
AI and A-Life: Never Mind The Blocksworld�Dave Cli�School of Cognitive and Computing Sciences,University of Sussex,Brighton BN1 9QH, U.K.davec@cogs.susx.ac.ukAbstractThis paper discusses the relationship between Arti�cial Intelligence (AI) and Ar-ti�cial Life (A-Life). A-Life research addresses a wide range of phenomena, someof which have no obvious bearing on AI research. The work most relevant to AIis su�ciently coherent and distinct that it is best referred to by its own name: itis Adaptive Behavior research which is most likely to have signi�cant impact on is-sues traditionally studied in AI. Some motivations for adaptive behavior researchare reviewed, and some of the di�erences between adaptive behavior and traditionalAI are discussed. One signi�cant feature of current adaptive behavior research isa focus on relatively simple and specialised cognitive functions, an approach whichinvites unfavourable comparisons with the \blocksworld" simpli�ed domains whichwere popular in AI research of the early 1970's. However, such comparisons usuallyoverlook fundamental di�erences between the blocksworld-AI and Adaptive Behaviorapproaches to issues of simplicity and specialisation.1 Introduction: what is A-Life?It would be di�cult to discuss the relationship between AI and A-Life without attemptingto de�ne both �elds. It makes sense to start with A-Life, because this newer �eld isattracting a lot of attention at the moment, and with this attention comes the danger ofcounterproductive misunderstandings.Put most simply, A-Life research is concerned with the study of arti�cial systemswhich exhibit lifelike behaviors. The rationale for such research is probably best char-acterised in the words of Chris Langton, writing in the preface to the �rst internationalmeeting on A-Life, which he organised in 1987:Arti�cial systems which exhibit lifelike behaviors are worthy of investiga-tion on their own rights, whether or not we think that the processes theymimic have played a role in the development or mechanics of life as we knowit to be. Such systems . . . expand our understanding of life as it could be.�Copyright c
 1994 D. Cli�. All rights reserved. To appear in: A. Cohn (editor) ECAI94: Proceedingsof 11th European Conference on Arti�cial Intelligence John Wiley & Sons, 1994.1



By allowing us to view the life that has evolved here on earth in the largercontext of possible life, we may begin to derive a truly general theoreticalbiology capable of making universal statements about life wherever it may befound and whatever it may be made of. [24, preface, p.xvi, original emphasis].Central to Langton's argument is the notion that `life' is a property of the organisationof matter, and not a property of the matter which is so organised to form living systems[24, introduction, p.2]. This belief allows for the formal study of living systems in theabstract, as a complement to the actual living systems we are familiar with from life onearth. Clearly, there is a heavy dependence here on notions of `Life' and `Lifelike', whichrequire some discussion: it would seem that any attempt at evaluating A-Life researchrequires �rst an answer to the question `What is Life?'.Not surprisingly, this question has long been studied by philosophers of biology, and node�nitive answer has yet been devised. Nevertheless, it is intriguing to note the parallelsbetween Langton's distinction of life-as-we-know-it vs. life-as-it-could-be and the followingpassage taken from the 1975 edition of Helena Curtis's classic biology textbook:If we were to be transported through time or space in the search for \life",what would we look for? Scientists concerned with this question, whether forpractical or philosophical reasons, appear to agree that there are no simpleanswers.. . . Even within the con�nes of our biosphere, . . . [living] organisms showastonishing variety. Are these highly varied living organisms distinguishablefrom nonliving systems? Can we make distinctions that would apply to un-known living forms as well as to known ones? [14, p.26, emphasis added]Curtis [14, pp.27{31] goes on to provide a list of some key characteristics exhibitedby living systems, including: that typically they are complex and highly organised; thatthey take energy from the environment and change it to other forms; that they arehomeostatic, thereby ensuring the stability of their highly organised complexity; theyrespond to stimuli; mostly they reproduce, grow and develop; they are adapted, i.e. theyare suited to their environment and the functions required of them; and the information bywhich they organise and maintain all of these features is contained within the individualorganisms.Synthetic systems exhibiting such characteristics are studied within A-Life research.For instance, the proceedings of the second international A-Life meeting [25] are dividedinto the following categories: arti�cial chemistries, self-organisation, and the origin oflife; evolutionary dynamics (i.e. studying the process of evolution rather than the resultsof evolutionary processes); development (especially morphogenesis); evolution, learning,and communication; computer life (e.g. software viruses); and philosophical issues.Clearly, A-Life research encompasses a very broad range of phenomena. The scopeof A-Life is so broad that the relevance to AI may not be immediately clear: it mightappear that, at best, those phenomena studied in AI are a very small subset of the classof `lifelike behaviors', in virtue of the fact that (so far) the only existent intelligent entitiesalso happen to be living things. 2



Nevertheless, the broad-scale biologically-inspired work in A-Life can be illuminatingto AI research: for much of its history, AI has typically been concerned with the activitiesof just one species: Homo sapiens, and notions of biological feasibility in AI research havetended to focus on comparatively narrow architectural issues. There is a new scienti�c�eld, which like AI explicitly addresses issues of cognition and intelligence, and like A-Lifetakes a broad biological perspective: this is the �eld of Adaptive Behavior research. Themotivations for and implications of this new style of work are discussed further below.2 And what is AI?Arti�cial Intelligence (AI) is commonly de�ned as the scienti�c endeavour of trying tomake computers perform tasks which, if performed by humans, would require intelligence.But what is `intelligence'? Again, this is a question that has troubled philosophers forhundreds of years, yet there is still no general agreement on a de�nitionFor most of its history, work in AI has been based on the assumption that intelligenceis a form of computation that takes place in people's brains, involving the manipulationof symbolic representations of `facts' or `knowledge', in a manner similar to mathemat-ical logic. It was assumed that perceptual systems delivered symbolic representationsto general-purpose reasoning mechanisms, which would in turn specify appropriate ac-tions. To limit potential combinatoric explosions, canonical-form objective representationtechniques were assumed desirable.1One consequence of this view of intelligence is that, because computation is an abstractprocess, the details of how `intelligent computations' are actually implemented are ratherirrelevant. In particular, for many years, most AI research didn't care too much abouthow well the AI computer programs corresponded with the actual biological mechanismsoperating in the brains of `intelligent' animals such as ourselves.At least in part, this view of intelligence led AI researchers to concentrate on advancedhuman-level intellectual abilities, such as language use, planning complex sequences oftasks, or learning and applying \expert" knowledge for tasks such as mineral prospectingor diagnosing blood diseases. Several research groups have had notable success in makingcomputers perform such tasks, and these successes added support to the belief that thetechniques of traditional symbolic AI could be expanded and built upon, until eventuallyan artefact might one day pass the Turing test.In recent years, these traditional views have been challenged. A small (but growing)number of researchers have argued that, for AI research to be conducted on �rmer foun-dations, it should be more strongly integrated with biology. It turns out that, when amore rigorously biological approach is applied, many of the assumptions of traditional AIhave to be reviewed.1Brevity requires an element of caricature, but these assumptions are clearly expounded in the workof Newell and Simon [34], �gured strongly in the work of David Marr and his followers (e.g. [27, 28]), andare clearly exhibited in most undergraduate AI textbooks I am familiar with (e.g. [35, 43, 8]).3



3 Biological Issues: Adaptive BehaviorAppeals to biology are not new: in the 1960's [36], and again since the mid-1980's[37, 29, 1], there has been widespread interest within AI in so-called `arti�cial neuralnetworks'. These arti�cial networks are motivated primarily by physiological observa-tions of the brain and other parts of the nervous system. The major in
uence comesfrom the observation that the nervous system is composed of large numbers of very sim-ple `processing units' (i.e. neurons) which are richly interconnected and all operate inparallel. Because the overall performance of the network is often the result of the inter-actions between the neurons (that is, there is no clear `division of labour' with particularindividual neurons doing particular specialised jobs), arti�cial neural networks are there-fore examples of parallel distributed processing.However, most arti�cial neural network researchers still treat the nervous system asa computing device, and still try to tackle the same classes of problems as are tackled intraditional AI. While such networks have interesting properties, they are commonly builtwithout reference to any wider biological context, and (crucially) it is the wider biologicalperspective that o�ers realistic prospects of understanding intelligence.This perspective involves going beyond physiology, and viewing the `intelligent' ac-tivities of nervous systems within the contexts of Ethology, Ecology, and Evolution:Ethology: Animals have nervous systems that give rise to particular patterns of behav-ior, some of which we would like to describe as `intelligent'. The study of animalbehavior is known as Ethology, and the ultimate success or failure of a particularnervous systems is dependent on whether it produces sensible behaviors: runningaway from predators, or moving towards food, are both generally sensible thingsto do; running towards predators, or away from food, are not. In traditional AIresearch, there is a strong tendency to try to identify abstract computations whichcould be general-purpose mechanisms of intelligence, without worrying about howlong it might take to gather and process all the necessary information. But in thereal world, animals very rarely have the luxury of enough spare time that they canindulge in the sort of computations traditional AI has studied. The need to performthe right behavior at the right time is often so urgent that any method will do, solong as it works fast enough. In such situations, questions of whether the methodis general-purpose, elegant, or optimal, are often irrelevant.Ecology: Deciding if a particular behavior is sensible or not depends not only on theimmediate circumstances of the animal, but also on that animal's ecological niche,i.e. the animal's interactions with its habitat and with other life forms includingpredators, prey, and members of the same species. Many behaviors are highlytailored to particular environments and ecological niches: often, trying to analysethe animal as separate from its environment obscures more than it clari�es; theanimal and its behaviors are so �nely tuned to its natural environment that if it isseparated from that environment (e.g. by transporting it to a laboratory where itcan be tested), then very little of the original interesting behavior remains.Evolution: For any animal, the nervous system, behaviors, and ecological niche, are4



all subject to evolutionary processes, such as natural selection (\survival-of-the-�ttest") or sexual selection (mate-choice). Almost always, the evolutionary his-tory of an animal plays a very important role in explaining the animal's behaviorsor physiology. Furthermore, it is important to remember that evolution proceedsmainly by a continuous process of \tinkering" or making minor changes to estab-lished patterns. For this reason, it is important to remember that designs found inbiology aren't necessarily the best possible solutions: they are adapted versions ofearlier designs, and the earlier designs themselves may not have been particularlywonderful.A primary claim here is that AI research probably does have much to gain from look-ing to biology for inspiration, but it is essential to remember that biology doesn't stop atphysiology: many important lessons are likely to be learned from evolutionary, ecological,and ethological analyses. One of the most important lessons could be that traditional AI,working towards elegant general-purpose computational mechanisms underlying intelli-gence, is simply misguided. After all, when did you last see a general-purpose animal?One of the advantages of taking account of these established areas of biological re-search is that the terminology of such �elds o�ers more concrete de�nitions of somephenomena which are within the domain of study of traditional AI. One good exampleof this is the move away from arguing about the de�nition of \intelligence", towards anagreement in the new approach that the interesting phenomena are adaptive behaviors.In the ethology literature, an adaptive behavior is any behavior which, if exhibited byan animal, increases the chance that the animal will survive long enough in its ecologicalniche to produce viable o�spring. Underlying this de�nition is the assumption that, ifthe animal does nothing, it will die before it has a chance to reproduce.In essence, the implication is that \intelligence" is a name we give to a class of adaptivebehaviors, all of which are rooted in being able to coordinate our perceptions (seeing,hearing, etc) with our actions, so as to survive in environments which are often hostile,uncertain, and unforgiving. So intelligence can perhaps be best understood as somethingwhich makes us better at satisfying our fundamental drives. These fundamental drivesare commonly known as the Four F's: feeding, �ghting, 
eeing, and reproduction. Oneof the claims of this new style of AI research is that, if we can study and understandthe basic mechanisms by which we and other animals satisfy these drives, then we willhave gone a very long way toward understanding the biological foundations of intelligentactivity.4 Implications: Autonomous AgentsIn order to study adaptive behaviors, it is necessary to conduct research in a manner dif-ferent from that found in most traditional AI research. Rather than working on computerprograms that appear to mimic some limited aspect of high-level human intelligence, ore�ect some supposedly vital transformation between internal representations, the new ap-proach concentrates instead on studying complete autonomous agents . An autonomousagent is any self-governing system which is capable of coordinating perceptions and ac-tions to produce adaptive behaviors, without human intervention, for extended periods5



of time. Nature is full of autonomous agents: we call them animals. However, arti�cialautonomous agents are much rarer things. Nevertheless they have a name: the word`animat' was coined for them by Stewart Wilson [42].Animats may be real physical things, in which case they are typically autonomousmobile robots, or they may be simulated on a computer, where they go about theirbusiness in some `virtual reality'; either way, there are di�cult problems to be facedin constructing whole animats. The strong emphasis on building complete animats is aconsequence of needing to ensure that the agents really are autonomous: if perception isstudied in isolation from action (or vice versa), there is a much increased risk of failingto address important tasks by assuming they will be dealt with elsewhere in the agent,or wasting resources on tasks that would be unnecessary in a complete system: both arecommon problems in traditional AI systems.Although traditional AI has concentrated on advanced human-level behaviors, itwould at the moment be too ambitious to try to build a complete animat with thecapabilities of a human or other ape. Nevertheless, this is no reason for abandoning hopeof progress. Valuable lessons can be learned from studying autonomous agents slightlyless complex than apes: for instance, insects are pretty good at being autonomous agents.The view that AI should proceed by studying insects is strongly associated with thework of Rodney Brooks and his colleagues at MIT. His views are probably best expressedin his own words:2Insects are not usually thought of as intelligent. However, they are veryrobust devices. They operate in a dynamic world, carrying out a number ofcomplex tasks. . . No human-built systems are remotely as reliable. . . Thus Isee insect level behavior as a noble goal for arti�cial intelligence practitioners.I believe it is closer to the ultimate right track than are the higher level goalsnow being pursued. [5, p.7]So, perhaps AI should stand for \Arti�cial Insects" rather than \Arti�cial Intelli-gence". Certainly, building or simulating insect-like animats presents a number of verychallenging problems, and many of these are problems traditionally studied in AI andCognitive Science. For example, there are many AI researchers working on arti�cial neu-ral networks that imitate some aspect of human language processing, even though theneural mechanisms underlying the \dance-language" of bees are not yet fully understoodby biologists. If we can't yet understand how the bee's nervous system allows for commu-nication, then surely the prospects of understanding the (much larger and probably morecomplex) neural networks which enable humans to use language are not good. Maybe ifwe understood the neural basis of language in bees �rst, we would �nd some clues forunderstanding the neural basis of language in humans.Moreover, it is important to note that the animat approach to AI isn't restricted solelyto the study of intelligence in the natural world: the notions borrowed from ethology, ofintelligence as adaptive behavior, can also be applied to purely arti�cial systems: DavidMcFarland, an ethologist at Oxford, has developed [30] a direct mathematical analogy2For further details of Brooks' work, see [7, 6]. 6



between adaptive behaviors in animals and adaptive behaviors in robots (e.g. the research-and-development time for a robot is analogous to the gestation period of an animal);and Mark Tilden, currently at Los Alamos, has proposed [39] three laws of roboticsinspired by studies of animals. Tilden's three laws, to be obeyed by any interestingrobot, can be stated as: protect yourself (i.e. avoid damage); `feed' yourself (i.e. try tokeep enough power available for running the robot's electronics and motors, etc); and�nd a better place to be (e.g. try to �nd a less dangerous place with more `food'). Anyagent obeying these three laws while operating in the same world as we humans (e.g. aworld populated by dogs, inquisitive children, and clumsy adults) will have solved mostof the hard problems of coordinating perception and action. In certain circumstances,such an agent may even be judged by observers to be `intelligent', whatever that means.So the adaptive behavior approach to AI, as a consequence of paying more attentionto biology, takes a path that is almost the opposite of the traditional work in the �eld:instead of worrying about how humans use expert knowledge or plan complex tasks,researchers are now studying basic competences, such as an individual agent being ableto explore an unknown environment without bumping into things and still make it homesafely, or a group of agents being able to communicate using grunts so they can actin a cooperative manner. Such tasks require robust sensory-motor coordination, andcan be surprisingly di�cult. Other researchers have taken particular insects or other\lowly" animals and performed extensive computer modelling experiments, as attemptsat identifying the basic neural sensory-motor mechanisms underlying the generation ofadaptive behaviors in these animals. Examples include studies of cockroaches [4], crickets[41], eels [16], frogs and toads [2], house
ies [17], hover
ies [9], and stick-insects [33]. Insome of these cases, working robots have been built as the �nal test of successful computermodelling.3The aim of such research is not only to further our understanding of animals in the nat-ural world: there is a huge potential sales market for semi-intelligent highly autonomousrobots. At the moment, because such robots are only ever built in small numbers, theycost quite a lot of money (e.g. over U.S.$100,000 for an insect-like six-legged walkingrobot about 1 metre long and weighing a few kilograms). Such expensive price-tags meanthat they are only cost-e�ective for use in space missions or military applications. But ifmass-produced, they would probably cost less than a family saloon car, and could pos-sibly eventually cost no more than the price of a home video-cassette recorder, in whichcase such robots could realistically be employed for helping in household cleaning duties(e.g. [13]), security patrols (not guard-dogs but guard-animats), or even as \pet robot"toys.It should be clear that arti�cial autonomous agents will need to be able to sensetheir surroundings, using mixtures of vision, sound, `touch' (in the form of whiskers orbumpers), and possibly also less obvious techniques such as `smell' (e.g. chemical sensorsthat detect dangerous gases), electronic compasses, and infra-red or pyroelectric sensorsthat allow the robot to detect warm bodies. In biological terminology, such environment-sensing capabilities are referred to as exteroception. However, it is also essential that the3For further details of these and other examples, see e.g. [26, 32, 40, 31, 12] and the MIT Press journalAdaptive Behavior. 7



agents have a capability for interoception: that is, the capability to monitor importantinternal values such as the level of power in their batteries, and levels of damage ormechanical strain, and so on. All of these diverse sources of information need to be dealtwith and integrated in order to generate appropriate behaviors in real time (that is, fastenough for the behaviors to be considered adaptive in real-world tasks). Moreover, forreal robots, it is practically impossible to build sensors and motors that are not a�ectedby noise, in the form of random variations in response, which introduces uncertaintiesabout the accuracy of the measurements made in both exteroception and interoception.Currently the most suitable candidate technology for dealing with all these issues inthe generation of adaptive behaviors is probably still arti�cial neural networks, or somesimilar parallel distributed processing architecture.5 Blocksworlds Revisited?One criticism of animat-style adaptive behavior research, often voiced by people unfamil-iar with the �eld, goes something like this: all the successful autonomous agent researchresults seems to concern specialised systems operating in restricted domains; and this isdisturbingly reminiscent of the \blocksworld" research paradigm popular in mainstreamAI during the �rst half of the 1970's. In this paradigm, specially contrived and simpli�ed(\micro-world") problem domains were used for testing supposedly general or extensi-ble AI representation and reasoning mechanisms | in several notable cases, mechanismswhich were encouragingly successful in their toy test domains failed miserably in morecomplex domains. Almost always, combinatoric explosion caused signi�cant problems,and in several cases this was compounded by the `general' mechanism having hidden orimplicit specialisations to the toy domain. At best, so the argument goes, all that wasachieved was a collection of ad-hoc solutions to fairytale problems. (See [15] for furtherdiscussion).Such arguments have a number of problems. First, they often seem to overlookthe fact that, throughout the history of science (or since Galileo at least), the study ofsimple restricted systems as precursors to more general and complex systems has been aprincipled and successful approach. The problem with micro-world AI research was notdue just to the use of restricted domains. Rather, there were problems in the nature ofthe restrictions and the claims made for the extensibility of the approach. The natureof the restrictions were problematic because (as Dreyfus [15] points out) in several casesresearchers assumed that it would be possible to carve out isolated domains, such asa micro-theory of 
attery, which would be understandable in isolation from the rest ofhuman existence. And the claims made of the future of micro-worlds centered on abelief that, if su�cient work was done, all of the micro-worlds would coalesce to forma single super-world, corresponding to the objective reality of the \real world"; withthe combined expertise from the di�erent domains coming close to resembling humanintelligence. Results over the intervening years have not o�ered much support for thisbelief.The di�erence between AI and Adaptive Behavior approaches to simplicity and spe-cialisation should be fairly clear. First, however simple, animats are typically complete8



`holistic' systems, operating under closed-loop conditions in their own environments,which provide them with their own subjective reality (however simple that may hap-pen to be). So, under this view, all worlds are `micro-worlds', insofar as there is nosensible way in which they can be combined to recreate a single overall objective reality.Even we humans exist in a micro-world, albeit a highly complex one. Consider the humanvisual world: however rich we �nd it, we have to acknowledge that we cannot distinguishthe characters on a car registration-plate at a distance of one mile, whereas other animalshave su�cient visual resolution to do so; nor can we see the ultraviolet and near-infra-redwavelengths, or detect polarisation orientations, which other animals use to great e�ectin their visual worlds [38]. Once again, it is currently a matter of belief whether successesin simple (i.e. low-complexity) domains will scale up to more complex environments, butempirical answers should be more readily available than they were for AI micro-worldstudies.Furthermore, as was noted earlier in this paper: the fact that all animals are (to vary-ing degrees) specialised to their ecological niche o�ers support for the notion that exploita-tion of niche-specialisation is a pro�table approach to developing arti�cial autonomousagents. Rather than attempting to develop general-purpose domain-independent solu-tions, the animat approach could be characterised as seeking to develop powerful tech-niques for creating domain-speci�c solutions in a principled manner. For example, Hor-swill [20] has developed a method for creating specialised autonomous robot control ar-chitectures from more general ones, where the change from the general to the specialisedis achieved by means of provably performance-improving transformations, some of whichare dependent on particular environmental regularities. Once a specialised controller hasbeen arrived at, the sequence of transformations applied in its development can be usedto make explicit any assumptions about the robot's environment, and to predict how itwill perform in other environments.Because most niches of practical interest are liable to change over time, forms of plas-ticity and adaptation are necessary, so as to maintain a satisfactory degree of speci�city:this need is re
ected in the large research e�orts currently being directed at various adap-tation mechanisms based on self-organisation, reinforcement learning, and evolutionaryadaptation in the form of genetic algorithms (see e.g. [23, 3, 22, 21, 19, 18]). Specialisedarchitectures arrived at by these methods can still be analysed and understood (see e.g.[10, 11]).6 ConclusionIt is tempting to draw one more comparison between biology and AI. This concerns thehistory of the theory of the origin of the species. According to [14], pre-evolutionarytheories centered on the work of Georges Cuvier, who was a vociferous and in
uentialopponent of evolutionary theory. Cuvier was a founder of paleontology, and his studiesof the fossil record led him to recognise the extinctions of species. Such extinction eventswere explained by positing a series of catastrophies: God populated the world with manyvaried and wonderful species, and occasionally a catastrophe would occur (the mostrecent being the biblical 
ood), which rendered many species extinct; and the surviving9



species repopulated the planet. The proponents of catastrophism were divided into twocamps: the deluvianists, who believed all catastrophes were 
oods, and the vulcanists,who believed all catastrophes were due to volcanic explosions and lava 
ows. Membersof both camps agreed that the fossil record shows the remains of once-living specieswhich met violent ends, but there was vituperative debate between the deluvianists andthe vulcanists. Nevertheless, both camps rose as one against Lamarck, who proposedthe theory of evolution. Unfortunately, Lamarck's theory included the inheritance ofacquired characteristics, and posited that all animals had a god-given in-built urge toevolve to higher things (i.e. to approach the `perfection' seen in Homo sapiens). Darwin'srevolutionary contribution was the suggestion that the combination of chance variationand natural selection could account for the evolution of species, without the interventionof any god.This story could bear a resemblance to the history of AI. If we view catastrophism asanalogous to computationalism, then the deluvianist/vulcanist debate becomes analogousto the symbolism/sub-symbolism debate that has been ongoing over the last decade. Thefruit of this comparison is that the catastrophists were right, in that extinctions do occurand do a�ect the origin of species (by freeing or creating new niches), but focusing purelyon extinctions missed the wider issues. The deluvianists and the vulcanists were bothpartly right, but not to the exclusion of the opposing view. Similarly, computational per-spectives on intelligence are unlikely to be proved entirely wrong, and both symbolic andsubsymbolic accounts have a role to play. But, just as Lamarck and then Darwin widenedthe debate, so A-Life and Adaptive Behavior widen our perspectives on intelligence andcognition. And, as with any other science, we should allow A-Life and Adaptive Behaviorto take some time in re�ning concepts, explanations, and techniques.It is probably too early to reliably evaluate the impact of A-Life and Adaptive Be-havior research on AI. Depending on who you listen to, the impact will either be a dampsquib drowned out by the combinatorial explosion which usually follows from early suc-cesses on simple examples, or it will provoke a revolution of Copernican or Darwinianproportions. As always, what actually happens is likely to be somewhere in between.Time will tell.References[1] J. A. Anderson and E. Rosen�eld, editors. Neurocomputing: Foundations of research.MIT Press, Cambridge MA, 1988.[2] M. A. Arbib. Levels of modelling of mechanisms of visually guided behaviour. TheBehavioral and Brain Sciences, 10:407{465, 1987.[3] H. G. Barrow. Learning receptive �elds. In IEEE First Annual International Con-ference on Neural Networks, volume IV, pages 115{121, June 1987.[4] R. D. Beer. Intelligence as Adaptive Behaviour: An Experiment in ComputationalNeuroethology. Academic Press, 1990. 10
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