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Abstract

Intelligent control has become an issue of primary importance in modern process
automation as it provides the prerequisites for the task of fault detection. The abil-
ity to detect the faults is essential to improve reliability and security of a complex
control system. Parameter estimation methods, state observation schemes, statis-
tical likelihood ratio tests, rule-based expert system reasoning, pattern recognition
techniques, and artificial neural network approaches are the most common method-
ologies developed actively during recent years. In this paper, we describe a completed
feasibility study demonstrating the merit of employing pattern recognition and an
artificial neural network for fault diagnosis through back propagation learning al-
gorithm and making the use of fuzzy approximate reasoning for fault control via
parameter changes in a dynamic system. As a test case, a complex magnetic levi-
tation vehicle (MLV) system is studied. Analytical fault symptoms are obtained by
system dynamics measurements and the classification is carried out through a mul-
tilayer feed-forward network. The neural network is first taught the different fault
situations through training patterns. After the network is trained, it achieves an
overall classification accuracy of 99.78% for a disturbance-free MLV model, 91.4%
for a model with track disturbance irregularities, and 93.85% for a model with mea-
surement noise. Proper actions are performed based on fuzzy reasoning of knowledge
base results in a normal process operation recovered.

Keywords: Intelligent control; neural network; fuzzy logic; pattern recognition;
state observer; fault diagnosis.

1 Introduction

One of the most important goals of intelligent automatic control systems is to increase the
reliability, availability, and safety of those systems. A complex automatic system can consist of
hundreds or even thousands of inter-dependent working elements which are individually subject
to deviation, perturbation, malfunction or failure. Total failure of the systems can cause un-
acceptable economic loss or hazards to personnel. Therefore, it is essential to provide on-line
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operating information by a scheme of observation and monitoring which detects faults as they
occur, identifies the type of perturbation, malfunction, or even completely breakdown of faulty
components, and compensates for the faults by appropriate actions, self-organizing, or even re-
placement in order to meet reliability and safety requirements so that the system can indeed
continue to operate autonomously and satisfactorily.

A number of useful techniques for dynamic fault diagnosis systems have been suggested in
the literature. The methodology of model-based parameter estimation methods are discussed by
Willsky [1]. In his approach, faults appear as parameter or state changes caused by malfunctions
of components. The parameter and state changes which in turn are determined using state
observer techniques. Patton and Frank [2] described the task of the fault diagnosis in dynamic
systems from the viewpoint of both theory and application. Patton and Kangethe, on the other
hand, presented a robust fault diagnosis system using eigenstructure assignment of observers [3].
Jones and Corbin employed a band-limiting filter approach to fault detection [4]. Furthermore,
Kitamura applied fault detection to solve nuclear reactor problems [5]. Kumamaru et al. proposed
statistical methods for fault diagnosis based on state-space and input-output models [6]. Finally,
Walker studied a fault detection threshold determination using the theory of finite state Markov
processes [7] and it should be employed to our advantage [8]. Tt is conceivable that stochastic
modeling can be more realistically extended to include Semi-Markovian processes. However,
in virtually all these methods the relationship between the model parameters and the physical
coefficients needs to be unique and preferably known. In reality, unfortunately, this seldom is
the case.

Rule-based expert systems have also been investigated very extensively for fault detection and
diagnosis problems. Tzafestas designed a fault diagnosis expert system using knowledge-based
artificial intelligence methodology [9]. Tyan and Wang implemented a rule-based fault diagnosis
expert system for an aircraft flight control system [10]. One of the most critical issue turned
out to be the methods of inference, even the design of knowledge base can be proved to be a
very important issue [11]. However, fault diagnosis using rule-based expert systems requires an
extensive knowledge base and the accuracy of the diagnosis depends on the accuracy of the rules.
Moreover, creating and updating a complete and detailed rulebase is usually a time-consuming
task and much process design expertise is needed as well.

Fault Diagnosis utilizing neural network techniques has also become quite an active research
area recently. Dietz, Kiech and Ali constructed a real time system for jet and rocket engine fault
diagnosis [12]. Sorsa et al. have shown the use of perceptron networks in fault diagnosis for
a heat exchanger-continuous stirred tank reactor system [13]. Himmelblau et al. discussed the
detection of faults in manufacturing electronic panels using neural networks [14].

In this paper, we study the possible fault symptoms occurring in a magnetic levitation vehicle
system. The fault diagnosis monitor is governed by eigenstructure assignment of state estimator
and MLV system control is accomplished using a state feedback controller. The method proceeds
in four stages. First, the MLV system dynamic state variables in steady state are estimated
by invoking the state observer estimation techniques and the steady-state data are collected as
training patterns. Then fault symptoms are defined analytically according to physical system
features and a neural network fault classifier is then designed by using the back-propagation
algorithm. After the fault situation has been classified, fault elimination decision is obtained
according to the inference engine of fuzzy fault control in a heuristic knowledge base. Finally,
appropriate actions such as repair, maintenance, and system reconfiguration are accomplished by
changing the faulty system parameters in order to recover the process back to a normal operation.

2 General Scheme for Intelligent Control Systems

A general scheme for neural fault diagnosis and fuzzy fault control is shown in Figure 1.
There are four distinguishable phases that can be described as follows:

1. Process Control & State Observer - determining the system dynamic behavior and
estimating inaccessible states through pole assignment design techniques.

2. Neural Fault Diagnosis - deciding the class of malfunctions and detecting the cause of
malfunctions in a complex system based on observable features of fault symptoms. Results
of training and learning yields an artificial neural network classifier as a part of the system.



3. Fuzzy Fault Control - deriving a series of actions and analyzing consequences of given
fault situations. These results are useful decision supports for human operators.

4. Actions - performing an appropriate action decision based on approximate reasoning on
faults.
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Figure 1: General scheme for intelligent control systems.

2.1 Process Control & State Observer

The pole assignment design technique allows the assignment of the poles of the closed-loop
transfer function to any desired location. Modern control theory introduces the concept of using
system states to improve system performance based on state feedback. For some inaccessible
states in a practical physical system, state observation provides a technique for estimating the
states of a plant [15]. The overall system block diagram including state controller and observer
is shown in Figure 2. Consider the case of a controllable and observable system governed by the
state and output equations

x = Ax + Bu

y = Cx + Du

The closed-loop system of state feedback and state observer can be represented by the composite

form
][ e [ ][R ] ®

The characteristic polynomial for the matrix (Eq. 2) is
Q(A) = |AI— (A - BK)||AXI- (A — LC)|

Therefore, the eigenvalues of A — BK and A — LC can be assigned independently by the selec-
tion of appropriate matrix K and L. This permits the controller and the observer to be designed
separately and the system dynamic state variables in steady state can be estimated by invoking
the state observer estimation techniques.

2.2 Neural Fault Diagnosis

The neural fault diagnosis can be viewed as a pattern recognition problem. This spirit of
pattern recognition techniques is to solve the problem via essential “features”. Perhaps the most
meaningful and significant “features” is nothing more than “state variables.” In modern control
theory, as it 1s well known that the state variables represent a set of most compact, structurally
speaking, information of a dynamic system. Therefore, in neural fault diagnosis the symptoms
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Figure 2: System block diagram with state-feedback and observer.
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serve as the input patterns to the recognition system which identifies the faults by the analysis
of the input features. The classifier is carried out by an artificial neural network based on back-
propagation learning algorithm.

An artificial neural network (ANN) is made out of neuron-like nodes that are arranged in
well-formed layers and pass data through weighted connections. The network learns by changing
the values of their weights. With suitable weights, such a network can model any computable
function. A node in such a network typically multiplies each input by its weight, sums the
products, then (for back propagation trammg) passes the sum through a nonlinear transfer
function to produce a result. An ANN is constituted a set of cells or neurons, each of which
carries out a sigmoid type of computation, while receiving inputs from and sending outputs to
other neurons. Although network models do not generally achieve human-like performance, they
offer interesting means for pattern recognition and classification. The evolution of state s;()
of neuron ¢ receiving inputs from N neurons has the following behavior described by the state
transition equation:

N
=D Wigsi(t) + Li(t) — 6;
ji=1

si(t + A = f(Vi(t)), i=12... N

Where s;(t) represents the internal states of the i-th neuron; I;(?) is a constant external input
to the ¢-th neuron; And the coefficients W;; associated with the N inputs of a neuron ¢ are the

“synaptic Welghts » The neuron i is the post synaptic neuron of the synapse associated with W;;
and neuron j is its presynaptic neuron. The state of this neuron at time ¢ + At is affected by
the states s; rendered by the neurons j at time ¢ and by an external input I;(¢). If this external
input is useless, it can be discarded. In this case: I;(t) = 0 regardless the value of t. The bias
0; of neuron ¢ determines how “sensitive” it is to the inputs it receives. The potential V;(¢) is
found by adding the external input contribution I;(¢) to the sum weighted by W;; of the state s;
presented to the inputs at time ¢, and subtracting the internal offset 8; from the result. The new
state s;(t + At) is calculated from the potential function through a nonlinear activation function
f. For most of the studies, a sigmoid function is used to insure that the activation function
is differentiable. Therefore, for a neural fault diagnosis the steady-state data are collected as
training patterns. The fault symptoms are defined analytically according to physical system
features and a neural network fault classifier is then designed by using the back-propagation
algorithm.



2.3 Fuzzy Fault Control

Since the capability of communication in a “natural” way plays an important role in human
thinking, fuzzy logic allows the knowledge represented by linguistic variables and a set of IF....
THEN.... rules seems to be the most appropriate for the fault control of a dynamic system [16].
Due to the facts of the partial matching attribute of fuzzy control rules and the overlap conditions
of membership functions, usually more than one fuzzy control rules are fired at any given time
in practice. The methodology which is used in deciding what control action should be taken as
the result of the firing of several rules can be referred to as the process of conflict resolution.

The knowledge base is a repository of human knowledge which is imprecise in nature. There-
fore, the storage of this vague and uncertain knowledge making the use of fuzzy logic performs
more satisfactory as compared with the use of crisp concepts and symbolism. The production
rule knowledge-base in fuzzy logic fault control system contains the condition as well as action
parts of the linguistic terms in the form of IF...., THEN...., which reflect the human expert’s
knowledge of the system. Moreover, approximate reasoning of these linguistic terms also per-
forms computation of knowledge acquisition in order to mimic a human’s thinking. Therefore,
after the fault situation has been classified, fault elimination decision is obtained according to
the inference engine of fuzzy fault control in a heuristic knowledge base.

2.4 Actions

An essential prerequisite for improving the reliability and security of a complex control system
is one of the following appropriate actions must be taken after the decision from fuzzy fault control
system 1s made.

e process reconfiguration such as system parameter changes,
e fault elimination such as repair and maintenance,

e operation in an alternative mode, and

e stop operation.

Therefore, after fault elimination decision has been made by fuzzy fault control, appropriate
actions such as repair, maintenance, and system reconfiguration can be accomplished by changing
the faulty system parameters in order to recover the process back to a normal operation.

3 Example: Fault Diagnosis/Control of the Magnetic Lev-
itation Vehicle System

Figure 3 shows the cross section of a MLV system. The track is a T-shaped concrete guideway.
Electromagnets are distributed along the guideway and along the length of the train in matched
pairs. The magnetic attraction of the vertically paired magnets balances the force of gravity
and levitates the vehicle above the guideway. The horizontally paired magnets stabilize the
vehicle against sideways forces. Forward propulsion is produced by linear induction motor action
between train and guideway.

3.1 System Dynamics

The equations characterizing the train’s vertical motion are now being developed according
to the law of physics. It is desired to control the gap distance d within a close tolerance in normal
operation of the train. The gap distance d between the track and the train magnets is

d=z—h

Then ) )
d=z2—h



Fixed reference plane

Figure 3: Cross section of a MLV train.

d=%—h

where the dots denote time derivatives. The magnet produces a force that is dependent upon
residual magnetism and upon the current passing through the magnetizing circuit. For small
changes in the magnetizing current ¢ and the gap distance d, that force is approximately

flz—Gi—l—Hd

where G and H are positive constants. That force acts to accelerate the mass M of the train in
a vertical direction, so

fi=M:=-Gi+ Hd
For increased current, the distance z diminishes, reducing d as the vehicle is attracted to the
guideway.
A network model for the magnetizing circuit 1s given in Figure 4. This circuit represents a
generator driving a coil wrapped around the magnet on the vehicle. In this circuit

RHJJ—%?J:U
the three state variables
z1 =d (gap distance)
2s=d (gap velocity)

r3 =i (magnetizing current)

are convenient, and in terms of them the vertical motion state equations are
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Figure 4: Magnetizing circuit model.

[ Fault ]| Fault Situations
1 Motor overheating
P2 Power source instability
3 Magnetic flux loss
F4 Malfunction of vertical pair magnets
5 Malfunction of horizontal pair magnets
e Vehicle overload
T Motor burnout
8 Fouled tracking input set point
9 Power source breakdown

Table 1: Fault symptoms of MLV system.

where
u; = v (voltage control input)

f=h (force disturbance of guideway irregularities)

If the gap distance d is considered to be the system output, then the state variable output equation

is d = z1. The voltage v is considered to be a control input, while guideway irregularities f = h
constitute a disturbance. The system parameters M, G, L, and R can be derived analytically by
static test and dynamic equilibrium of the vehicle.

The MLV system and observer state responses for each state variable using pole assignment
design with u; = —300, f = 0, and initial condition o = [0 0 8] are shown 1n Figures 5.

3.2 Implementation of the Neural Network Fault Diagnosis Classifier

The chosen artificial neural model (see Figure 6) for the MLV process fault diagnosis classifier
is a fully-connected multilayer feed-forward network with sigmoid activation functions, trained
by the back-propagation algorithm to minimize the sum-squared error. The input layer consists
of 3 units encoding the steady-state values from each state variable. A choice of 20 hidden
layer units gave the best network performance. The output layer consists of 10 units encoding
a representation of 10 different classes. For example, the target vector for a fault belonging to
class 3 would be [0,0,1,0,---,0]. Nine representative fault situations are given in Table 1. The
training data contain 70 patterns for normal operation and 70 patterns for each fault situation.
Figure 7 presents the training data of 700 simulated observations for normal operation (label N)
and all fault symptoms (label from 1 to 9) of a disturbance-free MLV system. Figure 8 shows
the case of training data of an MLV model with track disturbance irregularities. The network’s
response to a given input is determined by the output unit having the highest activation state
with a 10% confidence level.

The following modifications were made in order to speed up the learning phase:
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Figure 5: MLV system responses of state x1, x2, 3 and observer responses of state 1, @2, 3.



e We added momentum (me = 0.95) in back-propagation to prevent the network from getting
stuck in a shallow local minimum. The mathematical expression of back-propagation with
momentum can be written as:

AW (i, j) = meAW (3, j) + (1 — me)lrAE(4) P(j)

e An adaptive learning rate was applied to decrease the training time by keeping the learning
reasonably high while insuring stable learning.

o We chose initial weights and biases by the method of Nguyen and Widrow rather than
picking purely random values. This tends to lead to a satisfactory classification with fewer
training epochs.

X1

features X, — fault

X3

Neural Fault Diagnosis

Figure 6: Connectionist neural network architecture of MLV fault diagnosis classifier.

3.3 Implementation of Fuzzy Fault Control System

The fuzzy logic approach for the fuzzy fault control system is to introduce membership
functions of fuzzy subsets which have the appropriate interval of universe of discourse for each
state @1, x2, xs3, and system parameter such as v, L, M, R, and u; taken the degree of membership
between 0 and 1. The architecture of fuzzy fault control for MLV system is shown in Figure
9. A typical bell-shape membership function of a fuzzy subset for each state using the L-R
parametrization is suggested by Dubois and Prade. Figure 10 shows the membership functions
of fuzzy subsets of state variables x1, xs, x3, and system inductance parameter variables I,
respectively.

The terms of linguistic variables are used to describe the states of the MLV system as follows:
S is “small;” M is “medium;” B is “big;” VB is “very big;” N is “negative;” Z is “zero;” P is
“positive;” L is “low;” H is “high;” VH is “very high;” EH is “extremely high;” P is “proper
loaded;” O is “overloaded,” E i1s “excessive loaded.” The knowledge-base of fuzzy fault control
for MLV system contains 12 “If-then” rules shown as follows:

Rule 1. If fault is Fy then repair cooling system.
Rule 2. If fault is Fy and x1 1s S and @5 is Z and x5 is M then v is L.
Rule 3. If fault is Fy and x1 1s M and 25 is Z and x5 is M then v is L.



MLV Disturbance-free Fault Patterns (Symptom 1 to 6) MLV Disturbance-free Fault Patterns (Symptom 7 to 9)
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Figure 7: MLV disturbance-free fault patterns clustering. (a) symptom 1 to 6; (b) symptom 7
to 9.

MLV with Disturbance Fault Patterns (Symptom 1 to 6) MLV with Disturbance Fault Patterns (Symptom 7 to 9)
i
% 4, 2000
1 b it
i : Fr
220 + . %fﬂ 21500
£ £
3 ¥ i ++ 3 £ 7
£ 3 £
3 i T 3
o1 fi © 1000
£ £ +
N + N ¥
210 2 500
<3 <3
] o]
g 2 N 2
4
95 + 9 0
T N w 9 N
b 7

X2 (Gap Velocity) h X1 (Gap Distance) X2 (Gap Velocity) - X1 (Gap Distance)

Figure 8: MLV with disturbance fault patterns clustering. (a) symptom 1 to 6; (b) symptom 7
to 9.

10



states
X1 X5 X3

Fuzzifier

¢

Inference | pefuzzifier
Engine

?

Knowledge
Base

decision

fault

Fuzzy Fault Control
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Rule 4. If fault is F'5 and x1 1s S and x5 1s Z and x5 is L then L 1s L.

Rule 5. If fault is F5 and x1 is M and x5 is Z and x5 1s M then L is L.
Rule 6. If fault is Fi then replace vertical pair magnets.

Rule 7. If fault is F5 then replace horizontal pair magnets.

Rule 8. If fault is F's and x1 1s S and x5 is Z and x5 is L then M is P.
Rule 9. If fault is Fis and x1 is M and x5 is Z and x5 1s M then M is P.
Rule 10. If fault is F7 and x1 is M and x5 is Z and x3 i1s EH then R is M.
Rule 11. If fault is Fs and #; is VB and x5 1s Z and x3 is VH then u; 1s M.
Rule 12. If fault is Fy then stop operation.

3.4 Simulation Results

The neural network simulations were carried out on a DEC 5000 workstation. In the MLV
neural fault diagnosis system, a momentum value of 0.95, error ratio value of 1.04, and an
adaptive learning rate value of 0.01 with an increase multiplier of 1.05 and a decrease multiplier
of 0.7 were applied to speed up the training time. It was found that on the order of 14000
epochs were required to reach the system error goal using the training data of 700 observed
measurement patterns. Figure 11 shows the sum-squared error between the actual output and
the desired output and the learning rate throughout the training period. The generalization
properties are evaluated by 300 testing data. Since in reality the design may be susceptible to
measurement noise, a normally distributed zero mean random noise of unity variance was added
to each state. The MLV system response for each state variable with measurement noise and the
training data of an MLV model with measurement noise are shown in Figure 14 and Figure 15,
respectively. The overall classification accuracies of 99.78% for the disturbance-free MLV model,
91.4% for the MLV model with track disturbance irregularities, and 93.85% for the MLV model
with noise measurement were achieved. Fuzzy fault control performed satisfactory and recovered
the MLV system back to a normal operation for both disturbance-free model and a model with
track disturbance irregularities (see Figure 12, 13, 16).
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MLV Disturbance-free Fault Patterns After Fuzzy Fault Control (Symptom 1 to 6) MLV Disturbance-free Fault Patterns After Fuzzy Fault Control (Symptom 7 to 9)
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Figure 12: MLV disturbance-free fault patterns clustering after fuzzy fault control. (a) symptom
1 to 6; (b) symptom 7 to 9.
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Figure 13: MLV with disturbance fault patterns clustering after fuzzy fault control. (a) symptom
1 to 6; (b) symptom 7 to 9.
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MLV with Measurement Noise Fault Patterns (Symptom 1 to 6) MLV with Measurement Noise Fault Patterns (Symptom 7 to 9)
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Figure 15: MLV with measurement noise fault patterns clustering. (a) symptom 1 to 6; (b)
symptom 7 to 9.
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Figure 16: MLV with measurement noise fault patterns clustering after fuzzy fault control. (a)
symptom 1 to 6; (b) symptom 7 to 9.
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4 Conclusions

In this paper, a completed feasibility study of process fault diagnosis/control for a complex
magnetic levitation vehicle intelligent control system using neural network and fuzzy logic is
presented. System performance was determined by a state-feedback controller and observed
state measurement data in the steady-state were obtained via state estimator. The learning,
training, and classification of system fault symptoms were carried out through an artificial neural
network and malfunction of the process was eliminated via fuzzy fault control system. It has
been shown that a neural network classifier accomplishes a satisfactory classification accuracy in
both disturbance-free and track disturbance irregularity cases and fuzzy fault control recovers the
ill process operation back to normal. It is also important to note that the purpose of this paper
is to demonstrate the concept of a “diagnostic doctor” for the dynamic systems. However, the
dynamic system studied in this paper is a linear and time-invariant system. More difficult and
complex nonlinear systems have also been investigated at present. A more thorough comparative
study is nearly a certainty in the near future.
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