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Abstract

The cortex-basal ganglia system is important in the learning of new motor be-
haviour. Recent experimental studies suggest that the basal ganglia are mainly
involved in the initial stages of learning. We propose that, while the basal ganglia
are important for the acquisition of new behaviour, the repetition of the behaviour
causes consolidation of the action sequence as a unit in the motor cortex. In this
work we try to simulate this phenomenon and create a model of the cortex-basal
ganglia system. This models the neural control of a rat running through a labyrinth.
Initial results are promising and future versions of the prototype will allow compar-
ison with recorded biological data from live rats.

Sammanbindning av handlingssekvenser i
kortiko-basalgangliara systemet

Examensarbete

Sammanfattning

Det kortiko-basalganglidra systemet tros ha en viktig roll vid inlarning av nya
motoriska sekvenser. Nya experiment visar pa att de basala ganglierna &r involverade
framst i forsta stadierna av inldarning. Var hypotes ér att det ar de basala ganglier-
na som lar sig motoriska sekvenser, men att de ssammankopplade motorsekvenserna
dérefter lagras i kortex. I den héar rapporten forsoker vi simulera detta fenomen ge-
nom att skapa en prototyp av kortiko-basalganglidra systemet. Var model simulerar
en ratta som springer i en labyrint. De forsta resultaten ser lovande ut och simule-
rade data fran framtida versioner av var prototyp kommer att kunna jamféras med
biologiska data fran levande rattor.
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Chapter 1

Introduction

This report is based on a novel hypothesis about how habitual behaviour is rep-
resented and learned in the brain. It originates from the work of Graybiel (1998)
and parts of it have been published by Djurfeldt et al. (2001). The traditional pic-
ture is that the action is learned initially in cortex, and then later stored in and
accessed through the basal ganglia, but we suggest that the basal ganglia learn a
sequence needed through trial and error, but once the right sequence has been ac-
quired it is consolidated in the cortex. The goal for this report is to present a model
that shows that elements similar to neurons can perform such a task and that the
learning-transfer process can be captured by the cortico-basal ganglia model.

We simulate the interaction between the cortex and the basal ganglia of a rat
running through a grid world maze shaped like a T. We are here trying to replicate
the experimental conditions in Jog et al. (1999). Our ultimate goal is to be able
to compare simulated data from the model with data from real rats recorded by
inserting multiple tetrodes in the striatum and monitoring the activity of populations
of neurons over periods of days.

Below is a picture of a human skull painted by Leonardo da Vinci around 1500.
Our understanding of the brain has gone a long way since then, but his immortal
paintings and sketches are a beautiful reminder of the curiosity that drives us in our
research.




Chapter 2

Neurobiological Background

Neural signals are transmitted from the axon of one neuron to the dendrite of another
by chemical transmitters passing across the synapse, a small gap between the two
neurons. Each excitatory input to the dendrites temporarily raises the potential of
the neuron. If a threshold is passed the neuron fires, sending out a signal along the
axon to other neurons. The changes of the potential in the cell can be described by
the differential equations of a leaky integrator. We distinguish between two types of
neurons: interneurons which act locally and projection neurons which have a long
axon and send signals to other regions.

2.1 The Basal Ganglia

The basal ganglia are centrally placed in the brain (Figure 2.1). They play an
important role not only in selection and execution of learned behaviour, but also in
acquisition of new behaviours and maintenance of old ones (Wickens, 1997).

In figure 2.2 the different parts of the basal ganglia can be seen. The striatum,
which is the main input centre of the basal ganglia, receives inputs from all major
parts of the cortex. Two main pathways lead from the striatum — the direct and the
indirect pathway, the former has an overall excitatory effect, on the corticothalamic
network that activates motor sequences, while the latter inhibits them. Dopamine,
a neurotransmitter often associated with learning, facilitates the direct pathway and
inhibits the indirect. Imbalance between the two pathways can result in hyper- or
hypo-kinetic disorders (Parent et al., 2001).

The level of dopamine is increased when an unexpected reward is given, it is at
base levels if the anticipated reward was given, and it is lower than normal if the
expected reward was not given. It is interesting to note that the depression when
an anticipated reward was not given happens at the time the reward was expected
(Schultz et al., 1997).



Figure 2.1. The Basal Ganglia from Neuropsychology by Marie T, Banich and
Houghton Mittlin, 1997. The image has been retouched to remove text.

2.1.1 The Direct and Indirect Pathways

The direct pathway is a projection system that connects the striatum to the internal
segment of the globus pallidus (GPi) and the Substantia Nigra (SNr) through in-
hibitory connections, see figure 2.2. These two regions are physically separated but
have similar functionality, and these in turn inhibit the thalamus. The double inhib-
ition means that the direct pathway has a disinhibitory effect on the thalamus, that
is it reduces the inhibition acting on the thalamus. From the thalamus projection
neurons send signals to lower level motor neurons and also connect back to cortex,
completing the circuit.

The indirect pathway goes from the striatum to the external segment of globus
pallidus (GPe), which in turn connects to the subthalamic nucleus (STN). Both
these connections are inhibitory. From the STN strong excitatory connections go
to both the GPi and the SNr, and they in turn inhibit the thalamus as mentioned
above. This means that the indirect pathway has an overall inhibitory effect on the
motor activity.

2.1.2 The Striatum

The striatum is dominated by inhibitory projection neurons, located in a single
layer. From experiments it has been shown that the regular activity is relatively
low. Individual neurons can be silent for a few seconds up to hours. These periods
of inactivity are interrupted by episodes of moderate activity. There are neurons
which have been found to fire in anticipation of reward and others fire prior to
initiating learned behavior. There is also a level of abstraction, with a significant
portion of the striatal neurons coding for direction of movement, rather than for
details in muscle activity.
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Figure 2.2. Schematic diagram of the basal ganglia. Abbreviations: GPe, ex-
ternal segment of globus pallidus; GPi, internal segment of globus pallidus; STN,
subthalamic nucleus; SNr, substantia nigra, pars reticulata (Wickens, 1997).

From recordings of the striatum in live rats, gradual changes in the firing patterns
of projection neurons have been found as the rats acquire new behaviours (Graybiel,
1998). Input from large areas of the cortex converges on striatal projection neurons,
each making a small contribution, which suggests either a high rate of firing from a
few neurons or coherent network activity from large number of neurons, is needed
to make the projection neurons fire. The firing in the striatum is very dependent on
specific contexts which implies that it corresponds to learned behaviour.

Different kinds of sensory input from the same regions of the body are usually
projected onto the same area of the striatum.

In addition to the projection neurons there are also interneurons in the stri-
atum, which are fewer than the projection neurons but still serve an important role
since they can locally create relatively high concentrations of neuromodulators like
acetylcholine.

The striatum also receives dopaminergic input from Substantia Nigra Compacta
(SNc) and the ventral tegmental area. The dopamine axons branch extensively and
terminate in the striatum close to where the input is received from the cortex. Here
they are able to regulate the efficiency of the synapses.

2.1.3 The Pallidal-Subthalmic Complex

The neurons in GP have tonic activity with high frequency firing, interrupted by
brief reductions in the firing rate, corresponding to the short bursts of inhibition
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from the striatum.

The subthalamic nucleus (STN) mentioned earlier as part of the indirect pathway
is sometimes labelled as the driving force of the basal ganglia because of its strong
excitatory effect on GPi and SNr, the output regions of the basal ganglia, that in
turn inhibit the thalamus. This constant inhibition of the thalamus keeps the motor
system inactive, but ready to respond. When it is time to trigger a behaviour a wave
of increased inhibition is seen. This is followed by the release of inhibition from the
behaviour desired, while the other ones are kept inhibited. Afterwards the inhibition
is once again strengthened for a period before it is released back to normal levels.

2.2 Neurological Diseases

Imbalance between the direct and indirect pathways can result in a changed activ-
ity in the GPi/SNr which could account for the hypo- and hyperkinetic disorders
sometimes associated with the basal ganglia (Parent et al., 2001).

It has been suggested that Bradykinesia or akinesia that are characteristic of
Parkinson’s disease result from increased inhibition of thalamic premotor neurons
due to excessive excitatory drive from the STN to GPi/SNr. This would result from
increased inhibition of the GPe due to a loss of striatal dopamine leading to the
disinhibition of the STN.

At the other end there is the hyperkinetic movements associated with Hunting-
ton’s disease. Here the problem is believed to be the opposite, too weak inhibition
from the striatum onto the GPe, due to degeneration of striatal projection neurons,
leads to too high inhibition of STN, and a lack of excitation for GPi/SNr which
results in increased motor activity.



Chapter 3

Simulation Models

The purpose of this chapter is to give a short presentation of the different components
of our model and how they work.

Our hypothesis is that the basal ganglia learn the new behaviour and that once
it has been learned it is transferred to the cortex where it is consolidated. We seek
to investigate if it is possible to create a mechanism using neuron-like elements that
can learn the required sequences in one network, then transfer control to a second
network.

Below we will give a description of the various networks and the mechanisms that
make this transfer of learned behaviour possible. We also survey a few models that
are interesting to study for the further development of our model. Future versions
of the cortex-basal ganglia model are likely to be spiking to allow better comparison
with biological data.

3.1 Basal Ganglia Models

There is a plethora of different models that try to better mimic the function of the
basal ganglia. The level of detail has increased over time. Houk et al. (1995) presen-
ted one of the first models. The problem with it was that it did not account for
the timed depression of dopamine when an expected reward was omitted. This was
solved in Suri and Schultz (1998, 1999) where the timing mechanism was implemen-
ted by representing each stimulus using a set of neurons, each of which was active
for a different duration rather than using a single prolonged inhibition. Using their
network they showed that relatively complex tasks could be solved, however the
novelty responses, generalization responses and some temporal aspects in reward
prediction was achieved by setting arbitrary values, such as initializing synaptic
weights with specific values and using different learning rates for different synapses.
Contreras-Vidal and Schultz (1999) provided a model closer to the anatomy of the
basal ganglia. They also proposed two error signals, one for errors in predicting the
timing of reward and another for type and amount of reward. Further they pro-
posed that the fast excitatory response to conditioned stimuli and the time delayed
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inhibition in response to unconditioned simuli are mediated by different pathways.
Brown et al. (1999) continued the work but instead of assuming that the striosomal
neurons generated a spectrum of timing signals in response to sensory input they
used an intra-cellular calcium-dependent timing mechanism.

3.2 Actor Critic Model of the Basal Ganglia

In this section we are describing the basal ganglia model used in this work. The
model is based on the actor-critic architecture (Sutton and Barto, 1998) which we
will describe here.

The dopamine in the basal ganglia appears to act like a regulator of anticipated
reward (Schultz et al., 1997). When an unexpected reward is given the dopamine
levels increase, when a reward is given as expected the dopamine levels are normal,
and when the expected reward did not happen the levels are below normal. In the
initial stages the dopamine levels are directly in response to the reward, but after
learning the cue triggers the internal reward mechanism.

This behaviour bears a close resemblance to the temporal difference learning
(Sutton and Barto, 1998) which often uses an actor that follows a policy and a critic
that evaluates the action. Here the temporal difference given by the critic would
correspond to the output from the dopamine neurons in the VTA and SNc¢ (Schultz
et al., 1997). The temporal difference error for the action a; taken in state s; is
evaluated as,

0 = rep1 +y(V(st41) = Vst)) (3.1)

where r¢41 is the reward, v is the discount-rate, usually to 1.0 or slightly below, and
V(s) is the value function at state s.

The general theme for models of the critic is the dopaminergic neurons activity
that bears a close resemblance to temporal difference learning. There are however
still questions regarding how to reproduce the dynamics of firing to rewards, reward
predicting stimuli and novelty. Joel et al. (2002) propose the idea of using an
evolutionary computational approach to find candidate architectures that maximize
the utility of the critic under anatomical and functional constraints. Work has also
been carried out on the actor side, which is based around the dopamine dependent
long-term synaptic plasticity in the striatum.

The model we use consists of two separate structures, one structure called the
actor which implements a policy and an estimated value function called the critic.
The policy is a method to choose action based on the state, and the value function
predicts how good it is to be in a certain state. The critic criticizes the actions taken
by the actor by returning a temporal difference error in the form of a scalar. If this
scalar is positive, the tendency to select the action should be strengthened and if
negative it should be reduced.

The easiest way to choose the best action is by using the greedy policy that tries
to maximize the reward at each step,

Gselected = ar'g I’IlaX(ﬂ'(S, a)? CL) (32)



here 7 is the policy. However to ensure that some exploration is made, the e-greedy
method is used instead, which means that with probability ¢ a random action is
chosen and otherwise the greedy action is used.

The actor’s policy would be represented by the dopamine-dependent corticol-
striatal projections (Joel et al., 2002). The value function could be found in the
orbitofrontal cortex and limbic cortex.

The actor critic architecture is capable of bootstrapping the behaviour without
any previous knowledge of the world through trial and error. The original framework
of our actor critic model has already been coded (Djurfeldt, 2002).

Our hypothesis states that the action is learned in the basal ganglia then later
consolidated in the cortex. In our model we have chosen to implement a labyrinth
in a grid world that the basal ganglia model needs to learn the optimal route for
(see Section 4). The basal ganglia in our model have four directional commands to
move the rat. In addition to these four commands we have implemented a special
fifth action. The purpose of this action is to yield control to the cortex model for
a step. It is important to note that this is probably not accurate, but it is a first
steppingstone for further development of the model.

The motor commands are all issued through the motor cortex model. The dif-
ference between the four directional commands and the fifth command in our model
can be seen by looking at how the commands are passed to the cortex model. The
command is given as a control signal, telling the cortex model where it should head
towards, however the fifth action is the absence of such a control signal, which yields
control to the cortex model for one step. By associating a small reward with this
fifth action the network will be motivated to use it when possible. The idea is that
the cortex model learns the new sequence by observing the actions selected by the
basal ganglia model. Since it will be more favourable to yield control to the cortex
model, provided it gives the correct action, control will be slowly moved from the
basal ganglia model to the cortex model, as the network learns the correct sequence
of actions to reach the end.

In this model the basal ganglia model makes the choice to yield control to the
cortex model or not in each step. In reality this is moved from the basal ganglia to
the cortex, freeing up the basal ganglia to learn new things.

3.3 Non-Monotonic Single-Network Morita Model

In this section we study a possible candidate for the model of the cortex. We require
that the model should be able to recall a sequence of patterns on receiving a cue.
One example of a network capable of recalling sequences is the partial recurrent
network, where most of the connections are feed-forward but a selection of feedback
neurons is included that allows the network to remember cues from the recent past.
The feedback is received through context units. With fixed input a network can be
taught to generate a sequence from a selection of sequences (Jordan, 1986, 1989).

8



Another possible candidate are the attractor networks. Normal attractor net-
works approach an attractor basin and then get stuck there. In order for them to
continue onwards there needs to be some special mechanism. This can be done with
adaptation which works by temporarily exhausting the synapses or the neurons,
weakening the basin and allowing the network to proceed to the next attractor. A
more detailed discussion about adaptation can be found in Sandberg (2003).

The Morita model (Morita, 1996a) is a neural network capable of recalling se-
quences. Given a cue it can associate between either a pair of patterns or a sequence
of patterns, depending on how we choose to train it. The network learns this be-
haviour by following a learning signal at a distance, and in each step the weight
matrix — which holds all the connection strengths between the neurons — is updated
in such a way that a flow from the current state to the learning signal is created.
This results in the ability to recall patterns from intermediate states and the recall
can be done without synchronization.

The model here works with 1000-dimensional non-sparse patterns with equal
proportions of ones and minus ones. The instantaneous potential u; of the i:th cell
is calculated by

dui "
T 7 = —u; + ]z:; WijY; + z; (33)
yi = f(w) (3.4)

where y; is the output, z; the external input which is a rescaled version of the
learning signal r; (see below), 7 a time constant and n is the number of neurons.
The non-monotonic function (Morita, 1996b) is,

1— e ] 4 gec2(luil-h)

f(ul) = 1 + e—Clu-; ) 1 + 602(‘ui|_h)

(3.5)

where we have used the constants ¢; = 50, co = 10,h = 0.5, kK = —1, see figure
3.1. The learning is performed using a Hebb-like learning rule, the covariance rule,
where the recurrent input Y = (y1,y2,...,yn) is matched with the learning signal
R = (r1,r2,...;Tn).

’ dwij
dt

Note that o = ¢(y;) depends on y;. Please note index, if y; is used instead, then
the network recalls the sequence backwards!

o) = {50(0‘5 _y) <05

3.7
0 y: > 0.5 (3.7)

The external input vector Z = (21, 22, ..., 2,), which is the pattern shown to the
network at a given point in time, is taken to be Z = &R where £ decreases with
time.



Figure 3.1. The non-monotonic function, note that « decides which values the
positive and negative asymptotes converge towards, in our case -1 and +1 respectively.
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Figure 3.2. The Morita network recalls a sequence of patterns similar to those that
will be encountered in our model. Number of steps on the x-axis and overlap on the
y-axis. If you view the pdf rather than the postscript version of this report then the
above graph might be fuzzy because of the way bitmap images are stored.
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3.3.1 Results

Using this Morita model we were able to create an association chain of up to sixteen
patterns with overlaps of about 60-80%, see figure 3.2. This should be sufficient for
our purpose, since we deal with motor sequences twelve patterns long. There was
also a speedup of the recall relative to the speed of learning.

3.3.2 Discussion

The most interesting property in the Morita network is the non-monoticity. It
ensures a smooth recall of the patterns. Looking at the pattern space, we have a
curved surface between consecutive patterns A and B, such that if the network state
is far from this surface it travels rapidly towards this almost perpendicular, but as
it gets closer the neurons saturate because of the non-monoticity and the network
moves more slowly along the curved surface towards pattern B (Morita, 1996b).

The Morita network does not require any special mechanisms during recall, the
flow is a natural part of the network in its original configuration. However during
learning this version required a set of interpolated patterns between the patterns A
and B. These patterns had to be supplied to the network. In section 4.2 we introduce
a novel idea for how to remove this dependency on external pattern interpolation.

One concern we had with our implementation of the Morita network was the
speedup during recall. Figure 3.3 illustrates this. During learning in the Morita
model a flow is created from the current network state towards the learning signal.
This flow however is stronger than the flow driving the network forward during
learning, which could account for the speedup. This becomes even more obvious
when using our alternative learning method as then the flow learned will add to the
effect, further increasing the speedup.

There are a couple of other beneficial effects from the non-monotonic transfer
functions in addition to the smooth recall, that deserve to be mentioned. Mono-
tonic networks have the problem that the weights keep growing because the weight
modifications from the Hebb-like learning rule accumulate over time, this is not the
case for non-monotonic networks.

3.4 Dual Network Cell-Pair Morita Model

The biggest difference between the Cell-Pair model and the model described in
section 3.3 is that the non-monotonic units have been replaced by pairs of units
that together generate the non-monoticity by using monotonic transfer functions
(Morita and Suemitsu, 2002; Morita, 1996b). This pair represents a cortical mini-
column. The excitatory unit represents a population of pyramidal neurons. The
inhibitory unit represents a population of inhibitory interneurons. Sparse pattern
coding with 10% ones and 90% zeros have been used here as opposed to non-sparse
coding previously used. One of the benefits with sparse coding is the ability to store
more patterns.
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Learning Recall

Figure 3.3. The learning mechanism of the Morita network creates a speedup at
recall. This effect can be illustrated by looking at how the differential equations
are evaluated numerically. During learning, associations are created several steps
forward, because of the size of the lag. When recalling some of the intermediate steps
originally learned will be skipped over.

The Dual Network model consists of two parts: an interpolating network and a
learning network. The first one receives the input, and is responsible for creating
a slow moving learning vector that moves from the pattern A to the pattern B.
It does so by having a competing network, when the first pattern is shown the
network relatively quickly tunes to it and when the second pattern is displayed the
competition will create a slow movement from the old to the new pattern. The
second network is similar in function to the model described in section 3.3. It is
responsible for learning and recalling the sequences.

Unfortunately there were some issues with getting this version of the Morita
model to work properly. The network failed to recall the learned patterns, sometimes
remaining completely static. In retrospect this might have been because of the
random connection weights used to and from the network not being properly chosen.

3.4.1 Interpolating Network

The purpose of the interpolating network is to create a learning signal for the other
network to learn from. When the simulation starts, there is no activity in the
interpolating network, and the first pattern displayed will quickly determine the
activity in the network. Then follows the delay phase, after which a target pattern
is displayed, but because there is some activity already present in the interpolating
network the change is not instantaneous. Instead, what we get is a natural interpol-
ation between the representations of the cue and target patterns. The network also
receives input from the learning network.

In order to create an interpolation between the two patterns the network also
has to apply random weight matrixes to the input signal and the recurrent feedback.
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Table 3.1. General Network Parameters for the Dual Network Morita Model

6 = 3 01 = 25 p = 0.016
w; = 10 B2 = 50 o = 08
A = 03 v = 005 ¢ = 10
, 0 normally
T = 500007 n =
0.75 delay phase

The situation is similar to the one discussed in section 4.2. If several patterns in an
intermediate sequence of patterns only differ in amplitude then recall will fail. The
equations for updating the interpolating network are,

Td—tl = —Vi+Zpijsj+Zqijxj—eri—i-arH—n (38)
J=1 Jj=1 J#i
The function f(u) is a monotonic sigmoid function given by
f(u) . (3.10)
u)=——— .
14 e—cu

The values used for p and g were taken from two normal distributions, one with an
average value of 5.5-1072 and variance 3.7-10~% and the other one with mean value
7.2 -1073 and variance 6.4 - 107*. Both normal distributions were cut off at three
standard deviations to avoid extreme values.

3.4.2 Learning Network

The learning itself is performed in a separate network, here referred to as the learning
network. It uses a Hebbian learning rule, with time constants considerably lower
than the other time constants in the model. The first equation below handles the
weight matrix for the excitatory neurons in each pair. The second equation handles
the weight matrix for inhibitory neurons.

dw
7'/ dtw = —w;; +Oé7’i$j (3'11)
dw;

Here «a, 81 and (2 are learning coefficients, and  represents the lateral inhibition
among units.
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The excitatory and inhibitory units of the network are updated according to,

i = fQ_ wiz;—0) (3.13)
j=1
dui " : 14
T = —ui+2wij:nj—wiyi+zi (3.14)
j=1

where x; and y; are the outputs of the excitatory and inhibitory units respectively,
u; is the potential, z; the external input, w;; and w,; the synaptic weights for the

ij
excitatory and inhibitory units.

3.4.3 Discussion

The model described in section 3.4 uses sparse population coding with 10% ones and
the rest zeros. The sparse coding increases the capacity of the network, so that more
patterns can be stored given a fixed number of neurons. In the computer simulations
we performed, a network size of 1000 pairs of neurons was used. The parameters
used can be found in table 3.1.

Unfortunately time constraints prevented the full implementation of this version
of the model. Instead we chose to investigate a spiking model (section 3.5) to see
what would be required for the next phase, since our goal was to be able to compare
the simulated data with data recorded from biological models, and since data from
a spiking neuron model would be better suited for comparison with recorded spiking
data from rats.

3.5 Spiking Model

As mentioned above we are trying to replicate the experimental conditions in Jog
et al. (1999). This will serve as a foundation for comparison between our simulated
neurons and their real biological counterpart. The data from the experiments are
spiking, but neither of the two models discussed in previous sections have spiking
neurons, instead they deal with rates. Eventually we hope to move from a rate based
cortex model to a spiking model capable of both learning and retrieving sequences in
the presence of distractors. A spiking neural model would allow for better compar-
ison. The network also needs to be able to retain learned memories despite applied
distractors during delay phase before recall.

In this section we study a spiking neural network model with pyramidal cells and
interneurons capable of recalling patterns, and retaining them in memory despite
being exposed to distractor patterns of strength equal to the original input (Brunel
and Wang, 2001). The key feature in this model is the domination of inhibition.

This model is different from the previous cortex models already discussed as it
has no mechanism for learning new patterns, however the fact that it uses spiking
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neurons as well as the ability to retain memory despite external distractors makes
it interesting to study.

Another important difference between the rate models and the spiking model
discussed here is that the former store the memories in the synapses and the latter
uses the activity in the cell assemblies. It is important to note that the spiking model
implemented here does not have any learning, instead the weight matrix is fixed.
It receives binary patterns through external neurons that fire randomly with small
variations between the different elements. The pattern is encoded as a variation of
probability of firing, where a one is encoded as a slightly higher firing rate for that
element than for an element coding for a zero.

Short term memories are stored by activity in cell assemblies of pyramidal cells
which code for a particular pattern. They retain the activity by having stronger
connections to cells within the cell assembly than to those outside it. At the same
time their spikes trigger the firing of the interneurons that place a general inhibition
on all pyramidal cells. This inhibition suppresses activity in other cell assemblies
and makes the network resistant to the distractor patterns. Since there is a pattern
already present, any new patterns have to fight the inhibition from the interneurons
to establish themselves. On the other hand, the first pattern displayed can quickly
establish itself because the inhibiting interneurons are not activated by any previous
patterns.

The strong inhibition also gives a neat way of clearing the network from old
patterns. By activating all external neurons the network receives a strong input
which leads to a strong inhibitory response from the interneurons that clears out all
activity in the pyramidal cells.

3.56.1 External Neurons

The external neurons represent the input to the network. They randomly fire at
about 3 Hz, which corresponds to real neurons in the cerebral cortex. By variations
in the frequency they fire, binary patterns can be coded, where a slightly higher rate
of firing represents a one, and a lower rate codes for a zero. Each one of the external
neurons contributes with on average three spikes per second, and together the 800
external neurons send data to the network at a rate of 2.4 kHz.

3.5.2 Pyramidal Cells

Most cells that make up this model and where the memory activity is retained are
the pyramidal cells. These cells form dense excitatory connections to one another,
where the strength of weights are dependent on whether the cells belong to the
same or a different cell assembly. Focused persistent activity can be retained in cell
assemblies by having stronger connections between cells within the assembly than
cells outside, together with a general inhibition from the internal neurons due to
the firing of the active cell assembly. Every cell assembly contains r.sNg neurons,
where Ng is the total number of excitatory pyramidal cells, and each of the p cell
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Table 3.2. Pyramidal Cell Constants, please note that the membrane time constant

Tm 18 Cm /gm
Resting Potential %3 = =70 mV
Firing Threshold Vinr = —=50mV
Reset Potential Vieset = —db mV
Membrane Capacitance Cm = 0.5nF
Membrane Leaky Conductance g, = 25nS
Refractory Time Tref = 2ms
Membrane Time Constant Tm = 20 ms
Number of Patterns P = 5
Relative Cell Assembly Size Tes = 0.1

assemblies codes for different sparse patterns. The remainder of the pyramidal cells
code for no specific pattern.

The individual pyramidal cells are modelled as leaky integrate-and-fire neurons
(Tuckwell, 1998). Below threshold the membrane potential V'(¢) is calculated by

C’m%it) =—gm(V(t) — VL) — Isyn(t) (3.16)

where gy, () is the total synaptic current flowing into the cell. The pyramidal cell
constants can be found in table 3.2.

3.5.3 Interneurons

The spiking model is dominated by inhibition. This inhibition is created by 200
interneurons modelled as leaky-integrate-and-fire neurons in analogy with the pyr-
amidal cells, please note that some of the constants differ, see table 3.3.

3.5.4 Synapses

AMPA and NMDA are receptors on excitatory synapses, and GABA inhibitory.

The external neurons use AMPA. Pyramidal cells use both AMPA and NMDA, the

latter one has a slower response time and longer time scale and plays a vital role

in retaining persistent activity within the pyramidal cell assemblies. GABA is used

exclusively by the interneurons in this model. All synapses have a latency of 0.5 ms.
The total synaptic currents are given by

Isyn (t) = IAMPA,ext (t) + IAMPA-reC (t) + INMDA,rec(t) + IGABA,rec (t) (317)

16



Table 3.3. Constants for Interneurons, values that differ from pyramidal cells are in

italic
Resting Potential %3 = =70 mV
Firing Threshold Vinr = —=50mV
Reset Potential Vieset = —5b mV
Membrane Capacitance Cm = 0.2nF
Membrane Leaky Conductance g, = 20 nS
Refractory Time Tref = 2ms
Membrane Time Constant Tm = 10 ms
where
C4ext
Invpaext(t) = gampaet(V(1) = Vi) D> s ) (3.18)
j=1
Cg
IAMPA,reC(t) = QAMPA,rec(V(t) - VE) Z ij?MPA,reC(t) (319)
j=1
gaupa(V() = V) {5
B NMDA —VE ~.NMDA
INMDA rec(t) = 1+ [Mg2+]e—0-062V(1) /3 57 ~ Wj s (t) (3.20)
Cr
IcaBArec(t) = goaBa(V(t) = Vi)Y s§ABA®R) (3.21)
j=1
here Vg = 0 mV is the reversion potential for excitatory cells and V; = —70 mV

for inhibitory cells. Charged ions block the membrane, reducing the ion flow, to
account for this we use the Jahr and Stevens’ (Jahr and Stevens, 1990) formula for
modulation of NMDA currents by the extra cellular magnesium concentration where
[Mg*"] =1 mM. The weights w; that appear above will be described further down.
The network is recurrent, which means that all cells have connections to one
another. When we talk about external synapses, we mean those originating from cells
outside the network. To measure the synaptic activity we use s, which represents

the fraction of open channels. For both external and recurrent AMPA, we have
ds;&MPA(t) S?MPA(t) .

dt TAMPA

> st —th) (3.22)
k

where Taprpa = 2 ms. The sum over k is a sum over all the spikes emitted by the
presynaptic neuron j. The input spikes from the external neurons are modelled by
Poisson processes with the rate v..¢, and are independent for each post synaptic cell.
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Table 3.4. Recurrent Synaptic Conductances in nS

Pyramidal cells Interneurons

gAMPAext  2.08 1.62

gAMPA rec  0.104 0.081
GNMDA 0.327 0.258
JGABA 1.25 0.937

In other words, two cells do not normally receive the same input from the external
neurons. For the slower NMDA channels we use

dsNMDA (4 GNMDA (4
LU S O +az;(t)(1 — sfMPA®R)) (3.23)
dt TNMDA decay
da;(t)
— = — 4 o1 3.24
dt 7—NMDA rise Z ( )

where TNMDA, decay = 100 ms, o = 0.5ms~! and TNMDA rise = 2 ms. The NMDA
receptors are critical for the retention of patterns in the pyramidal cells, because
of the slower time constants and longer decay time for NMDA that helps keep the
activity high within the population. For the inhibitory GABA we have

dsGABA (1) GABA
J

_ +Z§ (t -t (3.25)

dt TGABA

where 7gapa = 10 ms. The values for the recurrent synaptic conductances (see table
3.4) are about 1 nS in magnitude and correspond roughly with the experimental data.

3.5.5 Connectivity

The pyramidal cell population is divided into cell assemblies that each codes for
a different pattern. In this version of the model the weights are hard coded, but
represent what Hebbian learning would achieve; neurons that correlate often have
a stronger weight than neurons that do not correlate. Here this can be seen by
connections between neurons within the same cell assembly having a stronger weight
than connections that are between neurons in different cell assemblies, see figure
3.5.5.

We set w; = w4 when both neurons code for the same pattern. Between neur-
ons coding for different patterns, and from the non-selective neurons to a selective
neuron, we set w; = w_. All other weights w; are set to 1. With wy = 2.1 and
w_ calculated from w_ =1 — f(w4 — 1)/(1 — f) the overall synaptic drive is kept
constant as w4 varies (Amit and Brunel, 1997). The network is fully connected,
meaning all neurons connect to all other neurons.
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Figure 3.4. Neuron connections in the Brunel model.

3.5.6 Results and Discussion

The simulation was run with a time step of 0.01 ms using a second order Runge-
Kutta method. To increase accuracy the spike times were interpolated within each
time step (Hansel et al., 1998).

Figure 3.5 shows the problem with having too strong input signals. Cue and
distractor patterns all have the same strength. If it is too high, the distractor will
drown the activity in the network. If, on the other hand, the strength is too low
(figure 3.6) then the cue will not overcome the initial inhibition barrier and fail to
establish any persistent activity in the network.
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70

Figure 3.5. Brunel simulation with too strong input relative to the inhibition from
the interneurons. The distractor erases the original pattern from memory. The x-axis
shows time, and the y-axis activity. The input strength was multiplied by A which
here was 0.0375. At step 100 the pattern is shown for the network, then turned off
at 200. At 250 the distractor is activated and soon dominates the network.
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Figure 3.6. Spiking simulation with A = 0.0295. Here the original pattern survives
the first distractor, but the second one clears it from memory. Note that the strength
of the original pattern and the distractors is the same. Here again the pattern is
shown at step 100, the activity takes longer to establish itself in the cell assembly
than for higher A values, see figure 3.5. The first distractor is unable to overcome the
inhibition but the second distractor manages to establish itself.
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Chapter 4

Combined Cortex-Basal Ganglia Model

Experiments by Matsumoto et al. (1997) on a behaving monkey taught to press
a sequence of buttons indicate that a unilateral lesion of the Striatum/Substantia
Nigra Compacta (SNc) prior to learning affects how the learned motor sequence is
stored. When the monkey was given the reward prior to pressing the last key it
altered its behaviour. However a reference monkey that received the lesion after
learning was unable to adapt to the change and kept pressing the last button by
habit. This difference in behaviour suggests that in the monkey receiving the lesion
prior to training the sequence was not chunked together into a macro, since it was
able to learn to use the shorter sequence despite the lesion. However in the reference
monkey the behaviour sequence was stored as a unit and after the lesion it was
incapable of changing it.

In this chapter our aim is to describe the model that we use to simulate the
interaction between the basal ganglia and the cortex during learning of sequential
behaviour in the brain (see hypothesis in previous chapter). Here the basal ganglia
are modelled with a network based on Sutton and Barto (1998) actor-critic archi-
tecture, and the cortex is modelled by the recurrent attractor network described in
section 3.3.

This model in turn controls a simulated rat located in a grid world, see figure
4.1. Here, we are trying to replicate the experimental conditions in Jog et al. (1999),
where a rat is placed in a labyrinth shaped like a "T". There are two exits, one on
each side of the intersection. A tone is played for the rat when it is half way through
the labyrinth indicating if it should turn left or right. If the rat reaches the correct
end it is rewarded, otherwise no reward is given.

The model can be broken down into two natural parts: the basal ganglia model
and the cortex model. Sensations from the world are received by the sensory cortex
model, see figure 4.2. Each location in the grid world is associated with a unique
sensation. The rat also receives an audio tone. Both are coded as random patterns.
For more details on how this is done see Appendix A. From the sensory cortex model
the sensations are passed on both to the basal ganglia model and the motor cortex
model. The basal ganglia model evaluates the situation and sends its command to
the motor cortex model. The motor cortex model issues motor commands, and also
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Figure 4.1. The rat, represented as a dot, during one of the simulations.

feeds back to the basal ganglia model.

The thalamus has been omitted in this model. We assume it is responsible for
controlling attention span. The other parts can find their representation in the actor
critic method used for learning, see section 4.1.

4.1 Basal Ganglia

The basal ganglia model was based on the actor-critic architecture from Sutton and
Barto (1998), a brief introduction can be found in section 3.2.

The basal ganglia model are involved in learning the best way through the
labyrinth. It receives input from the sensory cortex model and at its disposal it
has four movement commands, one for each direction. This is enough to both learn
and control the rat. However what we are interested in is a mechanism that can, in
a natural way, transfer control from the basal ganglia model to the cortex model. To
do this we propose the fifth action, as discussed earlier in section 4.2, which for one
step yields control to the cortex model. We associate a small reward with this fifth
action, so that it will be slightly more rewarding to use the cortex model instead
of the basal ganglia model. The idea is that once the cortex model has learned to
give the correct motor commands, the basal ganglia model will yield more and more
to the cortex model. In other words, control is transferred from the basal ganglia
model to the cortex model. One way of putting this is that the basal ganglia model is
only responsible for correcting the behaviour of the cortex model. Before the cortex
model has learned the correct sequence of actions to navigate through the labyrinth
there are a lot of actions to correct, but as the cortex model gets progressively better
the basal ganglia model performs less corrections and becomes more and more quiet.

4.2 Cortex

The cortex model is based on the Morita network discussed in section 3.3. The task
for this network is to learn the correct action sequences by learning from the basal

22



Motory Cortex . Sensory Cortex
S

iya
Z, 2
Basal Ganglia

Figure 4.2. Information flow in our prototype. 1. The sensory cortex model receives
latest sensation from the world. 2. The basal ganglia model evaluates the sensation
and the last action and decides on a new action. 3. Motor cortex model receives a
new action, this action command can also be the special “no signal, let cortex decide
alone”. 4. The motor cortex model creates an action that is sent back to the world.

ganglia model. There are alternatives to this model, which are also described in that
section.

Two versions were implemented, one where all of the basal ganglia model’s ac-
tions were issued through the cortex model, and a second model where the basal
ganglia model issued the actions directly. In both cases the cortex received the ac-
tion chosen by the basal ganglia model, but in the second case it could not alter it.
The latter can be motivate by Parent et al. (2001) which indicates that basal ganglia
connect directly to the lower parts of the motor system. A copy of the command is
set through collaterals to the thalamus.

As mentioned in section 4.1 the basal ganglia model has a fifth action that
temporarily yields control to the cortex model. Normally the basal ganglia model
tells the cortex model the new action, and this is used as a learning signal which
the network slowly shifts towards. This creates an association between the previous
state and the new one. When the fifth action is issued the cortex model only receives
the sensory input and has to decide the action on its own.

The Morita model uses interpolated patterns to create this smooth flow. This
is not very biological. To replace this and eliminate the interpolation we propose
a novel idea which is capable of creating a similar flow between cue and target
patterns.

We propose the usage of an alpha function that is a delayed version of the network
state and which follows the current network state at a distance, see figure 4.3. The
weight updating rule uses this alpha function and the network’s current state as the
two reference points when creating the association and updating the weights.
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Figure 4.3. Interpolation and our proposed alpha function learning. The alpha state
is a time lagged version of the network state, learning is performed from the old state
to the new, creating a flow towards the goal.

The alpha function, here denoted by a, is updated as follows:

db
o 4.1
ra = b+ f() (1.1)
da
da 4.2
Tdt a+b (4.2)

where u is the instantaneous potential of the network, 7, a time constant that decides
the response time of the alpha function, i.e. how much it lags behind the current
network state. By using the alpha function we are able to avoid interpolations while
still using the Hebbian type learning rule to update the weight matrix,

dw;;

’ Z’tﬂ —wij + af(u;)a; (4.3)
1— e—50u

Ou) = — 4.4

W = T (1.4

Here 6 is a threshold. In order to make recall possible we must prevent the network
from having two neighbouring intermediate patterns only differ by a scale factor,
because if that happened an attractor would be created, resulting in the network
becoming static during recall. Our solution is to randomize the time constants
slightly. This ensures that the switching of the elements will be spread out in time.
The new updating rule looks like this:

dui -
7‘1‘% = —u; + ]z_:l WiY; + % (4.5)
yi = flw) (4.6)

where 7 has been replaced by 7;, which varies between neurons.
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Chapter 5

Results

Figure 5.1 comes from an early version of the model before the reward for cortex
action was implemented. It shows the overlap between the optimal action sequence
for a rat running through the labyrinth and the network states used after completed
learning. Each peak in the graph represents one step. This graph shows that the
basal ganglia model is able to learn the optimal route.

Figure 5.2 is a trial run, where the cortex malfunctioned after 55 iterations. The
reason for this is probably the speedup during recall relative to the speed when learn-
ing, which causes timing issues in combination with cortex weights that had become
so strong that they overruled the action commands given by the basal ganglia.

We mentioned in section 4.2 that there were two different versions of the cortex
model implemented, one where all the motor commands from the basal ganglia
model went through the cortex model before taking action, and a second where the
basal ganglia model directly issued motor commands, except when using the fifth
action and yielding in favour of the cortex model.

The third figure 5.3 shows a test run where the cortex model has been prevented
from overruling the basal ganglia model. In other words, the cortex model’s output
is only used if the basal ganglia model yields control to the cortex model, as opposed
to having all the output from the basal ganglia model go through the cortex model
as in the original situation. Note the second bump in the graph after which there
are no or very few requests for cortex actions. The cortex is no longer reliable, and
the basal ganglia model is issuing almost all motor commands. Four of the runs in
the figure reached the wrong goal, this happened during trial runs 2, 14, 66 and 70.
The last two followed shortly after the second bump and emphasized the fact that
the network had to reevaluate the value of the cortex actions.

Figure 5.4 shows the number of times the cortex model was called divided by the
number of times the basal ganglia model made the final decision plotted against the
number of trials. The initial bump in the graph is because it takes some time for the
rewards from reaching the goals to propagate through the value function. During
that time having the network listen to the cortex model and getting the small reward
associated with it is favourable. Prior to the second bump the basal ganglia model
has learned that listening to the cortex model is again a good strategy, but what
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Figure 5.1. Overlap between patterns corresponding to the optimal action and
network states, no extra reward was given when an action was selected by the cortex
model. Overlap is shown on the y-axis and time steps on the x-axis.

250
200 ]
o | |

100 t |

50 - /

N
\\
w\\ NS N\\\A/ N U\

0 10 20 30 40 50 60

Figure 5.2. This is a plot of the number of steps taken before one of the two goals
was reached overlaid with the number of times the basal ganglia model was silent
letting the cortex model decide the action alone and both plotted against the 55 first
trials. As you can see the percentage of cortex actions are relatively high initially,
this is because the goal rewards have not yet propagated through the value function,
and using the cortex model’s command gives a small reward which at that point in
time looks favourable, and thus gets more usage than merited.
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Figure 5.3. This figure shows the number of steps used to reach a goal and number
of times the cortex model was used plotted versus number of trials. Time steps are
on the x-axis. The second bump in the graph is when the matrix becomes unreliable.
This might be a timing issue, since playback at recall is faster than the learning speed.

happens next is probably due to the speedup of recall in the cortex model, as the
weights appear to be strong enough to partly ignore the control signal from the basal
ganglia model. This situation worsens as the activity in the network is built up over
several iterations. The rat tries to run up or down towards the goal, as it should do
at the intersection, but since it is not yet there it gets stuck. After a few trials with
intense activity the cortex model usage goes down, its output is no longer reliable.
This is very unfortunate, but it should be possible to reduce or perhaps eliminate
most of the lag induced speedup by careful adjustment of the time constants.
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Figure 5.4. Usage of the cortex model plotted relative usage of the basal ganglia
model. Note the two bumps which indicate changes in the behaviour of the network.
The first bump is due to initial exploration, before the goal reward has propagated
through the value function. The second bump is due to the recall speedup of the
cortex model, which makes it unreliable. Note the low activity in the cortex model
after the bump.
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Chapter 6

Discussion

The basal ganglia are involved in the learning of motor behaviour; the common
view is that action sequences are learned in cortex then moved down into the basal
ganglia as they become habitual. Using the reinforcement learning network itself to
store learned behaviour, and have update mechanisms silent, seems like a waste of
resources. Instead we believe that the behaviour is learned by the basal ganglia but
later consolidated in the cortex. An interesting question that we ask is, how could
this be done?

In this report we try to give a plausible model with a network that is capable
of both learning a behaviour and a mechanism for transferring it to a secondary
network for storage and retrieval.

There are other structures of the brain that also have a similar architecture.
One hypothesis is that the Medial Temporal Lobe (MTL) stores a snapshot through
fast learning and then later the memory is consolidated in neocortex. After re-
peated reactivation the neocortex becomes capable of performing the memory re-
trieval without the MTL, (Gluck et al., 1997; Granger et al., 1996).

In figure 5.1 it is interesting to note the increased noise level in the mid part
of the graph, this is the part of the labyrinth where the sound indicating direction
has been turned on, but before the rat has been allowed to turn. This could be
interpreted as a conflict between behaviours on what to do, the rat is supposed to
run forward while at the same time the audio signal tells it to turn left or right.
Further information about the audio, location and action parts of the patterns can
be found in Appendix A.

The problems with the cortex model during later parts (figure 5.2) of the learn-
ing is probably due to a speedup relative to the speed at which the sequence was
originally presented by the basal ganglia model. To have the same speed during
both recall and learning it is important that g—; = 1 but our alpha function required
To. = 1.1 which results in the speedup. The alpha function has two time constants
that both are labelled 7, perhaps by distinguishing between the two this effect could
be reduced. Another alternative is to have some sort of synchronization mechanism
to prevent the cortex model from getting too far ahead.

The overlap for a pattern starts to increase while the previous pattern is still
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active. This feature has been seen in (Averbeck et al., 2002) where the relative order
of actions in a sequence could be found by studying the relative activation in neurons
corresponding to those actions.

There are other models for the cortex-basal ganglia system. Nakahara et al.
(2001) used a different architecture to model the “2x5 task” on monkeys. In that
experiment a monkey is shown a five by five grid where two squares lit up. The
task for the monkey is to press them in the correct order, which it has to learn by
trial and error. Several of these grid configurations are shown one after another.
Some sequences remain the same over days, while others change daily, allowing for
comparison between long and short term learning. Their model has two parallel
systems, one fast learning visual loop with temporary working memory and quick
reset times and a second slower loop, called the motor loop, which takes longer to
learn but can recall learned sequences faster. These two loops are then coordinated
by the presupplementary motor area (pre-SMA). In the beginning of learning the
coordinator uses the visual loop mainly, but as learning progresses the motor loop
gets more responsibility.

With this model they have found interesting correlations between simulated
training data and data measured from real monkeys during training. Reversed se-
quences were as hard to learn as new ones and using the opposite hand for the trial
on a learned sequence increased the errors, but there were still fewer errors than
on a completly new sequence. They also tried blocking parts of the modules in
the network and the results correlated with what they expected from a real world
experiment.

However the experiments performed by Matsumoto et al. (1997) on monkeys
mentioned in the beginning of this chapter favours our model layout over this.
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Chapter 7

Conclusions

In our modified Morita model the implementations of the alpha function and ran-
domized time constants were a success and allowed us to replace the artificial in-
terpolation with a more natural mechanism. There is still some work required to
create a successful lasting transition of the learned behaviour from the basal ganglia
model to the cortex model, because the interaction between the two is complex, and
altering one parameter affects both networks. We are however confident that this
can be done.

Future models will hopefully be a hybrid between the ideas of Morita, Brunel
and our prototype model. Spiking neurons is something that would be interesting
to implement in order to allow us to compare data from simulations with biological
data from real rats. Given more time the problems due to speedup in the recall
using the Morita model should be solvable.
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Appendix A

Pattern Coding

The cortex model uses non-sparse patterns with equal parts of ones and minus ones.
The basal ganglia model on the other hand need sparse binary patterns in order
to work properly. Since the two need to exchange data the patterns had to be
translatable during run time, this is done by the simple transformation

_x—i—l

fla)="3

which fixes the range, but does not translate a sparse pattern to a non-sparse pattern,
since they contain different proportions of ones.

In order to solve the problem with non-sparse to sparse conversion we divided
the patterns into two parts A and B. The first part, A, was sparse with 10% ones and
the rest minus ones. The second part, B, which was three times the size of A, had
just over 63% ones and the rest minus one. When both A and B are taken together
the complete pattern has the proportions required by a non-sparse network, with
half the elements ones and the rest minus ones. A taken alone functions as a sparse
representation of the pattern.

(A1)

Non-sparse Pattern

Sparse Pattern

Figure A.1. Encoding of patterns in sparse and non-sparse parts. 1 is audio, 2
action, 3 location, 4 audio, 5 action, 6 location. Here 4, 5 and 6 compensate for the
sparseness of 1, 2 and 3 to make the overall pattern non-sparse.

Our original approach was to have A and B of equal size where A had 10% ones
and B had 90% of its elements containing ones. This created fix point attractors
and a static network. The reason for this is that given two random patterns « and
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3, if we look at part B 90% of the elements are ones, which means that many of the
ones will be static when going from « to 8, and similarly for part A. This builds up
fix point attractors and the network is unable to learn associations because 82% of
the elements remain the same compared to 68% in our case.

This division of patterns into sparse and non-sparse parts does not have a biolo-
gical analogy, it is simply a way to merge the two networks together. Later versions
of the prototype will have sparse coding throughout and then this special pattern
structure will not be necessary.

34



Bibliography

D. J. Amit and N. Brunel. Model of global spontaneous activity and local structured
activity during delay periods in the cerebral cortex. Cerebral Cortex, 7:237-252,
1997.

B. B. Averbeck, M. V. Chafee, D. A. Crowe, and A. P. Georgopoulos. Parallel
processing of serial movements in prefrontal cortex. Proc Natl Acad Sci U S A.,
2002.

J. Brown, D. Bullock, and S. Grossberg. How the basal ganglia use parallel excitatory
and inhibitory learning pathways to selectively respond to unexpected rewarding
cues. Journal of Neuroscience, 1999.

N. Brunel and X. J. Wang. Effects of neuromodulation in a cortical network model
of object working memory dominated by recurrent inhibition. Journal of Compu-
tational Neuroscience, 11:63-85, 2001.

J. L. Contreras-Vidal and W. Schultz. A predictive reinforcement model of dopamine
neurons for learning approach behaviour. Comparative Neuroscience, 1999.

M. Djurfeldt. Rat-in-Maze framework for See, 2002.

M. Djurfeldt, O. Ekeberg, and A. M. Graybiel. Cortex-basal ganglia interaction and
attractor states. Neurocomputing, (38-40):573-579, 2001.

M. A. Gluck, B. R. Ermita, L. M. Oliver, and C. E. Myers. Extending models of
hippocampal function in animal conditioning to human amnesia. Memory, 1997.

R. Granger, S. P. Wiebe, M. Taketani, and G. Lynch. Distinct memory circuits
composing the hippocampal region. Hippocampus, 1996.

A. M. Graybiel. The basal ganglia and chunking of action repertoires. Neurobiology
of Learning and Memory, 70:119-136, 1998.

D. Hansel, G. Mato, C. Meunier, and L Neltner. On numerical simulations of
integrate-and-fire neural networks. Neural Comput., 1998.

J. C. Houk, J. L. Adams, and A. G. Barto. Models of Information Processing in
the Basal Ganglia, chapter A model of how the basal ganglia generate and use

35



neural signals that predict reinforcement, pages 249-270. M.IL.T. Press, Cam-
bridge, U.S.A., 1995.

C. E. Jahr and C. F. Stevens. Voltage dependence of nmda-activated macroscopic
conductances predicted by single-channel kinetics. The Journal of Neuroscience,
10(9):3178-3182, September 1990.

D. Joel, Y. Niv, and E. Ruppin. Actor-critic models of basal ganglia: new anatomical
and computational perspectives. Neural Networks, 2002.

M. S. Jog, Y. Kubota, C. I. Connolly, V. Hillegaart, and A. M. Graybiel. Building
neural representations of habits. Science, 286:1745-1749, 1999.

M. I. Jordan. Attractor dynamics and parallelism in a connectionist sequential
machine. In Proceedings of the Fight Annual Conference of the Cognitive Science
Society, 1986.

M. I. Jordan. A parallell distributed processing approach. In Advances in Connec-
tionist Theory: Speech. Hillsdale: Erlbaum, 1989.

N. Matsumoto, T. Minamimoto, A. M. Graybiel, and M. Kimura. The effects of uni-
lateral nigrostriatal dopamine depletion on the learning and memory of sequence
motor tasks in monkeys. submitted for publication, 1997.

M. Morita. Computational study on the neural mechanism of sequential pattern
memory. Cognitive Brain Research, 5:137-146, 1996a.

M. Morita. Memory and learning of sequential patterns by nonmonotone neural
networks. Neural Networks, 9(8):1477-1489, 1996b.

M. Morita and A. Suemitsu. Computational modeling of pair-association in inferior
temporal cortex. Cognitive Brain Research, 13:169-178, 2002.

H. Nakahara, K. Doya, and O. Hikosaka. Parallel cortico-basal ganglia mechanisms
for acquisition and execution of visuomotor sequences — a computational approach.
Journal of Cognitive Neuroscience, 2001.

A. Parent, M. Lévesque, and M. Parent. A re-evaluation of the current model of the
basal ganglia. Parkinsonism and Related Disorders, 7:193-198, 2001.

A. Sandberg. Bayesian Attractor Neural Network Models of Memory. PhD thesis,
KTH, Sweden, 2003.

W. Schultz, P. Dayan, and P. R. Montague. A neural substrate of prediction and
reward. Science, 275:1593-1599, 1997.

R. E. Suri and W. Schultz. Learning of sequential movements by neural network
model with dopamine-like reinforcement signal. FEzxperimental Brain Research,
1998.

36



R. E. Suri and W. Schultz. A neural network model with dopamine-like reinforcement
signal that learns a spartial delayed response task. Neuroscience, 1999.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT
Press, 1998.

H. C. Tuckwell. Introduction to Theoretical Neurobiology. Cambridge University
Press, 1998.

J. Wickens. Basal ganglia : structure and computations. Comput. Neural. Syst., 8:
R77-R109, 1997.

37



