region of state space into an action in an SMDP� A large number of temporal ab


straction methods were then shown to be instances of this general approach� Chapter �

presented several algorithms for performing the transformations described in Chapter 
�

This chapter uses the tools that were developed in the previous chapters to develop a new�

hierarchical approach to temporal abstraction in MDPs called Hierarchies of Abstract Ma


chines �HAMs�� The most important features of this approach are�

� An agent
centered abstraction language

� The hierarchical use of prior knowledge

� The optimal re	nement of incompletely speci	ed behaviors

� State space reduction

These features are realized within the temporal abstraction framework� making strong op


timality and convergence guarantees possible� while also providing a link between temporal

abstraction and behavior
based control �Brooks� ����� or teleo
reactive control �Nilsson�

������ The hierarchal nature of the HAM language also suggests connections with hierar


chical approaches to classical planning �Tate� ������

This chapter also includes experimental results on a large navigation MDP with

several thousand states� These results show that a small amount of fairly generic navigation



��

knowledge expressed as a HAM can reduce dramatically the time required to produce nearly

optimal policies�

��� Goals of HAM the method

HAMs were devised to overcome some limitations with existing abstraction meth


ods� particularly temporal abstraction methods� While the results in Forestier and Varaiya

������ showed that policy fragments could be combined optimally� they did not address the

question of how such policy fragments could be devised in the 	rst place� The example of

automating the selection of di�erent control programs for a factory made sense� since fac


tories� particularly those running in ����� usually ran a variety of human
designed control

programs anyway�

The problems faced by Arti	cial Intelligence are somewhat di�erent� Some knowl


edge about the right way to act in domains may be available� but is not usually in a

speci	c form that clearly speci	es actions for large chunks of state space� In fact� it is the

non
speci	city of human knowledge that makes it so powerful� Human beings appear to

apply generic rules of thumb that don�t match any particular situation� but that are quickly

adapted to new challenges� For example� human beings have strategies for parking cars�

moving around in buildings� cleaning houses� and mowing lawns� These strategies work for

just about any car� parking lot� building or lawn� When a new situation is encountered� the

generic strategy is modi	ed with only a small fraction of the e�ort that would be required to

achieve the new task with no prior knowledge� A description language for abstract actions

should have this kind of generic structure�

Some arti	cial intelligence methods for temporal abstraction do incorporate prior

knowledge� For example� Lin�s robot subtasks �Lin� ���
�� several avenues explored by

Singh ������ and recent work on �macros� and �options� �Precup  Sutton� ����" Sutton

et al�� ����� all construct abstract actions by making a guess that a particular subset of the

states will constitute achievement of a subtask that is in some way relevant to the overall

task� In these approaches� an abstract action is constructed by guessing a value for the

subtask states and solving an MDP for which the subtask states are absorbing and have

their values 	xed at the guessed value �see Chapter 
�� This approach can require a lot of

domain
speci	c knowledge and guesswork about subtasks and subtask values�
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The HAM approach takes a di�erent strategy for producing complex behavior�

This approach is rooted in the observation that engineers and control theorists are generally

quite good at designing controllers that will realize speci	c low
level behaviors� A worthy

goal for arti	cial intelligence should not be the mere duplication of these e�orts using

di�erent means� but should be the leveraging of these accomplishments to achieve more

interesting� higher
level tasks� Just as simple joint movements in the body are controlled

by low
level feedback mechanisms in the nervous system� primitive robot operations should

be handled using control theory techniques or highly specialized AI techniques� High
level

functions that determine when or why to move a joint should be the purview of higher brain

functions and of more general arti	cial intelligence methods� Unlike other approaches with

externally imposed� problem
speci	c knowledge� HAMs use partially speci	ed procedural

knowledge� combined with an agent�s sensory information about the environment� to induce

a hierarchy of temporally abstract action choices� This permits a transformation of the

original MDP to a reduced SMDP� the solution of which optimally re	nes an agent�s generic

knowledge� much in the same way a human being re	nes an abstract strategy to 	t a speci	c

situation�

��� Machine Policies

This section describes the use of machines as a means of specifying policies� In

Chapters 
 and � policies were assumed to be mappings from states to actions and an

abstract action corresponded to the execution of this mapping over a region of state space�

This is an extremely clumsy representation� It is large� requiring space proportional to the

size of the region on which the policy is de	ned� It is also extremely problem speci	c � a

simple renumbering of the states will result in completely di�erent behavior� These factors

make it an awkward medium for the transfer of knowledge�

A cornerstone of the HAM approach is the idea that policies should be thought of

as programs that produce actions as some function of the agent�s sensor information� In the

most general sense� these programs can be Turing machines that execute any computable

mapping of the agent�s complete sensor history to actions� This chapter focuses on stochastic

	nite state automata� which make the analysis of HAMs more tractable� The analysis of

more general policy representations is reserved for future work �Chapter ���



��

0.5

0.5 Stop

Right

Up

0.5

1.0/door

1.0/door

0.5

0.5

0.5

Start

Figure ���� A simple Moore machine policy that moves right with probability ���� and up
with probability ���� but stops if the agent has passed through a door� �Arcs are labeled as
probability�variable� where variable can be thought of as a state or observation variable� If
there is no variable label for an arc� this matches any variable not already mentioned� In
this case� arcs labeled ����� match anything other than �door���

A stochastic� 	nite state policy is essentially a Moore machine� with �possibly�

stochastic transitions de	ned on some aspect of the state description� The outputs of the

Moore machine correspond to actions� The machine may contain a distinguished stop state

at which the action terminates� �These concepts will be de	ned more precisely when HAMs

are de	ned formally in the subsequent section�� A simple� stochastic� Moore machine is

shown in Figure ���� This machine moves up with probability ��� and right with probability

���� It stops when it passes through a door�

An agent executes a 	nite state policy by selecting the action associated with the

agent�s machine state output� observing the next environment state �or some information

about the next environment state�� then executing a machine transition based upon this

information� This representation of a policy is �agent
centered� in the sense that it is

de	ned in terms of the agent�s sensory inputs� Speci	cally� the policy in Figure ��� assumes

that the agent has some way of knowing when it has passed through a door� This type

of description is necessary for policies that are meant to be generic objects usable in any

MDP� Note� however� that this does not mean that the problem has changed to a incomplete

information problem� or partially observable MDP �POMDP�� It means simply that the

agent is using a generic policy representation�
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X

FSM

Controller

Figure ���� A 	nite state machine policy �FSM� is launched from the entrance to room
�� The act of executing this policy in room � is modeled as a stochastic process with
states that are the cross
product of the environment states and the machine states� The
FSM terminates when the agent reaches the entrance to room �� and control returns to the
original problem states�

The theorems of Chapter 
 and algorithms of Chapter � can be generalized to

apply to policies that are expressed as stochastic� 	nite state Moore machines� The formal

steps are described in detail in the succeeding section� but the basic idea is that� as in

Chapter �� a copy of that state space can be created for the region where the policy will

be executed� However� instead of an exact copy� a cross
product of the environment states

and the controller states is used to model the combined agent
environment system as a

stochastic process �Figure ����� These cross
product states can then be removed from the

state space using any of the algorithms from Chapter ��

Note that this representation subsumes any of the abstract action representations

discussed in Chapter 
� A simple mapping from states to actions can be achieved by creating

one machine state for every action� making the explicit state number an observation� and

encoding the mapping from states to actions in the machine state transition function� If

the policy terminates in a particular set of states� this can be encoded as transitions to the

machine�s stop state� The stochastic stopping conditions of a full �
model �Sutton� �����
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Room 1

Figure ��
� Room � of the four
room navigation problem�

�see Chapter 
� can be implemented as stochastic transition to the stop state� Multi
step

and averaging operations are also implemented easily by applying the transformations of

Section 
���� to the machine states�

��� Hierarchical Machines

Suppose the policy of Figure ��� is applied starting at the bottom entrance of

room � �Figure ��
�� This policy will bring the agent towards the right exit� but it may fail�

overshooting the exit and driving the agent into the top right corner of the room� At this

point� it might be better to have the agent stop and execute a di�erent policy� If the agent

is a robot with one sonar in each of the four coordinate directions� s�up� s�right� s�down� and

s�left� then the the policy of Figure ��� could be modi	ed to stop when the agent hits the

top of the room as in Figure ���� Call this machine right�up� Another that moves right and

down as in Figure ��� would be more appropriate in this case� Call this machine right�down�

A machine is hierarchical if it calls other machines as subroutines� The machine in

Figure ���� uses subroutines by 	rst calling the right�up machine� then calling the right�down

machine only if the right�up machine fails� The control �ow for a subroutine call is the same

as that of an action� When a machine state with a subroutine call is entered� control is

transferred to the starting state of the called machine� When the called machine reaches a

stop state� control returns to the caller� which examines the current environment state to

determine the next machine state�
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Figure ���� The right�up machine stops when sonar indicates that the top of the room is
reached�
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Figure ���� The right�down machine alternates between right and down until the agent
passes through a door�

Start

Stop

door

s_up
right-up right-down

Figure ���� A machine that tries right�up 	rst� then tries right�down if this fails� �Arcs
without probability labels have probability �����
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Figure ���� A machine with choice states�

	���� Abstract Machines

The 	nal feature that this chapter adds to 	nite state automata is by far the most

interesting� the introduction of non
deterministic choice states� which make an automaton

abstract� or partially speci	ed� If actions in the environment have somewhat noisy outcomes�

right�up and right�down won�t do an especially reliable job of moving an agent from the

bottom of room � to the right exit� even if the machines are chained together as in Figure ����

When the agent�s up
pointing sonar s�up is active� it is clear that right�down is the better

of the two machines� If the agent�s s�down sonar is active� then right�up is clearly better�

However� if only s�right is active� then the agent is at the right wall� This means that the

agent has missed the door and that it might be a good time to switch policies� The machine

in Figure ��� uses a choice state to specify that a choice about which machine to execute

next must be made at this point� It indicates that one of the possible next states should be

chosen� but does not commit to which�

The construction of the machine in Figure ��� assumes that right�up and right�down

machines have been modi	ed so that they stop when the right sonar is active� This machine

will enter a choice machine state at the environment states indicated in Figure ���� These

are the states at which the behavior is incompletely speci	ed� By making the right choice at

each of these points� the e�ectiveness of the two extremely simple subroutines is enhanced

greatly� The machine in Figure ��� describes an abstract plan for moving from the bottom

entrance to the right exit in a room� It does not depend on the size of the room at all� yet
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Figure ���� Environment states that cause machine choice states are marked with an X�

it identi	es key points at which the plan must be re	ned to improve its e�ectiveness for

a particular room� Of course� this is just a simple� informal example� and there are many

obvious ways that the machines could be improved and made more or less general�

The following sections will formally de	ne HAMs as the class of machines imple


menting the types of machine policies described in this and the preceding two sections�

These sections will also show that the problem of optimally re	ning a HAM for particular

environment can be interpreted as an SMDP�

��� HAM de�nitions

A machine for a HAM is a triple N � �
�I� ��� where 
 is a 	nite set of machine

states� I is a stochastic function from environment states to machine states that determines

the initial machine state� and � is a stochastic next
state function mapping from machine

states and environment states to next machine states� For generality� I and � will typically

be a function of some state variables describing the environment state� There are three

types of machine states�

action states specify an action to be taken in the current environment state� For an action

state m� ��m� is the action speci	ed by m�

call states execute another machine as a subroutine� For call state m� ��m� identi	es the

called machine�

choice states nondeterministically select a next machine state�
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stop states halt execution of the machine�

Action states are the only states that execute actions in the environment� The transition

function is not de	ned for stop states� For choice states� � returns a list of possible next

states�

The execution rules for a machine are best described in pseudo
code� In the

program below� environment�a� is a function that executes action a and returns the next

environment state� The actual environment state is assumed to be a local variable main


tained by the environment function� The function type�m� returns the type of a machine

state m� The function choose�s�l� picks a next machine state from a list of possible next

machine states� The choice can depend upon the current machine state� �The matter of

determining an optimal choose function is the subject of the next section�� The function

'�m� s� returns machine state n with probability ��m� s� n��

function execute�N �s�

m� I�s�
While type�m� �� stop do

if type�m� � action then

s� environment���m��
if type�m� � call then

s� execute�N � s�
if type�m� � choice then

m� choose�m� s��
else

m� '�m� s�
return�s�

A further requirement for machines used by HAMs is that the call graph of each

machine must be a tree� This means that there can be at most one path from any caller

to any callee and implies that for any machine state� the call stack contents will be unique�

This requirement prevents recursion in the HAM language� but it has the useful property

of making a machine state a complete speci	cation of the agent�s execution status� If the

call graph is a DAG� it can be converted to a tree by producing copies of the machines that

can be called from more than one caller and then renaming the states in each copy�

A HAM is de	ned by an initial machine and the closure of all machine states in

all machines reachable from the possible initial states of the initial machine� This chapter

assumes that the top
level machine for a HAM does not have a stop state and� thus� never

terminates� It also assumes that there are no in	nite� probability � loops that never execute
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Figure ���� The null HAM�

an action� Such machines are syntactically valid according to the de	nitions described here

and are possible even if the call graph is a tree� For example� machine N� can call machine

N�� which can move immediately to a stop state� return to control to N� and proceed in an

in	nite loop� It is straightforward� but not particularly interesting� to generalize the results

developed here to machines with top
level stop states or in	nite� non
action loops�

As mentioned above� the HAMs can encode all types of abstract actions described

in Chapter 
� They can encode the null abstract action that contains the same choices as

the original MDP with a loop containing a single choice state that chooses between each

possible action at every opportunity� as in Figure ���� HAMs can be designed to permit the

concurrent use of abstract actions with low level actions� i�e�� macros �Precup  Sutton�

����� or options �Sutton et al�� ������ through choice states that select between actions and

call states that execute temporally abstract actions�

��� Formal Properties of HAMs

This section presents the formal optimality and convergence properties of the HAM

language when applied to an MDP�
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Theorem �� For any MDP� M� and any HAM� H� there exists an SMDP� called H�M�

the solution of which de�nes an optimal choice function� choose�s�m�� that maximizes the

expected� discounted sum of rewards received by an agent executing H in M�

Proof� The proof proceeds by constructing an SMDP� M�� In what follows� 
 will refer

to the closure of all states reachable from the initial machine for H� The state space� S ��

of this SMDP will be pairs from S � � S � 
� A state of S � is written �s�m�� where s is a

state from the MDP and m is a machine state� A new transition function is constructed

for M� using the transition function for M and the transition functions for H� There are

four cases for transitions from �s�m� � S � to �t� n� � S ��

�� If m is an action state with ��m� � a� then there is only one possible action for s�

and T ���s�m�� �t� n�� � T �s� t���m� t� n��

�� If m is a call state then T ���s�m�� �s� n�� � I
n� s� for all n in ��m�� the machine called

by state m�


� Ifm is a choice state that selects between machine states n� � � � nk� then actions c� � � � ck

are de	ned for �s�m� such that T ���s�m�� ci� �s� ni�� � ��� for all � � i � k�

�� If m is a stop state� and l is the state on the call stack that invoked the machine

containing m� then T ���s�m�� �s� n�� � ��l� s� n��

All probabilities not speci	ed above are �� The reward function is de	ned as

R���s�m�� a� � R�s� a� when m is an action state and � otherwise� The discount factor is

de	ned as ����s�m�� a� � ��s� a� if m is an action state� and � otherwise�

The above construction satis	es the de	nition of an SMDP� The Markov property

is preserved because of the tree
structured requirement on the call graph forH� This ensures

that there will always be a unique l on the call stack in item � above� The decisions in this

SMDP correspond directly to choices of next machine states in the choose function for the

machines in H� Thus� the solution to this SMDP makes the optimal choices for every choice

state�

Since M� is an SMDP with uncontrolled states� M � can be reduced to a smaller

SMDP� A choice point is a machine state� environment state pair� �s�m�� such that m is a

choice state�
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Theorem �� For any MDP� M� and any HAM� H� there exists a reduced SMDP� called

reduce�H �M�� that is equivalent to H �M� but contains no more states than the number

choice points induced by H on M�

Proof� This follows from the previous theorem and from Theorem �� which guarantees that

all uncontrolled states can be removed from an SMDP to produce an equivalent SMDP�

An important point that must not be lost in the details of this transformation is

that the actions and the states in the transformed model still have meaning in the original

model� State �s�m� inM� corresponds to the situation where the agent is in machine state

m and the environment is in state s� The action assigned to this state as the solution for

M� corresponds to a decision made at choice state m� Another extremely important point

is that the values assigned to the states of M� by the optimal policy for M� correspond

directly to the expected� discounted sum of rewards received by an agent that takes the

corresponding actions in the original model� This value may be less than the optimal

solution to the original model� depending upon the quality of the machine hierarchy� In

this sense� a HAM can be thought of as a means of constraining the set of policies that

are considered for an MDP� The constraints are implicit in the structure of the machines

in the HAM� As with any method that constrains the set of solutions for a problem� if the

constraints are chosen poorly� the quality of the resulting solution will su�er�

These properties of HAMs should be considered in contrast to the properties of

most state aggregation and function approximation methods� These methods solve a re


duced problem that typically has� at best� an approximate relationship to the original MDP�

The relationship between the solution to the reduced model and the solution to the original

model is often quite loose� With HAMs� the value function for reduce�H �M� indicates the

true expected value of executing the policy in the original model�

The import of the theoretical results in this section deserves emphasis� This section

has proved that the problem of optimally re	ning an incompletely speci	ed� hierarchical�

stochastic� 	nite state policy �a HAM� can be interpreted as an SMDP� Through SMDP

state space reduction methods� the procedural knowledge contained in a HAM is used

to produce a reduced problem� This provides the formal mechanism by which high
level

strategies can be applied to new problems and e�ciently re	ned to meet the needs of a new

problem�
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	�
�� Model Reduction Mechanics

This section describes brie�y how the theorems of the previous section are imple


mented e�ciently� The greatest bene	t will be reaped from the HAM approach when a

HAM is combined with a model�M� that has some distinguished start state IM� at which

all experiences in the environment begin� This reduces the number of reachable states in S ��

The reachable states in S� can be enumerated by performing a simple breadth
	rst search�

For navigation problems� the all
at
once algorithm is the most e�cient method of reducing

the state space� since any state borders at most four other states� making the transition

matrix nearly block diagonal for any policy�

The key to e�cient use of the all
at
once algorithm is the identi	cation of large�

contiguous regions ofM� that can be removed by solving a single system of equations� Two

states� �s�m� and �t� n� belong in the same region if there is a path from �s�m� to �t� n� that

does not pass through any choice states� Regions of this type can be identi	ed e�ciently in

time that is linear in the number of edges in the state transition graph for S � with a simple

search that tags states with tokens indicating to which region they belong� If a search from

one state reaches a state that already is tagged with another region� the two regions are

merged�

At a high level� the algorithm for constructing reduce�H �M� is stated as follows�

where aao�M�G� is a function that implements the all
at
once algorithm to remove region

G fromM�

function reduce�H�M�

M� � H �M
S� � reachable states in M�

G� contiguous regions in S�

For each Gi in G
M� � aao�M �� Gi�

return�M��

��
 Reinforcement learning with HAMs

HAMs can be of even greater advantage in a reinforcement learning context� where

the e�ort required to obtain a solution typically scales very badly with the size of the

problem� The HAM constraints can focus exploration of the state space� reducing the

�blind search� phase that reinforcement learning agents must endure while learning about
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a new environment� Learning also will be faster since the agent e�ectively is operating in a

reduced state space�

This section introduces a variation of Q
learning called HAMQ
learning that learns

directly in the reduced state space without performing the model transformation described

in the previous section� This is signi	cant because the environment model is not usually

known a priori in reinforcement learning contexts�

A HAMQ
learning agent keeps track of the following quantities� t� the current

environment state" n� the current machine state" sc and mc� the environment state and

machine state at the previous choice point" c� the choice made at the previous choice point"

and rc and �c� the total accumulated reward and discount since the previous choice point�

It also maintains an extended Q
table� Q��s�m�� c�� which is indexed by an environment


state�machine
state pair and by an action taken at a choice point�

For every environment transition from state s to state t with observed reward r

and discount �� the HAMQ
learning agent updates� rc � rc & �cr and �c � ��c� For each

transition to a choice point� the agent does

Q��sc�mc�� c�� Q��sc�mc�� c� & ��sc�mc
�rc & �cV ��t� n�� �Q��sc�mc�� c���

and then rc � �� �c � ��

Theorem �� HAMQ�learning will converge to the optimal policy for reduce�H �M� with

probability � when
P

i �i�s� �� and
P

i �
�
i �s� ���

Proof� This follows from the fact that reduce�H �M� is an SMDP and that Q
learning

converges for SMDPs �Theorem ���

��� Experimental results

This section describes some experimental results using the HAM approach on a

large navigation MDP with just under 
��� states� as shown in Figure ����� The domain

is full of obstacles of the type shown in Figure ����� There are four possible actions in this

domain� corresponding to the four coordinate directions� The transition model speci	es that

each action succeeds ��# of time� while ��# of the time the agent moves in an unintended

perpendicular direction� The agent begins in a start state in the upper left corner� A reward

of ��� is given for reaching the goal state and the discount factor � is ������
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Figure ����� A navigation MDP with � 
��� states�

Figure ����� An obstacle�
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The HAM for the experimental domain contained four machines for navigating

the hallways in each of the four directions� Each machine moved the agent in the desired

direction until the end of the hallway or an intersection is reached� When an obstacle is

encountered� a choice point is created to choose between two possible next machine states�

One calls a backo� machine to back away from the obstacle and then move forward until

the next one� The other calls a follow�wall machine to try to get around the obstacle�

The follow�wall machine is very simple and will be tricked by obstacles that are concave

in the direction of intended movement" the backo� machine� on the other hand� can move

around any obstacle in this world but could waste time backing away from some obstacles

unnecessarily and should be used sparingly�

The complete �navigation HAM� involves a three
level hierarchy� somewhat rem


iniscent of a Brooks
style architecture but with hard
wired decisions replaced by choice

states� The top level of the hierarchy is basically just a choice state for choosing a hallway

navigation direction from the four coordinate directions� This machine has control initially

and regains control at intersections or corners� The second level of the hierarchy contains

four machines for moving along hallways� one for each direction� Each machine at this level

has a choice state with four basic strategies for handling obstacles� Two back away from

obstacles and two attempt to follow walls to get around obstacles� The third level of the

hierarchy implements these strategies using the primitive actions�

The transition function for this HAM assumes that an agent executing the HAM

has access to a short
range� low
directed sonar that detects obstacles in any of the four axis


parallel adjacent squares and a long
range� high
directed sonar that detects larger objects

such as the intersections and the ends of hallways� The HAM uses these partial state

descriptions to identify feasible choices� For example� the machine to traverse a hallway

up would not be called from the start state because the high
directed sonar would detect a

wall in the up direction� The sonars help reduce the number of obstacle avoidance choices

in most situations from � to ��

The navigation HAM represents an abstract plan to move about the environ


ment by repeatedly selecting a direction and pursuing this direction until an intersection is

reached� Each machine for navigating in the chosen direction represents an abstract plan

for moving in a particular direction while avoiding obstacles� The optimal re	nement of

this abstract strategy picks the best action for every place where the HAM induces a choice

point�
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Figure ����� Ordinary policy iteration� and policy iteration with HAMs

Figure ���� Shows the run time in seconds for policy iteration to solve the original

problem and for policy iteration to solve the reduced problem� The vertical axis shows the

quality of the policies as measured in expected discounted sum of rewards� The graph does

not show the time required to construct the reduced model� However even when this ���

second cost �which was obtained in fairly sloppy lisp code� is added in� the HAM method

produces a good policy in less than a quarter of the time required to 	nd the optimal policy

in the original model� The actual solution time is ��� seconds versus ���� seconds�

Experiments with HAMQ
learning were even more dramatic� In these tests� ex


ploration was achieved by selecting actions according to the Boltzmann distribution with

a temperature parameter for each state� An inverse decay was used for the learning rate�

�� Figure ���
 compares the learning curves for Q
learning and HAMQ
learning� HAMQ


learning appears to learn much faster� Q
learning required ��������� iterations to reach the

level achieved by HAMQ
learning after ������� iterations� Even after ���������� iterations�

Q
learning did not do as well as HAMQ
learning� The poor performance of Q
learning ap


pears to be related� at least in part� to the problem of blind search� Once HAMQ
learning

starts moving down a hallway� it keeps trying to move forward until it reaches the end of

the Hallway� This forces HAMQ
learning to cover large expanses of the state space early in

the learning process� In contrast� Q
learning can waste large amounts of time roaming aim


lessly in the top
left corner of the domain before enough randomly chosen actions move it
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towards the goal area� Q
learning also must learn more parameters� Since HAMQ
learning

was operating in a reduced state space� it learned only ��
�� parameters� the product of

the number of choice points and the number of choices� Ordinary Q
learning was forced to

learn nearly ������ parameters� � for each state�

The best feature about this example of HAMs is that the navigation HAM achieved

an impressive performance boost with a minimal amount of domain knowledge� The same

HAM could be used in any navigation
type domain with a similar sensor model� HAMs are

�plug and play��

��� Bootstrapping

This chapter established that a HAM H can be combined with an MDP M to

produce a new MDP� M� � H �M and that the optimal policy ��� forM� corresponds to

a non
stationary policy inM� Of course� there is no guarantee that ��� will be optimal for

M� The solution to the reduced MDP will 	nd the optimal policy that is consistent with

the HAM constraints� but this policy will be only as good as allowed by the constraints

implicit in the HAM�

What if the best policy consistent with the H is not good enough� One option is

to loosen some of the constraints imposed by the HAM by introducing more choice points�
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More sophisticated machines incorporating more prior knowledge about the domain could

be introduced as well� When all else fails� however� it may be necessary to revert to the full�

original MDP and under such circumstances one would like to recover some of the e�ort

invested in constructing the HAM policies�

Examination of an iterative method like policy iteration shows where the informa


tion gained by solving a HAM policy can be used to �bootstrap� the solution to the original

MDP� Recall the performance graph for policy iteration from in Figure ����� There are two

important characteristics�

�� Once a good �non
zero� policy is found� the optimal policy is found shortly thereafter�

�� The optimal HAM policy is found before any good policies are found for the original

MDP

This suggests that constructing a good stationary policy from a non
stationary HAM policy�

then using this policy to bootstrap policy iteration �or some other iterative method� may

provide a faster path to the optimal policy for the original MDP than solving the original

MDP directly� Recall that as part of the all
at
once algorithm� a value function is computed

that expressed the value of every removed state in terms of the neighboring choice points� If

these expressions are saved� they can be used to construct a value function for the original�

unreduced space� from the solution to the reduced problem� Call this value function V
���

Theorem �� For any MDP� M� and HAM� H� let ��� be the optimal policy for M� �

H�M� let V �� be the corresponding value function� and let V � be the optimal value function

for M� then for any s� V ��s� � maxm V ����s�m�� and maxm V ����s�m�� can be used to

construct a stationary policy with value at least maxm V ����s�m���

Proof� Consider the following modi	cation to the HAM execution routines� Whenever the

agent is at a non
choice state h� and environment state s� it can execute the action speci	ed

by h� or it can search the value function� V ����s�m�� for all extended states containing s�

If there exists an n such that V ����s�m�� � V ����s� n��� then the agent �jumps� to machine

state n and changes the call stack to appear as if the agent had arrived upon machine state n

directly� This process de	nes a stationary policy � forM since it assigns an action to every

state that is independent of the agent�s machine state� Moreover� V��s� � maxm V ����s�m��

for all s since the agent will do at least as well as maxm V ����m� s�� by switching to state m�
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HAM policies can also be used to bootstrap on
line MDP methods� The most

straightforward approach would be the use of an o�
line HAM solution to initialize a value

function for an on
line learner� similar to the manner in which it could be used to initialize

a value function for value iteration� The applicability of this approach is limited since it

assumes that the model is available to the o�
line algorithm� while in many reinforcement

learning scenarios an explicit model is presumed to be unavailable�

If the model is not known� then a learning agent must construct some kind of a

model or value function for the non
choice states if values for these states are to be used to

bootstrap a solution to the full MDP� There are several possibilities�

�� Learn in the extended �but not reduced� state space�

�� Simultaneously learn separate value functions for both the extended and reduced state

space�


� Learn a domain model while using another method� like Q
learning� to learn the

optimal policy for the extended space" then use the model to compute V ����s�m��

o!ine�

�� Use symbolic TD to learn an algebraic expression for the values of the non
choice

states�

The 	rst option is the most straightforward� but will likely su�er from the prob


lem of slow convergence due to the potentially large size of the extended space� The second

option� which would� in parallel� combine the HAMQ
learning algorithm with standard

temporal di�erence learning in the extended state space� has the potential for faster conver


gence� In this approach� Q
learning would be used to learn the values of the choice points in

the reduced space and then temporal di�erence learning would be used to propagate these

values back to the non
choice points in the full� extended state space� This is illustrated

in Figure ����� Note that there is no �ow of information from the non
choice states to the

choice states� One can think of a separate TD process eavesdropping on the HAMQ
learning

process�

The third option would require the least additional work from the agent while the

initial HAM policy is learned� but would require substantial additional e�ort to convert the

HAM policy to a policy or value function for the original MDP� The agent would be forced
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Figure ����� Mixed TD and Q
learning� The dashed line indicates that no reinforcement
is performed from non
choice states to choice states� Choice state reinforcement is handled
by the Q component�

to construct the extended state space o�
line� an awkward approach if the agent is situated

and is expected to respond in real time�

The fourth option involves the use of symbolic TD� In this application� there is no

need to freeze the policy since the states in question are non
choice states� An important

di�erence between the symbolic approach and the hybrid Q�TD approach �option �� is that

the learning of the optimal policy for the reduced space is completely decoupled from the

learning of an algebraic expression for the value of the non
choice states� The two learning

processes execute in parallel with no communication between them� Symbolic TD may

converge faster than traditional TD in this context because meaningful information about

the relationship between non
choice states and choice
states can be propagated back well

before the agent has discovered a good policy for the choice states�

Finally� another interesting issue is raised by the availability of a policy that may

be superior to the optimal HAM policy� If the intermediate state values needed to construct

e�ciently the value function of Theorem �� are available� should the stationary policy be

constructed and used in place of the HAM policy� The answer is an emphatic yes� since

the theorem guarantees that it can only improve performance� However� the application

of this theorem in practice will depend upon the memory requirements for storing explicit

information about each of the extended states�
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���� Conclusion

This section presented Hierarchies of Abstract Machines �HAMs�� HAMs incorpo


rate prior knowledge with temporal abstraction methods to produce an abstract or partially

speci	ed plan for an action� HAM action descriptions can be optimally re	ned by creating

an SMDP� the solution of which replaces every point at which the HAM is incompletely

speci	ed with a concrete decision� HAMs can contain information that reduces choices that

are available to the agent in many situations� This information is used to construct a re


duced state space� making the problem of re	ning a HAM for a particular task much simpler

than devising a new policy from scratch� Since the task of re	ning a HAM is interpreted

as an SMDP� provably optimal and convergent on
line and o�
line algorithms can be used

to optimally re	ne a HAM� HAM solutions also can be used to bootstrap traditional MDP

algorithms�
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Chapter �

Problem Decomposition

The previous chapter presented the HAM method for optimally re	ning hierar


chical� partially speci	ed� temporally abstract actions for MDPs� While HAMs induce a

hierarchical partitioning of the state space and impose a hierarchical ordering on the choices

made while executing the HAM� they do not lead directly to a hierarchical solution method

for the resulting SMDP� and they do not decompose the original MDP into independent

pieces�

This chapter addresses the topic of decomposing MDPs into independent subprob


lems� It provides two new approaches to decomposing and solving MDPs as a collection

of separate subproblems� The 	rst of these methods builds a cache of policies for each

part of the problem independently� and then combines the pieces in a separate� light
weight

step� The second method also divides the problem into smaller pieces� but information

is communicated between the di�erent problem pieces� allowing intelligent decisions to be

made about which piece requires the most attention� Both approaches can be used to 	nd

optimal policies or approximately optimal policies with provable bounds� These algorithms

also provide a framework for the e�cient transfer of knowledge across problems that share

similar structure�

The algorithms in this chapter are complementary to the HAM approach of Chap


ter �� HAMs induce a partitioning of the MDP state space based upon the active machine

subroutine� The algorithms and theorems of this chapter show how each HAM subroutine

call can be treated as an independent subproblem�
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��� An Introduction to Decomposition

In the hallway navigation example of the previous chapter� the problem of moving

right across the top hallway of the model is not isolated completely from the rest of the

MDP� The value of any choice made at any point along the hallway can be in�uenced by

the values of the states at the end of the hallway� These are in turn in�uenced by the

solution to the adjacent vertical hallway segment� which is� itself� connected to the rest of

the problem�

HAMs organize the solution process by introducing a hierarchical set of choices�

and they reduce the state space by introducing knowledge and skipping over states that do

not contain choices� However� since HAMs transform one �S�MDP to another SMDP� they

do not necessarily remove the dependencies that can exist between di�erent states in the

model� If there were a way of removing these dependencies� it would be possible to view

each HAM subroutine call as a separate subproblem that could be solved once� in isolation

from the rest of the problem� and never revisited� Since the run time for MDP algorithms

grows very rapidly in the size of the state space� this decomposition could lead to huge

computational bene	ts by replacing large MDPs with a number of smaller ones� averting

the need to ever solve a large MDP directly in its entirety�

There is reason to believe that the type of decomposition outlined above is not

possible in general� This type of decomposition would make MDPs highly parallelizable�

permitting di�erent chunks of the state space to be solved as independent subproblems on

di�erent processors� and admitting a linear speedup in the number of processors assigned to

the problem� Papadimitriou and Tsitsiklis ������ show that parallelizing MDPs is as hard

computationally as parallelizing linear programming� which is in a subclass of problems in

P that is believed to be the least amenable to parallelization�

While some progress has been made in understanding some very special cases where

MDPs may be decomposed into independent subproblems �Singh� ����" Lin� ������ much of

the e�ort has focused on methods that decompose MDPs into �communicating� subprob


lems �Bertsekas  Tsitsiklis� ����" Dean  Lin� ����� �Chapter � and Chapter 
�� In these

iterative methods� information about subproblem solutions is communicated to neighboring

subproblems� However� the solution for each subproblem may need to be updated many

times until a globally optimal solution is obtained�
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Figure ���� A weakly coupled MDP� There is a reward in room �� indicated with a ��
Connecting states are identi	ed with an X�

This chapter considers a special� but fairly general� class of problem decompositions

where each subproblem is �weakly� coupled with the neighboring subproblems� This means

that the number of states connecting the two subproblems is small� a relationship that

appears naturally in many problems� For example� the problem of moving from one�s o�ce

to one�s house has this structure� one�s o�ce is a small region that is connected by a much

smaller region� the door� to an external corridor� Many other o�ces may be connected

to this corridor� each with a similar structure� The corridor could be fairly large and

connected to other corridors by relatively small intersection regions� Most buildings have

a small number of doorways that connect them to the streets outside� Each street has

a relatively small number of points where it connects to other streets� One such street

connects to the house one calls home� which is itself an aggregation of weakly connected

pieces� An MDP is weakly coupled if it can be divided into two or more subproblems that

are weakly coupled with each other�

Figure ��� shows the familiar navigation MDP divided into four rooms� each of

which can be considered a subproblem�

This chapter uses a similar approach to that used in communicating MDP solution

methods� but aims to avoid iteratively updating solutions to subproblems by building a set of

policies independently for each subproblem� Each set of policies is called a cache� The caches
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are constructed in such a way that they are guaranteed a priori to provide performance

within a constant of the optimal� regardless of the structure of the other subproblems�

This permits a complete decoupling of the MDP into independent subproblems that can

be solved in parallel and then recombined in a light
weight step� The decoupling process is

based upon the observation �Chapter 
� that any policy over a region of state space de	nes

a linear function for the values of the states inside the region in terms of the values of

the states outside the region� The linear relationship is exploited by the algorithms in this

chapter to build caches for each region of the state space� The caches are built iteratively

by constructing linear programs that discover the values of the states outside the region for

which cache performs the worst� then adding a new policy to the cache to cover the worst

case�

The e�cient manipulation of policy caches also provides a formal basis for the

transfer of knowledge across problems with similar substructures� The simplest case of this

occurs when the reward structure for a problem changes� Suppose� for example� that the

reward in the navigation problem is moved from room � to room �� Policy caches devised

for rooms � and 
 can be transferred to the new problem� Similarly� if one�s destination is

now a cafe instead of home� the policies designed for one�s o�ce and the containing building

should transfer to the new problem�

Since the number of possible policies for a subproblem is exponential in the number

of states in the subproblem� there may exist problems and accuracy requirements for which

the size of the policy cache will be exponential� In these cases there still will be some

bene	t to constructing a small policy cache� even if it does not provide the desired accuracy

guarantees� This chapter presents an algorithm that augments standard communicating

MDP algorithms with the use of a policy cache� The policy cache can be used to determine

lower and upper bounds on the values that states in the subproblem can assume� and

this provides a means of deciding when it is worth using a cached solution and when it is

worth producing a new subproblem solution� This is particularly useful in determining if

subproblem solutions from a related problem can be applied to a new one�

These concepts are introduced 	rst in the context of a normal MDP� but are

extended in the end of the chapter to exploit the hierarchical information contained in

HAMs�
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��� Review of Decomposition Algorithms

The 	rst step for a decomposition method for MDPs is the division of the state

space into disjoint subsets� G� � � � Gm� In the simple navigation problem of Figure ���� each

room could be a subset� For each subset� Gi� there exists a set of states not in Gi that are

reachable in one step from Gi� Call this the out�space of Gi� In Figure ���� the out
space of

the top
left room contains one state in the room to the right� and one in the room below�

The in�space of region G is de	ned as the set of states inside of G reachable in one step

from a region outside of G�

The next step is the introduction of a set of policy caches� %� � � �%m� de	ned

over each of the regions� Each cache contains a set of policies that can be used in the

corresponding reach of the state space� Using the SMDP techniques of Chapter 
 the optimal

assignment of policies to regions can be determined by solving a �high
level� reduced SMDP

de	ned over only the states in the out
spaces of the regions� The reduced problem removes

all but the out
space states from the problem� Actions in the reduced problem correspond

to assignments of policies to regions in the original decision problem�

In Figure ���� the high
level SMDP would contain just the eight specially marked

states� An action in the high level problem would correspond to a decision to adopt some

policy from the cache upon entering a room� and to stay with this policy until the next

out
space state is reached� The solution to the high
level problem may produce a non�

stationary policy at the low
level� which means that the actions taken in any room may

depend upon the manner in which the room is entered� A non
stationary policy of this type

can be converted easily to a stationary policy that is at least as good �Chapter ���

The relationship between the size of the out
spaces and the complexity of the

high
level problem should make the importance of weak coupling clear� If the size of the

out
spaces approaches the size of the original MDP� then the high
level SMDP will be as

di�cult as the original MDP�

An algorithm that completely decomposed an MDP would produce a %i for each

Gi� combine these to produce an optimal or approximately optimal overall solution� and

never need to revise any of the %i� Unless the %i are chosen very carefully� or the caches are

very large� combinations of policies in the initial policy caches may not su�ce� There are

several approaches to revising the policy caches� The Macros�Options literature �Sutton

et al�� ����� takes one extreme end of this spectrum� where policies and low
level actions are
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mixed together in the same SMDP� This sacri	ces the reduction in computational complexity

obtained from solving a reduced decision problem in favor of a guarantee of obtaining

optimality� The iterative abstraction approach in Dean and Lin ������ updates each %i

directly� Dean and Lin considered a special case in which a new policy was computed for

each region at each iteration based upon the high
level decision problem�s current estimates

for the value of the out
space states� �See Chapter 
�� Note that the high
level decision

problem was actually a trivial value determination problem and not really a decision problem

since j%ij � � for all i�

The algorithms in this chapter all aim to minimize the number of policies that

are computed for MDP subproblems� The extent to which this can be minimized is a

measure of how e�ectively an MDP has been decomposed� If each subproblem requires only

a small cache of candidate solutions� this means that the subproblem solutions are relatively

independent� These are precisely the situations in which a large computational bene	t is

reaped from decomposition� since the MDP can be divided and conquered by solving a

reasonable number of small subproblems� The size of the policy caches also gives some

measure of the parallelizability of the problem� If a region can be solved with a small cache

of policies� this suggests that the entire cache could be constructed a priori as a completely

independent subprocess�

The following section describes several algorithms for constructing policy caches

with minimal knowledge of how the subproblem is connected to overall MDP� These algo


rithms aim to minimize the size of the cache� while ensuring that solutions using the cache

will be within a bound of optimal� The succeeding section describes a scheme for working

with policy caches for which optimality bounds have not been established a priori� This

method e�ciently establishes bounds on the bene	t of adding a new policy to a cache� based

upon the current contents of the cache�

��� Complete decoupling

This section presents algorithms that 	nd a policy cache� %� for a particular region�

G� such that % is guaranteed to provide policies that are within a constant of optimal when

a high level SMDP using % for G is solved� The only assumptions that are made about the

regions to which G connects is that the states have values on �Vmin � � � Vmax��
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De	ne VOG � as a vector of values that the states in the out
space of G can take on

�the subscript will be dropped when there can be no confusion about the region in question��

The fan�out of a region is de	ned as the dimension of this vector� which will be denoted by

the variable d�

In addition to storing a cache of policies it is useful to store a cache of functions�

f�i�s�V
O� for each �i � %� Each f�i�s�V

O� is a linear function that provides the value of

any state s � G as a linear function of VO� For any policy functions can be determined by

using any of the algorithms in Chapter ��

The goal in constructing a policy cache for a region is to produce a cache such

that for every possible value of the corresponding out
space states� there is a policy in the

region�s cache for which the performance in the region will be within a bound of optimal�

A policy� �� for region G is optimal with respect to VO if � is the solution to the MDP

de	ned just over the states in G� with the assumption that states in the out
space of G are

absorbing states with values locked at the value of the corresponding entry in VO� In room

� of the four
room example� the optimal policy for VO would be determined by solving an

MDP with just the states in room � and the two connecting states in room � and room 
�

The value of the connecting state in room � would be treated as a constant with value VO���

and the value of the connecting state in room 
 would be a constant with value VO���� A

policy� �� is said to be �
optimal with respect to VO if 
s � G� BE�V�� � � when the values

of the states in the out
space of G are 	xed by VO�

For any state and any value of VO� there must be one policy in the cache that

appears at least as good as all of the others� A policy� �� dominates at t for a particular

VO� if f��t�VO� � f�j �t�V
O� 
j� This means that the low
level policy� �� appears to be the

best high level action at state t for a particular VO� A cache of policies is ��optimal at t

if� for any VO� the dominating policy is ��optimal� A cache of policies is ��optimal if it is

��optimal at all t in the in
space of G�

Theorem �	 If an MDP is divided into m regions� G� � � � Gm and an ��optimal cache of

policies� %� � � �%m� is determined for each region� these policies can be combined to produce

a globally �

�����optimal policy by solving an SMDP with at most

P
i jV

O
Gi
j states and

P
i j%ij

actions�

Proof� As in Section ��� and Chapter 
� a high
level SMDP can be de	ned over the states

U �
S
iGi� The solution to this decision problem assigns values to the states in U and
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assigns dominating policies to each state in the in
space of each region in U based upon

these values� Consider an arbitrary region G and the policy� �� assigned to it when it is

entered at state t� By the de	nition of ��optimality� BE�V��s�� � � for all s in G� Since

this will be true for all states in all regions� the maximum Bellman error for any policy that

will be used in any region will be less than �� which means that the maximum Bellman error

for the entire problem will be less than �� which is su�cient to ensure �

�����optimality�

using the error bounds from Chapter ��

Note that the policy produced in the above theorem is non
stationary� The policy

used in a region can depend upon how the region is entered� For example� the policy used

in room � when room � is entered from the bottom may be di�erent from the policy used

when room � is entered from the right� This is not a problem since the above theorem shows

that no matter how the room is entered� the value function corresponding to the adopted

policy will have a Bellman error of no more than ��

This theorem provides a means of combining a set of approximately optimal solu


tions to produce a global solution that is also approximately optimal� Of course� if � � ��

then the solution will be optimal� The following subsections will describe three algorithms

for constructing ��optimal policy caches�


���� The ��grid Approach

The most straightforward approach to devising a policy cache� as described in

Hauskrecht et al� ������� is to create an � resolution grid over the space of possible values

for VO� then produce an optimal policy with respect to each grid point� This is su�cient

because the value of any policy can change by at most � when moving within one cell of the

grid in VO space� This bounds the loss from using a policy de	ned for the nearest grid point

instead of the optimal policy� This result also is established formally using an alternative

argument in Hauskrecht �������

Lemma � The sum of the coe�cients of any f� must be less than ��

Proof� Consider the e�ects of policy � when applied at state s of region G� Call the states

in the out
space of G� s� � � � sd� � will reach state si with probability pi� The coe�cient

of f� that determines V��s� in terms of the value of V �si� can be no larger than pi� SinceP
i pi � �� the sum of the coe�cients of f� can be no more than ��
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This bound on the coe�cients of f� limits how quickly the value of any state can

grow as the values of the states in the out
space grow�

Theorem �� Consider two grid points V� in V� in the same cell of an ��grid covering of VO�

Let V� be the lowest corner of the grid cell� and let V� be any other point in the same cell� Let

�� and �� be optimal with respect to V� and V� respectively� then f���s�V�� � f���s�V�� & �

for all s�

Proof� First� note that if �� � ��� the lemma holds� Since the coe�cients of any f� must

sum to less than �� the value of any state under the same policy can grow by at most �

when moving away from V� within the same cell� since each element of VO can change by

at most �� Suppose �� �� �� and f���s�V�� � f���s�V�� & � for some s� Since f�� can grow

by at most � in moving from V� to V�� this implies f���s�V�� � f���s�V��� However� f�� is

optimal with respect to V�� so this is a contradiction�

The main problem with the ��grid approach is that it can require a huge number

of policies� �Vmax�Vmin
� �d� This will be unmanageable unless the range of values is very small�

the fan
out of the region is very small� or � is very large�


���� Value Space Search

This section presents an algorithm that aims to avoid constructing an exponential

number of policies by searching through VO space to 	nd a point at which the current policy

cache is not adequate� If such a point is found� a new policy is added to the cache� and the

process is repeated until no points can be found for which the current cache is inadequate�

The following formal results are the basis of the value space search algorithm�

Lemma � For any state s� the dominating policies at s form a piecewise�linear convex

function of VO�

Proof� This follows from the observation that using the best policy means taking the

maximum over a set of linear policy functions�

This lemma is demonstrated with a simple example using the model in Figure ����

where there is a room with just one exit� but a &� absorbing reward state in the center of

the room� Possible actions are right� left� up and down� but these actions are unreliable�

resulting in movement in one of the three other axis
parallel directions ��# of the time�
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+1

Figure ���� A simple MDP with a one state out
space�

+1

V=0

Figure ��
� The optimal policy when the out
state has value ��

The discount factor used was ����� Note that there are more than two interesting policies

for this subproblem� If the value of the out state is very large� the optimal policy will move

along the perimeter of the room to avoid accidentally hitting the reward in the center� As

the value of the out
state gets closer to �� the optimal policy becomes less conservative and

will risk brushes with the &� reward state� Figure ��
 shows the optimal policy for VO � ����

This policy moves towards the absorbing &� reward� Figure ��� shows the optimal policy

when the value for VO � ������� This policy prefers to exit the room� but will sometimes

go for the &� absorbing state if it is closer� due to the discount placed on future rewards�

Figure ��� shows the optimal policy for VO � ���� This policy tries to avoid the absorbing

state completely�

The value function for this room can be displayed in two dimensions since VO is

just a scalar� Figures ��� through ��� show the value surface as policies are added to the
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+1

V=1.09

Figure ���� The optimal policy when the out
state has value �����

+1

V=2

Figure ���� The optimal policy when the out
state has value ��
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Figure ���� The optimal policy for VO � ��� is added to the cache� This policy avoids the
exit� making the value of the top
left state nearly independent of the value of the exit�

cache for this room�

The following result establishes a means by which the quality of a cache of policies

can be checked e�ciently�

Theorem �
 For region G� with n states� a actions� and policy cache� % � �� � � � �m� the

point in VO space for which the Bellman error of the dominating policy is largest� can be

determined in time that is polynomial in n� a� m� and d�

Proof� This is achieved by means of a linear program� For all t in the in
space of G� for

all s in G� for all a� and for all � � %� the following linear program is solved�

Maximize�

R�s� a� &
X
s�

T �s� a� s��f��s
��VO�� f��s�V

O�

Subject to�

f�i�t�V
O� � f��t�V

O� 
�i � %

VO�i� � Vmax� � � i � d
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Figure ���� A second policy that is optimal at VO � ��� is added to the cache� This policy
has a strong dependence on VO since it sends the agent directly to the exit�
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Figure ���� A third policy that is optimal at VO � ������ is added to the cache�
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Note that the free variables in the system are the components of VO� The objective function

maximizes the Bellman error at state s under the assumption that action a is taken� The

	rst set of constraints identi	es the region in VO space for which � dominates at t� If

this region exists� it is guaranteed to be a single� continuous facet of a convex surface by

Lemma 
� The last set of constraints bounds VO to be within the range of possible values�

The largest value returned by the linear program over all s� a� and � provides

the point in VO space at which the current cache of policies will have the largest Bellman

error� The time bound is satis	ed because linear programming is polynomial in the size of

its inputs�

This theorem provides a basis for determining if a policy cache is ��optimal� If

the largest Bellman error returned by the linear program in the above theorem is less

than �� this means that no matter what values the states in the out
space of G assume�

the policy assigned to G by a high
level SMDP using % will produce state values with a

Bellman error of less than �� Thus� if the largest Bellman error is less than �� the cache

is �
optimal� The computational consequences of Theorem �� are non
trivial and deserve

emphasis� When combined with Theorem ��� this appears to be the 	rst e�cient method

known for determining if a set of policies for a region of an MDP is su�cient to produce

a global solution that is within a bound of the optimal global solution without considering

the rest of the MDP� Note that the conditions checked by Theorem �� are su�cient� but

have not been shown to be necessary" more e�cient methods may be possible�

Assuming that the minimum possible state value is Vmin� this theorem provides a

means of constructing an ��optimal cache of policies� Suppose that Theorem �� is imple


mented as a function� �nd�worst� that takes a policy cache and returns two values� the point

at which the Bellman error is worst� and the magnitude of this error�

� � foptimal policy for V O � �Vmin� � � � � Vmin�g
quit � false
Repeat until quit
�worst�error� worst�point� � �nd�worst���
if worst�error � �

� � � � foptimal policy for worst�pointg
else
quit � true

This algorithm keeps adding policies to the policy cache until the policy cache is proven to

be ��optimal� Each policy that is added covers at least one case where the current cache
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is inadequate� Note that� worst�point will always be at a corner of the convex facet de	ned

by some dominating policy�

In practice� it is preferable to add a policy that is optimal for a point slightly

towards the interior of the facet instead of at a corner� The reasoning for this is fairly

subtle� If the new policy� ��� is optimal at a corner� V
�� of a facet of the region where an

existing policy� ��� dominates� and �� turns out to be only slightly better than �� at this

corner� then the area in which �� will be optimal may remain nearly the same� In this

case� the next call to �nd�worst� could return a V	 that is very close to V�� and in the worst

case� the algorithm could produce a sequence of vertices� all very close to each other� By

picking V�� distance � from V� and towards the interior of the region where �� dominates�

this ensures that any subsequent points returned by �nd�worst will be a distance of at least

� from the V�� avoiding the pathological case described above� The step towards the center

of the dominating facet is shown in Figure ����

The value space search algorithm also implicitly assumes that each new policy

that is added to the cache will improve the value of every state in the region when VO �

worst�point� This will be true if actions are su�ciently noisy such that reducing the Bellman

error in any state will produce at least a minute improvement in the value of other states�

It is possible to construct models where this assumption does not hold and in such cases

additional constraints must be added to the linear program to break ties between policies�

Suppose� for example� that when policy �� is adopted in state s�� that the probability of

reaching state s� is �� If �nd�worst detects a large Bellman error for s� at point V�� the

value space search algorithm could produce a new policy� ��� that improves the value of

s�� However� this might not change the value of s� if �� still has probability � of reaching

state s� when adopted from s�� In other words� �� improves the policy in a part of the

state space that is never reached from s� under �� and still is never reached under ��� This

is a problem for the value space search algorithm since the region of VO space over which

�� dominates at s� will remain unchanged� Thus� �nd�worst will return the same V� on

subsequent calls� even if �� is added to %�

One way around the problem of policies that improve the values of unreachable

states is to alter the noise model so that every state has at least minute probability of

reaching every other state� For any MDP� there will be some � such that modifying the

transition function so that T �s� a� s�� � � will not change the optimal policy in any way�

Unfortunately� this modi	cation will remove any sparseness in the transition matrix and
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Figure ���� This 	gure shows value surfaces for a problem with a two state out
space� The
surface is projected into two dimensions on the page� so the height o� the page would
correspond to the value of an in
space state� V� is the point returned by a call to �nd�worst�
It is better to generate a new policy for the point V�� since the plane for this point will clip
the corner of the dominating region for ��� forcing subsequent calls to �nd�worst to pick
points further away from V��
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tie-breaking plane
2V

π1Dominating region for 

Figure ����� If two policies have the same value for an in
space state� but di�er at the value
of some other state� a tie
breaking plane is introduced to determine which policy is selected�

could increase signi	cantly the cost of value iteration or policy iteration for these problems�

Moreover� the introduction of the very small � could introduce numerical stability problems

for linear programming� A better approach is for the value space search algorithm to check

each new policy before it is added to the cache� If �� previously dominated at state s�

for value vector V� and if �� is optimal for V�� but f���s��V
�� � f���s��V

��� then ��

should not be added to %� If f�� and f�� are equal at s�� then the dominating surfaces

for these two policies are coextensive for s�� However� �� and �� must di�er at s�� so the

hyperplane de	ned by f���s��V
O� � f���s��V

O� can be used as a tie breaker� The condition

f���V
O� s�� � f���V

O� s�� would be added to the conditions de	ning the dominating region

of �� in �nd�worst� and f���V
O� s�� � f���V

O� s�� would be added to constraints de	ning

the dominating region for ���

If the dominating region for the new policy� ��� is not completely coextensive with

the dominating region for ��� then f���s��V
O� � f���s��V

O� is an edge in the dominating
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π1Dominating region for 

ε
ε

Capping surface2V

Figure ����� A �cap� is constructed around the point V� by connect points at are � away
from V� along the sides of the dominating region for ��� The cap prevents �nd�worst from
considering V� on subsequent calls to �nd�worst�

region for ��� In this case� adding a hyperplane to break ties between �� and �� is a little

trickier� It can be done by selecting d of the facets that form the V� vertex and picking

points � away from V� on each facet in a direction that still borders the dominating region

for ��� The hyperplane connecting these d&� points will partition the dominating region for

�� by �capping� the corner containing V�� On the side of the hyperplane that contains V��

�� will be �
optimal due to Theorem ��� This means that �nd�worst will need to search only

the opposite side of the hyperplane and a constraint can be added to the linear program to

enforce this�

The value space search algorithm has some similarities to and was inspired by

algorithms for partially observable MDPs �POMDPs� �see Lovejoy ������ for a survey��

and in particular� the Witness algorithm �Cassandra� Kaelbling�  Littman� ������ The

treatment of policies as linear functions� the maximum over which forms a convex surface�

is common in the POMDP literature� The approach used here can be seen as a multi
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dimensional generalization of an observation made in Russell and Norvig ������ Ex� ������

The value space search algorithm uses a similar approach to that of the Witness algorithm

to search a continuous space to 	nd the place where the error in the current set of policies

is largest� The Witness algorithm is a synchronous value iteration algorithm that searches

through belief space for a partially observable problem� The value space search algorithm

searches through the space of state values to 	nd the point at which the error in a set of

in	nite horizon MDP value functions is the largest�

The value space search algorithm was used to 	nd an ��optimal policy cache for

room � of Figure ���� This subproblem contains �� states and has a fan
out of �� The noise

model was the same as the previous example� and the discount factor was ����� There are

��� � ���� possible policies for this subproblem� Of course� many of these are unreasonable

policies that� for example� move the agent in circles� However� a variety of policies can

still be induced by di�erent values of the out
space states� even in such a simple problem�

One would think that the agent would simply aim for the exit with the highest state value�

However� the noise in the action model ensures that there is always some chance that the

agent will wind up unintentionally exiting the wrong way� Thus� as the relative di�erence

between the two out
space states increases� the optimal policy will take a more circuitous

route towards the desired exit� hugging the walls to avoid accidentally getting too close to

the undesired means of egress�

If the values of the states are assumed to be on �� � � � ���� then the �
grid approach

for this problem would require � million policies for � � ����� The value space search

algorithm produced a policy cache with the same optimality guarantees with just �� policies�

For � � ������ the �
grid approach would require ��� million policies� while the value space

search algorithm produced the same �� policies�

In this particular case� the value space search algorithm has captured the intuition

that this type of subproblem should not be that hard� A few seconds of computation has

produced a small cache of that will ensure a nearly optimal solution for this region no

matter what happens in any connecting region� This small subproblem is now decoupled

and completely solved � at least for � � ����� and for problems where the neighboring

states can assume values on �� � � � ���� Any MDP satisfying these conditions and with an

optimality requirement of no more than �����
������ � ���� will never need another policy de	ned

on this region�
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The value space search algorithm solved a �� � room with two exits using just ��

policies� but several minutes of CPU time� The additional time is largely attributable to

an ine�cient lisp
based linear program solver� The very encouraging aspect of this result

is that the number of policy policies grew more slowly than the number of states�

An important unanswered question is whether the value space search algorithm

is guaranteed to 	nd a polynomial size ��optimal cache of policies if such a cache exists�

The idea of creating a new policy near the point where the current policy cache performs

the worst is plausible� but there is not yet a proof that this constructs a cache of policies

that is in any way minimal� A drawback of this algorithm is that it solves a large number

of linear programs� This can be onerous if the number of states in the region is large� Of

course� this price is paid only once� and the cache can be reused inde	nitely in any MDP

that contains the same subproblem� Moreover� many implementation tricks can be used to

reduce the size and number of linear programs constructed� For example� the maximum

Bellman error for any �entry
point�state�action�policy� quadruple is non
increasing as the

policy
cache grows� so the solutions to previous linear programs can be cached across calls

to �nd�worst� A new linear program is needed only if the cached error is greater than the

maximum error detected so far in the current call to �nd�worst�


���� The Convex Hull Bounding Approach

This section sketches a third algorithm with a computational geometry �avor�

This algorithm also provides slightly di�erent optimality guarantees than the previous al


gorithms� It guarantees that a cache of policies will be �
optimal at the high�level� Recall

that actions in the high
level SMDP correspond to policies at the low level� If a cache is

��optimal at the high level� this means that there is no low
level policy that could improve

the value of a high
level state by more than �� In the four
room example� this would mean

that no policy could improve the value of one of the connecting states by more than ��

However� there could be a policy that could improve the value of some other state� for

example� the state in the top left corner of the model� by more than �� The expected e�ect

of this change on any of the high
level states must be less than ��

High
level �
optimality implies that any policy starting from a high
level state �e�g�

one of the states connecting the rooms� will have an expected value within �
��� of optimal�

This could be a problem� however� if the agent typically starts in some state that is not a
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high
level state� In such cases� the starting position of the agent can be treated as if it were

a connecting state by adding it to the in
space of the enclosing region and constructing a

policy cache as if it were a connecting state� If desired� every state could be treated as if it

were an in
space state� ensuring full low
level optimality as well�

The algorithm presented in this section has run time that is exponential in d� the

fan
out of the region� but unlike the �
grid approach� it does not depend explicitly on ���

and unlike the value space search algorithm� it can avoid considering every state inside of a

region if high
level �
optimality is su�cient� The algorithm relies upon the following formal

results�

Lemma � For any point VO� set of points� V� � � �Vd��� with set of policies� �� � � � �d��� such

that �i is optimal with respect to Vi and such that the Vi form a convex hull around VO� the

optimal policy with respect to VO at any state s is bounded from below by maxi f�i�s�V
O�

and from above by the hyperplane containing each of the �Vi� f�i�s�Vi���

Proof� Bounding from below is obvious and follows from Lemma 
� the optimal policy at

any point must do at least as well as the dominating policy in the cache� The bound from

above is somewhat more subtle� Let H� be the hyperplane containing the �Vi� f�i�s�Vi���

Suppose that there exists some � and corresponding f� such that for some s� f��s�VO�

is above H�� Let H� be the hyperplane corresponding to the linear value function of this

policy at s� There must exist some corner of the convex hull used to create H� �some

�Vi� f�i�s�Vi��� where H� is above H�� i�e�� f��s�Vi� � f�i�s�Vi�� However� f�i is known to

be optimal with respect to Vi� so this is a contradiction�

A simple example of this lemma is shown in Figure ����� Two functions for policies

from the single
exit room are shown� One is optimal at VO � � and the other is optimal at

V O � ���� For any � � VO � �� the linear function for the optimal policy cannot cross ���

at VO � ��� or cross ���� at VO � ������� Thus� the value of optimal policy is bounded by

the line shown�

Theorem �� For region G and cache of policies� �� � � � �m� that are optimal at V� � � �Vm�

the optimal policy value for any s with respect to any VO is bounded from below by the convex

surface formed by the maximum over the corresponding f�� � � � f�m and bounded from above

by the convex hull containing the points� �V�� f���s�V���� � � � � �Vm� f�m�s�Vm���
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Figure ����� Two policies� and an upper surface bounding their distance from optimality�

Proof� The bound from below is a direct consequence of Lemma 
� The bound from above

follows from Lemma � and noting that the lowest bounding hyperplane for any VO must

form a facet in the convex hull of �V�� f���s�V���� � � � �Vm� f�m�s�Vm���

This theorem also suggests an algorithm for 	nding points in value space where

the current policy cache is not ��optimal� For each facet in the upper bounding hull� 	nd

the point in the lower hull that maximizes the distance between the two surfaces� If no

point can be found where the distance is greater than �� then the policy cache is �
optimal�

If the facets in the upper hull are enumerated as a set of linear functions� g� � � � gl� then the

maximum distance can be checked for each s� f�i� and gj as follows�

Maximize

gj�s�V
O�� f�i�s�V

O�

Subject to

gj�s�V
O� � gk�s�V

O� 
k

f�k�s�V
O� � f�i�s�V

O� 
k

VO�k� � Vmax 
k
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Figure ���
� Adding a new policy that is optimal for VO � ����
�� pulls the upper
bounding
hull down� dramatically tightening the bounds on the value of any optimal policy on � �
V O � �� The upper hull is hard to see because it is very close to the lower surface� This
means that three policies shown are nearly optimal for the range shown�

The last constraint bounds VO to lie in the permitted range� The 	rst two sets of constraints

identify the area in VO space in which f�i is a facet on the lower bounding hull and gj is

a facet on the upper bounding hull� If such an area exists� the objective function 	nds the

point at which the distance from the upper hull to the lower hull is greatest�

The above linear program can be used to generate a cache of policies in a fashion

similar to the value space search algorithm� By searching all pairs of upper bounding facets

and lower bounding facets� the point at which the gap between these surfaces is greatest

can be used to determine a new policy� Consider again the two policies in Figure ����� The

distance from the upper hull to the lower hull is largest when VO � ����
��� The optimal

policy for this region when VO � ����
�� assigns the top
left state a value of ���
�VO&������

The upper hull containing this point is shown in Figure ���
� The distance between the

upper bounding hull and the lower hull is now quite small� indicating that these three

policies are nearly optimal if the agent starts in the top
left corner and the value of the

out
space state is on �� � � � ���
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One complication for the bounding hull approach is that the upper
bounding hull

may not cover the entire space of values for VO� For points outside the hull� the value of the

optimal policy can be bounded from above by V max� In some cases this can be tightened

by observing that no policy will do better than the sum of value of the optimal policy at

�V min� � � � � V min�� and �maxi V
O�i�� since the optimal policy for the lowest values of the

out
space states will maximize the reward received within the region� and no policy can do

better than receiving this reward and then moving to the highest valued state in one step�

The more serious complication for this algorithm is the general result from compu


tational geometry that the convex hull ofm points in d dimensional space can have O�mb d
�
c�

facets� making this algorithm exponential in d� Still� the convex hull bounding algorithm

is superior to the ��grid approach since the ��grid approach has run time that depends

directly on �
� and the range of values possible in the out
space� while the bounding approach

depends on the number of policies in the cache�

��� Partial Decoupling

The previous section presented three algorithms for completely decoupling MDPs�

These algorithms are quite computationally intensive� and there are no guarantees that the

size of the policy cache required for a desired solution quality will be manageably small�

In such cases� one may be forced to use a policy cache that is not known a priori to be

��optimal for the range of values the out
space of a region will take on when reconnected

to the rest of the MDP� For example� a rough policy cache could be constructed for each

room of a large navigation problem� When a high
level SMDP that combines these rooms

is solved� some decisions will need to be made on
the
�y about whether the policies in the

rough cache are adequate for the larger problem�

More speci	cally� suppose an MDP has been divided into disjoint regions and

a policy cache has been constructed for each region� A high
level SMDP problem can be

de	ned over the out
spaces of these regions� For a particular region� G� an algorithm solving

this high
level decision problem has the option of using one of the policies in the policy cache

for G� or generating a new policy that is optimal for the algorithm�s current estimate of

VOG � A straightforward way to answer this question would be to use the cached f� functions

to assign values to every state in the problem and then compute the Bellman error for each

state� However� this approach would require so much computation that it essentially would
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defeat the purpose of solving a high
level problem� Instead� high
level optimality can be

checked quite e�ciently by using the tools of the convex hull bounding algorithm�

Starting with some policy cache� �� � � � �m� the elements of which are optimal

at the corresponding V� � � �Vm� for any particular VOG � the value of any state under the

optimal policy with respect to VOG is bounded from below by max�i f�i�s�V
O�� and the

value is bounded from above the convex hull formed by �V�� f���s�V��� � � � �Vm� f�m�s�Vm��

�Theorem ���� The situation here is slightly di�erent from the bounding algorithm in that

VOG is 	xed and known� Instead of a high
dimensional convex hull problem� the bounds for

a particular V O can be determined by solving a linear program� In the following f� is an

unknown linear equation� i�e�� the coe�cients and constant are free variables�

Maximize�
f��s�V

O�

Subject to�

f��s�Vi� � f�i�s�Vi�� � � i � m

f��s�VO� � Vmax

To reassure oneself that this is indeed a linear program� recall that in this context� VO� the

Vi� and coe�cients and constants for the f�i are all known constants� The only variables

are the components of f�� The 	rst set of constraints requires that f� be no better than the

optimal policy for s at points in value space where the optimal policy is known� This is�

essentially� a restatement of Lemma �� The second set of constraints requires that f� never

exceeds the maximum value any state can assume in this problem� Thus� the objective

function forces the linear program to 	nd the highest hyperplane that does not violate

Lemma � or the bound on state values� If VO lies in the convex hull of V� � � �Vm� then

f� will be the facet of the upper
bounding convex hull from Theorem ��� Note that if

VO does not lie in the convex hull� Vmax will be returned� This bound can be tightened

by requiring that the constant of f� be no larger than the value of the optimal policy at

VO � �Vmin � � � Vmin� and that the coe�cients of f� sum to be no more than ��

If the distance between the dominating policy and the upper bound returned by

the above linear program is less than � for every state in the in
space of G� then the policy

cache for G is su�cient to produce a high
level �
optimal policy for the current value of VO�

This means that a high
level decision problem can� for now� avoid updating the policy for

region G and focus attention on other regions� This decision will need to be reevaluated
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as values of the states in the out
space of G change� One way to view this result is that

it enables a form of high
level prioritized sweeping �Moore  Atkeson� ���
" Andre et al��

������

This result also has signi	cant consequences for the transfer of knowledge across

problems� Suppose� for example� that a particular model substructure appears in many

di�erent problems� Consider a larger version of the four
room problem with many intercon


nected rooms� Di�erent tasks in this domain would correspond to di�erent positions of the

reward in di�erent rooms� Every time a policy is produced for a room it can be added to

the room�s policy cache� The above linear program can be used to determine quickly if for

some new problem� the cache in a particular room is adequate� Thus� a form of cross
task

learning is achieved where the time required to plan for new objectives declines as expe


rience is gained with the environment� Moreover� intelligent allocation of computational

resources will be possible since parts of the value space that have already been mastered

will no longer drain computational resources�

��� Hierarchical Decomposition

Suppose that the four
room example is just part of a larger sixteen
room problem�

as shown in Figure ����� This problem is just four large rooms each of which is composed

of four smaller rooms� If an �
optimal policy cache is devised for each small room� the

policies in the caches will become actions for an SMDP de	ned at the level of the enclosing

large room� An ��optimal policy cache for the large rooms can be constructed using the

solutions from the small rooms as actions� These policies can be combined to produce a

global policy that is �

�����


optimal�

In general� if an MDP can be divided into nested sets of disjoint subproblems k

levels deep� and if �
optimal solution caches are constructed at each level such that cached

policies for level j & � become actions for level j� then the overall solution will be �

����k

optimal�

��� Application to HAMs

The decomposition algorithms of this chapter can be applied to SMDPs induced

by HAMs in a very natural way� Recall the hallway navigation problem from the previous
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Figure ����� A sixteen
room problem that contains four nested four
room problems�
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chapter� In this problem� a navigation HAM� H� was combined with a large MDP� M� to

produce a reduced SMDP� reduce�H�M�� In this SMDP� the states can be partitioned into

regions based upon the machine in the HAM that is running at each state� For example�

in the top hallway in Figure ����� there will be a collection of connected states where the

machine for moving right across the hallway is running� This machine will stop if the agent

hits either end of the hallway and the high
pointing east or west sonar is active� VO for

this problem will be a vector of size ��� with �� state strips on each end of the hallway�

One of the nice synergies between HAMs and the algorithms in this chapter is that

a well
crafted machine hierarchy also will induce weak coupling between subproblems for

problem decomposition algorithms� A well
designed HAM will aim to minimize the number

of choice points in the induced SMDP� minimizing the complexity of optimally re	ning the

HAM for a new task� If the HAM call structure is used to induce a hierarchical partitioning

for one of the decoupling algorithms in this chapter� the number of choice points induced

by the HAM at each level of the HAM will determine the number of states in the SMDP at

each level of the decomposition� This determines size of the out
space for each subproblem�

The navigation HAM from Chapter � is an example of this synergy� One of the

reasons why the HAM is so successful is that it limits the number of times the agent can

pick a new hallway direction machine� This limits the number of choice points� but it also

limits the size of the out
space for a subproblem of moving across a hallway since the choice

points for the HAM become out
space states for a decomposition algorithm�

��
 Application to Reinforcement Learning

It would be di�cult to apply the results from this chapter directly to reinforce


ment learning since they rely heavily upon knowledge of the underlying model dynamics�

However� there are two ways in which a reinforcement learning agent can bene	t decoupling

theorems in this chapter� If the agent knows that a new problem will share some structure

with a previous problem� the agent can use cached policies from previous experiences with

these subproblems� The value functions for these cached policies can be learned on
line

using the symbolic TD algorithm from Chapter �� The agent could use these to determine

which areas of the problem requires new policies and could attempt to focus its exploration

in these areas�
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A second option for a reinforcement learning agent would be to make several

guesses about the ultimate values of the out
space states for a particular subproblem and

learn optimal policies for these guesses as parallel reinforcement learning tasks �Chapter ���

If the subproblem is smaller than the overall problem� the agent will be able to learn policies

and linear value functions for these policies in less time than it would take to learn a good

global policy� The agent could then use the algorithms from this chapter to determine if

some combination of the subproblem solutions will produce a satisfactory global solution�

The agent also could use this information to in�uence its exploration strategy�

��� Conclusion

This chapter presented two approaches to decoupling MDPs� a complete decou


pling approach and a partial decoupling approach� With complete decoupling� the problem

is divided into independent subproblems� and the solutions to these subproblems are com


bined by solving a smaller SMDP� Two new algorithms for determining ��optimal policy

caches for a subproblem are presented� The signi	cance of the 	rst algorithm is that it

uses a polynomial time test to determine when to add a new policy to a cache� The second

algorithm uses a computational geometry approach that can be exponential in the fan
out

of the subproblem� but can be more e�cient than the 	rst algorithm if the fan
out is small�

Since complete decoupling may not always be possible� a method for partial de


coupling is presented� This method assumes that an imperfect policy cache is used by a

high
level asynchronous MDP algorithm� It uses the policy cache to bound the optimal

values of states in a region with respect to the values of the states in the out
space of the

region� By providing upper and lower bounds� this permits intelligent decisions about when

to update the policy cache for a region based upon the algorithm�s current estimate of the

values of the states in the out
space of the region�

Together these results provide a framework for large
scale parallelization of MDPs

and a formal framework for the transfer of knowledge across problems that share common

structures� These results can be applied hierarchically� and the structure of a HAM can be

used to determine the problem decomposition�



���
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Chapter �

Conclusions and Future Work

This chapter sketches some of the exciting areas for future research that have been

opened up by the line of research in this dissertation and summarizes its contributions�


�� Future Work

The HAM language alone provides fertile ground for future research� The basic

HAM language was designed to be as simple as possible� with the goal of making it amenable

to analysis� Now that the basic concepts and formal properties have been established� this

section provides some extensions to the HAM language� many of which are syntactic sugar

that can make the language friendlier to the user�

With a 	rm grasp on the relationship between HAMs� temporal abstraction and

hierarchical decomposition� it is now appropriate to consider the relationship between these

topics and the seemingly orthogonal issues of value function approximation and state space

abstraction� There is some reason to believe that these issues may not be completely

orthogonal and that there could be important synergies� Finally� this section o�ers some

thoughts on the problem of partial observability�

����� Extending HAMs

There are many possible extensions to the basic HAM language� This subsection

describes some of the more promising possibilities�
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Annotating States with Heuristic Information

One of the interesting characteristics of the HAM language� separating it from

other attempts to introduce hierarchy into the MDP framework� is that it does not require

any guesses about the values of states" HAMs encode procedural knowledge� However�

there is no reason why the language could not be augmented to include guesses about state

values� These could be used to construct an initial value function for the induced SMDP� or

they could provide initial VO vectors for problem decomposition� Choice states also could

be augmented to include suggestions about a default action and these suggestions could

be used to create an initial policy for the induced SMDP� These heuristics would not be

binding in any way and would not change the optimal policy for the induced SMDP� They

simply would provide a heuristic starting point for an SMDP solution to the reduced model�

Parameter Passing and Return Arguments

Two other natural extensions to the HAM language are the introduction of param


eter passing and return values for subroutine calls� If the parameters and returned values are

constrained to be from some 	nite alphabet� then all of the theorems and algorithms from

Chapter � will apply directly since these extensions will maintain the 	nite
state aspects

of the language� With these extensions� machine subroutines could indicate why they have

returned� For example� a hallway navigation machine could return a value distinguishing

between stops that occur at the end of hallways� and stops that occur because the agent

has slipped backwards into the previous intersection�

Stochastic� Adjustable Choice Points

One avenue that Chapter � explicitly avoided was the use of continuous or count


ably in	nite state machine representations� One interesting step in this direction is the

introduction of adjustable� stochastic choice points� The idea behind a stochastic choice

point is that instead of requiring a hard choice between several alternatives� a re	nement

for the HAM can specify a probability distribution over alternative next machine states� If

a distinct probability distribution were allowed for each choice point� then this would not

be a particularly interesting extension since the optimal policy for the induced SMDP will

always be deterministic� However� if the choices for all choice points induced by a partic


ular machine state are chosen from the same distribution� then the problem becomes one
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of 	nding the optimal probability distribution that will be shared across a large number of

choice points�

Some methods do exist for tuning stochastic action choices in policies that map

from states to actions �Jaakola� Singh�  Jordan� ������ The question of tuning a global

parameter for a machine is important because it may help reduce the complexity of re	ning

a machine for a new task� Suppose� for example� that a machine is intended for use in a

symmetric room� An optimal decision at one side of the room may constrain the optimal

decision at the other end� If there were a way for a single parameter to represent both

of these choices� the complexity of the reduced SMDP for this problem could be cut in

half� Achieving this savings in practice may be di�cult� but there are some interesting

possibilities� Suppose machine N contains a choice state m that chooses next state n with

probability p� The parameter p will a�ect the next state choice for any extended state that

contains m as a component� How could p be adjusted to improve N �s performance over

some region of the state space� The value of any state that launches N will be a function

of p� but the di�culty is that unlike regular choice points� the function will not be linear�

The problem of choosing an optimal� global� continuous parameter for a machine

can be framed as an SMDP� However� the max in the Bellman equation would no longer be

a maximization over a 	nite set of discrete choices� but would require 	nding the maximum

of a continuous non
linear function� Gradient descent methods could be used to 	nd at

least a local maximum in such cases� and local maxima may su�ce for many problems� It

remains to be seen if the �exibility a�orded by continuous� adjustable parameters of this

type justi	es the computational cost of constructing and maximizing a non
linear function�

Recent results in Marbach and Tsitsiklis ������ may be applicable to this problem�

More Advanced Machine Representations

While 	nite state automata are a natural and frequently used representation for

controllers� they are not as powerful or general as push
down automata or Turing machines�

In principle� the HAM theorems all generalize to these machine representations if the con


tents of the stack or machine tape are considered part of the overall machine state� The

di�culty with these representations is that the number of possible machine states becomes

countably in	nite� making the induced SMDP countably in	nite as well� This makes it prac


tically impossible to construct the reduced state space for these cases since the full state
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space cannot be manipulated directly� One alternative is the use of reinforcement learning

methods� Since HAMQ
learning does not directly manipulate the full state space� if the

stack depth �or number of Turing machine tape cells used� is 	nite� then HAMQ
learning

can use a hash table to store values for the states that actually occur� This application of

HAMQ
learning will be guaranteed to learn the optimal re	nement of HAMs represented

as Turing machines��

Inventing New Machines

An intriguing area for future research is the automated discovery of good machine

structures for HAMs� One way to view this issue is as an inductive learning problem� In

constructing a HAM� one must have in mind some class of MDPs� or regions thereof� to

which the HAM would be applied� Optimal solutions to MDPs from the class would be

instances for the inductive learner� The hypothesis class would be the space of HAMs and

the target hypothesis would be a HAM that optimizes some tradeo� between performance

and the description length of the induced SMDP� Description length was used as a metric

for the acquisition of general skills in Thrun and Schwartz �������

Another approach to the automatic generation of HAMs is the use of plans gener


ated by classical planners as the basis for a machine structure� This approach was explored

by Lin ������� where a classical planner capable of producing plans with loops was proposed

as a means of generating a type of abstract MDP policy� This approach was primarily fo


cused on tasks of achievement that had speci	c decomposition properties� but it may be

possible to combine these ideas with the HAMs�

Feudal Reinforcement Learning �Dayan  Hinton� ���
� and MAXQ value func


tion decomposition �Dietterich� ����� use a task hierarchy to generate abstract actions for

reinforcement learning automatically� These methods use a pre
speci	ed task hierarchy to

make guesses about the value of reaching certain states in a manner similar to the method

used by Lin ����
� to generate robot subtasks� These methods also use a form of state

aggregation to generalize information about achieving abstract subtasks in one part of the

state space to other parts of the state space� These methods are intriguing and have the

potential to produce good practical results in some cases� One concern� however� is that

�Of course� if a Turing machine is guaranteed to use a �nite number of tape cells� then there must be an
equivalent �nite state machine� However� determining if a Turing machine uses a �nite number of cells a

priori may be undecidable�
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due to their use of state aggregation� it is di�cult to make strong formal claims about the

performance of these methods� One interesting possibility for future work would be some

combination of these methods with HAMs in a way that could still preserve some of the

formal guarantees of HAMs�

����� State Aggregation

As indicated in the beginning of the dissertation� state aggregation is an important

method that is used at some level in almost any successful application of MDP methods�

There are many important questions in state aggregation that remain unresolved and for

this reason the topic was not addressed explicitly to avoid confusing the presentation and

complicating the analysis of the methods presented here�

One of the unsatisfying aspects of the more formally justi	able state aggregation

methods is that they fail to capture much of the intuitive notion of an abstract state� For

example� the approach used in Dean et al� ������ o�ers formal guarantees on the relationship

between the solution to an abstract problem and a solution to the original problem based

upon the di�erences between the reward and transition functions of the underlying states

comprising each aggregated state� If two states with vastly di�erent transition functions are

aggregated� these methods cannot guarantee a close relationship between the solution to

the aggregated model and the original model� The problem with this is that very frequently

in human reasoning it seems quite natural to aggregate states that are very di�erent� For

example� the states in a room of one�s house can have very di�erent transition functions

� moving forward from one state will exit the room� while moving forward from another

will bump into the television� In spite of these di�erences� people seem to reason about

objects like rooms as if they were single states� People plan to go �to the living room��

and treat the living room as a discrete place at a certain level of abstraction� The state

aggregation methods of Dayan and Hinton ����
� and Dietterich ������ attempt to capture

these intuitions� as do some methods proposed in Dean and Lin ������� However� these

methods do not provide compelling formal guarantees�

State aggregation can be applied to HAMs in a straightforward way� by applying

state aggregation methods to a HAM
induced SMDP� This will be subject to the same

complications and pitfalls of ordinary state aggregation� A more promising avenue for

exploiting state aggregation methods is in combination with the decomposition algorithms of



���

Chapter �� First� state aggregation can be used combine similar out
space or in
space states

for di�erent regions of an MDP� For example� if the region of physical space corresponding

to the threshold of a door were modeled as several discrete states� these states could be

aggregated with little loss in performance guarantees because they are so similar� This

would improve the performance of decomposition algorithms� which are heavily in�uenced

by the size of the out
spaces for subproblems� After a cache of policies is constructed for

each subproblem� it may be possible to aggregate di�erent in
space states� even those that

were originally very far apart� This is because the intermediate states essentially have been

removed from the state space through the introduction of a policy cache� Thus� states

that previously had no direct connection would now have direct connections to each other�

permitting state aggregation�

����� Function Approximation

Function approximation can be incorporated directly into any of the methods

described in this dissertation� For example� a function approximator could be used for the

value function of a HAM
induced SMDP in exactly the same way function approximation is

used for ordinary MDPs� If the HAM
induced SMDP is very large� function approximation

can be used as part of the state elimination process in combination with symbolic value

determination �see Chapter ���

Another possible role for function approximation with HAMs is their use as a

means of generalizing the value of launching HAM subroutines across di�erent parts of

the state space or across di�erent problems� For example� a neural network could be used

to generalize the value of starting the machine from Chapter � for moving right across a

hallway� In general the value of starting this machine will be a linear function of the values

of the states in which the machine terminates� The coe�cients of this function will depend

upon a number of factors such as the length and width of the hallway� and the number of

obstacles in the hallway� A neural network using these features as inputs could be trained

to produce a good estimate of the e�ects of this particular machine based upon experience

with similar hallways� In principle� the estimates from the neural network could replace

the costly state removal algorithms from Chapter �� In the case of reinforcement learning�

symbolic TD could be used with function approximation to learn symbolic representations

of the value of di�erent subroutines� These representations could be stored and used by
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the agent to get quick estimates of the value of a subroutine call in a new situation� This

stored� generalized experience could reduce the amount of trial and error necessary to learn

in new environments�

The danger of function approximation for HAMs is that unless a very conservative

approximation method is used� such as Gordon�s Averagers �Gordon� ������ all of the formal

guarantees of the HAM method will be lost� Since function approximation is often used

in practical problems in spite of the loss of formal guarantees� the combination of function

approximation and HAMs may still be worthwhile� Moreover� since function approximators�

as used with HAMs� would need to represent values for only a portion of the state space�

function approximation methods should behave more stably� In the case of reinforcement

learning� they should learn faster and generalize better�

Function approximation also can play a role in the decomposition algorithms of

Chapter �� It can be used to produce approximate solutions to large subproblems� or

as a means of generalizing the e�ects of policies in a solution cache to di�erent subprob


lems� Unfortunately� the pitfalls of function approximation are even more of a problem for

decomposition algorithms� which rely on precise computations of the value relationships

between states to establish tight performance bounds on policy caches� The errors resulting

from function approximation could be magni	ed by the decomposition algorithms� Still�

this combination could be worth pursuing since the performance of function approximation

on practical problems is often much better than worst
case analyses would suggest� Fur


thermore� it may be possible to use distribution assumptions about the space from which

subproblems are drawn to obtain error bounds�

����� Partial Observability

Partial observability refers to the case where an agent does not have complete

knowledge of the state of the environment� Instead� the agent may have some partial

information that gives a clue about the underlying state� but that is not su�cient to identify

the current state of the environment with certainty� The problems are Partially Observable

MDPs �POMDPs�� In POMDPs� an agent generally is forced to make decisions based upon

either a complete history of its actions and perceptions in the environment� or a probability

distribution over the states in the environment called a belief state or information state�
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The history
based approach to acting in POMPDs is problematic unless the envi


ronment belongs to a special subclass of environments for which a bounded history window

is a su�cient basis for decision making� Belief state representations are also problematic

since planning with such representations is extremely di�cult� POMDPs are known to

be PSPACE
hard �Papadimitriou  Tsitsiklis� ������ so there is little hope of 	nding a

silver
bullet algorithm that will make things any easier�

One hope for handling POMDPs is the identi	cation of special case algorithms

that work with interesting subclasses of problems� HAMs can be applied directly to one

special case� the case where some states can be identi	ed with certainty� If a HAM is

designed so that choices can be made only at these states� then the problem of optimally

re	ning a HAM will remain an SMDP� since there will be no points in the reduced model

for which the agent will never be uncertain about the state of environment� This dodges the

problem of partial observability� but it may be applicable in cases where the environment

contains distinctive landmarks�

Another route around the problem of partial observability is by augmenting the

machines in a HAM to incorporate a limited memory of past experiences� Wiering and

Schmidhuber ������ propose a method for learning complex state machines for POMDPs

through reinforcement learning� This method uses some methods similar to those used

in HAMs� but its formal properties are unclear� Recent advances in the manipulation of

POMDP policies as state machines �Hansen� ����� may give further insight into this issue�

The algorithms for combining a HAM with an MDP to produce a reduced SMDP

can be applied to combine a HAM with a general POMDP to produce a reduced Partially

Observable Semi
Markov Decision Process �POSMDP�� the solution of which optimally

re	nes the HAM for the original POMDP� Since POMDP algorithms scale very badly with

the number of states� this could be a useful approach� One di�culty can arise from the use

of sensor information by HAMs to decide where to create choice points� HAMs reduce the

state space by limiting the number of points at which choices are made� If the environment

can generate confusing observations� then the HAM might wind up generating choice points

for all states in the environment� eliminating any hopes of simplifying the problem� This

problem may be avoidable using approximation methods that disregard low
probability� i�e�

noisy� sensor information �Zhang  Liu� ������

The application of the decomposition methods of Chapter � to POMDPs would

be very complicated� In general� there may exist strings of observations that could cause an
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agent�s belief state to become smeared out over the entire state space� This would thwart

e�orts to treat di�erent parts of the state space as independent problems� As with HAMs

one workaround may be through some combination of decomposition methods and POMDP

approximation methods�


�� Conclusion

The new technical content of this dissertation began with a discussion of the con


cept of temporal abstraction� Temporal abstraction was shown to be equivalent to the

transformation of a policy de	ned over a region of the state space to an action in an SMDP�

The existing methods for temporal abstraction were shown to be instances of this basic

step�

Several algorithms were presented for e�ciently computing the transformation re


quired to convert a policy into an action� As a bonus� the investigation of the issues involved

in this transformation suggested a new type of MDP optimality criterion that permits ex


plicit tradeo�s between rewards and the discounted probability of policy outcomes�

The HAM method was introduced as a means of hierarchically generating tempo


rally abstract actions� This method permits the partial speci	cation of abstract actions in

a way that corresponds to an abstract plan or strategy� Abstract actions speci	ed as HAMs

can be optimally re	ned for new tasks by solving a reduced SMDP� The implication of this

transformation is that traditional MDP algorithms can be used to re	ne HAMs for new

tasks in much less time than it would take to learn a new policy for the task from scratch�

While HAMs introduce hierarchical� temporally abstract actions� they do not de


compose MDPs into independent subproblems� However� they do complement a new type

of decomposition that can break apart MDPs into independent pieces� This decomposition

method works by constructing a cache of policies for di�erent regions of the MDP and then

using the algorithms developed earlier in the dissertation to optimally combine the cached

solution to produce a global solution�

Together� the methods developed in this dissertation provide important tools for

producing good policies for large MDPs� Unlike many previous ad
hoc methods� these

methods provide strong formal guarantees� They use prior knowledge in a principled way�

and they reduce larger MDPs into smaller ones while maintaining a well
de	ned relationship

between the smaller problem and the larger problem�
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The author hopes that with these methods in hand� people who wish to apply MDP

methods to practical problems can spend less time worrying about the vagaries of feature

vectors for function approximators with unpredictable characteristics� Some of this e�ort

can now be switched to thinking about how reusable components from previous problems

can be applied to new problems and how problems can be described in ways that make

them most amenable to decomposition� These e�orts will payo� in high
quality solutions

with meaningful performance guarantees�
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