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Abstract

This paper discusses the relationship between Artificial Intelligence (AT) and Ar-
tificial Life (A-Life). A-Life research addresses a wide range of phenomena, some
of which have no obvious bearing on Al research. The work most relevant to Al
is sufficiently coherent and distinct that it is best referred to by its own name: it
is Adaptive Behavior research which is most likely to have significant impact on is-
sues traditionally studied in AI. Some motivations for adaptive behavior research
are reviewed, and some of the differences between adaptive behavior and traditional
Al are discussed. One significant feature of current adaptive behavior research is
a focus on relatively simple and specialised cognitive functions, an approach which
invites unfavourable comparisons with the “blocksworld” simplified domains which
were popular in Al research of the early 1970’s. However, such comparisons usually
overlook fundamental differences between the blocksworld-Al and Adaptive Behavior
approaches to issues of simplicity and specialisation.

1 Introduction: what is A-Life?

It would be difficult to discuss the relationship between Al and A-Life without attempting
to define both fields. It makes sense to start with A-Life, because this newer field is
attracting a lot of attention at the moment, and with this attention comes the danger of
counterproductive misunderstandings.

Put most simply, A-Life research is concerned with the study of artificial systems
which exhibit lifelike behaviors. The rationale for such research is probably best char-
acterised in the words of Chris Langton, writing in the preface to the first international
meeting on A-Life, which he organised in 1987:

Artificial systems which exhibit lifelike behaviors are worthy of investiga-
tion on their own rights, whether or not we think that the processes they
mimic have played a role in the development or mechanics of life as we know
it to be. Such systems ... expand our understanding of life as it could be.
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By allowing us to view the life that has evolved here on earth in the larger
context of possible life, we may begin to derive a truly general theoretical
biology capable of making universal statements about life wherever it may be
found and whatever it may be made of. [24, preface, p.zvi, original emphasis].

Central to Langton’s argument is the notion that ‘life’ is a property of the organisation
of matter, and not a property of the matter which is so organised to form living systems
[24, introduction, p.2]. This belief allows for the formal study of living systems in the
abstract, as a complement to the actual living systems we are familiar with from life on
earth. Clearly, there is a heavy dependence here on notions of ‘Life’ and ‘Lifelike’, which
require some discussion: it would seem that any attempt at evaluating A-Life research
requires first an answer to the question ‘What is Life?’.

Not surprisingly, this question has long been studied by philosophers of biology, and no
definitive answer has yet been devised. Nevertheless, it is intriguing to note the parallels
between Langton’s distinction of life-as-we-know-it vs. life-as-it-could-be and the following
passage taken from the 1975 edition of Helena Curtis’s classic biology textbook:

If we were to be transported through time or space in the search for “life”,
what would we look for? Scientists concerned with this question, whether for
practical or philosophical reasons, appear to agree that there are no simple
answers.

...Even within the confines of our biosphere, ...[living] organisms show
astonishing variety. Are these highly varied living organisms distinguishable
from nonliving systems? Can we make distinctions that would apply to un-
known living forms as well as to known ones? [14, p.26, emphasis added]

Curtis [14, pp.27-31] goes on to provide a list of some key characteristics exhibited
by living systems, including: that typically they are complex and highly organised; that
they take energy from the environment and change it to other forms; that they are
homeostatic, thereby ensuring the stability of their highly organised complexity; they
respond to stimuli; mostly they reproduce, grow and develop; they are adapted, i.e. they
are suited to their environment and the functions required of them; and the information by
which they organise and maintain all of these features is contained within the individual
organisms.

Synthetic systems exhibiting such characteristics are studied within A-Life research.
For instance, the proceedings of the second international A-Life meeting [25] are divided
into the following categories: artificial chemistries, self-organisation, and the origin of
life; evolutionary dynamics (i.e. studying the process of evolution rather than the results
of evolutionary processes); development (especially morphogenesis); evolution, learning,
and communication; computer life (e.g. software viruses); and philosophical issues.

Clearly, A-Life research encompasses a very broad range of phenomena. The scope
of A-Life is so broad that the relevance to Al may not be immediately clear: it might
appear that, at best, those phenomena studied in Al are a very small subset of the class
of ‘lifelike behaviors’, in virtue of the fact that (so far) the only existent intelligent entities
also happen to be living things.



Nevertheless, the broad-scale biologically-inspired work in A-Life can be illuminating
to Al research: for much of its history, Al has typically been concerned with the activities
of just one species: Homo sapiens, and notions of biological feasibility in Al research have
tended to focus on comparatively narrow architectural issues. There is a new scientific
field, which like AT explicitly addresses issues of cognition and intelligence, and like A-Life
takes a broad biological perspective: this is the field of Adaptive Behavior research. The
motivations for and implications of this new style of work are discussed further below.

2 And what 1s AI?

Artificial Intelligence (Al) is commonly defined as the scientific endeavour of trying to
make computers perform tasks which, if performed by humans, would require intelligence.
But what is ‘intelligence’? Again, this is a question that has troubled philosophers for
hundreds of years, yet there is still no general agreement on a definition

For most of its history, work in Al has been based on the assumption that intelligence
is a form of computation that takes place in people’s brains, involving the manipulation
of symbolic representations of ‘facts’ or ‘knowledge’, in a manner similar to mathemat-
ical logic. It was assumed that perceptual systems delivered symbolic representations
to general-purpose reasoning mechanisms, which would in turn specify appropriate ac-
tions. To limit potential combinatoric explosions, canonical-form objective representation
techniques were assumed desirable.!

One consequence of this view of intelligence is that, because computation is an abstract
process, the details of how ‘intelligent computations’ are actually implemented are rather
irrelevant. In particular, for many years, most Al research didn’t care too much about
how well the AT computer programs corresponded with the actual biological mechanisms
operating in the brains of ‘intelligent’ animals such as ourselves.

At least in part, this view of intelligence led Al researchers to concentrate on advanced
human-level intellectual abilities, such as language use, planning complex sequences of
tasks, or learning and applying “expert” knowledge for tasks such as mineral prospecting
or diagnosing blood diseases. Several research groups have had notable success in making
computers perform such tasks, and these successes added support to the belief that the
techniques of traditional symbolic Al could be expanded and built upon, until eventually
an artefact might one day pass the Turing test.

In recent years, these traditional views have been challenged. A small (but growing)
number of researchers have argued that, for Al research to be conducted on firmer foun-
dations, it should be more strongly integrated with biology. It turns out that, when a
more rigorously biological approach is applied, many of the assumptions of traditional Al
have to be reviewed.

! Brevity requires an element of caricature, but these assumptions are clearly expounded in the work
of Newell and Simon [34], figured strongly in the work of David Marr and his followers (e.g. [27, 28]), and
are clearly exhibited in most undergraduate Al textbooks I am familiar with (e.g. [35, 43, 8]).



3 Biological Issues: Adaptive Behavior

Appeals to biology are not new: in the 1960’s [36], and again since the mid-1980’s
[37, 29, 1], there has been widespread interest within Al in so-called ‘artificial neural
networks’. These artificial networks are motivated primarily by physiological observa-
tions of the brain and other parts of the nervous system. The major influence comes
from the observation that the nervous system is composed of large numbers of very sim-
ple ‘processing units’ (i.e. neurons) which are richly interconnected and all operate in
parallel. Because the overall performance of the network is often the result of the inter-
actions between the neurons (that is, there is no clear ‘division of labour’ with particular
individual neurons doing particular specialised jobs), artificial neural networks are there-
fore examples of parallel distributed processing.

However, most artificial neural network researchers still treat the nervous system as
a computing device, and still try to tackle the same classes of problems as are tackled in
traditional AI. While such networks have interesting properties, they are commonly built
without reference to any wider biological context, and (crucially) it is the wider biological
perspective that offers realistic prospects of understanding intelligence.

This perspective involves going beyond physiology, and viewing the ‘intelligent’ ac-
tivities of nervous systems within the contexts of Ethology, Ecology, and Evolution:

Ethology: Animals have nervous systems that give rise to particular patterns of behav-
tor, some of which we would like to describe as ‘intelligent’. The study of animal
behavior is known as Ethology, and the ultimate success or failure of a particular
nervous systems is dependent on whether it produces sensible behaviors: running
away from predators, or moving towards food, are both generally sensible things
to do; running towards predators, or away from food, are not. In traditional Al
research, there is a strong tendency to try to identify abstract computations which
could be general-purpose mechanisms of intelligence, without worrying about how
long it might take to gather and process all the necessary information. But in the
real world, animals very rarely have the luxury of enough spare time that they can
indulge in the sort of computations traditional Al has studied. The need to perform
the right behavior at the right time is often so urgent that any method will do, so
long as it works fast enough. In such situations, questions of whether the method
is general-purpose, elegant, or optimal, are often irrelevant.

Ecology: Deciding if a particular behavior is sensible or not depends not only on the
immediate circumstances of the animal, but also on that animal’s ecological niche,
i.e. the animal’s interactions with its habitat and with other life forms including
predators, prey, and members of the same species. Many behaviors are highly
tailored to particular environments and ecological niches: often, trying to analyse
the animal as separate from its environment obscures more than it clarifies; the
animal and its behaviors are so finely tuned to its natural environment that if it is
separated from that environment (e.g. by transporting it to a laboratory where it
can be tested), then very little of the original interesting behavior remains.

Evolution: For any animal, the nervous system, behaviors, and ecological niche, are
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all subject to evolutionary processes, such as natural selection (“survival-of-the-
fittest”) or sexual selection (mate-choice). Almost always, the evolutionary his-
tory of an animal plays a very important role in explaining the animal’s behaviors
or physiology. Furthermore, it is important to remember that evolution proceeds
mainly by a continuous process of “tinkering” or making minor changes to estab-
lished patterns. For this reason, it is important to remember that designs found in
biology aren’t necessarily the best possible solutions: they are adapted versions of
earlier designs, and the earlier designs themselves may not have been particularly
wonderful.

A primary claim here is that Al research probably does have much to gain from look-
ing to biology for inspiration, but it is essential to remember that biology doesn’t stop at
physiology: many important lessons are likely to be learned from evolutionary, ecological,
and ethological analyses. One of the most important lessons could be that traditional Al,
working towards elegant general-purpose computational mechanisms underlying intelli-
gence, is simply misguided. After all, when did you last see a general-purpose animal?

One of the advantages of taking account of these established areas of biological re-
search is that the terminology of such fields offers more concrete definitions of some
phenomena which are within the domain of study of traditional AI. One good example
of this is the move away from arguing about the definition of “intelligence”, towards an
agreement in the new approach that the interesting phenomena are adaptive behaviors.
In the ethology literature, an adaptive behavior is any behavior which, if exhibited by
an animal, increases the chance that the animal will survive long enough in its ecological
niche to produce viable offspring. Underlying this definition is the assumption that, if
the animal does nothing, it will die before it has a chance to reproduce.

In essence, the implication is that “intelligence” is a name we give to a class of adaptive
behaviors, all of which are rooted in being able to coordinate our perceptions (seeing,
hearing, etc) with our actions, so as to survive in environments which are often hostile,
uncertain, and unforgiving. So intelligence can perhaps be best understood as something
which makes us better at satisfying our fundamental drives. These fundamental drives
are commonly known as the Four F’s: feeding, fighting, fleeing, and reproduction. One
of the claims of this new style of Al research is that, if we can study and understand
the basic mechanisms by which we and other animals satisfy these drives, then we will
have gone a very long way toward understanding the biological foundations of intelligent
activity.

4 TImplications: Autonomous Agents

In order to study adaptive behaviors, it is necessary to conduct research in a manner dif-
ferent from that found in most traditional Al research. Rather than working on computer
programs that appear to mimic some limited aspect of high-level human intelligence, or
effect some supposedly vital transformation between internal representations, the new ap-
proach concentrates instead on studying complete autonomous agents. An autonomous
agent is any self-governing system which is capable of coordinating perceptions and ac-
tions to produce adaptive behaviors, without human intervention, for extended periods



of time. Nature is full of autonomous agents: we call them animals. However, artificial
autonomous agents are much rarer things. Nevertheless they have a name: the word
‘animat’ was coined for them by Stewart Wilson [42].

Animats may be real physical things, in which case they are typically autonomous
mobile robots, or they may be simulated on a computer, where they go about their
business in some ‘virtual reality’; either way, there are difficult problems to be faced
in constructing whole animats. The strong emphasis on building complete animats is a
consequence of needing to ensure that the agents really are autonomous: if perception is
studied in isolation from action (or vice versa), there is a much increased risk of failing
to address important tasks by assuming they will be dealt with elsewhere in the agent,
or wasting resources on tasks that would be unnecessary in a complete system: both are
common problems in traditional Al systems.

Although traditional AI has concentrated on advanced human-level behaviors, it
would at the moment be too ambitious to try to build a complete animat with the
capabilities of a human or other ape. Nevertheless, this is no reason for abandoning hope
of progress. Valuable lessons can be learned from studying autonomous agents slightly
less complex than apes: for instance, insects are pretty good at being autonomous agents.

The view that Al should proceed by studying insects is strongly associated with the
work of Rodney Brooks and his colleagues at MIT. His views are probably best expressed
in his own words:?

Insects are not usually thought of as intelligent. However, they are very
robust devices. They operate in a dynamic world, carrying out a number of
complex tasks... No human-built systems are remotely as reliable... Thus I
see insect level behavior as a noble goal for artificial intelligence practitioners.
I believe it is closer to the ultimate right track than are the higher level goals
now being pursued. [5, p.7]

So, perhaps Al should stand for “Artificial Insects” rather than “Artificial Intelli-
gence”. Certainly, building or simulating insect-like animats presents a number of very
challenging problems, and many of these are problems traditionally studied in Al and
Cognitive Science. For example, there are many Al researchers working on artificial neu-
ral networks that imitate some aspect of human language processing, even though the
neural mechanisms underlying the “dance-language” of bees are not yet fully understood
by biologists. If we can’t yet understand how the bee’s nervous system allows for commu-
nication, then surely the prospects of understanding the (much larger and probably more
complex) neural networks which enable humans to use language are not good. Maybe if
we understood the neural basis of language in bees first, we would find some clues for
understanding the neural basis of language in humans.

Moreover, it is important to note that the animat approach to Al isn’t restricted solely
to the study of intelligence in the natural world: the notions borrowed from ethology, of
intelligence as adaptive behavior, can also be applied to purely artificial systems: David
McFarland, an ethologist at Oxford, has developed [30] a direct mathematical analogy

2For further details of Brooks’ work, see [7, 6].



between adaptive behaviors in animals and adaptive behaviors in robots (e.g. the research-
and-development time for a robot is analogous to the gestation period of an animal);
and Mark Tilden, currently at Los Alamos, has proposed [39] three laws of robotics
inspired by studies of animals. Tilden’s three laws, to be obeyed by any interesting
robot, can be stated as: protect yourself (i.e. avoid damage); ‘feed’ yourself (i.e. try to
keep enough power available for running the robot’s electronics and motors, etc); and
find a better place to be (e.g. try to find a less dangerous place with more ‘food’). Any
agent obeying these three laws while operating in the same world as we humans (e.g. a
world populated by dogs, inquisitive children, and clumsy adults) will have solved most
of the hard problems of coordinating perception and action. In certain circumstances,
such an agent may even be judged by observers to be ‘intelligent’, whatever that means.

So the adaptive behavior approach to Al, as a consequence of paying more attention
to biology, takes a path that is almost the opposite of the traditional work in the field:
instead of worrying about how humans use expert knowledge or plan complex tasks,
researchers are now studying basic competences, such as an individual agent being able
to explore an unknown environment without bumping into things and still make it home
safely, or a group of agents being able to communicate using grunts so they can act
in a cooperative manner. Such tasks require robust sensory-motor coordination, and
can be surprisingly difficult. Other researchers have taken particular insects or other
“lowly” animals and performed extensive computer modelling experiments, as attempts
at identifying the basic neural sensory-motor mechanisms underlying the generation of
adaptive behaviors in these animals. Examples include studies of cockroaches [4], crickets
[41], eels [16], frogs and toads [2], houseflies [17], hoverflies [9], and stick-insects [33]. In
some of these cases, working robots have been built as the final test of successful computer
modelling.?

The aim of such research is not only to further our understanding of animals in the nat-
ural world: there is a huge potential sales market for semi-intelligent highly autonomous
robots. At the moment, because such robots are only ever built in small numbers, they
cost quite a lot of money (e.g. over U.5.$100,000 for an insect-like six-legged walking
robot about 1 metre long and weighing a few kilograms). Such expensive price-tags mean
that they are only cost-effective for use in space missions or military applications. But if
mass-produced, they would probably cost less than a family saloon car, and could pos-
sibly eventually cost no more than the price of a home video-cassette recorder, in which
case such robots could realistically be employed for helping in household cleaning duties
(e.g. [13]), security patrols (not guard-dogs but guard-animats), or even as “pet robot”
toys.

It should be clear that artificial autonomous agents will need to be able to sense
their surroundings, using mixtures of vision, sound, ‘touch’ (in the form of whiskers or
bumpers), and possibly also less obvious techniques such as ‘smell” (e.g. chemical sensors
that detect dangerous gases), electronic compasses, and infra-red or pyroelectric sensors
that allow the robot to detect warm bodies. In biological terminology, such environment-
sensing capabilities are referred to as exteroception. However, it is also essential that the

®For further details of these and other examples, see e.g. [26, 32, 40, 31, 12] and the MIT Press journal
Adaptive Behavior.



agents have a capability for interoception: that is, the capability to monitor important
internal values such as the level of power in their batteries, and levels of damage or
mechanical strain, and so on. All of these diverse sources of information need to be dealt
with and integrated in order to generate appropriate behaviors in real time (that is, fast
enough for the behaviors to be considered adaptive in real-world tasks). Moreover, for
real robots, it is practically impossible to build sensors and motors that are not affected
by noise, in the form of random variations in response, which introduces uncertainties
about the accuracy of the measurements made in both exteroception and interoception.
Currently the most suitable candidate technology for dealing with all these issues in
the generation of adaptive behaviors is probably still artificial neural networks, or some
similar parallel distributed processing architecture.

5 Blocksworlds Revisited?

One criticism of animat-style adaptive behavior research, often voiced by people unfamil-
iar with the field, goes something like this: all the successful autonomous agent research
results seems to concern specialised systems operating in restricted domains; and this is
disturbingly reminiscent of the “blocksworld” research paradigm popular in mainstream
AT during the first half of the 1970’s. In this paradigm, specially contrived and simplified
(“micro-world”) problem domains were used for testing supposedly general or extensi-
ble AT representation and reasoning mechanisms — in several notable cases, mechanisms
which were encouragingly successful in their toy test domains failed miserably in more
complex domains. Almost always, combinatoric explosion caused significant problems,
and in several cases this was compounded by the ‘general” mechanism having hidden or
implicit specialisations to the toy domain. At best, so the argument goes, all that was
achieved was a collection of ad-hoc solutions to fairytale problems. (See [15] for further
discussion).

Such arguments have a number of problems. First, they often seem to overlook
the fact that, throughout the history of science (or since Galileo at least), the study of
simple restricted systems as precursors to more general and complex systems has been a
principled and successful approach. The problem with micro-world Al research was not
due just to the use of restricted domains. Rather, there were problems in the nature of
the restrictions and the claims made for the extensibility of the approach. The nature
of the restrictions were problematic because (as Dreyfus [15] points out) in several cases
researchers assumed that it would be possible to carve out isolated domains, such as
a micro-theory of flattery, which would be understandable in isolation from the rest of
human existence. And the claims made of the future of micro-worlds centered on a
belief that, if sufficient work was done, all of the micro-worlds would coalesce to form
a single super-world, corresponding to the objective reality of the “real world”; with
the combined expertise from the different domains coming close to resembling human
intelligence. Results over the intervening years have not offered much support for this
belief.

The difference between Al and Adaptive Behavior approaches to simplicity and spe-
cialisation should be fairly clear. First, however simple, animats are typically complete



‘holistic” systems, operating under closed-loop conditions in their own environments,
which provide them with their own subjective reality (however simple that may hap-
pen to be). So, under this view, all worlds are ‘micro-worlds’, insofar as there is no
sensible way in which they can be combined to recreate a single overall objective reality.
Even we humans exist in a micro-world, albeit a highly complex one. Consider the human
visual world: however rich we find it, we have to acknowledge that we cannot distinguish
the characters on a car registration-plate at a distance of one mile, whereas other animals
have sufficient visual resolution to do so; nor can we see the ultraviolet and near-infra-red
wavelengths, or detect polarisation orientations, which other animals use to great effect
in their visual worlds [38]. Once again, it is currently a matter of belief whether successes
in simple (i.e. low-complexity) domains will scale up to more complex environments, but
empirical answers should be more readily available than they were for Al micro-world
studies.

Furthermore, as was noted earlier in this paper: the fact that all animals are (to vary-
ing degrees) specialised to their ecological niche offers support for the notion that exploita-
tion of niche-specialisation is a profitable approach to developing artificial autonomous
agents. Rather than attempting to develop general-purpose domain-independent solu-
tions, the animat approach could be characterised as seeking to develop powerful tech-
niques for creating domain-specific solutions in a principled manner. For example, Hor-
swill [20] has developed a method for creating specialised autonomous robot control ar-
chitectures from more general ones, where the change from the general to the specialised
is achieved by means of provably performance-improving transformations, some of which
are dependent on particular environmental regularities. Once a specialised controller has
been arrived at, the sequence of transformations applied in its development can be used
to make explicit any assumptions about the robot’s environment, and to predict how it
will perform in other environments.

Because most niches of practical interest are liable to change over time, forms of plas-
ticity and adaptation are necessary, so as to maintain a satisfactory degree of specificity:
this need is reflected in the large research efforts currently being directed at various adap-
tation mechanisms based on self-organisation, reinforcement learning, and evolutionary
adaptation in the form of genetic algorithms (see e.g. [23, 3, 22, 21, 19, 18]). Specialised
architectures arrived at by these methods can still be analysed and understood (see e.g.
[10, 11]).

6 Conclusion

It is tempting to draw one more comparison between biology and Al. This concerns the
history of the theory of the origin of the species. According to [14], pre-evolutionary
theories centered on the work of Georges Cuvier, who was a vociferous and influential
opponent of evolutionary theory. Cuvier was a founder of paleontology, and his studies
of the fossil record led him to recognise the extinctions of species. Such extinction events
were explained by positing a series of catastrophies: God populated the world with many
varied and wonderful species, and occasionally a catastrophe would occur (the most
recent being the biblical flood), which rendered many species extinct; and the surviving



species repopulated the planet. The proponents of catastrophism were divided into two
camps: the deluvianists, who believed all catastrophes were floods, and the vulcanists,
who believed all catastrophes were due to volcanic explosions and lava flows. Members
of both camps agreed that the fossil record shows the remains of once-living species
which met violent ends, but there was vituperative debate between the deluvianists and
the vulcanists. Nevertheless, both camps rose as one against Lamarck, who proposed
the theory of evolution. Unfortunately, Lamarck’s theory included the inheritance of
acquired characteristics, and posited that all animals had a god-given in-built urge to
evolve to higher things (i.e. to approach the ‘perfection’ seen in Homo sapiens). Darwin’s
revolutionary contribution was the suggestion that the combination of chance variation
and natural selection could account for the evolution of species, without the intervention
of any god.

This story could bear a resemblance to the history of Al If we view catastrophism as
analogous to computationalism, then the deluvianist/vulcanist debate becomes analogous
to the symbolism /sub-symbolism debate that has been ongoing over the last decade. The
fruit of this comparison is that the catastrophists were right, in that extinctions do occur
and do affect the origin of species (by freeing or creating new niches), but focusing purely
on extinctions missed the wider issues. The deluvianists and the vulcanists were both
partly right, but not to the exclusion of the opposing view. Similarly, computational per-
spectives on intelligence are unlikely to be proved entirely wrong, and both symbolic and
subsymbolic accounts have a role to play. But, just as Lamarck and then Darwin widened
the debate, so A-Life and Adaptive Behavior widen our perspectives on intelligence and
cognition. And, as with any other science, we should allow A-Life and Adaptive Behavior
to take some time in refining concepts, explanations, and techniques.

It is probably too early to reliably evaluate the impact of A-Life and Adaptive Be-
havior research on Al. Depending on who you listen to, the impact will either be a damp
squib drowned out by the combinatorial explosion which usually follows from early suc-
cesses on simple examples, or it will provoke a revolution of Copernican or Darwinian
proportions. As always, what actually happens is likely to be somewhere in between.
Time will tell.
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