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Abstract

Due to the unavoidable fact that a robot’s sen-
sors will be limited in some manner, it is entirely
possible that it can find itself unable to distin-
guish between differing states of the world. This
confounding of states, also referred to as percep-
tual aliasing, has serious effects on the ability of
reinforcement learning algorithms to learn stable
policies. Using simple grid world navigation prob-
lems we demonstrate experimentally these effects.
Although 1-step backup reinforcement learning
algorithms performed surprisingly better than ex-
pected, our results confirm that algorithms using
eligibility traces should be preferred.

1. Introduction

Consider a robot learning to navigate its way to a goal
point from anywhere in a building. Whatever the de-
sign of the robot it can only be equipped with a finite
number of sensors and will have limited computational
resources with which to interpret this sensory informa-
tion. Due to these limitations there is always a chance
that multiple states of the world, for example two T-
junctions or two long corridors in the building, will be
indistinguishable to the robot. This problem was identi-
fied in active vision systems by Whitehead and Ballard
(1991) who coined the phrase perceptual aliasing. Al-
though with the current pace of technological advance it
is always possible to augment both sensory information
and the processing, it would be better to have a range
of techniques that the robot can use to deal with these
situations. In addition, perceptual aliasing if controlled
correctly could form a useful tool. If the mapping be-
tween the external world and the agent’s internal state
is chosen correctly state distinctions that are irrelevant
to a task could be ignored, reducing the state space that
has to be explored.

Perceptual aliasing is especially problematic when us-
ing reinforcement learning algorithms. Reinforcement
learning algorithms learn to associate rewards and ac-

tions with specific states. Perceptual aliasing, which re-
sults in the confounding of the true state of the world,
therefore, makes it difficult if not impossible for algo-
rithms to learn stable policies.

Systems that contain perceptual aliasing are exam-
ples of partially observable environments. Work look-
ing at partially observable environments has shown that
reinforcement learning, when augmented with memory
(Lanzi, 2000) or the ability to create models of its
world (Chrisman, 1992; McCallum, 1993), can solve
tasks which contain perceptually aliased states. Our
long term goal is to test whether the use of active per-
ception can provide an effective alternative to these two
approaches. However, at this stage we wish to better
understand the problems caused by perceptual aliasing.
To study the fundamentals of the problem we consider
simulated agents with fixed perception moving around
deterministic grid worlds, such as Sutton’s Grid World
(figure 1). Depending on the sensory input we allow the
agent, it faces similar problems to those that could be
encountered by a real mobile robot.

This paper presents results of applying various rein-
forcement learning algorithms, that are commonly used
in robotics, to two grid world navigation problems.
These two problems can be rendered partially observable
by selecting the observations that make up the agent’s
state. The aim of these experiments is to test the hy-
potheses that:

e 1-step reinforcement learning algorithms are not able
to learn policies which are both stable and optimal,
when the task involves perceptually aliased states;

e Reinforcement algorithms that use eligibility traces
can however learn optimal memoryless' and stable
policies for the same task.

We confirm results observed by Loch and Singh (1998)
that in partially observable environments, reinforce-
ment learning algorithms which use eligibility traces are

Lsee section 2. for an explanation of this term
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preferable to those that use 1-step backup. Furthermore,
by running multiple trials we gather some useful insights
on the performance of the algorithms tested.

2. Background

Whitehead and Ballard (1991) considered reinforcement
learning of active perceptual systems, specifically active
vision systems. To simulate the problems involved they
considered a blocks world problem where a robotic arm
has to uncover and grasp a green block from among ran-
domly sorted piles of blocks. Their system could select
two blocks to be the focus of its attention and the charac-
teristics of these two blocks formed the state of the world
as seen by the learning algorithm. The reinforcement
learning algorithm had to learn to coordinate which ob-
jects were the focus of attention as well as the actions of
the robotic arm. Whitehead and Ballard (1991) found
that 1-step backup Q-learning failed to learn the opti-
mal policy, only performing slightly better than select-
ing actions at random. This failure, they concluded, was
due to the inability of Q-learning (or any reinforcement
learning algorithm using 1-step backup) to learn stable
policies in the presence of perceptual aliasing, the per-
ceptual aliasing in their case being caused by the design
of the active perception system.

Littman (1994) considered learning state-action poli-
cies without memory in partially observable environ-
ments, i.e. environments containing perceptual aliasing.
He introduced the useful concepts of satisficing and op-
timal memoryless policies. A memoryless policy returns
an action based solely on the current sensation. Stan-
dard reinforcement learning algorithms, such as SARSA
and Q-learning (Sutton and Barto, 1998, pl46,p149),
work on exactly this basis. A policy is satisficing if inde-
pendent of its initial state an agent following this policy
is guaranteed to reach the goal. The performance of a
policy is measured using the total steps that the agent
takes to reach the goal from all possible initial states. An
optimal policy is one that achieves the minimum total
steps to goal. Therefore, an optimal memoryless policy
is a policy that achieves the minimum number of total
steps which can be achieved by a memoryless policy.

Using hill climbing and branch and bound techniques
Littman (1994) showed that it is possible to find optimal
memoryless policies for various grid world navigation
problems including the variation on Sutton’s grid world?
presented here. Loch and Singh (1998) then showed that
reinforcement learning using eligibility traces could also
find optimal memoryless policies in grid world navigation
problems.

Sutton’s grid world. Values indicate observa-

Figure 1:
tions obtained by an agent with fixed perception sampling
the eight surrounding squares (8 Adjacent Squares Agent).
Arrows show an example optimal memoryless policy (from
Loch and Singh (1998)). Filled black squares are obstacles
or walls, and the goal is indicated by an asterisk (*).

‘ AGENT

PERCEPTIONS

Figure 2: 8 Adjacent Squares Agent — fixed perception sam-
pling the eight surrounding squares.

2.1 Effects of Perceptual Aliasing

Perceptual aliasing causes two distinct effects labelled
by Whitehead (1992, (chp.5)) as local and global im-
pairment.

Local impairment — an agent that is unable to distin-
guish between several states of the world will sometimes
select actions that are inconsistent with the true under-
lying state. An example can be seen in figure 1. The
states in this figure are labelled to indicate the obser-
vations obtained by an agent who can only observe the
eight squares adjacent to itself, such as the agent illus-
trated in figure 2. Such an agent believes it is in state
148 in three distinct locations. These are: four squares
directly below the goal; near the middle of the obstacle
which is to the left of the goal; and near the middle of
the obstacle on the left hand side of the board. In one

2The original problem was presented in Sutton (1990)
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of these three states the optimal action is to move north
(the state directly below the goal), in the second case
the optimal action is to move south (the state just to
the left of the goal), in the third state it does not matter
if the agent moves north or south. As can be seen in
figure 1, the agent, unable to distinguish between these
three locations, decides it is best served by moving north.
Although appropriate for two of the three occurrences of
148, it is not optimal for the state just to the left of the
goal. It is because of such situations that optimal state-
action policies learnt in the absence of memory, i.e. the
optimal memoryless policy, are arbitrarily worse than
the optimal policy that can be achieved in the absence
of perceptual aliasing (Singh et al., 1994).

Global Impairment — given the bucket-brigade up-
date employed by 1-step backup reinforcement learning
algorithms, inaccurate estimates of state values that oc-
cur with perceptually aliased states can lead to errors in
the state values of non-perceptually aliased states. This
problem is best illustrated by considering figure 3. This
world is deliberately designed such that an agent who can
only observe the eight squares adjacent to itself cannot
distinguish between states 2 and 5. It is able to uniquely
identify all of the remaining states. In all states the op-
timal action is to move right. The agent when updating
state values does not regard states 2 and 5 as separate
states, thus it stores only one state value to represent
both states and their updates are averaged. This averag-
ing results in state 2 having a value greater than its true
value. If an agent is in state 3 it might mistakenly select
the action move left, towards state 2, believing state 2 to
be nearer the goal than state 4. Updating state 3 on the
basis of the state value of state 2 then propagates this
error potentially causing other states, such as state 4, to
select the action move left and further propagating the
inconsistent state values. These errors in state values
can end up affecting the whole of the agent’s policy.

3. Experiments

We conduct our experiments using two grid world navi-
gation problems:

(i) Sutton’s Grid World;

(ii) A simple 1-D example devised by Whitehead (1992,
pp73-78) to illustrate the problems perceptual alias-
ing causes to 1-step Q learning.

And two types of agent:

(i) An agent whose state representation is its location
in the grid world given in Cartesian coordinates, the
Absolute Position Agent.

(ii) An agent whose state representation is formed by ob-
serving the 8 squares adjacent to its current location,
the 8 Adjacent Squares Agent, see figure 2.

The importance of these two agents is not in the detail
of what they can observe but that the Absolute Position
Agent has a unique state representation for every loca-
tion in either of the two grid worlds, while the latter, the
8 Adjacent Squares Agent, has the same state represen-
tation for multiple states in each of the two worlds.

3.1 Sutton’s Grid World

Sutton’s grid world is shown in figure 1. It consists of
a 9 x 6 grid containing various obstacles and a goal in
the top right hand corner (indicated by an asterisk). An
agent in this world can choose between four physical ac-
tions; move north, south, east and west. State tran-
sitions are deterministic and each action moves it one
square in the appropriate direction. If an agent tries
to move towards an obstacle or wall it is not allowed
to move, i.e. location and state remain unaltered, al-
though it receives the same reward as if the action had
succeeded. The agent receives a reward of —1 for each
action that does not move it directly to the goal state
and a reward of 0 for moving directly to the goal state.
When the agent reaches the goal state it is relocated to
a uniformly random start state.

For the 8 Adjacent Squares Agent there are multiple
locations that appear to be the same state, e.g. state 148
(figure 1) as discussed in section 2.1 above.

3.2 Simple 1-D Example

. WALL

* GOAL STATE

State | State | State | State | State | State
0 1 2 3 4 5

Figure 3: Simple 1-D example world to illustrate the prob-
lems caused by perceptual aliasing (Whitehead, 1992, pp73—
78).

The simple 1-D example world consists of a 1 x8 grid as
shown in figure 3, with the goal at the far right hand side.
An agent in this world can select between two physical
actions; move east or move west. State transitions in
this world are deterministic and the two actions move
the agent one square in the appropriate direction. The
agent is not allowed to move past either the far left hand
end or far right hand end of the world; if it tries to do
this its location and state remain unaltered. On reaching
the goal state the agent receives a reward of 5000. Non
goal states yield zero reward.

The arrangement of the wall and gaps above and be-
low play no part in the actions the agent is allowed to
execute. They do however encode the state as seen by
the 8 Adjacent Squares Agent. For this agent each state
appears unique except states labelled State 2 and State
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5 (figure 3) which to it appear to be one and the same.

3.8 Learning Algorithms € Action Selection

A selection of learning and action selection algorithms
were used: random action selection, SARSA, Q-learning,
SARSA(XA) with replacement traces, Watkins’s Q(\)
with accumulating traces. For details of the learning al-
gorithms see Sutton and Barto (1998, p146, p149, p181,
p184) respectively.

The random action selection algorithm, as its name
suggest, selects uniformly between the available actions
and provides a baseline for comparison with the other
methods.

All of the learning algorithms continuously update
their policies. Actions are selected greedily using the
current policy with a probability of (1 — €). In cases
where actions have the same value ties were broken at
random. In the remaining e cases the action executed
was select randomly between all the available actions.
In both cases above the random selection was uniform
across all possibilities.

The following values were used for the learning algo-
rithms:

e learning rate a = 0.1,
e discount rate v = 0.9,

e probability of random action € started at 20% and de-
cayed linearly reaching zero at the 200, 000" action-
learning step. Thereafter it remained at zero.

e A range of values were tried for the eligibility trace
decay rate A from 0.001 to 0.9.

e The state-action values for all the learning algorithms
were initiated at zero.

3.4 FEvaluation

We adopted the same evaluation method as used by
Loch and Singh (1998). After every 1000 learning steps
the policy is evaluated greedily to determine the total
number of steps required to reach the goal from every
possible starting state. The agent is limited to a maxi-
mum of 1000 steps to reach the goal from each starting
state. Thus if a policy is evaluated in a world with NV
starting states and fails to reach the goal from all of them
it would have a maximum total steps of IV x 1000.

Each run consists of a million action steps, with eval-
uation of the current policy occurring every 1000 steps.
Each combination of agent, world, learning algorithm
and value of A\ was repeated 100 times giving 100 sam-
ples per data point.
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Figure 4: Plot for Sutton’s Grid World of mean total steps
found when policies were evaluated versus action-learning
steps. Bars indicate 95% confidence intervals. To simplify
plots data points are only shown for every 50,000 action-
learning steps. Top graph shows results for Absolution Posi-
tion Agent which suffers no perceptual aliasing. Insert shows
enlargement of first 50,000 steps which would otherwise not
be visible (data plotted for every 1,000 step). Lower plot
shows results for 8 Adjacent Squares Agent which aliases mul-
tiple locations.

4. Results
4.1 Sutton’s Grid World

Figure 4 shows the mean total steps for all four learning
algorithms. The top plot shows results with the Absolute
Position Agent which experiences no perceptual aliasing.
All four learning algorithms quickly converge on the op-
timal solution in around fifty thousand action-learning
steps. This indicates that all four learning algorithms
have no problem in learning this task if there is no per-
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Figure 5: Plots show categorisation of policies versus action-learning steps for the four learning algorithms. All are learning
to solve Sutton’s grid world using the 8 Adjacent Squares Agent.

ceptual aliasing.

The lower plot shows results for the 8 Adjacent
Squares Agent which aliases multiple locations in the
world.  The mean total steps for SARSA(MA) and
Watkins’s Q(A) with A 0.9 rapidly approach the
optimal memoryless solution, with SARSA()) reaching
convergence in less than one hundred thousand action-
learning steps, and Watkins’s Q(X) in around three hun-
dred thousand action-learning steps. The other values
of A tried were 0.001, 0.005, 0.01, 0.05, 0.1, 0.5 and 0.75
(none of which are shown) and all converged to a sim-
ilar number of mean total steps as A = 0.9. As would
be expected lower values of A take longer to converge,
with the lowest value, A = 0.001, converging after eight
hundred thousand action-learning steps.

The mean total steps of the policies learnt by by the 1-
step backup algorithms, Q-learning and SARSA, appear
to be gradually converging towards a level where the
majority of policies will be satisficing. This convergence
is, however, extremely slow compared to SARSA(A) and
Watkins’s Q(A). As indicated by the 95% confidence
intervals there is a significant variation in the policies
learnt by Q-learning and SARSA.

To obtain a better idea of the quality of the policies
that are being learnt we have identified five policy cat-

egories and tracked the number of policies that fall into
each category over time, see Figure 5. The five pol-
icy categories are optimal, better than memoryless op-
timal, memoryless optimal, other satisficing and non-
satisficing. We will define these categories specifically
for Sutton’s grid world in terms of the total steps mea-
sured when the policy is evaluated. The optimal policy is
defined as that which takes the minimum possible total
steps to reach the goal from all starting positions. For
Sutton’s grid world this is 404 steps. Littman (1994)
showed that the optimal memoryless solution for Sut-
ton’s grid world is 416 steps. Littman (1994)’s defini-
tion of satisficing is a policy that reaches the goal from
all possible start states. Our measure of satisficing is
stricter than this requirement as the agent is limited to
1,000 actions from each start state, after which the run is
truncated. Accordingly, any policy who fails to reach the
goal state from any start location in under 1,000 steps is
classed as non-satisficing irrespective of the total steps
for that policy. The remaining policies who succeed in
reaching the goal from all start states are classified as:
optimal if their total steps equals 404; better than mem-
oryless optimal if their total steps lies between 404 and
416 (exclusive); memoryless optimal if the total steps
equals 416; and other satisficing if the total steps exceeds
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Figure 6: Plots of stability of policy classification versus action-learning steps for the four learning algorithms. Height of bars

indicate the number of policies that changed from being satisficing to non-satisficing and visa-versa since the previous policy

evaluation. All are learning to solve Sutton’s grid world using the 8 Adjacent Squares Agent.

Goal Reached Total
From All Physical Policy Category

Start States Actions
yes 404 Optimal
ves 405 — 415 Better Than Memory—

less Optimal

yes 416 Memoryless Optimal
yes > 416 Other Satisficing
no - Non-Satisficing

Table 1: Policy categories for Sutton’s Grid World

416. These five categories are summarised in table 1.

Figure 5 shows the variation in types of policies learnt
against the number of action-learning steps that have
been executed. Each combination of parameters and
learning algorithm was repeated 100 times. The height
of the shaded areas on these plots indicate the number
of policies falling into each policy category as measured
after a particular number of action-learning steps. Ex-
amining the top left hand plot, which shows the policies
learnt using SARSA initially all one hundred policies are
non-satisficing (grey shading). At around one hundred
thousand action-learning steps a small number of poli-
cies become satisficing, but their total steps exceeds 416
so they are classified as other satisficing policies (black

shading). The number of policies classified as other sat-
isficing gradually increases until after one million action
learning steps 64 of the policies are other satisficing and
36 are non-satisficing. The results for Q-learning (top
right) are similar with final tallies of 81 other satisficing
policies and 19 non-satisficing. Neither learnt any poli-
cies that were better than other satisficing at any stage.
However, the other satisficing policies found were rea-
sonable with a mean total steps of 457 for SARSA and
487 for Q-learning.

By comparison, SARSA(A) and Watkins’s Q(A) had
in less than six thousand action-learning steps, learnt a
small number of policies that were classified as mem-
oryless optimal (white shaded areas in the lower two
plots of figure 5). By the end of a million action-
learning steps the distribution of policies for SARSA(A)
were: 80 memoryless optimal; 0 other satisficing, and 20
non-satisficing. Similarly, after a million action-learning
steps, the distribution of policies for Watkins’s Q(\) was:
48 memoryless optimal; 22 other satisficing, and 30 non-
satisficing

There existed the possibility for all of the learning al-
gorithms that although a given proportion of the popula-
tion of policies were continually categorised as satisficing,
individual policies were not stable, switching back and
forth between satisficing and non-satisficing solutions.
With this possibility in mind we examined the stability
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of the policies learnt by the four learning algorithms

Plots for stability are shown in figure 6. These are de-
rived by counting the number of individual policies that
change classification between consecutive policy evalua-
tions. A change in classification is counted when a policy
changes from being non-satisficing to any of the other
satisficing classifications, or visa-versa. From figure 6
both SARSA and Q-learning are very stable with no
more than three policies changing classification at any
one time. Much large changes in classification are seen
initially for SARSA()) and Watkins’s Q()), as we would
expect. The number of changes then steadies at a fairly
low level for SARSA(\), but remains relatively high for
Watkins’s Q(\).

A related observation is that Watkins’s Q(\) generates
a much large number of other satisficing policies than
SARSA()A). SARSA()) learns either memoryless opti-
mal or non-satisficing polices, and virtually zero other
satisficing policies. A quick investigation reveals that
the memoryless optimal policies generated by Watkins’s
Q(A) are reasonably stable, i.e. the number of changes
between memoryless optimal policies and any other clas-
sification are comparable to the figures for SARSA()).
However, a large number of polices, on average 11.6,
flip between other satisficing and any other classifica-
tion. This accounts for most of the changes reported on
the Watkins’s Q(A) plot in figure 6. It thus appears that
the policy update rule used by Watkins’s Q(A) learns a
significant proportion of unstable, non memoryless opti-
mal policies.

4.2 Simple 1-D Ezample

Results for the simple 1-D example world are shown in
figure 7. The top two plots show mean total steps with
95% confidence intervals for the four learning algorithms
and also for random action selection. The left hand plot
shows results for the Absolute Position Agent which does
not experience any perceptual aliasing. In the absence
of any state aliasing all four learning algorithms learn
the optimal solution to this world.

The 8 Adjacent Squares Agent (top right hand plot)
aliases State 2 and State 5 (figure 3) in this simple 1-
D world. Using this agent both SARSA and Q-learning
perform worse than an agent selecting actions at random,
though the large confidence intervals suggest that it is
worth investigating what is occurring with the individual
policies. SARSA()) and Watkins’s Q(A), A = 0.9, both
learn the optimal solution in less than 50,000 action-
learning steps.

The total steps for an optimal solution to this prob-
lem is 28. Due to the very simple nature of this world
the total steps for an optimal memoryless policy is also
28. Because these two types of policy are identical we
reduce the number of categories used to just three, see
table 2. Even though there appears to be only one solu-

Goal Reached Total
From All Physical || Policy Category
Start States Actions
yes 28 Optimal
yes > 28 Other Satisficing
no - Non-Satisficing

Table 2: Policy categories for Simple 1-D Example

tion, move east in all states, and policies are evaluated
greedily, other satisficing policies could still exist. Ties
where actions have the same value are broke at random.
Thus it is possible to image a policy which, in one or
more states, has no preference between moving east or
moving west, such that an agent following this policy
performs a limited random walk before ultimately reach-
ing the goal. Such a policy, if it reached the goal in less
than 1,000 steps from each starting state, would still be
satisficing but would exceed 28 total steps. In practice
this never occurred and only two categories are shown
on the plots in figure 7.

The middle two plots (figure 7) show the number of
policies falling into each category for SARSA and Q-
learning. We see that both SARSA and Q-learning reach
a plateau with just over 65% of the policies learnt being
classified as optimal after just 300,000 action-learning
steps. For these two learning algorithms we again plot
the change in classification of the policies to test that
the policies are stable. The two lower plots in figure 7
suggest that the optimal policies learnt are indeed stable.

Plots of the categorisation of policies learn by
SARSA(X) and Watkins’s Q(A\) are not shown as all
the policies were classified as optimal after 1000 action-
learning steps and there is very little variation from this
initial level for the remainder of the one million action-
learning steps.

5. Discussion & Conclusions

The results successfully replicates those of
Loch and Singh (1998) showing that SARSA(A) can
find optimal memoryless solutions to tasks containing
perceptual aliasing. In fact this result generalises to
Watkins’s Q(A) suggesting that any method that uses
eligibility traces can find optimal memoryless solutions.

The surprise result was that SARSA and Q-learning
could learn satisficing policies to Sutton’s Grid World,
and optimal policies for the simple 1-D example. The
latter is even more remarkable as Whitehead (1992) pre-
sented the example in order to illustrate the extent to
which perceptual aliasing can interfere with Q-learning
and claimed that “l-step Q-learning cannot learn the op-
timal policy for this task” (p.73). In both instances the
policies learnt appear to be stable.

Further examination of this issue indicates that ex-

In Proceedings of Towards Intelligent Mobile Robots (TIMR 2003)
4th British Conference on (Mobile) Robotics, UWE, Bristol 2003



Mean Total Steps to Goal

Number of Policies

Number of Policies
Changing from Satisficing to

50 |

—6— Random Action
-4 - SARSA

| Q-learning

‘~‘ A SARSA(0.9)

| -7~ Watkins’ Q(0.9)

|
L B S o e e S B o S S e O B B S e e

in each Class

Non-Satisficing & visa-versa

2 4 6 8
Action—Learning Steps X« 10°

Action-Learning Steps

x 10

a1
o

N
o

w
(=]

20

=
o

2000

1000

Mean Total Steps to Goal
&
o
o

Action—Learning Steps X 10°

Number of Policies
in each Class

| Q-learning

4 6 8
Action—-Learning Steps

w B a
(=) (=) o

N
(=]

Number of Policies
Changing from Satisficing to

Non-Satisficing & visa-versa
=
o

Q—-Ieafning

4 6 8
Action-Learning Steps x 10°

2 4 6
Action-Learning Steps x 10°

Figure 7: Top plots are mean total steps found when policies were evaluated versus action-learning steps. To simplify plots
data points are only shown for every 50,000 action-learning steps. Left hand graph shows results for Absolution Position Agent
which suffers no perceptual aliasing. Right hand plot shows results for 8 Adjacent Squares Agent which aliases states 2 and
5. Middle plots show categorisation of policies versus action-learning steps for SARSA and Q-learning. Bottom plots show
stability of policy classification versus action-learning steps for SARSA and Q-learning. Height of bars indicate the number of
policies that changed from being optimal to non-satisficing and visa-versa since the previous policy evaluation. All plots are
for the Simple 1-D Example grid world and (with the exception of top left) the 8 Adjacent Squares Agent.
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ploration is important in determining whether reinforce-
ment learning algorithms which use 1-step backup, such
as SARSA and Q-learning, can learn policies that are
both stable and satisficing in partially observable envi-
ronments. In the experiments presented above the prob-
ability of selecting an exploratory action (€) starts at
20% but reaches zero after two hundred thousand action-
learning steps. For the remaining eight hundred thou-
sand steps the agent always follows the current policy
without trying any exploratory actions. The lack of
exploration appears to avoid the destructive effects of
global impairment allowing policies to achieve stable so-
lutions. The effect of exploration is nicely illustrated
by figure 8 which shows the categorisation of policies
learnt for the Simple 1-D Example world and 8 Adja-
cent Squares Agent, using Q-learning with e fixed at
0.01. With a fixed value for € the policies are not sta-
ble, and continuous oscillations are seen in the number
of optimal policies. This is in contrast to the plateau
seen in figure 7. A secondary point of note is that in
figure 7 the number of optimal policies ramps up slowly
as € decreases from 0.2 to zero. This contrasts with fig-
ure 8 where, with a fixed, but initially lower, value of
€, the number of optimal policies learnt increases more
rapidly. The observed oscillations reinforce Whitehead
(1992, p.78)’s argument that Q-learning (or any 1-step
backup algorithm) is unable to converge on stable so-
lutions in partially observable environments, provided
there is some possibility of selecting an exploratory ac-
tion. However, once exploration has ceased, it is possible
for 1-step backup algorithms to converge on satisficing
policies.
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Number of Policies
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Figure 8: Plot shows categorisation of policies versus action-
learning steps for Q-learning with € fixed at 0.01, for the
Simple 1-D Example world and 8 Adjacent Squares Agent.

Of our initial hypotheses we have confirmed the sec-
ond, that reinforcement algorithms that use eligibility
traces can learn optimal memoryless policies, though a
question can be raised as to the stability of the solu-
tions given that around 10% of the policies learnt by

Watkins’s Q(\) appear to be flipping between satisficing
and non-satisficing, see figure 6.

Our first hypothesis “1-step reinforcement learning al-
gorithms are not able to learn policies which are both
stable and optimal, when the task involves perceptu-
ally aliased states,” needs to be modified in light of the
above discussion to reflect the importance of selecting
exploratory actions. Although this is an interesting re-
sult, it is apparent that policies learnt using SARSA and
Q-learning converge on satisficing solutions very slowly.

The main aim of the experiments presented above is
to illuminate the problems that occur when applying
reinforcement learning to partially observable environ-
ments. We are interested in doing this in order to clear
the ground before moving on to look at whether active
perception can be used to address these issues. These
results are, however, of interest in their own right as re-
inforcement learning is often used in robotics, and real
limited sensor arrays certainly create the possibility of
perceptual aliasing of states. An important observation,
therefore, is that if there exists the possibility of state
aliasing, then it either needs to be designed out of the
task, or careful selection should be made of the learning
algorithm. For example, it is probably worth avoiding re-
inforcement learning algorithms that do 1-step backup.
In fact any reinforcement learning algorithm that uses
truncated returns will be subject to some detrimental
effects of global impairment (Whitehead, 1992, p.80).
However, as demonstrated by the above results, rein-
forcement learning algorithms that use eligibility traces
can quickly learn reasonable solutions.

6. Future Work

The main focus of our future work is to test the con-
jecture that active perception can allow reinforcement
learning algorithms which are not enhanced using mem-
ory or internal world models, to find optimal solutions
to navigation problems which involve perceptual alias-
ing. This we plan to investigate initially by equipping
grid world agents with some form of self directed, per-
ceptual system. Ultimately, we would like to prove our
approach using a mobile robot navigating a building, the
robot’s input state being formed from the images cap-
tured by an on board camera, which can pan, tilt and
zoom, and over which the robot’s learning algorithm has
direct control.
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