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An organism which interacts with its environment must be capable of re-
ceiving sensory input from the environment. It has to process the sensory
information, recognize food sources or predators, and take appropriate ac-
tions. The difficulty of these tasks is appreciated, if one tries to program a
small robot to do the same thing: It turns out to be a challenging endeavor.
Yet animals perform these tasks with apparent ease.

Their astonishingly good performance is due to a neural system or ‘brain’
which has been optimized over the time courses of evolution. Even though
a lot of detailed information about neurons and their connections is avail-
able by now, one of the fundamental questions of neuroscience is unsolved:
What is the code used by the neurons? Do neurons communicate by a ‘rate
code’ or a ‘pulse code’?

In the first part of this chapter, different potential coding schemes are dis-
cussed. Various interpretations of rate coding are contrasted with some
pulse coding schemes. Pulse coded neural networks require appropriate
neuron models. In the second part of the chapter, several neuron models
that are used throughout the book are introduced. Special emphasis has
been put on spiking neurons models of the ‘integrate-and-fire’ type, but
the Hodgkin-Huxley model, compartmental models, and rate models are
reviewed as well.

1.1 The Problem of Neural Coding

1.1.1 Motivation

Over the past hundred years, biological research has accumulated an enor-
mous amount of detailed knowledge about the structure and the function
of the brain see, e.g., [Kandel and Schwartz, 1991]. The elementary pro-
cessing units in the brain are neurons which are connected to each other in
an intricate pattern. A portion of such a network of neurons in the mam-
malian cortex is sketched in Figure 1.1. It is a reproduction of a famous
drawing by Ramón y Cajal, one of the pioneers of neuroscience around the
turn of the century. We can distinguish several neurons with triangular
or circular cell bodies and long wire-like extensions. This drawing gives a
glimpse of the network of neurons in the cortex. Only a few of the neurons
present in the sample have been made visible by the staining procedure. In
reality the neurons and their connections form a dense network with more
than ��� cell bodies and several kilometers of ‘wires’ per cubic millimeter.
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Figure 1.1. This reproduction of a drawing of Ramón y Cajal shows a few neurons
in the cortex. Only a small portion of the neurons are shown; the density of neurons
is in reality much higher. Cell b is a nice example of a pyramidal cell with a triangu-
larly shaped cell body. Dendrites, which leave the cell laterally and upwards, can
be recognized by their rough surface. The axon extends downwards with a few
branches to the left and right. From Ramón y Cajal.

In other areas of the brain the wiring pattern looks different. In all areas,
however, neurons of different sizes and shapes form the basic elements.

A typical neuron has three parts, called dendritic tree, soma, and axon;
see Figure 1.2. Roughly speaking, signals from other neurons arrive onto
the dendritic tree and are transmitted to the soma and the axon. The tran-
sition zone between the soma and the axon is of special interest. In this
area the the essential non-linear processing step occurs. If the total exci-
tation caused by the input is sufficient, an output signal is emitted which
is propagated along the axon and its branches to other neurons. The junc-
tion between an axonal branch and the dendrite (or the soma) of a receiving
neuron is called a synapse. It is common to refer to a sending neuron as the
presynaptic neuron and to the receiving neuron as a postsynaptic neuron.
A neuron in the cortex often makes connections to more than ��� postsy-
naptic neurons. Many of its axonal branches end in the direct neighbor-
hood of the neuron, but the axon can also stretch over several millimeters
and connect to neurons in other areas of the brain.

So far, we have stated that neurons transmit signals along the axon to thou-
sands of other neurons – but what do these signals look like? The neuronal
signals can be observed by placing a fine electrode close to the soma or
axon of a neuron; see Figure 1.2. The voltage trace in a typical record-
ing shows a sequence of short pulses, called action potentials or spikes. A
chain of pulses emitted by a single neuron is usually called a spike train
– a sequence of stereotyped events which occur at regular or irregular in-
tervals. The duration of an action potential is typically in the range of 1-2
ms. Since all spikes of a given neuron look alike, the form of the action
potential does not carry any information. Rather, it is the number and the
timing of spikes which matter.

Throughout this book, we will refer to the moment when a given neuron
emits an action potential as the firing time of that neuron. The firing time
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Figure 1.2. A single neuron. Dendrite, soma, and axon can be clearly distinguished.
The inset shows an example of a neuronal action potential (schematic). Neuron
drawing after Ramón y Cajal. The action potential is a short voltage pulse of 1-2
ms duration.
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where t
�n�
i is the most recent spike of neuron i.

In an experimental setting, firing times are measured with some resolu-
tion �t. A spike train may be described as a sequence of ones and zeros
for ‘spike’ and ‘no spike’ at times �t� ��t � � �, respectively. The choice of
ones and zeros is, of course arbitrary. We may just as well take the number
���t instead of unity to denote the occurrence of a spike. With this def-
inition, the spike train of a neuron i corresponds a sequence of numbers
Si��t�� Si���t�� � � � with
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Formally we may take the limit �t � � and write the spike train as a
sequence of �-functions

Si�t� �

nX
t
�f�
i
�Fi

��t� t
�f�
i � (1.3)

where ���� denotes the Dirac � function with ��s� � � for s �� � andR�
��

��s�ds � �.

So far we have focused on the spike train of a single neuron. Since there
are so many neurons in the brain, thousands of spike trains are emitted
constantly by different neurons; see Figure 1.3. What is the information
contained in such a spatio-temporal pattern of pulses? What is the code
used by the neurons to transmit that information? How might other neu-
rons decode the signal? As external observers, can we read the code, and
understand the message of the neuronal activity pattern?



6 1. Spiking Neurons

Figure 1.3. Spatio-temporal pulse pattern. The spikes of 30 neurons (A1-E6, plotted
along the vertical axes) are shown as a function of time (horizontal axis, total time
is 4 000 ms). The firing times are marked by short vertical bars. From [Krüger and
Aiple, 1988].

At present, a definite answer to these questions is not known. Traditionally
it has been thought that most, if not all, of the relevant information was
contained in the mean firing rate of the neuron. The firing rate is usually
defined by a temporal average; see Figure 1.4. The experimentalist sets
a time window of, let us say, T � ���ms or T � 	��ms and counts the
number of spikes nsp�T � that occur in this time window. Division by the
length of the time window gives the mean firing rate

� �
nsp�T �

T
(1.4)

usually reported in units of s�� or Hz.

The concept of mean firing rates has been successfully applied during the
last 80 years. It dates back to the pioneering work of Adrian [Adrian, 1926,
1928] who showed that the firing rate of stretch receptor neurons in the
muscles is related to the force applied to the muscle. In the following
decades, measurement of firing rates became a standard tool for describ-
ing the properties of all types of sensory or cortical neurons [Mountcastle,
1957; Hubel and Wiesel, 1959], partly due to the relative ease of measur-
ing rates experimentally. It is clear, however, that an approach based on
a temporal average neglects all the information possibly contained in the
exact timing of the spikes. It is therefore no surprise that the firing rate
concept has been repeatedly criticized and is subject of an ongoing debate
[Abeles, 1994; Bialek et al., 1991; Hopfield, 1995; Shadlen and Newsome,
1994; Softky, 1995; Rieke et al., 1996].
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During recent years, more and more experimental evidence has accumu-
lated which suggests that a straightforward firing rate concept based on
temporal averaging may be too simple for describing brain activity. One of
the main arguments is that reaction times in behavioral experiments are of-
ten too short to allow slow temporal averaging [Thorpe et al., 1996]. More-
over, in experiments on a visual neuron in the fly, it was possible to ‘read
the neural code’ and reconstruct the time-dependent stimulus based on
the neurons firing times [Bialek et al., 1991]. There is evidence of precise
temporal correlations between pulses of different neurons [Abeles, 1994;
Lestienne, 1996] and stimulus dependent synchronization of the activity in
populations of neurons [Eckhorn et al., 1988; Gray and Singer, 1989; Gray
et al., 1989; Engel et al., 1991; Singer, 1994]. Most of these data are incon-
sistent with a naı̈ve concept of coding by mean firing rates where the exact
timing of spikes should play no role. In this book we will explore some of
the possibilities of coding by pulses. Before we can do so, we have to lay
the foundations which will be the topic of this and the next three chapters.

We start in the next subsection with a review of some potential coding
schemes. What exactly is a pulse code – and what a is rate code? We then
turn to models of spiking neurons (Section 2). How can we describe the
process of spike generation? What is the effect of a spike on a postsynaptic
neuron? Can we mathematically analyze models of spiking neurons?

The following Chapters 2 and 3 in the ‘Foundation’ part of the book will
focus on the computational power of spiking neurons and their hardware
implementations. Can we build a Turing machine with spiking neurons?
How many elements do we need? How fast is the processing? How can
pulses be generated in hardware? Many of these questions outlined in the
Foundation chapters will be revisited in the detailed studies contained in
the second part of the book. Chapter 4, the last chapter in the Foundation
part, will discuss some of the biological evidence for temporal codes in
more detail.

1.1.2 Rate Codes

A quick glance at the experimental literature reveals that there is no unique
and well-defined concept of ‘mean firing rate’. In fact, there are at least
three different notions of rate which are often confused and used simulta-
neously. The three definitions refer to three different averaging procedures:
either an average over time, or an average over several repetitions of the
experiment, or an average over a population of neurons. The following
three subsections will reconsider the three concepts. An excellent discus-
sion of rate codes can also be found in [Rieke et al., 1996].

1.1.2.1 Rate as a Spike Count (Average over Time)

The first and most commonly used definition of a firing rate refers to a tem-
poral average. As discussed in the preceding section, this is essentially the
spike count in an interval T divided by T ; see Figure 1.4. The length of the
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Figure 1.4. Definition of the mean firing rate via a temporal average.

time window is set by the experimenter and depends on the type of neu-
ron recorded from and the stimulus. In practice, to get sensible averages,
several spikes should occur within the time window. Values of T � ��� ms
or T � 	�� ms are typical, but the duration may also be longer or shorter.

This definition of rate has been successfully used in many preparations,
particularly in experiments on sensory or motor systems. A classical exam-
ple is the stretch receptor in a muscle spindle [Adrian, 1926]. The number
of spikes emitted by the receptor neuron increases with the force applied
to the muscle. Another textbook example is the touch receptor in the leech
[Kandel and Schwartz, 1991]. The stronger the touch stimulus, the more
spikes occur during a stimulation period of 500 ms.

These classical results show that the experimenter as an external observer
can evaluate and classify neuronal firing by a spike count measure – but
is this really the code used by neurons in the brain? In other words, is a
neuron which receives signals from a sensory neuron only looking at and
reacting to the numbers of spikes it receives in a time window of, say, 500
ms? We will approach this question from a modeling point of view later
on in the book. Here we discuss some critical experimental evidence.

From behavioral experiments it is known that reaction times are often rather
short. A fly can react to new stimulus and change the direction of flight
within 30-40 ms; see the discussion in [Rieke et al., 1996]. This is not long
enough for counting spikes and averaging over some long time window.
It follows that the fly has to react to single spikes. Humans can recognize
visual scenes in just a few hundred milliseconds [Thorpe et al., 1996], even
though recognition is believed to involve several processing steps. Again,
this leaves not enough time to perform temporal averages on each level.

Temporal averaging can work well where the stimulus is constant or slowly
moving and does not require a fast reaction of the organism - and this is
the situation usually encountered in experimental protocols. Real-world
input, however, is hardly stationary, but often changing on a fast time
scale. For example, even when viewing a static image, we perform sac-
cades, rapid changes of the direction of gaze. The retinal photo receptors
receive therefore every few hundred milliseconds a new input.

Despite its shortcomings, the concept of a firing rate code is widely used
not only in experiments, but also in models of neural networks. It has led to
the idea that a neuron transforms information about a single input variable
(the stimulus strength) into a single continuous output variable (the firing
rate). In this view, spikes are just a convenient way to transmit the analog
output over long distances. In fact, the best coding scheme to transmit
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Figure 1.5. Definition of the spike density in the Peri-Stimulus-Time Histogram
(PSTH).

the value of the rate � would be by a regular spike train with intervals
���. In this case, the rate could be reliably measured after only two spikes.
From the point of view of rate coding, the irregularities encountered in real
spike trains of neurons in the cortex must therefore be considered as noise.
In order to get rid of the noise and arrive at a reliable estimate of the rate,
the experimenter (or the postsynaptic neuron) has to average over a larger
number of spikes. A critical discussion of the temporal averaging concept
can be found in [Shadlen and Newsome, 1994; Softky, 1995; Rieke et al.,
1996].

1.1.2.2 Rate as a Spike Density (Average over Several Runs)

There is a second definition of rate which works for stationary as well as
for time-dependent stimuli. The experimenter records from a neuron while
stimulating with some input sequence. The same stimulation sequence is
repeated many times and the results are reported in a Peri-Stimulus-Time
Histogram (PSTH); see Figure 1.5. For each short interval of time 
t� t �
�t�, before, during, and after the stimulation sequence, the experimenter
counts the number of times that a spike has occurred and sums them over
all repetitions of the experiment. The time t is measured with respect to
the start of the stimulation sequence and �t is typically in the range of one
or a few milliseconds. The number of occurrences of spikes n�t� t � �t�
divided by the number K of repetitions is a measure of the typical activity
of the neuron between time t and t��t. A further division by the interval
length �t yields the spike density of the PSTH

��t� �
�

�t

n�t� t��t�

K
� (1.5)

Sometimes the result is smoothed to get a continuous ‘rate’ variable. The
spike density of the PSTH is usually reported in units of Hz and often
called the (time-dependent) firing rate of the neuron.

As an experimental procedure, the spike density measure is a useful method
to evaluate neuronal activity, in particular in the case of time-dependent
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Figure 1.6. Definition of the population activity.

stimuli. The obvious problem with this approach is that it can not be the
decoding scheme used by neurons in the brain. Consider for example a
frog which wants to catch a fly. It can not wait for the insect to fly repeat-
edly along exactly the same trajectory. The frog has to base its decision on
a single ‘run’ – each fly and each trajectory is different.

Nevertheless, the experimental spike density measure can make sense, if
there are large populations of neurons which are independent of each other
and sensitive to the same stimulus. Instead of recording from a population
of N neurons in a single run, it is experimentally easier to record from a
single neuron and average over N repeated runs. Thus, the spike density
coding relies on the implicit assumption that there are always populations
of neurons and therefore leads to the third notion of a firing rate, viz., a
rate defined as a population average.

1.1.2.3 Rate as Population Activity (Average over Several Neurons)

The number of neurons in the brain is huge. Often many neurons have sim-
ilar properties and respond to the same stimuli. For example, neurons in
the primary visual cortex of cats and monkeys are arranged in columns of
cells with similar properties [Hubel and Wiesel, 1962, 1977; Hubel, 1988].
Let us idealize the situation and consider a population of neurons with
identical properties. In particular, all neurons in the population should
have the same pattern of input and output connections. The spikes of the
neurons in a population j are sent off to another population k. In our ideal-
ized picture, each neuron in population k receives input from all neurons in
population j. The relevant quantity, from the point of view of the receiving
neuron, is the proportion of active neurons in the presynaptic population
j; see Figure 1.6. Formally, we define the population activity

A�t� �
�

�t

nact�t� t��t�

N
(1.6)

whereN is the size of the population, �t a small time interval, and nact�t� t�
�t� the number of spikes (summed over all neurons in the population) that
occur between t and t��t. population is large, we can consider the limit
N � � and take then �t � �. This yields again a continuous quantity
with units s�� – in other words, a rate.

The population activity may vary rapidly and can reflect changes in the
stimulus conditions nearly instantaneously [Tsodyks and Sejnowsky, 1995].
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Thus the population activity does not suffer the disadvantages of a firing
rate defined by temporal averaging at the single-unit level. The problem
with the definition (1.6) is that we have formally required a homogeneous
population of neurons with identical connections which is hardly realistic.
Real populations will always have a certain degree of heterogeneity both in
their internal parameters and in their connectivity pattern. Nevertheless,
rate as a population activity (of suitably defined pools of neurons) may be
a useful coding principle in many areas of the brain. For inhomogeneous
populations, the definition (1.6) may be replaced by a weighted average
over the population. A related scheme has been used successfully for an
interpretation of neuronal activity in primate motor cortex [Georgopoulos
et al., 1986].

1.1.3 Candidate Pulse Codes

In this subsection, we will briefly introduce some potential coding strate-
gies based on spike timing. All codes will be discussed in more detail later
on and will be referred to throughout the book.

1.1.3.1 Time-to-First-Spike

Let us study a neuron which abruptly receives a new input at time t�. For
example, a neuron might be driven by an external stimulus which is sud-
denly switched on at time t�. This seems to be somewhat academic, but
even in a realistic situation abrupt changes in the input are quite common.
When we look at a picture, our gaze jumps from one point to the next. Af-
ter each saccade, there is a new visual input at the photo receptors in the
retina. Information about the time t� of a saccade would easily be available
in the brain. We can then imagine a code where for each neuron the timing
of the first spike to follow t� contains all information about the new stimu-
lus. A neuron which fires shortly after t� could signal a strong stimulation,
firing somewhat later would signal a weaker stimulation; see Figure 1.7.

In a pure version of this coding scheme, only the first spike of each neuron
counts. All following spikes would be irrelevant. Alternatively, we can
also assume that each neuron emits exactly one spike per saccade and is
shut off by inhibitory input afterwards. It is clear that in such a scenario,
only the timing conveys information and not the number of spikes.

A coding scheme based on the time-to-first-spike is certainly an idealiza-
tion. In Chapter 2 it will be formally analyzed by Wolfgang Maass. In a
slightly different context coding by first spikes has also been discussed by
S. Thorpe [Thorpe et al., 1996]. Thorpe argues that the brain does not have
time to evaluate more than one spike from each neuron per processing step.
Therefore the first spike should contain most of the relevant information.
Using information-theoretic measures on their experimental data, several
groups have shown that most of the information about a new stimulus
is indeed conveyed during the first 20 or 50 milliseconds after the onset
of the neuronal response [Optican and Richmond, 1987; Kjaer et al., 1994;
Tovee et al., 1993; Tovee and Rolls, 1995]. Rapid computation during the
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Figure 1.7. Three examples of pulse codes. A) Time-to-first spike. The second
neuron responds faster to a change in the stimulus than the first one. Stimulus onset
marked by arrow. B) Phase. The two neurons fire at different phases with respect
to the background oscillation (dashed). C) Synchrony. The upper four neurons are
nearly synchronous, two other neurons at the bottom are not synchronized with
the others.

transients after a new stimulus has also been discussed in model studies
[Hopfield and Herz, 1995; Tsodyks and Sejnowsky, 1995; van Vreeswijk
and Sompolinsky, 1997].

1.1.3.2 Phase

We can apply a coding by ’time-to-first-spike’ also in the situation where
the reference signal is not a single event, but a periodic signal. In the hip-
pocampus, in the olfactory system, and also in other areas of the brain,
oscillations of some global variable (for example the population activity)
are quite common. These oscillations could serve as an internal reference
signal. Neuronal spike trains could then encode information in the phase
of a pulse with respect to the background oscillation. If the input does not
change between one cycle and the next, then the same pattern of phases
repeats periodically; see Figure 1.7 B.

The concept of coding by phases has been studied by several different
groups, not only in model studies [Hopfield, 1995; Jensen and Lisman,
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1996; Maass, 1996], but also experimentally [O’Keefe and Recce, 1993].
There is for example evidence that the phase of a spike during an oscil-
lation in the hippocampus of the rat conveys information on the spatial
location of the animal which is not accounted for by the firing rate of the
neuron alone [O’Keefe and Recce, 1993].

1.1.3.3 Correlations and Synchrony

We can also use spikes from other neurons as the reference signal for a
pulse code. For example, synchrony between a pair or a group of neu-
rons could signify special events and convey information which is not con-
tained in the firing rate of the neurons; see Figure 1.7 C. One famous idea is
that synchrony could mean ‘belonging together’ [Milner, 1974; Malsburg,
1981]. Consider for example a complex scene consisting of several objects.
It is represented in the brain by the activity of a large number of neurons.
Neurons which represent the same object could be ‘labeled’ by the fact that
they fire synchronously [Malsburg, 1981; Malsburg and Buhmann, 1992;
Eckhorn et al., 1988; Gray et al., 1989]. Coding by synchrony has been
studied extensively both experimentally [Eckhorn et al., 1988; Gray et al.,
1989; Gray and Singer, 1989; Singer, 1994; Engel et al., 1991ab; Kreiter and
Singer, 1992] and in models [Wang et al., 1990; Malsburg and Buhmann,
1992; Eckhorn, 1990; Aertsen and Arndt, 1993; Koenig and Schillen, 1991;
Schillen and Koenig, 1991; Gerstner et al., 1993; Ritz et al. 1993; Terman and
Wang, 1995; Wang, 1995]. For a review of potential mechanism, see [Ritz
and Sejnowski, 1997]. Coding by synchrony is discussed in Chapter 11.

More generally, not only synchrony but any precise spatio-temporal pulse
pattern could be a meaningful event. For example, a spike pattern of three
neurons, where neuron 1 fires at some arbitrary time t� followed by neu-
ron 2 at time t� � ��� and by neuron 3 at t� � ���, might represent a certain
stimulus condition. The same three neurons firing with different relative
delays might signify a different stimulus. The relevance of precise spatio-
temporal spike patterns has been studied intensively by Abeles [Abeles,
1991; Abeles et al., 1993; Abeles, 1994]. Similarly, but on a somewhat
coarse time scale, correlations of auditory neurons are stimulus depen-
dent and might convey information beyond the firing rate [deCharms and
Merzenich, 1996].

1.1.3.4 Stimulus Reconstruction and Reverse Correlation

Let us consider a neuron which is driven by a time dependent stimulus
s�t�. Every time a spike occurs, we note the time course of the stimulus in
a time window of about 100 ms immediately before the spike. Averaging
the results for several spikes yields the typical time course of the stimu-
lus just before a spike. Such a procedure is called a ‘reverse correlation’
approach; see Figure 1.8. In contrast to the PSTH experiment sketched in
Section 2.2 where the experimenter averages the neuron’s response over
several trials with the same stimulus, reverse correlation means that the
experimenter averages the input under the condition of an identical re-
sponse, viz., a spike. In other words, it is a spike-triggered average; see,
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Figure 1.8. Reverse correlation technique (schematic). The stimulus in the top trace
has caused the spike train shown immediately below. The time course of the stim-
ulus just before the spikes (dashed boxes) has been averaged to yield the typical
time course (bottom).

e.g., [de Ruyter van Steveninck and Bialek, 1988; Rieke et al., 1996]. The
results of the reverse correlation, i.e., the typical time course of the stim-
ulus which has triggered the spike, can be interpreted as the ‘meaning’ of
a single spike. Reverse correlation techniques have made it possible for
example to measure the spatio-temporal characteristics of neurons in the
visual cortex [Eckhorn et al., 1993; DeAngelis et al., 1995].

With a somewhat more elaborate version of this approach, W. Bialek and
his co-workers have been able to ‘read’ the neural code of the H1 neuron
in the fly and to reconstruct a time-dependent stimulus [Bialek et al., 1991;
Rieke et al., 1996]. Here we give a simplified version of the argument.

Results from reverse correlation analysis suggest, that each spike signifies
the time course of the stimulus preceding the spike. If this is correct, a
reconstruction of the complete time course of the stimulus s�t� from the set
of firing times F � ft���� � � � t�n�g should be possible; see Figure 1.9.

As a simple test of this hypothesis, Bialek and coworkers have studied a
linear reconstruction. A spike at time t�f� gives a contribution 	�t� t�f�� to
the estimation sest�t� of the time course of the stimulus. Here, t�f� � F is
one of the firing times and 	�t � t�f�� is a kernel which is nonzero during
some time before and around t�f�; see inset of Figure 1.9. A linear estimate
of the stimulus is

sest�t� �

nX
f��

	�t� t�f�� � (1.7)

The form of the kernel 	 was determined through optimization so that the
average reconstruction error

R
dt
s�t� � sest�t��� was minimal. The qual-

ity of the reconstruction was then tested on additional data which was not
used for the optimization. Surprisingly enough, the simple linear recon-
struction (1.7) gave a fair estimate of the time course of the stimulus [Bialek
et al., 1991; Bialek and Rieke, 1992; Rieke et al., 1996]. These results show
nicely that information about a time dependent input can indeed be con-
veyed by spike timing.
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(t)s
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Figure 1.9. Reconstruction of a stimulus (schematic). A stimulus evokes a spike
train of a neuron. The time course of the stimulus may be estimated from the spike
train. The inset shows the principle of linear stimulus reconstruction. The estima-
tion s

est�t� (dashed) is the sum of the contributions (solid lines) of all spikes. Main
figure redrawn after [Rieke et al., 1996].

1.1.4 Discussion: Spikes or Rates?

The dividing line between pulse codes and firing rates is not always as
clearly drawn as it may seem at first sight. Some codes which were first
proposed as pure examples of pulse codes have later been interpreted as
variations of rate codes.

For example the stimulus reconstruction (1.7) with kernels seems to be a
clear example of a pulse code. Nevertheless, it is also not so far from a
rate code based on spike counts [Theunissen and Miller, 1995]. To see this,
consider a spike count measure with a running time window K���. We can
estimate the rate � at time t by

��t� �

R
K�
�S�t� 
�d
R

K�
�d

(1.8)

where S�t� �
Pn

f�� ��t � t�f�� is the spike train under consideration. The
integrals run from minus to plus infinity. For a rectangular time window
K�
� � � for �T�� � 
 � T�� and zero otherwise, (1.8) reduces exactly to
our definition (1.4) of a rate as a spike count measure.

The time window in (1.8) can be made rather short so that at most a few
spikes fall into the interval T . Furthermore, there is no need that the win-
dow K��� be symmetric and rectangular. We may just as well take an asym-
metric time window with smooth borders. Moreover, we can perform the
integration over the � function which yields

��t� � c

nX
f��

K�t� t�f�� (1.9)

where c � 

R
K�s�ds��� is a constant. Except for the normalization, the

generalized rate formula (1.9) is now identical to the reconstruction for-
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mula (1.7). In other words, the linear reconstruction is just the firing rate
measured with a cleverly optimized time window.

Similarly, a code based on the ’time-to-first-spike’ is also consistent with a
rate code. If, for example, the mean firing rate of neuron is high for a given
stimulus, then the first spike is expected to occur early. If the rate is low,
the first spike is expected to occur later. Thus the timing of the first spike
contains a lot of information about the underlying rate.

Finally, a code based on population activities introduced in Section 1.1.2
as an example of a rate code may be used for very fast temporal coding
schemes [Tsodyks and Sejnowski, 1995]. As discussed later in Chapter 10
the population activity reacts quickly to any change in the stimulus. Thus
rate coding in the sense of a population average is consistent with fast tem-
poral information processing, whereas rate coding in the sense of a naı̈ve
spike count measure is not.

We do not want to go into the details of the discussion whether or not to call
a given code a rate code [Theunissen and Miller, 1995]. What is important,
in our opinion, is to have a coding scheme which allows neurons to quickly
respond to stimulus changes. A naı̈ve spike count code with a long time
window is unable to do this, but many of the other codes are. The name of
such a code, whether it is deemed a rate code or not is of minor importance.

In this book, we will explore some of the possibilities of coding and compu-
tation by spikes. As modelers – mathematicians, physicists, and engineers
– our aim is not to give a definite answer to the problem of neural coding
in the brain. The final answers have to come from experiments. One pos-
sible task of modeling may be to discuss candidate coding schemes, study
their computational potential, exemplify their utility, point out their limita-
tions – and this is what we will attempt to do in the course of the following
chapters.

1.2 Neuron Models

Neural activity may be described at several levels of abstraction. On a
microscopic level, there are a large number of ion channels, pores in the
cell membrane which open and close depending on the voltage and the
presence (or absence) of various chemical messenger molecules. Compart-
mental models, where each small segment of a neuron is described by a set
of ionic equations, aim at a description of these processes. A short intro-
duction to this model class can be found in section 1.2.4.

On a higher level of abstraction, we do not worry about the spatial struc-
ture of a neuron nor about the exact ionic mechanisms. We consider the
neuron as a homogeneous unit which generates spikes if the total excita-
tion is sufficiently large. This is the level of the so-called integrate-and-fire
models. In Section 1.2.3, we will discuss this model class in the framework
of the ‘spike response model’.

The spiking neuron models should be contrasted with the rate models re-
viewed in Section 1.2.5. Rate models neglect the pulse structure of the neu-
ronal output, and are therefore higher up in the level of abstraction. On a


