S.A. Solla, T.K. Leen and K.-R. Miiller (eds.), pages 1015-1021, MIT Press (2000)

Bayesian Map Learning in Dynamic
Environments

Kevin P. Murphy
Computer Science Division
University of California
Berkeley, CA 94720-1776
murphyk@cs.berkeley.edu

Abstract

We consider the problem of learning a grid-based map using a robot
with noisy sensors and actuators. We compare two approaches:
online EM, where the map is treated as a fixed parameter, and
Bayesian inference, where the map is a (matrix-valued) random
variable. We show that even on a very simple example, online EM
can get stuck in local minima, which causes the robot to get “lost”
and the resulting map to be useless. By contrast, the Bayesian
approach, by maintaining multiple hypotheses, is much more ro-
bust. We then introduce a method for approximating the Bayesian
solution, called Rao-Blackwellised particle filtering. We show that
this approximation, when coupled with an active learning strategy,
is fast but accurate.

1 Introduction

The problem of getting mobile robots to autonomously learn maps of their envi-
ronment has been widely studied (see e.g., [9] for a collection of recent papers).
The basic difficulty is that the robot must know exactly where it is (a problem
called localization), so that it can update the right part of the map. However, to
know where it is, the robot must already have a map: relying on dead-reckoning
alone (i.e., integrating the motor commands) is unreliable because of noise in the
actuators (slippage and drift).

One obvious solution is to use EM, where we alternate between estimating the
location given the map (the E step), and estimating the map given the location
(the M step). Indeed, this approach has been successfully used by several groups
[8, 11, 12]. However, in all of these works, the trajectory of the robot was specified
by hand, and the map was learned off-line. For fully autonomous operation, and to
cope with dynamic environments, the map must be learned online.

We consider two approaches to online learning: online EM, and Bayesian inference,
where we treat the map as a random variable. In Section 3, we show that the

a b c

Figure 1: (a) The POMDP represented as a graphical model. L; is the location,
M, (@) is the label of the i’th grid cell, A; is the action, and Z; is the observation.
Dotted circles denote variables that EM treats as parameters. (b) A one-dimensional
grid with binary labels (white = 0, black = 1). (¢) A two-dimensional grid, with
four labels (closed doors, open doors, walls, and free space).

Bayesian approach can lead to much better results than online EM; unfortunately,
it is computationally intractable, so in Section 4, we discuss an approximation based
on Rao-Blackwellised particle filtering.

2 The model

We now precisely define the model that we will use in this paper; it is similar to, but
much simpler than, the occupancy grid model in [12]. The map is defined to be a
grid, where each cell has a label which represents what the robot would see at that
point. More formally, the map at time ¢ is a vector of discrete random variables,
M(i) € {1,...,No}, where 1 < i < Np. Of course, the map is not observed
directly, and nor is the robot’s location, Ly € {1,...,Np}. What is observed is
Zy € {1,...,Np}, the label of the cell at the robot’s current location, and A4; €
{1,..., N4}, the action chosen by the robot just before time t. The conditional
independence assumptions we are making are illustrated in Figure 1(a). We start
by considering the very simple one-dimensional grid shown in Figure 1(b), where
there are just two actions, move right (—) and move left («), and just two labels,
off (0) and on (1). This is sufficiently small that we can perform exact Bayesian
inference. Later, we will generalize to two dimensions.

The prior for the location is a delta function with all its mass on the first (left-most)
cell, independent of A;. The transition model for the location is as follows.

Pa ifj=i+1,j<N
e, =i N
PI‘(Lt = j|Lt,1 = Z,At ——)) = 1 lf] —i=N
0 otherwise

where p, is the probability of a successful action, i.e., 1 — p, is the probability that
the robot’s wheels slip. There is an analogous equation for the case when A; =«.
Note that it is not possible to pass through the “rightmost” cell; the robot can use
this information to help localize itself.

The prior for the map is a product of the priors for each cell, which are uniform.
(We could model correlation between neighboring cells using a Markov Random
Field, although this is computationally expensive.) The transition model for the
map is a product of the transition models for each cell, which are defined as follows:

the probability that a 0 becomes a 1 or vice versa is p. (probability of change), and
hence the probability that the cell label remains the same is 1 — p,.

Finally, the observation model is

Pr(Z; = k|M; = (mq,...,mn,), L =) = { 1170_ e i)ftlrlr:rwisk(;

where p, is the probability of a succesful observation, i.e., 1 — p, is the probability
of a classification error. Another way of writing this, that will be useful later, is to
introduce the dummy deterministic variable, Z{, which has the following distribu-
tion: Pr(Z; = k|M; = (m1,...,mn,), Lt = i) = 6(k,m;), where 6(a,b) =1ifa =5
and is 0 otherwise. Thus Z] acts just like a multiplexer, selecting out a component
of M; as determined by the “gate” L;. The output of the multiplexer is then passed
through a noisy channel, which flips bits with probability 1 — p,, to produce Z;.

3 Bayesian learning compared to EM

For simplicity, we assume that the parameters p,, p, and p., are all known. (In this
section, we use p, = 0.9, p, = 0.8 and p, = 0, so the world is somewhat “slippery”,
but static in appearance.) The state estimation problem is to compute the belief
state Pr(L¢, M|y1.¢), where YV; = (Z;, A¢) is the evidence at time ¢; this is equiv-
alent to performing online inference in the graphical model shown in Figure 1(a).
Unfortunately, even though we have assumed that the components of M; are a pri-
ori independent, they become correlated by virtue of sharing a common child, Z;.
That is, since the true location of the robot is unknown, all of the cells are possible
causes of the observation, and they “compete” to “explain” the data. Hence all of
the hidden variables become coupled, and the belief state has size O(N2V%).

If the world is static (i-e., p. = 0), we can treat M as a fixed, but unknown,
parameter; this can then be combined with the noisy sensor model to define an
HMM with the following observation matrix:

Bi, k) Pr(Z, = KLy = ;M) = 3 Pr(Z, = K Z; =)3(M (i),)

J

We can then learn B using EM, as in [8, 11, 12]. (We assume for now that the HMM
transition matrix is independent of the map, and encodes the known topology of
the grid, i.e., the robot can move to any neighboring cell, no matter what its label
is. We will lift this restriction in the 2D example.

We can formulate an online version of EM as follows. We use fixed-lag smoothing
with a sliding window of length W, and compute the expected sufficient statis-
tics (ESS) for the observation matrix within this window as follows: 6;(i,k) =
Zi:t_W;ZT:k ﬁr|t(i), where IA/T|t(i) = Pr(L; = i|y1.+). We can compute L using
the forwards-backwards algorithm, using f/t—W—l\t—l as the prior. (The initial con-
dition is L = &, where 7 is the (known) prior for Lg.) Thus the cost per time step is
O(2WN32). In the M step, we normalize each row of 6; +d x 6;_1, where 0 < d < 1
is a decay constant, to get the new estimate of B. We need to downweight the
previous ESS since they were computed using out-of-date parameters; in addition,
exponential forgetting allows us to handle dynamic environments. [1] discuss some
variations on this algorithm.

Figure 2: (a) The full joint posterior on P(M;|y1.t). 0 and 255, on the axis into the
page, represent the maps where every cell is off and every cell is on, respectively; the
mode at t = 16 is for map 171, which corresponds to the correct pattern 01010101.
(b-d) Estimated map. Light cells are more likely to contains 0s, so the correct
pattern should have light bars in the odd rows. (b) The marginals of the exact
joint. (c) Online EM. (d) Offline EM.

As the window length increases, past locations are allowed to look at more and
more future data, and hence their estimates become more accurate; however, the
space and time requirements increase. Nevertheless, there are occasions when even
the maximum window size (i.e., looking all the way back to 7 = 0) will perform
poorly, because of the greedy hill-climbing nature of EM. For a simple example of
this, consider the environment shown in Figure 1(b). Suppose the robot starts in
cell 1, keeps going right until it comes to the end of the “corridor”, and then heads
back “home”. Suppose further that there is a single slippage error at t = 4, so the
actual path and observation sequence of the robot is as follows:

t 1 2 3 4) 6 7 8 9 10 11 12 13 14 15 16
L, 1 2 3 4 4 5 6 7 8 7 6 5 4 3 2 1
Zy 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0
D e T T T S S S e e e e e e

To study the effect of this sequence, we computed Pr(My, L¢|y1.+) by applying the
junction tree algorithm to the graphical model in Figure 1(a). We then marginalized
out L; to compute the posterior P(M;): see Figure 2(a). At t = 1, there are 27
modes, corresponding to all possible bit patterns on the unobserved cells. At each
time step, the robot thinks it is moving one step to the right. Hence at t = 8, the
robot thinks it is in cell 8, and observes 0. When it tries to move right, it knows
it will remain in cell 8 (since the robot knows where the boundaries are). Hence at
t =9, it is almost 70% confident that it is in cell 8. At ¢t = 9, it observes a 1, which
contradicts its previous observation of 0. There are two possible explanations: this
is a sensor error, or there was a motor error. Which of these is more likely depends
on the relative values of the sensor noise, p,, and the system noise, p,. In our
experiments, we found that the motor error hypothesis is much more likely; hence
the mode of the posterior jumps from the wrong map (in which M (5) = 1) to the
right map (in which M(5) = 0). Furthermore, as the robot returns to “familiar
territory”, it is able to better localize itself (see Figure 3(a)), and continues to learn
the map even for far-away cells, because they are all correlated (in Figure 2(b), the
entry for cell 8 becomes sharper even as the robot returns to cell 1)

We now compare the Bayesian solution with EM. Online EM with no smoothing
was not able to learn the correct map. Adding smoothing with the maximum
window size of W; = t did not improve matters: it is still unable to escape the local

a b C

Figure 3: Estimated location. Light cells are more likely to contain the robot.
(a) Optimal Bayes solution which marginalizes out the map. (b) Dead-reckoning
solution which ignores the map. Notice how “blurry” it is. (c) Online EM solution
using fixed-lag smoothing with a maximal window length.

minimum in which M (5) = 1, as shown in Figure 2(c). (We tried various values of
the decay rate d, from 0.1 to 0.9, and found that it made little difference.) With the
wrong map, the robot “gets lost” on the return journey: see Figure 3(c). Offline
EM, on the other hand, does very well, as shown in Figure 2(d); although the initial
estimate of location (see Figure 3(b)) is rather diffuse, as it updates the map it can
use the benefit of hindsight to figure out where it must have been.

4 Rao-Blackwellised particle filtering

Although the Bayesian solution exhibits some desirable properties, its running time
is exponential in the size of the environment. In this section, we discuss a sequential
Monte Carlo algorithm called particle filtering (also known as SIR filtering, the
bootstrap filter, the condensation algorithm, survival of the fittest, etc; see [10, 4]
for recent reviews). Particle filtering (PF) has already been successfully applied to
the problem of (global) robot localization [5]. However, in that case, the state space
was only of dimension 3: the unknowns were the position of the robot, (z,y) € R?,
and its orientation, # € [0,27]. In our case, the state space is discrete and of
dimension O(1 + Np,), since we need to keep track of the map as well as the robot’s
location (we ignore orientation in this paper).

Particle filtering can be very inefficient in high-dimensional spaces. The key obser-
vation which makes it tractable in this context is that, if L;.; were known, then the
posterior on M; would be factored; hence M; can be marginalized out analytically,
and we only need to sample L;. This idea is known in the statistics literature as Rao-
Blackwellisation [10, 4]. In more detail, we will approximate the posterior at time ¢
using a set of weighted particles, where each particle specifies a trajectory L;.¢, and
the corresponding conditionally factored representation of P(M;) = [], P(M;(i));
(

we will denote the j’th particle at time ¢ as b;’). Note that we do not need to actu-
ally store the complete trajectories Li.;: we only need the most recent value of L.
The approach we take is essentially the same as the one used in the conditional lin-
ear Gaussian models of [4, 3], except we replace the Kalman filter update with one
which exploits the conditionally factored representation of P(M;). In particular,
the algorithm is as follows: For each particle j =1,..., Ng, we do the following;:

1. Sample LEQI from a proposal distribution, which we discuss below.

2. Update each component of the map separately using LEQI and z¢41

Pr(M{P|LE, =i, z) o Pr(zen M (6)) T [P, () M7 (k))
k

a b C d

Figure 4: (a-b) Results using 50 particles. (c-d) Results using BK.

3. Update the weights: wg)l = ugi)lng), where uEQl is defined below.

We then resample N, particles from the normalised weights, using Liu’s residual
resampling algorithm [10], and set wt(i)l = 1/N; for all j. We consider two proposal
distributions. The first is a simple one which just uses the transition model to
predict the new location: Pr(Lt+1|bEj),at+1). In this case, the incremental weight
is ugi)l x P(zt+1|LEj+)1,bEj)). The optimal proposal distribution (the one which
minimizes the variance of the importance weights) takes the most recent evidence
into account, and can be shown to have the form Pr(Lt+1|b§j),at+1,zt+1) with

incremental weight w11 o< P(z¢41 |b§j)). Computing this requires marginalizing out
M1y and Ly, which can be done in O(Ny,) time (details omitted).

In Figure 4, we show the results of applying the above algorithm to the same problem
as in Section 3; it can be seen that it approximates the exact solution very closely,
using only 50 particles. The results shown are for a particular random number seed;
other seeds produce qualitatively very similar results, indicating that 50 particles
is in fact sufficient in this case. Obviously, as we increase the number of particles,
the error and variance decrease, but the running time increases (linearly).

The question of how many particles to use is a difficult one: it depends both on
the noise parameters and the structure of the environment (if every cell has a
unique label, localization is easy). Since we are sampling trajectories, the number
of hypotheses, and hence the number of particles needed, grows exponentially with
time. In the above example, the robot was able to localize itself quite accurately
when it reached the end of the corridor, where most hypotheses “died off”. In
general, the number of particles will depend on the length of the longest cycle in
the environment, so we will need to use active learning to ensure tractability.

In the dynamic two-dimensional grid world of Figure 1(c), we chose actions so as
to maximize expected discounted reward (using policy iteration), where the reward
for visiting cell ¢ is

H(Ly)(1 — H(M(i))) + (1 — H(Ly))H (My(i))

where H(+) is the normalized entropy. Hence, if the robot is “lost”, so H(L;) ~ 1,
the robot will try to visit a cell which it is certain about (see [6] for a better
approach); otherwise, it will try to explore uncertain cells. After learning the map,
the robot spends its time visiting each of the doors, to keep its knowledge of their
state (open or closed) up-to-date.

We now briefly consider some alternative approximate inference algorithms. Exam-
ining the graphical structure of our model (see Figure 1(a)), we see that it is identical

to a Factorial HMM [7] (ignoring the inputs). Unfortunately, we cannot use their
variational approximation, because they assume a conditional Gaussian observa-
tion model, whereas ours is almost deterministic. Another popular approximate
inference algorithm for dynamic Bayes nets (DBNs) is the “BK algorithm” [2, 1].
This entails projecting the joint posterior at time ¢ onto a product-of-marginals
representation

P(Ly, My(1), ..., Me(NL)|y1:¢) = P(Lt|y1:t)HP(Mt(i)|y1:t)

and using this as a factored prior for Bayesian updating at time ¢ + 1. Given a
factored prior, we can compute a factored posterior in O(Ny,) time by conditioning
on each Ly, and then averaging. We found that the BK method does very poorly
on this problem (see Figure 4), because it ignores correlation between the cells. Of
course, it is possible to use pairwise or higher order marginals for tightly coupled
sets of variables. Unfortunately, the running time is exponential in the size of the
largest marginal, and in our case, all the M;(i) variables are coupled.

Acknowledgments

I would like to thank Nando de Freitas for helping me get particle filtering to work,
Sebastian Thrun for an interesting discussion at the conference, and Stuart Russell for
encouraging me to compare to EM. This work was supported by grant number ONR
N00014-97-1-0941.

References

[1] X. Boyen and D. Koller. Approximate learning of dynamic models. In NIPS, 1998.

[2] X. Boyen and D. Koller. Tractable inference for complex stochastic processes. In
UAI 1998.

[3] R. Chen and S. Liu. Mixture Kalman filters. Submitted, 1999.

[4] A. Doucet, S. Godsill, and C. Andrieu. On sequential Monte Carlo sampling methods
for Bayesian filtering. Statistics and Computing, 1999.

[6] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte carlo localization: Efficient
position estimation for mobile robots. In AAAI 1999.

[6] D. Fox, W. Burgard, and S. Thrun. Active Markov localization for mobile robots.
Robotics and Autonomous Systems, 1998.

[7] Z. Ghahramani and M. Jordan. Factorial Hidden Markov Models. Machine Learning,
29:245-273, 1997.

[8] S. Koenig and R. Simmons. Unsupervised learning of probabilistic models for robot
navigation. In ICRA, 1996.

[9] D. Kortenkamp, R. Bonasso, and R. Murphy, editors. Artificial Intelligence and
Mobile Robots: case studies of successful robot systems. MIT Press, 1998.

[10] J. Liu and R. Chen. Sequential monte carlo methods for dynamic systems. JASA,
93:1032-1044, 1998.

[11] H. Shatkay and L. P. Kaelbling. Learning topological maps with weak local odometric
information. In IJCAI 1997.

[12] S. Thrun, W. Burgard, and D. Fox. A probabilistic approach to concurrent mapping
and localization for mobile robots. Machine Learning, 31:29-53, 1998.

