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Abstract

We describe a general framework for the acquisi-
tion of perception-based navigationa behaviorsin au-
tonomousmobilerobots. A self-organizing sparsedis-
tributed memory equivaent to a three-layered neura
network is used to learn the desired transfer function
mapping sensory input into motor commands. The
memory isinitialy trained by teleoperating the robot
onasmall number of pathswithinagiven domain of in-
terest. During training, thevectorsin the sensory space
as well asthe motor space are continually adapted us-
ing aformof competitivelearningtoyield basisvectors
aimed at efficiently spanning the sensorimotor space.
After training, the robot navigates from arbitrary lo-
cations to a desired goal location using motor output
vectors computed by a saliency-based weighted aver-
aging scheme. The pervasive problem of perceptua
aliasing in non-Markov environments is handled by
allowing both current as well as the set of immedi-
ately preceding perceptual inputsto predict the motor
output vector for the current time instant. Simula
tion results obtained for amobil e robot, equi pped with
simple photoreceptorsand infrared receivers, navigat-
ing within an enclosed obstacle-ridden arena indicate
that the method performs successfully in a variety of
navigational tasks, some of which exhibit substantial
perceptual aiasing.

1 Introduction

Behaviorsthat realize goal-directed, collision-free navigation
in unstructured environments form an extremely important
component of the behavioral repertoire of any autonomous
mobile robot. Traditiona sensorimotor controllers relied on
fixed robot behaviors that were prewired by the control de-
signer. Such an approach suffered from at least two problems:
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(a) theincreasing complexity of the design process when scal -
ing up from toy-problemsto real environmentsand (b) thein-
herent inflexibility of prewired behaviorsdueto their inability
to adapt to circumstances unforeseen at design time. The first
problem is addressed by Brooks [4], who proposes a hierar-
chical behavior-based decomposition of control architectures.
Such behavior-based robot architectures have been shown to
accomplish a wide variety of tasks in an efficient manner
[7,19]. The second problem has been addressed by endowing
robotswith the ability to autonomously learn behaviors either
from experimentation and dynamicinteractionwiththeir envi-
ronment or viateleoperation. A number of learning algorithms
have been used for this purpose including neural networks
[29, 30, 37], evolutionary agorithms/genetic programming
[3, 6, 18], reinforcement learning [2, 13, 20], hill-climbing
routines[10, 27], and self-organizing maps [16, 24, 35].

In the context of robot navigation, a popular approach has
been the construction and use of global maps of the environ-
ment [9]. Such an approach, whilebeingintuitively appesling,
faces the difficult problem of robot localization i.e. establish-
ing reliable correspondences between noisy sensor readings
and geometrical map information in order to estimate current
map position. In addition, the global map inherits many of
the undesirable properties of centralized representations that
Brooks [4] identifies in traditional robot controllers. An al-
ternative behavior-based approach to navigation is proposed
by Mataric [22] (see also [8, 17]). This method avoids the
problems involved in creating and maintaining global repre-
sentations by utilizing only loca information as provided by
landmarks along a navigational path. A potential problem
with such landmark-based approaches is that incorrect land-
mark matches or changes in the landmarks themselves might
result in catastrophic failure of the navigationa system.

In this paper, we proposea robust behavior-based approach
to goal-directed maobile robot navigation based on a predic-
tive sparse distributed memory. A *“teaching-by-showing”
paradigm is adopted to initially train the memory for achiev-
ing a prespecified navigationa behavior; such an approach
drastically cuts down on the number of training trials needed



as compared to learning by trial and error or by random explo-
ration of theenvironment. In our case, therobot istel eoperated
(via a remote joystick) on a small number of training paths
within the given environment. During training, the vectorsin
the perception space as well as the motor space are adapted
using a form of competitive learning that aims to construct
basis vectors that efficiently span the sensorimotor space en-
countered by the robot. After training, the robot navigates
from arbitrary locations to a desired goal location based on
motor output vectors computed by indexing into sensorimotor
memory with present as well as past perceptions, and using
asaliency-based weighted averaging scheme for interpolating
output vectors. By using past sensory inputs to provide the
necessary context for disambiguating potentially similar per-
ceptions, we aleviate the well-known problem of perceptual
aliasing [5, 38] in non-Markov environments. We provide
simulation results for a mobile robot, equipped with simple
photoreceptors and infrared receivers, navigating within an
enclosed obstacle-ridden arena. The method is shown to per-
form successfully in a variety of navigational tasks, some of
which exhibit substantial perceptual aiasing.

2 SparseDistributed Memory

One possible method for memory-based navigation is to use
an associative memory in the form of a look-up table that
associates a large set of perception vectors from different lo-
cationswith corresponding set of actionsrequired to navigate
to adesired location [25]. However, such an approach suffers
from at least three drawbacks: (@) the address space formed
by the perception vectorsis usualy quite large and therefore,
storing fixed reference vectors for every possible scenario be-
comes infeasible; (b) the training time increases drastically
as the look-up table size increases, and (c) ssmple look-up
table strategies relying on nearest-neighbor methods usually
fail to generate the appropriate responses to novel situations.
In this section, we address problems (a) and (b) by using only
a sparse subset of the perceptua address space. This natu-
rally leads to amemory known as sparse distributed memory
(SDM) that was originally proposed by Kanerva[14]. We ad-
dress the second problem of generalization in novel scenarios
in the next section where we propose amodified form of SDM
that uses competitive learning to adapt its sensorimotor space
and radid interpolation to compute motor output vectors.

2.1 Kanerva's Modd

Sparse distributed memory (SDM) (Figure 1) was first pro-
posed by Kanerva[14] asamode of human long-term mem-
ory. Itisbased on the crucial observation that if concepts or
objects of interest are represented by high-dimensional vec-
tors, they can benefit from the very favorable matching prop-
erties caused by the inherent tendency toward orthogonality
in high-dimensional spaces.

Kanerva's SDM can be regarded as a generalized random-
access memory whereinthe memory addresses and datawords

come from high-dimensional vector spaces. Asin a conven-
tional random-access memory, there exists an array of storage
locations, each identified by a number (the address of the lo-
cation) with associated data being stored in these locations as
binary words. However, unlike conventional random-access
memories which are usually concerned with addresses only
about 20 bits long (memory size = 2%° |ocations) and data
wordsonly about 32 bitslong, SDM is designed to work with
address and data vectors with much larger dimensions. Due
to the astronomical size of the vector space spanned by the
address vectors, it is physically impossible to build a memory
containing every possible location of this space. However, it
is aso unnecessary since only a subset of the locations will
ever be used in any application. This provides the primary
motivation for Kanerva's model: only a sparse subset of the
address space is used for identifying data locations and input
addresses are not required to match stored addresses exactly
but to only lie within a specified distance of an address to
activatethat address.

The basic operation of SDM as proposed by Kanerva can
be summarized as follows:

1. Initialization: Thephysical locationsin SDM correspond
totherows of an m x k contents matrix C (initially filled
with zeroes) in which data vectors € {—1, 1}* are to be
stored (see Figure 1 (8)). Pick m unique addresses (p-
element binary vectors r;) at random for each of these
locations (these addresses are represented by the matrix A
inFigurel (a)).

2. Data Storage: Given an p-element binary address vec-
tor r and a k-element data vector d for storage, select al
storage | ocations whose addresses lie within a Hamming
distance of D from a (these activated locations are given
by the select vector s in Figure 1 (8)). Add the data vec-
tor d to the previous contents of each of the selected row
vectors of C. Note that this is different from a conven-
tional memory where addresses need to exactly match and
previous contents are overwritten with new data.

3. DataRetrieval: Givenan p-element binary addressvector
r, select all storagelocationswhose addresses liewithina
Hamming distance of D from r (these locationsare again
given by the vector s). Add the values of these selected
locations in paralle (i.e. vector addition) to yield a sum
vector S containing the k£ sums. Threshold these & sums
at 0 to obtain the datavector d’ i.e. d; = 1if s; > 0and
d; = —1 otherwise.

Note that the addition step in (2) above is essentially a Heb-
bianlearning rule. The statistically reconstructed data vector
d’ should be the same as the origind data vector provided the
capacity of the SDM [15] has not been exceeded. The intu-
itivereason for thisisasfollows: When storingadatavector d
using an p-dimensional address vector r, each of the selected
locations receives one copy of thedata. During retrieval with
an address close to r, say r’/, most of the locations that were
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Fi gure 1: Kanerva'sSpar se Distributed Memory (SDM). (&) shows aschematic depiction of the model as proposed by Kanervafor storage of binary (and
bipolar) vectors. (b) shows a realization of the memory in the form of athree-layered fully connected network. The labels describe how the network can be

used for perception-based navigation after suitable modifi cations (see Section 3).

selected with v are al so selected with /. Thus, the sum vector
containsmost of the copies of d, pluscopiesof other different
words; however, dueto the orthogonality of the address space
for large p, these extraneous copies are much fewer than the
number of copiesof d. Thisbiasesthe sumvector inthedirec-
tion of d and hence, d isoutput with high probability. A more
rigorous argument based on signal-to-noiseratio analysis can
be foundin[15].

2.2 Limitations of Kanerva's Model

The model of sparse distributed memory as originaly pro-
posed by Kanerva has severa weaknesses that prevent its
direct use in memory-based navigation:

¢ Boththeaddress and datavectorsare required to be binary
inthestandard model of the SDM. Sincemost natural envi-
ronments yield multivalued input patterns, we must either
modify the indexing mechanisms of the model or recode
all inputsinto binary form. We chose the former option
sincethelatter sacrifices theinterpol ation propertiesof the
memory.

e The standard model of the SDM assumes a uniformdis-
tribution for the input address vectors whereas in most
natural circumstances, theinput address vectorstend to be
clusteredinmany correl ated groupsdistributed over alarge
portion of the multidimensional address space. Therefore,
if addresses are picked randomly as suggested by Kan-
erva, alarge number of locations will never be activated
while a number of locationswill be selected so often that
their contents will resemble noise. We remedy this situa-
tion by allowing the input address space to self-organize
according to the sensorimotor input distribution.

¢ Thestandard SDM usesasinglefixed threshold D for acti-
vating address|ocations. Whilethissimplifiestheanaysis
of the memory considerably, it also resultsin poor perfor-
mance since the actual values of the distances between an
input address vector and the basis address vectors in the
SDM arelost during quantizationto O or 1. Our model uses
radial interpolation functions that weight corresponding
data vectors according to the address vector's closeness to
the input vector.

3 A Sdf-Organizing SDM for
Based Navigation

Per ception-

In the following, we describe the operation of a modified
form of SDM that is suitable for memory-based navigation.
The memory can be realized as a three-layer fully-connected
feedforward network as shown in Figure 1 (b). Assume the
memory contains m storagelocations. Thefirst layer consists
of n units representing the input perception vector p. The
hidden layer consists of m units while the output layer is
represented by £ units. Let w; (1 < ¢ < m) represent the
vector of weights between hidden unit ¢ and the input layer,
and let m; represent the vector of weights between hidden
unit ¢ and the output layer. The memory accepts multivalued
perception vectors p from an arbitrary distribution and stores
an associated multivalued motor vector m in a distributed
manner in the data space.

3.1 Initialization

Pick m unique addresses (n-dimensional vectors p;) at ran-
dom for each of thelocations. This corresponds to randomly
initializing the input-hidden weight vectors w; (1 < ¢ < m).



3.2 Competitive Learning of Sensorimotor Basis
Functions

Given an input perception vector p and an associated motor
vector m during the training phase, we self-organize the ad-
dress/dataspaceusing asoft competitivelearningrule[ 26, 40]:

1. Caculatethe Euclideandistances d; = ||w} —p|| between
w§ and the input perception vector p.

2. Adapt al weight vectors (sensory address space vectors)
according to:

witt e wh +g;(t)Pi(d;)(p — wh) Q)
where P; isdefined as:

e—d§/>\j(t)

(2

and g; isgivenby g;(t) = 1/n;(t) wherethe counter:
nj(t+1) = n;(t) + Pe(dy) 3

P,(d;) can be interpreted as the probability of the proto-
type vector w; winning the current competition for per-
ception p. Notethat the probability vector P obtained by
vectorizing the P;(d;) for 1 < j < m isthe equivaent of
the select vector s in Kanerva's model (Figure 1 (a)).

The“temperature” parameter A; (¢) isgradually decreased
to a smal value in a manner reminiscent of simulated
annealing. This causes the learning agorithm to evolve
from an initially soft form of competition with a large
number of winnersto the case where only a spar se number
of winners exist for any given input vector. The soft
competition in the beginning tunes the initially random
prototypevectorstowardstheinput sensory space (thereby
preventing the occurrence of “dead” unitswhich never get
updated) while the later existence of sparse number of
winners hel psin fine tuning the prototype vectors to form
aset of distributed basi svector s spanning the sensory input
space.

3. Given atraining motor input m, adapt the prototype vec-
tors stored in the motor space according to equation 1
using the same values for d; asin 1 above (i.e. distance
between the input perception vector and the sensory basis
vectors w):

m{ ™ m’ + §;(t) P(d;) (m — m}) 4
where 5;(t) (0 < 5;(t) < 1) isagain function. Note
that 3, (t) does not necessarily have to decresse with time
(this reinforcement strength could be made to depend on
other factors such as importance to the animate system

as evaluated by other modalities or other interna value
mechanisms).

3.3 Computing Motor Output \eectors

Following training, the memory interpolates between the
stored motor basi s vectors to produce a motor output vector o
for a given perception vector p, asfollows:

1. Cdlculate the Euclidean distances d; between w; and the
input perception vector p.

2. Let my; (1 < ¢ < k) denote the weight from hidden
unit j to output unit i. Then, the ith component of the
reconstructed output vector o (in other words, the output
of the output unit ¢) isgiven by:

O; = ZPt(dj)mji (5)
7j=1

The saliency-based weighted averaging above is a form of
normalized radia interpolation that is similar to the output
operation of radial basis function (RBF) networks [28]: the
closer the current perception is to a given sensory basis vec-
tor, the more “sdlient” that memory location and the more
the weight assigned to the motor vector associated with that
basis vector. The above scheme is inspired by recent neu-
rophysiologica evidence [23] that the superior colliculus, a
multilayered neuronal structureinthebrain stemthatisknown
to play a crucia rolein the generation of saccadic eye move-
ments, in fact employsa popul ation averaging scheme similar
to the one above to compute saccadic motor vectors.®

4 Predictive Sensorimotor Memory

The self-organizing SDM described in the preceding section
has been shown to be useful for perceptual homing by an au-
tonomous mobile robot [35]. However, it is not hard to see
that the above method islimited to only those navigational be-
haviorsthat can be modeled by Markov processes: the current
motor output is dependent solely on the current perception
and past inputs are treated as irrelevant for determining cur-
rent action. In general environments, however, a Markovian
assumption is often inappropriate, and any method that relies
on such an assumption suffersfrom the problem of perceptual
aliasing[5, 38].

4.1 Perceptual Aliasing

Perceptua diasing, aterm coined in [38], refers to the situa
tion wherein two or more identical perceptual inputs require
different responses from an autonomous system. A number
of factors such as limited sensing capability, noisy sensory
inputs, and restricted resolution in addition to inherent | ocal
ambiguity in typical environments contribute towards exac-
erbating perceptua aliasing. The effects of aliasing can be
reduced to some extent by incorporating additional sensory in-
formation that suffice to disambiguate between any two given

I\We refer theinterested reader to an earlier paper [32] for aclosely related
method for visuomotor learning of saccadic eye movementsfor arobot head.
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Fi gure 2: Predictive Sparse Distributed Memory. (a) shows the procedure of training the predictive memory. The current motor input is fed to each of
the motor memories which are indexed by the current perception (left), the previous one (middle), and the perception before the previous one (right). This
alows the memory to generate predictions of motor output for the next two time steps in addition to the current one during the navigation phase. (b) shows the
memory (in its network form) during the navigation phase. The current estimate of motor output &; is computed by averaging over the motor action vectorsfor

the current time instant ¢ predicted by current and past perceptual inputs.

Situations [38, 39]. However, these methods still rely only
on current percepts and thus, are unable to overcome aliasing
in non-Markov environments. An alternative approach that
is tailored toward modeling non-Markov sensorimotor pro-
cesses isto base the current output on both the current aswell
as the sequence of past outputs (within a certain time win-
dow). In other words, the current percept not only predicts
the action for the current time instant ¢ but aso actions for
futuretimeinstant¢,¢ + 1,...,¢ + k, where k is a parameter
whose vaue can be either predetermined or adapted on-line
to counteract the effects of aliasing. The motor action for
the current time instant ¢ is then determined by a weighted
average of the actionsrecommended by the current as well as
past perceptions upto time¢ — k. This solution shares some
similarities with Kanerva's k-fold memory for storage and
retrieval of sequences [14]; however, dl the weaknesses in-
herent in Kanerva s original model (Section 2.2) still apply to
the k-fold memories, thus preventing their direct application
in countering the aiasing problem.

4.2 Using Past Perceptions for Motor Prediction

The informal solution for perceptua aliasing sketched in the
previous section can be formalized as follows. Let p; be the

current perception vector and let m bethe current motor action
vector. Figure 2 shows the predictive memory. Note that
the motor space now contains additional sets of connections
between thehidden and output layer, each such set determining
theactiontobeexecuted at agiventimeinthefuture. A further
set of connections(see (b)), some of whichinvolvetimedelays
of different durations, appropriately combine the outputs of
this intermediate layer to yield an estimate of current motor
output. The operation of the predictive memory isasfollows:

e Training: During training (Figure 2 (a)), the perception
space is self-organized as given by Equation 1. The mo-
tor space is also salf-organized asin Equation 4 but using
the current motor vector as the training signal for each
set of hidden to motor output unit connections, with the
congtraint that the probability weight vector P (see Sec-
tion 3.2) for the set of connections determining the action
for time ¢t + ¢ is the one that was obtained by indexing
into the sensory address space using the perception at time
t — 4. Such atraining paradigm ensures that after training,
the perception at time ¢ generates predicted actions for
timestepst,t +1,...,¢t+ k.
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the experiments. (c) The robot in its environment. (c) Robot control architecture: the collision detection and obstacl e avoidance routines were autonomously
learned on-line by the robot as described in [10]. “1” denotesinhibition of the current behavior by alower-level behavior.

o Navigation: During the autonomous navigation phase
(Figure 2 (b)), the current perception yields a set of ac-
tionsa;, a; 11, ..., a:4k. THus, a any giventimeinstant ¢
(t > k), thereexist k estimatesal, a2, ... aF of what the
current action should be based on current and past sensory
inputs. We obtain the combined estimate of current motor
output using the foll owing weighted averaging method:

k
ho=Y ial ©)
i=1

where the +; determine the fidelity of estimate i and can
be experimentally determined or autonomously learned.

5 Experimental Results

The methods proposed in the previous sections were tested by
simulating the behavior of an actual robot (Figure 3 (b)) in
an enclosed obstacle-filled environment (Figure 3 (c)). This
robot was previously used for on-linelearning of ahierarchical
set of behaviors [10] but the slow processing speed of the
on-board microcontroller unfortunately limited its use in the
present endeavor; we therefore eval uated the feasibility of the
algorithms presented in this paper by using a smulation of
the robot instead. The simulated robot was equipped with the
same three classes of sensorsasdid itsrea world counterpart:

e Bump Sensors: Realized using digital microswitches,
these sensors indicate whether the robot was physicaly
touching an obstacle. Five of these sensors, placed at

different locations around the robot, were used for the
obstacl e detection behavior.

e Photosensors: Six horizontally-positioned photorecep-
tors (implemented via shielded photoresistors) were em-
ployed for measuring the amount of light from a light
source located near the arena.  Six tilted photoreceptors
were used for measuring light intensity value due to the
color of the floor and for detecting surrounding obstacles.
The outputsfrom these sensors were used for the obstacle
avoidance behavior as well as for |earning the perception-
based navigational behaviors;

¢ Infrared detectors: Thesesensors, when used in conjunc-
tionwith infrared detection software, indicatethe strength
of the modulated infrared light in a small spread along
the line of sight of the sensor. Output from four of these
sensorswere used for learning the navigational behaviors.

The above sensory repertoire was supplemented by two
effectors consisting of a rear drive motor and a servo motor
at the front for steering the robot. For the simulations, robot
perceptions were computed using the simplifying assumption
that light/infrared intensity at a particular orientation ¢ and at
adistance » from the sourceis proportional to the solid angle
subtended by the source (i.e. cos(f)/r?), assuming unit area
for the robot receptors.

In the first set of experiments, the simple non-predictive
self-organizing SDM from Section 3 was used for training
the robot to home to a particular location from an arbitrary
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Fi gure 4: Homing using the non-predictive Spar se Distributed Memory (&) The paths on which the network was trained by teleoperating the robot. Floor
color is depicted by shades of grey and obstacles are colored white. The home position is marked by an’'X’. (b) and (c) depict the paths chosen by the robot
when placed at two different positions within the arena. Note the dlight deviations from the training paths caused by mild perceptual aliasing; the obstacle
avoidance behavior is automatically invoked when the deviations cause encounterswith the wall or the square obstacles.

number of other locationsin the robot arena (this corresponds
to the many-one navigation box in the classification of Fig-
ure 3 (a)). Figure 4 shows some typical examples where the
robot successfully navigates to the home position. Note that
the existence of mild perceptua aliasing causes it to deviate
on some occasions, thereby necessitating the use of the lower
level obstacle avoidance behaviors.

In the second set of experiments (corresponding to the
many-many box in Figure 3 (a)), the robot was trained on
anumber of pathsthat intersected each other at different loca-
tions(Figure5 (a)). Thus, at theselocations, local perceptions
alone do not suffice to determine the steering direction, and
the non-predictive memory usualy fails to find the correct
direction to continue in order to reach the pertinent goa des-
tination. On the other hand, as shown in Figure 5 (b), (c) and
(d), the predictive SDM allows the robot to use the context of
past perceptionsto determineits current action, thereby guid-
ing it to its appropriate destination in spite of the presence of
varying degrees of perceptua aliasing.

6 Summary and Conclusions

We have shown that a predictive sparse distributed memory
provides an efficient platform for learning adaptive naviga-
tional behaviors. The proposed method enjoys severable fa
vorable properties:

e Sparse Memory: In contrast to nearest-neighbor look-
up table techniques, the present method employs only a
sparse number of memory locations and avoidsthe “ curse
of dimensionality” problem by intelligently sampling the
high-dimensional sensorimotor space using competitive
learning (see below).

o Competitive Learning of Sensorimotor Basis Func-
tions: The contents of the sparse memory are sdf-
organized using a form of competitive learning that can
be related to maximum likelihood estimation [26]. The
learning rule allows the memory to autonomously form

its own set of basis functions for describing the current
sensorimotor space.

o Distributed Storage: Inputstothememory aredistributed
across a number of locations, thereby inheriting the well-
known advantages of adistributed representation[11] such
as generalization to previously unknown inputsand resis-
tance to faultsin memory and internal noise.

e Motor Prediction based on Past Perceptual History:
The problem of perceptual aliasing is aleviated by em-
ploying past perceptions to predict and influence cur-
rent motor output. This extends the application of the
method to non-Markov sensorimotor environments and
distinguishes our approach from previous neural network
approaches based on training procedures such as back-
propagation [29].

¢ Biological Plausibility: The structure of the memory
bears some striking similarities to the organization of the
mammalian cerebellum (and therefore to the cerebellar
model of Marr [21] and the CMAC of Albus [1]).2 Itis
therefore plausible that biological structures and learni ng
processes similar in spirit to those proposed herein may
underlie goal-directed perception-based navigation in an-
imals.

Sparse distributed memories have previously been used for
awide variety of tasks such as object recognition [34], face
recognition [33], speech recognition [31], speech synthesis
[12], and weather prediction [36]. The present work shows
that with suitable modifications, such memories can be used
for learning useful navigational behaviors in mobile robots
as well. Ongoing work involves implementing the learning
method on arecently acquired wheel chair robot and designing
learning procedures for on-line adaptation of some of the free
parameters in the current method such as the length of the
perceptual history window and the fidelity ~; for combining

2See [15, 35] for more details.
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Fi gure5: Navigation using the Predictive Spar se Distributed Memory (a) The pathson which the network wastrained by teleoperating the robot. Note the
intersection of the training paths at various pointswhich givesrise to perceptual aiasing. (b), (c) and (d) show that the predictive memory is able to circumvent
diasing effects and follow the path to its goal destination by using past sensory information as a contextual aid to disambiguate aliased perceptions.

predicted actions. A simultaneous effort involves exploring
the use of predictive recurrent networks in conjunction with
learning rules other than competitive learning for generating
useful behaviorsin autonomous robots.
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