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Abstract
We describe a general framework for the acquisi-

tion of perception-based navigational behaviors in au-
tonomous mobile robots. A self-organizing sparse dis-
tributed memory equivalent to a three-layered neural
network is used to learn the desired transfer function
mapping sensory input into motor commands. The
memory is initially trained by teleoperating the robot
on a small number of paths within a given domain of in-
terest. During training, the vectors in the sensory space
as well as the motor space are continually adapted us-
ing a form of competitive learning to yield basis vectors
aimed at efficiently spanning the sensorimotor space.
After training, the robot navigates from arbitrary lo-
cations to a desired goal location using motor output
vectors computed by a saliency-based weighted aver-
aging scheme. The pervasive problem of perceptual
aliasing in non-Markov environments is handled by
allowing both current as well as the set of immedi-
ately preceding perceptual inputs to predict the motor
output vector for the current time instant. Simula-
tion results obtained for a mobile robot, equipped with
simple photoreceptors and infrared receivers, navigat-
ing within an enclosed obstacle-ridden arena indicate
that the method performs successfully in a variety of
navigational tasks, some of which exhibit substantial
perceptual aliasing.

1 Introduction

Behaviors that realize goal-directed, collision-free navigation
in unstructured environments form an extremely important
component of the behavioral repertoire of any autonomous
mobile robot. Traditional sensorimotor controllers relied on
fixed robot behaviors that were prewired by the control de-
signer. Such an approach suffered from at least two problems:�To appear in the Proc. of From Animals to Animats: The Fourth Interna-
tional Conference on Simulation of Adaptive Behavior, MIT Press, 1996.

(a) the increasing complexity of the design process when scal-
ing up from toy-problems to real environments and (b) the in-
herent inflexibility of prewired behaviors due to their inability
to adapt to circumstances unforeseen at design time. The first
problem is addressed by Brooks [4], who proposes a hierar-
chical behavior-based decomposition of control architectures.
Such behavior-based robot architectures have been shown to
accomplish a wide variety of tasks in an efficient manner
[7, 19]. The second problem has been addressed by endowing
robots with the ability to autonomously learn behaviors either
from experimentation and dynamic interaction with their envi-
ronment or via teleoperation. A number of learning algorithms
have been used for this purpose including neural networks
[29, 30, 37], evolutionary algorithms/genetic programming
[3, 6, 18], reinforcement learning [2, 13, 20], hill-climbing
routines [10, 27], and self-organizing maps [16, 24, 35].

In the context of robot navigation, a popular approach has
been the construction and use of global maps of the environ-
ment [9]. Such an approach, while being intuitivelyappealing,
faces the difficult problem of robot localization i.e. establish-
ing reliable correspondences between noisy sensor readings
and geometrical map information in order to estimate current
map position. In addition, the global map inherits many of
the undesirable properties of centralized representations that
Brooks [4] identifies in traditional robot controllers. An al-
ternative behavior-based approach to navigation is proposed
by Mataric [22] (see also [8, 17]). This method avoids the
problems involved in creating and maintaining global repre-
sentations by utilizing only local information as provided by
landmarks along a navigational path. A potential problem
with such landmark-based approaches is that incorrect land-
mark matches or changes in the landmarks themselves might
result in catastrophic failure of the navigational system.

In this paper, we propose a robust behavior-based approach
to goal-directed mobile robot navigation based on a predic-
tive sparse distributed memory. A “teaching-by-showing”
paradigm is adopted to initially train the memory for achiev-
ing a prespecified navigational behavior; such an approach
drastically cuts down on the number of training trials needed



as compared to learning by trial and error or by random explo-
ration of the environment. In our case, the robot is teleoperated
(via a remote joystick) on a small number of training paths
within the given environment. During training, the vectors in
the perception space as well as the motor space are adapted
using a form of competitive learning that aims to construct
basis vectors that efficiently span the sensorimotor space en-
countered by the robot. After training, the robot navigates
from arbitrary locations to a desired goal location based on
motor output vectors computed by indexing into sensorimotor
memory with present as well as past perceptions, and using
a saliency-based weighted averaging scheme for interpolating
output vectors. By using past sensory inputs to provide the
necessary context for disambiguating potentially similar per-
ceptions, we alleviate the well-known problem of perceptual
aliasing [5, 38] in non-Markov environments. We provide
simulation results for a mobile robot, equipped with simple
photoreceptors and infrared receivers, navigating within an
enclosed obstacle-ridden arena. The method is shown to per-
form successfully in a variety of navigational tasks, some of
which exhibit substantial perceptual aliasing.

2 Sparse Distributed Memory

One possible method for memory-based navigation is to use
an associative memory in the form of a look-up table that
associates a large set of perception vectors from different lo-
cations with corresponding set of actions required to navigate
to a desired location [25]. However, such an approach suffers
from at least three drawbacks: (a) the address space formed
by the perception vectors is usually quite large and therefore,
storing fixed reference vectors for every possible scenario be-
comes infeasible; (b) the training time increases drastically
as the look-up table size increases, and (c) simple look-up
table strategies relying on nearest-neighbor methods usually
fail to generate the appropriate responses to novel situations.
In this section, we address problems (a) and (b) by using only
a sparse subset of the perceptual address space. This natu-
rally leads to a memory known as sparse distributed memory
(SDM) that was originally proposed by Kanerva [14]. We ad-
dress the second problem of generalization in novel scenarios
in the next section where we propose a modified form of SDM
that uses competitive learning to adapt its sensorimotor space
and radial interpolation to compute motor output vectors.

2.1 Kanerva’s Model

Sparse distributed memory (SDM) (Figure 1) was first pro-
posed by Kanerva [14] as a model of human long-term mem-
ory. It is based on the crucial observation that if concepts or
objects of interest are represented by high-dimensional vec-
tors, they can benefit from the very favorable matching prop-
erties caused by the inherent tendency toward orthogonality
in high-dimensional spaces.

Kanerva’s SDM can be regarded as a generalized random-
access memory wherein the memory addresses and data words

come from high-dimensional vector spaces. As in a conven-
tional random-access memory, there exists an array of storage
locations, each identified by a number (the address of the lo-
cation) with associated data being stored in these locations as
binary words. However, unlike conventional random-access
memories which are usually concerned with addresses only
about 20 bits long (memory size = 220 locations) and data
words only about 32 bits long, SDM is designed to work with
address and data vectors with much larger dimensions. Due
to the astronomical size of the vector space spanned by the
address vectors, it is physically impossible to build a memory
containing every possible location of this space. However, it
is also unnecessary since only a subset of the locations will
ever be used in any application. This provides the primary
motivation for Kanerva’s model: only a sparse subset of the
address space is used for identifying data locations and input
addresses are not required to match stored addresses exactly
but to only lie within a specified distance of an address to
activate that address.

The basic operation of SDM as proposed by Kanerva can
be summarized as follows:

1. Initialization: The physical locations in SDM correspond
to the rows of an m� k contents matrix C (initially filled
with zeroes) in which data vectors 2 f�1; 1gk are to be
stored (see Figure 1 (a)). Pick m unique addresses (p-
element binary vectors ri) at random for each of these
locations (these addresses are represented by the matrix A
in Figure 1 (a)).

2. Data Storage: Given an p-element binary address vec-
tor r and a k-element data vector d for storage, select all
storage locations whose addresses lie within a Hamming
distance of D from a (these activated locations are given
by the select vector s in Figure 1 (a)). Add the data vec-
tor d to the previous contents of each of the selected row
vectors of C. Note that this is different from a conven-
tional memory where addresses need to exactly match and
previous contents are overwritten with new data.

3. Data Retrieval: Given an p-element binary address vectorr, select all storage locations whose addresses lie within a
Hamming distance of D from r (these locations are again
given by the vector s). Add the values of these selected
locations in parallel (i.e. vector addition) to yield a sum
vector S containing the k sums. Threshold these k sums
at 0 to obtain the data vector d0 i.e. di = 1 if si > 0 anddi = �1 otherwise.

Note that the addition step in (2) above is essentially a Heb-
bian learning rule. The statistically reconstructed data vectord0 should be the same as the original data vector provided the
capacity of the SDM [15] has not been exceeded. The intu-
itive reason for this is as follows: When storing a data vector d
using an p-dimensional address vector r, each of the selected
locations receives one copy of the data. During retrieval with
an address close to r, say r0, most of the locations that were
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Figure 1: Kanerva’s Sparse Distributed Memory (SDM). (a) shows a schematic depiction of the model as proposed by Kanerva for storage of binary (and
bipolar) vectors. (b) shows a realization of the memory in the form of a three-layered fully connected network. The labels describe how the network can be
used for perception-based navigation after suitable modifications (see Section 3).

selected with r are also selected with r0. Thus, the sum vector
contains most of the copies of d, plus copies of other different
words; however, due to the orthogonality of the address space
for large p, these extraneous copies are much fewer than the
number of copies of d. This biases the sum vector in the direc-
tion of d and hence, d is output with high probability. A more
rigorous argument based on signal-to-noise ratio analysis can
be found in [15].

2.2 Limitations of Kanerva’s Model

The model of sparse distributed memory as originally pro-
posed by Kanerva has several weaknesses that prevent its
direct use in memory-based navigation:� Both the address and data vectors are required to be binary

in the standard model of the SDM. Since most natural envi-
ronments yield multivalued input patterns, we must either
modify the indexing mechanisms of the model or recode
all inputs into binary form. We chose the former option
since the latter sacrifices the interpolation properties of the
memory.� The standard model of the SDM assumes a uniform dis-
tribution for the input address vectors whereas in most
natural circumstances, the input address vectors tend to be
clustered in many correlated groups distributed over a large
portion of the multidimensional address space. Therefore,
if addresses are picked randomly as suggested by Kan-
erva, a large number of locations will never be activated
while a number of locations will be selected so often that
their contents will resemble noise. We remedy this situa-
tion by allowing the input address space to self-organize
according to the sensorimotor input distribution.

� The standard SDM uses a single fixed thresholdD for acti-
vating address locations. While this simplifies the analysis
of the memory considerably, it also results in poor perfor-
mance since the actual values of the distances between an
input address vector and the basis address vectors in the
SDM are lost during quantization to 0 or 1. Our model uses
radial interpolation functions that weight corresponding
data vectors according to the address vector’s closeness to
the input vector.

3 A Self-Organizing SDM for Perception-
Based Navigation

In the following, we describe the operation of a modified
form of SDM that is suitable for memory-based navigation.
The memory can be realized as a three-layer fully-connected
feedforward network as shown in Figure 1 (b). Assume the
memory contains m storage locations. The first layer consists
of n units representing the input perception vector p. The
hidden layer consists of m units while the output layer is
represented by k units. Let wi (1 � i � m) represent the
vector of weights between hidden unit i and the input layer,
and let mi represent the vector of weights between hidden
unit i and the output layer. The memory accepts multivalued
perception vectors p from an arbitrary distribution and stores
an associated multivalued motor vector m in a distributed
manner in the data space.

3.1 Initialization

Pick m unique addresses (n-dimensional vectors pi) at ran-
dom for each of the locations. This corresponds to randomly
initializing the input-hidden weight vectors wi (1 � i � m).



3.2 Competitive Learning of Sensorimotor Basis
Functions

Given an input perception vector p and an associated motor
vector m during the training phase, we self-organize the ad-
dress/data space using a soft competitive learning rule [26, 40]:

1. Calculate the Euclidean distances dj = kwtj�pkbetweenwtj and the input perception vector p.

2. Adapt all weight vectors (sensory address space vectors)
according to:wt+1j  wtj + gj(t)Pt(dj)(p�wtj) (1)

where Pt is defined as:Pt(dj) = e�d2j=�j(t)Pmk=1 e�d2k=�k(t) (2)

and gj is given by gj(t) = 1=nj(t) where the counter:nj(t+ 1) = nj(t) + Pt(dj) (3)Pt(dj) can be interpreted as the probability of the proto-
type vector wj winning the current competition for per-
ception p. Note that the probability vector P obtained by
vectorizing the Pt(dj) for 1 � j � m is the equivalent of
the select vector s in Kanerva’s model (Figure 1 (a)).

The “temperature” parameter �j(t) is gradually decreased
to a small value in a manner reminiscent of simulated
annealing. This causes the learning algorithm to evolve
from an initially soft form of competition with a large
number of winners to the case where only a sparse number
of winners exist for any given input vector. The soft
competition in the beginning tunes the initially random
prototype vectors towards the input sensory space (thereby
preventing the occurrence of “dead” units which never get
updated) while the later existence of sparse number of
winners helps in fine tuning the prototype vectors to form
a set of distributed basis vectors spanning the sensory input
space.

3. Given a training motor input m, adapt the prototype vec-
tors stored in the motor space according to equation 1
using the same values for dj as in 1 above (i.e. distance
between the input perception vector and the sensory basis
vectors wtj):mt+1j  mtj + �j(t)Pt(dj)(m�mtj) (4)

where �j(t) (0 < �j(t) < 1) is a gain function. Note
that �j(t) does not necessarily have to decrease with time
(this reinforcement strength could be made to depend on
other factors such as importance to the animate system
as evaluated by other modalities or other internal value
mechanisms).

3.3 Computing Motor Output Vectors

Following training, the memory interpolates between the
stored motor basis vectors to produce a motor output vector o
for a given perception vector p, as follows:

1. Calculate the Euclidean distances dj between wj and the
input perception vector p.

2. Let mji (1 � i � k) denote the weight from hidden
unit j to output unit i. Then, the ith component of the
reconstructed output vector o (in other words, the output
of the output unit i) is given by:oi = mXj=1

Pt(dj)mji (5)

The saliency-based weighted averaging above is a form of
normalized radial interpolation that is similar to the output
operation of radial basis function (RBF) networks [28]: the
closer the current perception is to a given sensory basis vec-
tor, the more “salient” that memory location and the more
the weight assigned to the motor vector associated with that
basis vector. The above scheme is inspired by recent neu-
rophysiological evidence [23] that the superior colliculus, a
multilayered neuronal structure in the brain stem that is known
to play a crucial role in the generation of saccadic eye move-
ments, in fact employs a population averaging scheme similar
to the one above to compute saccadic motor vectors.1

4 Predictive Sensorimotor Memory

The self-organizing SDM described in the preceding section
has been shown to be useful for perceptual homing by an au-
tonomous mobile robot [35]. However, it is not hard to see
that the above method is limited to only those navigational be-
haviors that can be modeled by Markov processes: the current
motor output is dependent solely on the current perception
and past inputs are treated as irrelevant for determining cur-
rent action. In general environments, however, a Markovian
assumption is often inappropriate, and any method that relies
on such an assumption suffers from the problem of perceptual
aliasing [5, 38].

4.1 Perceptual Aliasing

Perceptual aliasing, a term coined in [38], refers to the situa-
tion wherein two or more identical perceptual inputs require
different responses from an autonomous system. A number
of factors such as limited sensing capability, noisy sensory
inputs, and restricted resolution in addition to inherent local
ambiguity in typical environments contribute towards exac-
erbating perceptual aliasing. The effects of aliasing can be
reduced to some extent by incorporatingadditional sensory in-
formation that suffice to disambiguate between any two given

1We refer the interested reader to an earlier paper [32] for a closely related
method for visuomotor learning of saccadic eye movements for a robot head.
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the current time instant t predicted by current and past perceptual inputs.

situations [38, 39]. However, these methods still rely only
on current percepts and thus, are unable to overcome aliasing
in non-Markov environments. An alternative approach that
is tailored toward modeling non-Markov sensorimotor pro-
cesses is to base the current output on both the current as well
as the sequence of past outputs (within a certain time win-
dow). In other words, the current percept not only predicts
the action for the current time instant t but also actions for
future time instant t; t+ 1; : : : ; t+ k, where k is a parameter
whose value can be either predetermined or adapted on-line
to counteract the effects of aliasing. The motor action for
the current time instant t is then determined by a weighted
average of the actions recommended by the current as well as
past perceptions upto time t � k. This solution shares some
similarities with Kanerva’s k-fold memory for storage and
retrieval of sequences [14]; however, all the weaknesses in-
herent in Kanerva’s original model (Section 2.2) still apply to
the k-fold memories, thus preventing their direct application
in countering the aliasing problem.

4.2 Using Past Perceptions for Motor Prediction

The informal solution for perceptual aliasing sketched in the
previous section can be formalized as follows. Let pt be the

current perception vector and letm be the current motor action
vector. Figure 2 shows the predictive memory. Note that
the motor space now contains additional sets of connections
between the hidden and output layer, each such set determining
the action to be executed at a given time in the future. A further
set of connections (see (b)), some of which involve time delays
of different durations, appropriately combine the outputs of
this intermediate layer to yield an estimate of current motor
output. The operation of the predictive memory is as follows:� Training: During training (Figure 2 (a)), the perception

space is self-organized as given by Equation 1. The mo-
tor space is also self-organized as in Equation 4 but using
the current motor vector as the training signal for each
set of hidden to motor output unit connections, with the
constraint that the probability weight vector P (see Sec-
tion 3.2) for the set of connections determining the action
for time t + i is the one that was obtained by indexing
into the sensory address space using the perception at timet� i. Such a training paradigm ensures that after training,
the perception at time t generates predicted actions for
time steps t; t+ 1; : : : ; t+ k.
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(Figure 2 (b)), the current perception yields a set of ac-
tions at; at+1; : : : ; at+k. Thus, at any given time instant t(t � k), there exist k estimates a1t ; a2t; : : : ; akt of what the
current action should be based on current and past sensory
inputs. We obtain the combined estimate of current motor
output using the following weighted averaging method:ât = kXi=1


iait (6)

where the 
i determine the fidelity of estimate i and can
be experimentally determined or autonomously learned.

5 Experimental Results

The methods proposed in the previous sections were tested by
simulating the behavior of an actual robot (Figure 3 (b)) in
an enclosed obstacle-filled environment (Figure 3 (c)). This
robot was previouslyused for on-line learning of a hierarchical
set of behaviors [10] but the slow processing speed of the
on-board microcontroller unfortunately limited its use in the
present endeavor; we therefore evaluated the feasibility of the
algorithms presented in this paper by using a simulation of
the robot instead. The simulated robot was equipped with the
same three classes of sensors as did its real world counterpart:� Bump Sensors: Realized using digital microswitches,

these sensors indicate whether the robot was physically
touching an obstacle. Five of these sensors, placed at

different locations around the robot, were used for the
obstacle detection behavior.� Photosensors: Six horizontally-positioned photorecep-
tors (implemented via shielded photoresistors) were em-
ployed for measuring the amount of light from a light
source located near the arena. Six tilted photoreceptors
were used for measuring light intensity value due to the
color of the floor and for detecting surrounding obstacles.
The outputs from these sensors were used for the obstacle
avoidance behavior as well as for learning the perception-
based navigational behaviors;� Infrared detectors: These sensors, when used in conjunc-
tion with infrared detection software, indicate the strength
of the modulated infrared light in a small spread along
the line of sight of the sensor. Output from four of these
sensors were used for learning the navigational behaviors.

The above sensory repertoire was supplemented by two
effectors consisting of a rear drive motor and a servo motor
at the front for steering the robot. For the simulations, robot
perceptions were computed using the simplifying assumption
that light/infrared intensity at a particular orientation � and at
a distance r from the source is proportional to the solid angle
subtended by the source (i.e. cos(�)=r2), assuming unit area
for the robot receptors.

In the first set of experiments, the simple non-predictive
self-organizing SDM from Section 3 was used for training
the robot to home to a particular location from an arbitrary
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Figure 4: Homing using the non-predictive Sparse Distributed Memory (a) The paths on which the network was trained by teleoperating the robot. Floor
color is depicted by shades of grey and obstacles are colored white. The home position is marked by an ’X’. (b) and (c) depict the paths chosen by the robot
when placed at two different positions within the arena. Note the slight deviations from the training paths caused by mild perceptual aliasing; the obstacle
avoidance behavior is automatically invoked when the deviations cause encounters with the wall or the square obstacles.

number of other locations in the robot arena (this corresponds
to the many-one navigation box in the classification of Fig-
ure 3 (a)). Figure 4 shows some typical examples where the
robot successfully navigates to the home position. Note that
the existence of mild perceptual aliasing causes it to deviate
on some occasions, thereby necessitating the use of the lower
level obstacle avoidance behaviors.

In the second set of experiments (corresponding to the
many-many box in Figure 3 (a)), the robot was trained on
a number of paths that intersected each other at different loca-
tions (Figure 5 (a)). Thus, at these locations, local perceptions
alone do not suffice to determine the steering direction, and
the non-predictive memory usually fails to find the correct
direction to continue in order to reach the pertinent goal des-
tination. On the other hand, as shown in Figure 5 (b), (c) and
(d), the predictive SDM allows the robot to use the context of
past perceptions to determine its current action, thereby guid-
ing it to its appropriate destination in spite of the presence of
varying degrees of perceptual aliasing.

6 Summary and Conclusions

We have shown that a predictive sparse distributed memory
provides an efficient platform for learning adaptive naviga-
tional behaviors. The proposed method enjoys severable fa-
vorable properties:� Sparse Memory: In contrast to nearest-neighbor look-

up table techniques, the present method employs only a
sparse number of memory locations and avoids the “curse
of dimensionality” problem by intelligently sampling the
high-dimensional sensorimotor space using competitive
learning (see below).� Competitive Learning of Sensorimotor Basis Func-
tions: The contents of the sparse memory are self-
organized using a form of competitive learning that can
be related to maximum likelihood estimation [26]. The
learning rule allows the memory to autonomously form

its own set of basis functions for describing the current
sensorimotor space.� Distributed Storage: Inputs to the memory are distributed
across a number of locations, thereby inheriting the well-
known advantages of a distributed representation [11] such
as generalization to previously unknown inputs and resis-
tance to faults in memory and internal noise.� Motor Prediction based on Past Perceptual History:
The problem of perceptual aliasing is alleviated by em-
ploying past perceptions to predict and influence cur-
rent motor output. This extends the application of the
method to non-Markov sensorimotor environments and
distinguishes our approach from previous neural network
approaches based on training procedures such as back-
propagation [29].� Biological Plausibility: The structure of the memory
bears some striking similarities to the organization of the
mammalian cerebellum (and therefore to the cerebellar
model of Marr [21] and the CMAC of Albus [1]).2 It is
therefore plausible that biological structures and learning
processes similar in spirit to those proposed herein may
underlie goal-directed perception-based navigation in an-
imals.

Sparse distributed memories have previously been used for
a wide variety of tasks such as object recognition [34], face
recognition [33], speech recognition [31], speech synthesis
[12], and weather prediction [36]. The present work shows
that with suitable modifications, such memories can be used
for learning useful navigational behaviors in mobile robots
as well. Ongoing work involves implementing the learning
method on a recently acquired wheelchair robot and designing
learning procedures for on-line adaptation of some of the free
parameters in the current method such as the length of the
perceptual history window and the fidelity 
i for combining

2See [15, 35] for more details.
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Figure 5: Navigation using the Predictive Sparse Distributed Memory (a) The paths on which the network was trained by teleoperating the robot. Note the
intersection of the training paths at various points which gives rise to perceptual aliasing. (b), (c) and (d) show that the predictive memory is able to circumvent
aliasing effects and follow the path to its goal destination by using past sensory information as a contextual aid to disambiguate aliased perceptions.

predicted actions. A simultaneous effort involves exploring
the use of predictive recurrent networks in conjunction with
learning rules other than competitive learning for generating
useful behaviors in autonomous robots.
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