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operating information by a scheme of observation and monitoring which detects faults as theyoccur, identi�es the type of perturbation, malfunction, or even completely breakdown of faultycomponents, and compensates for the faults by appropriate actions, self-organizing, or even re-placement in order to meet reliability and safety requirements so that the system can indeedcontinue to operate autonomously and satisfactorily.A number of useful techniques for dynamic fault diagnosis systems have been suggested inthe literature. The methodology of model-based parameter estimation methods are discussed byWillsky [1]. In his approach, faults appear as parameter or state changes caused by malfunctionsof components. The parameter and state changes which in turn are determined using stateobserver techniques. Patton and Frank [2] described the task of the fault diagnosis in dynamicsystems from the viewpoint of both theory and application. Patton and Kangethe, on the otherhand, presented a robust fault diagnosis system using eigenstructure assignment of observers [3].Jones and Corbin employed a band-limiting �lter approach to fault detection [4]. Furthermore,Kitamura applied fault detection to solve nuclear reactor problems [5]. Kumamaru et al. proposedstatistical methods for fault diagnosis based on state-space and input-output models [6]. Finally,Walker studied a fault detection threshold determination using the theory of �nite state Markovprocesses [7] and it should be employed to our advantage [8]. It is conceivable that stochasticmodeling can be more realistically extended to include Semi-Markovian processes. However,in virtually all these methods the relationship between the model parameters and the physicalcoe�cients needs to be unique and preferably known. In reality, unfortunately, this seldom isthe case.Rule-based expert systems have also been investigated very extensively for fault detection anddiagnosis problems. Tzafestas designed a fault diagnosis expert system using knowledge-basedarti�cial intelligence methodology [9]. Tyan and Wang implemented a rule-based fault diagnosisexpert system for an aircraft 
ight control system [10]. One of the most critical issue turnedout to be the methods of inference, even the design of knowledge base can be proved to be avery important issue [11]. However, fault diagnosis using rule-based expert systems requires anextensive knowledge base and the accuracy of the diagnosis depends on the accuracy of the rules.Moreover, creating and updating a complete and detailed rulebase is usually a time-consumingtask and much process design expertise is needed as well.Fault Diagnosis utilizing neural network techniques has also become quite an active researcharea recently. Dietz, Kiech and Ali constructed a real time system for jet and rocket engine faultdiagnosis [12]. Sorsa et al. have shown the use of perceptron networks in fault diagnosis fora heat exchanger-continuous stirred tank reactor system [13]. Himmelblau et al. discussed thedetection of faults in manufacturing electronic panels using neural networks [14].In this paper, we study the possible fault symptoms occurring in a magnetic levitation vehiclesystem. The fault diagnosis monitor is governed by eigenstructure assignment of state estimatorand MLV system control is accomplished using a state feedback controller. The method proceedsin four stages. First, the MLV system dynamic state variables in steady state are estimatedby invoking the state observer estimation techniques and the steady-state data are collected astraining patterns. Then fault symptoms are de�ned analytically according to physical systemfeatures and a neural network fault classi�er is then designed by using the back-propagationalgorithm. After the fault situation has been classi�ed, fault elimination decision is obtainedaccording to the inference engine of fuzzy fault control in a heuristic knowledge base. Finally,appropriate actions such as repair, maintenance, and system recon�guration are accomplished bychanging the faulty system parameters in order to recover the process back to a normal operation.2 General Scheme for Intelligent Control SystemsA general scheme for neural fault diagnosis and fuzzy fault control is shown in Figure 1.There are four distinguishable phases that can be described as follows:1. Process Control & State Observer - determining the system dynamic behavior andestimating inaccessible states through pole assignment design techniques.2. Neural Fault Diagnosis - deciding the class of malfunctions and detecting the cause ofmalfunctions in a complex system based on observable features of fault symptoms. Resultsof training and learning yields an arti�cial neural network classi�er as a part of the system.2



3. Fuzzy Fault Control - deriving a series of actions and analyzing consequences of givenfault situations. These results are useful decision supports for human operators.4. Actions - performing an appropriate action decision based on approximate reasoning onfaults.
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ActionsFigure 1: General scheme for intelligent control systems.2.1 Process Control & State ObserverThe pole assignment design technique allows the assignment of the poles of the closed-looptransfer function to any desired location. Modern control theory introduces the concept of usingsystem states to improve system performance based on state feedback. For some inaccessiblestates in a practical physical system, state observation provides a technique for estimating thestates of a plant [15]. The overall system block diagram including state controller and observeris shown in Figure 2. Consider the case of a controllable and observable system governed by thestate and output equations _x = Ax +Buy = Cx +DuThe closed-loop system of state feedback and state observer can be represented by the compositeform � _x_e � = � A �BK BK0 A� LC � � xe �+ � B0 �u1 (1)The characteristic polynomial for the matrix (Eq. 2) isQ(�) = j�I� (A�BK)jj�I� (A � LC)jTherefore, the eigenvalues of A�BK and A � LC can be assigned independently by the selec-tion of appropriate matrixK and L. This permits the controller and the observer to be designedseparately and the system dynamic state variables in steady state can be estimated by invokingthe state observer estimation techniques.2.2 Neural Fault DiagnosisThe neural fault diagnosis can be viewed as a pattern recognition problem. This spirit ofpattern recognition techniques is to solve the problem via essential \features". Perhaps the mostmeaningful and signi�cant \features" is nothing more than \state variables." In modern controltheory, as it is well known that the state variables represent a set of most compact, structurallyspeaking, information of a dynamic system. Therefore, in neural fault diagnosis the symptoms3
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xu = v x = Ax+Buu1Figure 2: System block diagram with state-feedback and observer.serve as the input patterns to the recognition system which identi�es the faults by the analysisof the input features. The classi�er is carried out by an arti�cial neural network based on back-propagation learning algorithm.An arti�cial neural network (ANN) is made out of neuron-like nodes that are arranged inwell-formed layers and pass data through weighted connections. The network learns by changingthe values of their weights. With suitable weights, such a network can model any computablefunction. A node in such a network typically multiplies each input by its weight, sums theproducts, then (for back propagation training) passes the sum through a nonlinear transferfunction to produce a result. An ANN is constituted a set of cells or neurons, each of whichcarries out a sigmoid type of computation, while receiving inputs from and sending outputs toother neurons. Although network models do not generally achieve human-like performance, theyo�er interesting means for pattern recognition and classi�cation. The evolution of state si(t)of neuron i receiving inputs from N neurons has the following behavior described by the statetransition equation: Vi(t) = NXj=1Wijsj(t) + Ii(t) � �isi(t +�t) = f(Vi(t)); i = 1; 2; : : : ; NWhere si(t) represents the internal states of the i-th neuron; Ii(t) is a constant external inputto the i-th neuron; And the coe�cients Wij associated with the N inputs of a neuron i are the\synaptic weights." The neuron i is the post synaptic neuron of the synapse associated with Wijand neuron j is its presynaptic neuron. The state of this neuron at time t +�t is a�ected bythe states sj rendered by the neurons j at time t and by an external input Ii(t). If this externalinput is useless, it can be discarded. In this case: Ii(t) = 0 regardless the value of t. The bias�i of neuron i determines how \sensitive" it is to the inputs it receives. The potential Vi(t) isfound by adding the external input contribution Ii(t) to the sum weighted by Wij of the state sjpresented to the inputs at time t, and subtracting the internal o�set �i from the result. The newstate si(t+�t) is calculated from the potential function through a nonlinear activation functionf . For most of the studies, a sigmoid function is used to insure that the activation functionis di�erentiable. Therefore, for a neural fault diagnosis the steady-state data are collected astraining patterns. The fault symptoms are de�ned analytically according to physical systemfeatures and a neural network fault classi�er is then designed by using the back-propagationalgorithm. 4



2.3 Fuzzy Fault ControlSince the capability of communication in a \natural" way plays an important role in humanthinking, fuzzy logic allows the knowledge represented by linguistic variables and a set of IF....,THEN.... rules seems to be the most appropriate for the fault control of a dynamic system [16].Due to the facts of the partial matching attribute of fuzzy control rules and the overlap conditionsof membership functions, usually more than one fuzzy control rules are �red at any given timein practice. The methodology which is used in deciding what control action should be taken asthe result of the �ring of several rules can be referred to as the process of con
ict resolution.The knowledge base is a repository of human knowledge which is imprecise in nature. There-fore, the storage of this vague and uncertain knowledge making the use of fuzzy logic performsmore satisfactory as compared with the use of crisp concepts and symbolism. The productionrule knowledge-base in fuzzy logic fault control system contains the condition as well as actionparts of the linguistic terms in the form of IF...., THEN...., which re
ect the human expert'sknowledge of the system. Moreover, approximate reasoning of these linguistic terms also per-forms computation of knowledge acquisition in order to mimic a human's thinking. Therefore,after the fault situation has been classi�ed, fault elimination decision is obtained according tothe inference engine of fuzzy fault control in a heuristic knowledge base.2.4 ActionsAn essential prerequisite for improving the reliability and security of a complex control systemis one of the following appropriate actions must be taken after the decision from fuzzy fault controlsystem is made.� process recon�guration such as system parameter changes,� fault elimination such as repair and maintenance,� operation in an alternative mode, and� stop operation.Therefore, after fault elimination decision has been made by fuzzy fault control, appropriateactions such as repair, maintenance, and system recon�guration can be accomplished by changingthe faulty system parameters in order to recover the process back to a normal operation.3 Example: Fault Diagnosis/Control of the Magnetic Lev-itation Vehicle SystemFigure 3 shows the cross section of a MLV system. The track is a T-shaped concrete guideway.Electromagnets are distributed along the guideway and along the length of the train in matchedpairs. The magnetic attraction of the vertically paired magnets balances the force of gravityand levitates the vehicle above the guideway. The horizontally paired magnets stabilize thevehicle against sideways forces. Forward propulsion is produced by linear induction motor actionbetween train and guideway.3.1 System DynamicsThe equations characterizing the train's vertical motion are now being developed accordingto the law of physics. It is desired to control the gap distance d within a close tolerance in normaloperation of the train. The gap distance d between the track and the train magnets isd = z � hThen _d = _z � _h5
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Figure 3: Cross section of a MLV train.�d = �z � �hwhere the dots denote time derivatives. The magnet produces a force that is dependent uponresidual magnetism and upon the current passing through the magnetizing circuit. For smallchanges in the magnetizing current i and the gap distance d, that force is approximatelyf1 = �Gi+Hdwhere G and H are positive constants. That force acts to accelerate the mass M of the train ina vertical direction, so f1 = M �z = �Gi +HdFor increased current, the distance z diminishes, reducing d as the vehicle is attracted to theguideway.A network model for the magnetizing circuit is given in Figure 4. This circuit represents agenerator driving a coil wrapped around the magnet on the vehicle. In this circuitRi+ Li� LHG _d = vthe three state variables x1 = d (gap distance)x2 = _d (gap velocity)x3 = i (magnetizing current)are convenient, and in terms of them the vertical motion state equations are" _x1_x2_x3 # = 26664 0 1 0HG 0 � GM0 HG �RL 37775" x1x2x3 # + " 0 00 �11L 0 # � u1f � (2)6
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dFigure 4: Magnetizing circuit model.Fault Fault SituationsF1 Motor overheatingF2 Power source instabilityF3 Magnetic 
ux lossF4 Malfunction of vertical pair magnetsF5 Malfunction of horizontal pair magnetsF6 Vehicle overloadF7 Motor burnoutF8 Fouled tracking input set pointF9 Power source breakdownTable 1: Fault symptoms of MLV system.where u1 = v (voltage control input)f = �h (force disturbance of guideway irregularities)If the gap distance d is considered to be the system output, then the state variable output equationis d = x1. The voltage v is considered to be a control input, while guideway irregularities f = �hconstitute a disturbance. The system parameters M, G, L, and R can be derived analytically bystatic test and dynamic equilibrium of the vehicle.The MLV system and observer state responses for each state variable using pole assignmentdesign with u1 = �300; f = 0, and initial condition x0 = [0 0 8] are shown in Figures 5.3.2 Implementation of the Neural Network Fault Diagnosis Classi�erThe chosen arti�cial neural model (see Figure 6) for the MLV process fault diagnosis classi�eris a fully-connected multilayer feed-forward network with sigmoid activation functions, trainedby the back-propagation algorithm to minimize the sum-squared error. The input layer consistsof 3 units encoding the steady-state values from each state variable. A choice of 20 hiddenlayer units gave the best network performance. The output layer consists of 10 units encodinga representation of 10 di�erent classes. For example, the target vector for a fault belonging toclass 3 would be [0; 0; 1; 0; � � � ; 0]. Nine representative fault situations are given in Table 1. Thetraining data contain 70 patterns for normal operation and 70 patterns for each fault situation.Figure 7 presents the training data of 700 simulated observations for normal operation (label N)and all fault symptoms (label from 1 to 9) of a disturbance-free MLV system. Figure 8 showsthe case of training data of an MLV model with track disturbance irregularities. The network'sresponse to a given input is determined by the output unit having the highest activation statewith a 10% con�dence level.The following modi�cations were made in order to speed up the learning phase:7
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Figure 5: MLV system responses of state x1, x2, x3 and observer responses of state x̂1, x̂2, x̂3.8



� We added momentum(mc = 0.95) in back-propagation to prevent the network from gettingstuck in a shallow local minimum. The mathematical expression of back-propagation withmomentum can be written as:�W (i; j) = mc�W (i; j) + (1 �mc)lr�E(i)P (j)� An adaptive learning rate was applied to decrease the training time by keeping the learningreasonably high while insuring stable learning.� We chose initial weights and biases by the method of Nguyen and Widrow rather thanpicking purely random values. This tends to lead to a satisfactory classi�cation with fewertraining epochs.
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Figure 6: Connectionist neural network architecture of MLV fault diagnosis classi�er.3.3 Implementation of Fuzzy Fault Control SystemThe fuzzy logic approach for the fuzzy fault control system is to introduce membershipfunctions of fuzzy subsets which have the appropriate interval of universe of discourse for eachstate x1, x2, x3, and system parameter such as v, L,M , R, and u1 taken the degree of membershipbetween 0 and 1. The architecture of fuzzy fault control for MLV system is shown in Figure9. A typical bell-shape membership function of a fuzzy subset for each state using the L-Rparametrization is suggested by Dubois and Prade. Figure 10 shows the membership functionsof fuzzy subsets of state variables x1, x2, x3, and system inductance parameter variables L,respectively.The terms of linguistic variables are used to describe the states of the MLV system as follows:S is \small;" M is \medium;" B is \big;" VB is \very big;" N is \negative;" Z is \zero;" P is\positive;" L is \low;" H is \high;" VH is \very high;" EH is \extremely high;" P is \properloaded;" O is \overloaded," E is \excessive loaded." The knowledge-base of fuzzy fault controlfor MLV system contains 12 \If-then" rules shown as follows:Rule 1. If fault is F1 then repair cooling system.Rule 2. If fault is F2 and x1 is S and x2 is Z and x3 is M then v is L.Rule 3. If fault is F2 and x1 is M and x2 is Z and x3 is M then v is L.9



0
5

10
15

20
25

30

−0.2

−0.1

0

0.1

0.2
0

5

10

15

20

25

X2 (Gap Velocity) X1 (Gap Distance)

X
3

 (
M

a
g

n
e

ti
z
in

g
 C

u
rr

e
n

t)
MLV Disturbance−free Fault Patterns (Symptom 1 to 6)

62
5

1 4

3

N

−10
0

10
20

30
40

50

−0.2

−0.1

0

0.1

0.2
0

500

1000

1500

2000

X2 (Gap Velocity) X1 (Gap Distance)

X
3

 (
M

a
g

n
e

ti
z
in

g
 C

u
rr

e
n

t)

MLV Disturbance−free Fault Patterns (Symptom 7 to 9)

8

7

N
9(a) (b)Figure 7: MLV disturbance-free fault patterns clustering. (a) symptom 1 to 6; (b) symptom 7to 9.

0
5

10
15

20
25

30

-0.2

-0.1

0

0.1

0.2
0

5

10

15

20

25

X1 (Gap Distance)X2 (Gap Velocity)

X
3
 (

M
a
g
n
e
ti
z
in

g
 C

u
rr

e
n
t)

MLV with Disturbance Fault Patterns (Symptom 1 to 6)

2

6

1
4

5

3

N

0
10

20
30

40
50

60

-0.2

-0.1

0

0.1

0.2
-500

0

500

1000

1500

2000

X1 (Gap Distance)X2 (Gap Velocity)

X
3
 (

M
a
g
n
e
ti
z
in

g
 C

u
rr

e
n
t)

MLV with Disturbance Fault Patterns (Symptom 7 to 9)

8

7

9 N(a) (b)Figure 8: MLV with disturbance fault patterns clustering. (a) symptom 1 to 6; (b) symptom 7to 9. 10



2

Fuzzifier

31x x x

Inference
Engine

Base
Knowledge

decisionfault

states

Fuzzy Fault Control

Defuzzifier

Figure 9: Architecture of fuzzy fault control for MLV system.
0 5 10 15 20 25 30 35 40 45 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

χ1

S M B VB

µ

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

χ2

N Z P

µ(a) (b)
0 10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

χ3

L M H VH EH

µ

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
L M H

µ(c) (d)Figure 10: Membership functions of variables (a) x1; (b) x2; (c) x3; (d) L.11



Rule 4. If fault is F3 and x1 is S and x2 is Z and x3 is L then L is L.Rule 5. If fault is F3 and x1 is M and x2 is Z and x3 is M then L is L.Rule 6. If fault is F4 then replace vertical pair magnets.Rule 7. If fault is F5 then replace horizontal pair magnets.Rule 8. If fault is F6 and x1 is S and x2 is Z and x3 is L then M is P.Rule 9. If fault is F6 and x1 is M and x2 is Z and x3 is M then M is P.Rule 10. If fault is F7 and x1 is M and x2 is Z and x3 is EH then R is M.Rule 11. If fault is F8 and x1 is VB and x2 is Z and x3 is VH then u1 is M.Rule 12. If fault is F9 then stop operation.3.4 Simulation ResultsThe neural network simulations were carried out on a DEC 5000 workstation. In the MLVneural fault diagnosis system, a momentum value of 0.95, error ratio value of 1.04, and anadaptive learning rate value of 0.01 with an increase multiplier of 1.05 and a decrease multiplierof 0.7 were applied to speed up the training time. It was found that on the order of 14000epochs were required to reach the system error goal using the training data of 700 observedmeasurement patterns. Figure 11 shows the sum-squared error between the actual output andthe desired output and the learning rate throughout the training period. The generalizationproperties are evaluated by 300 testing data. Since in reality the design may be susceptible tomeasurement noise, a normally distributed zero mean random noise of unity variance was addedto each state. The MLV system response for each state variable with measurement noise and thetraining data of an MLV model with measurement noise are shown in Figure 14 and Figure 15,respectively. The overall classi�cation accuracies of 99.78% for the disturbance-free MLV model,91.4% for the MLV model with track disturbance irregularities, and 93.85% for the MLV modelwith noise measurement were achieved. Fuzzy fault control performed satisfactory and recoveredthe MLV system back to a normal operation for both disturbance-free model and a model withtrack disturbance irregularities (see Figure 12, 13, 16).
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