
Automatic Construction of High Quality
Roadmaps for Path Planning

D.Nieuwenhuisen

A.Kamphuis

M.Mooijekind

M.H.Overmars

institute of information and computing sciences, utrecht university

technical report UU-CS-2004-068

www.cs.uu.nl



Automatic Construction of High Quality Roadmaps for Path

Planning

D.Nieuwenhuisen A.Kamphuis M.Mooijekind M.H.Overmars
email: {arnok,dennis,mmooijek,markov}@cs.uu.nl

December 24, 2004

Abstract

Path planning plays an important role in many virtual worlds, like computer games. Currently
the motion of entities is often planned using a combination of scripting, grid-search methods, local
reactive methods, flocking and crowd behavior. In this paper we describe a new approach, based
on a technique from robotics, that computes a roadmap of smooth, collision-free, high-quality
paths. This roadmap can be used to obtain instantly good paths for entities. We also describe
applications of the technique for planning the motion of groups of entities and for creating smooth
camera movements through an environment.

1 Introduction

In many virtual worlds, entities like world inhabitants, non playing characters (NPCs), and vehicles,
must plan their motions between locations in the virtual world. Currently this is typically achieved
using a combination of scripting, A∗-based grid search, local reactive methods, flocking and crowd
behavior.

In scripting, the designer explicitly described the paths that can/must be followed by the entities. This
is normally part of level design. Scripting is a time consuming process for the designer. In addition,
it can lead to repetitive behavior that is easily observed by the user. Scripting gets increasingly
complicated when many entities move in the same space.

Grid based methods divide the world in a grid of cells and plan motion using an A∗-based search on
the free cells (see e.g. [5, 21]). If the virtual world is small and grid-like, this technique is useful.
However, when the world becomes complicated and large and many entities must move around, grid
based methods take a large amount of computer time. Pruning the search reduces the time but might
lead to wrong paths. Also, motions created by grid search tend to be unnatural because, in general,
for grid searches a smooth path needs to be created in the post-processing phase resulting in expensive
queries.

Reactive methods adapt a previously computed motion to obstacles found near the path that were not
taken into account during initial planning; for example other entities or small, movable objects (see
e.g. [13, 22, 1, 18]). Even though theoretically reactive methods can be used to compute full paths,
this normally leads to dead-lock situations in which the entities no longer know where to move (e.g.
they get stuck in a corner of the room). Another problem with reactive methods is that it is often
difficult to adapt the internal animation of the character to the motions produced.

In robotics, many other path planning approaches have been developed that might be applicable to
path planning in virtual environments, like games or simulators. In robotics though, the emphasis

1



Figure 1: An example of a smooth roadmap computed by our technique.

2



(a) A group of five characters should attack the site
pointed to by the arrow.

(b) The group inappropriately splits up, loosing some
of its troops.

Figure 2: One of the problems with the current techniques for motion planning for multiple units
is that the group splits up to reach the goal. This scene was taken from Command and Conquer:
Generals from EA Games.

is often on the motion of a complicated robotic system in a relatively simple environment. In most
virtual world applications the opposite is true. From a path planning perspective, the entity can often
be modeled as a simple vertical cylinder, while the environment can be very complicated with tens of
thousands of obstacles.

One popular path planning technique in robotics is the Probabilistic Roadmap Method (PRM). It has
been studied by many authors, see e.g. [12, 25, 11, 7]. In a pre-processing phase this method builds a
roadmap of possible motions of the robot through the environment. When a particular path planning
query must be solved, a path is retrieved from this roadmap using a simple and fast graph search. The
PRM approach is suited for very complicated environments. Unfortunately, the roadmap produced by
the method can be rather wild, leading to low quality paths, consisting of straight line segments, that
require a lot of time-consuming smoothing in order to be useful for virtual world applications.

In this paper we will describe a new path planning approach, building on the PRM method, that can
be effectively applied in virtual world applications. The approach also constructs a roadmap of possible
motions but guarantees that the paths are short, have enough clearance from the obstacles, and are C1

continuous, leading to natural looking motions. See Figure 1 for an example of a roadmap computed
using our approach. After constructing the roadmap, which can be done in the pre-processing phase,
paths can be retrieved almost instantaneously, and do not require any post-processing.

Besides the standard application, in which the roadmap is used for planning the paths for individual
entities, we describe two additional applications. First, we consider the motion of groups of entities.
This problem is often solved using a combination of grid-based planning and flocking [19, 20]. Unfor-
tunately, this can lead to unwanted behavior where the group of entities splits up (see Figure 2 for an
example). We will use the smooth paths computed by the new planning approach as a backbone path
and then use a social potential field approach to guide the flock through a corridor around this path
(extending our earlier work in [10]). This results in a natural motion in which the group is guaranteed
to stay together.

In many virtual world applications, moving the camera through an environment is one of the most
fundamental operations. Currently the camera is often under direct control of the user or under
indirect control of the user. Direct camera control is difficult, it easily leads to motion sickness due
to redundant motions, and is often not required. Building on our earlier work in [15] we describe a

3



method in which the user only specifies positions of interest and the camera automatically moves to
such positions using a smooth, collision free motion. For computing the camera path we will use the
new planning approach described. This is then combined with techniques to control the view direction
and the speed of the camera to obtain a camera motion that is pleasant to watch.

2 Roadmap generation

In this section we will describe how, in a pre-processing phase, a roadmap of possible motions for the
entities can be computed. A roadmap is normally represented as a graph in which the nodes correspond
to placements of the entity and the edges represent collision-free paths between these placements. A
standard technique for automatic roadmap creation is the probabilistic roadmap method (PRM).

Unfortunately, the PRM method leads to low quality roadmaps that can take long detours. This is
due to the random nature of the PRM method. Techniques exist to improve paths in a post-processing
stage but this is time-consuming and can still lead to long detours. Here we present a variant of
the PRM method that creates short, smooth and high quality roadmaps in the pre-processing phase.
These roadmaps can then in real-time be used to solve path planning queries almost instantaneous
using a simple shortest path graph search algorithm (for example Dijkstra’s shortest path algorithm).

In the pre-processing phase we create the roadmap graph, consisting of vertices (V ) and edges (E).
For the placement of the entity we only take its position (x, y) into account since these are the only
parameters that are important for planning the path. Later, the other parameters (such as orientation)
can be added depending on the application. The edges of the graph will represent straight line and
circular paths between the vertices. Only vertices and edges that are collision free are allowed in the
graph.

In order to be able to use the graph for as many different queries as possible, we need a good coverage
of the space. Many improvements for the PRM method have been proposed in order to achieve this
(see e.g. [2, 3, 17, 27, 8, 4, 9]), but all are based on the same underlying concept and lead to roadmaps
consisting of straight line segments only that result in low path quality.

For a roadmap that is used to steer entities, we can formulate the following criteria:

• The paths generated by the roadmap should always keep some minimum amount of clearance
from the obstacles in the scene.

• The paths should be smooth i.e. it should be C1 continuous.

• A path needs to be created very fast (not delaying the motion) and should be short, not taking
any significant detours.

2.1 Creating samples on the Voronoi diagram

The Voronoi diagram of a scene defines for every obstacle a set of points in the free space that are
closer to this obstacle than to any other obstacle in the scene; together these points form the Voronoi
diagram (see Figure 3 for an example).

Here, we propose a new variant of the PRM method that uses the Voronoi diagram as a guide. The
method works as follows. In every iteration of the algorithm we randomly pick a sample (placement)
of the entity, we call it c. Then we check whether c is collision free for the entity. If this is the case,
we continue by retracting it to the Voronoi diagram using the following procedure. We calculate the
closest point on an obstacle from c, we call this point cc (Figure 4(a)). Next, another sample c′ is

4



Figure 3: An example of a Voronoi diagram. We treat all four boundaries of the workspace as separate
obstacles.

cc
c

(a) Creating a random sample c
and finding the closest point on
an obstacle cc.

c

c′
c′

(b) Moving c′ away from c un-
til the closest obstacle changes, in
this example we need two steps.

c

c′
cv

(c) Finding the sample cv that is
on the Voronoi diagram using bi-
nary interpolation.

Figure 4: Retracting samples to the Voronoi diagram.

moved from c in the opposite direction of cc using as a step size the distance between c and cc (Figure
4(b)). We proceed until the closest obstacle to c′ changes. We now have two samples c and c′, both
having another closest obstacle. The above procedure guarantees that the Voronoi diagram passes
through a point between c and c′.

We continue by using binary search between c and c′, with precision ε until we have found a sample
that has its two closest obstacles at the same distance. This sample, called cv, is at most a distance ε
away from the Voronoi diagram (Figure 4(c)). Now, we add cv to the list of vertices V in the roadmap
graph.

After adding a sample as a vertex to the graph, we determine its neighbor vertices. The set of neighbor
vertices of vertex v, called Nv is defined as all vertices V that are closer to v than some chosen maximum
neighbor distance. For each vertex vn in Nv we test whether the straight line connection between v
and vn is collision free. If this is the case, then we add the connection (v, vn) as an edge to the set
of edges E of the graph. If two vertices are already connected in the graph (via other vertices), then
we only add the new edge if the path between v and vn is shortened considerably by at least some
constant K (for more details see [16]).

2.2 Retracting edges

We have retracted the nodes of the graph to the Voronoi diagram (within a certain boundary ε) but
when connecting the samples with edges, these edges are usually not on the Voronoi diagram and can
get very close to obstacles (Figure 5(a)). In order to solve this problem, edges are retracted to the

5



a

b

c

d

e

(a) Although the vertices are on the (dotted)
Voronoi diagram, the edges can get very close to
obstacles.

(b) Edge a will be retracted to the Voronoi dia-
gram.

(c) We retract the center point of the edge to the
Voronoi diagram, creating two new edges.

(d) The process is repeated for one of the new
edges. Now all (new) edges have enough clearance
with the obstacles.

Figure 5: Retracting an edge to the Voronoi diagram.

Voronoi diagram until every part of the edge is at least some pre-specified distance away from the
obstacles. We achieve this by proceeding in the following manner: if (a part of) an edge is too close to
an obstacle, this edge is split in two equal length parts and the middle point is retracted to the Voronoi
diagram using the same procedure as described in the previous section. This procedure is recursively
repeated for the two new edges until every edge has enough clearance with the obstacles. An example
of this procedure is shown in Figure 5. In some cases (when the edge passes through a very narrow
corridor), the clearance threshold will never be reached and the edge will be split an infinite number of
times. In order to prevent this, we stop retracting edges if their length is shorter than some predefined
value.

Retracting edges to the Voronoi diagram may result in some edges overlapping each other. For example
in Figure 5(a) if edges c and d are already retracted, then retracting e will result in overlap. Fortunately,
detecting overlapping edges is easy. For every pair of edges ei and ej , we check how far their endpoints
are away from the other edge. If this distance is smaller than some predefined distance, then we try to
project the vertices of ei on ej and vice versa. If at least one of these projections is successful, we call
the two edges overlapping and we can join them. We can distinguish four different kinds of overlapping
edges. In Figure 6 these are shown together with the situation after removing the overlap.

6



e0 e1

(a)

e0

e1

(b)

e0

e1

(c)

e0
e1

(d)

(e) (f) (g) (h)

Figure 6: Merging two overlapping edges e0 and e1. Four different cases can be distinguished (a..d).
The results after merging are shown in (e..h).

2.3 Improving the roadmap

In the previous sections, we optimized the clearance in the roadmap. It can be improved further
though. In particular we would like to make sure that a path runs through every corridor between the
obstacles. This can be achieved by applying some of the known techniques for finding paths in narrow
corridors (see e.g. [6, 3, 8]). On the other hand, allowing cycles in the graph in a controlled manner
can lead to the same result [16].

If a vertex v has only two neighbor vertices, it may be possible to directly connect those two neighbors,
bypassing v. This would lead to longer edges and, thus, less (unnecessary) rotations. We remove these
vertices if the merged edge is collision free and has enough clearance.

2.4 Circular blends

After retracting the vertices of the graph to the Voronoi diagram and after adding some minimal
amount of clearance to the edges we still end up with a graph that consists of straight line segments.
If an entity follows such a path it will have C1 discontinuities in its motion at the vertices that cause
sudden directional changes. In order to solve this problem we will replace parts of the straight line
edges by circular blends.

The degree of a vertex is defined as the number of edges that is connected to this vertex. If a vertex
has degree 1, it is an endpoint of a path segment, and no circular blend needs to be added. If a vertex
has degree 2, the addition of the circular blend is straightforward. We find the centers of the two
edges, and use these to create a circle arc that touches both edges. Now, we use this to replace a part
of the path (see Figure 7(a)). If the degree of a vertex v is higher than 2, we find the centers of all
incoming edges. We now add a blend for every pair of these centers (see Figure 7(b) for an example
of a vertex with degree 3).

7



(a) Creating a circular blend
between two edges.

(b) Creating multiple circular
blends.

(c) Moving the cir-
cular blend to in-
crease clearance.

Figure 7: Creating the circular blends.

In the previous section, we retracted the edges of the graph to the Voronoi until they had at least some
predefined clearance. Adding circular blends may decrease this clearance. Since we do not want the
clearance to be lower than some predefined value, we check the minimum clearance of each circular
blend. If it is too low, then we replace the blend by another blend that has a smaller radius. We repeat
this until the blend has enough clearance. This procedure is shown in Figure 7(c).

Figure 1 shows an example of a typical roadmap graph created with this method. Computing this
roadmap took about 1 second on a Pentium IV 2.4 GHz. Realize though that roadmaps can be
computed during the creation of the scene and can easily be stored with it.

2.5 Answering path queries

Whenever an entity has to move to a new location, it can search the graph in real-time to plan its
route through the environment. Because of the properties of the roadmap, paths will be short, have
enough clearance from the obstacles, and are smooth. To obtain a path we first need to connect the
current position of the entity to the graph. This can easily be done by finding the closest vertex in the
graph and connecting the current placement to this vertex using circular blends. We proceed in the
same way for the goal placement of the entity. Now we can use a shortest path algorithm in the graph
to find the path between the current and goal positions. See Figure 8 for an example of such a path.

Computing paths is extremely fast. Even for a large roadmap graph consisting of 1000 vertices and
3000 edges, the calculation of the shortest path takes less than 10ms on a Pentium IV 2.4GHz.

3 Path planning for groups

Virtual worlds are often populated with a large number of moving entities. The entities should often
behave as a coherent group rather than as individuals. For example, when one needs to simulate
the behavior of whole army divisions. Current techniques solve the problem of path finding on the
entity level, i.e. they plan the motion of individual entities, using techniques like flocking to keep the
entities together. However, in cluttered environments this often leads to loss of coherence. There is no
guarantee that the entities will stay together, albeit that ’staying together’ is not well defined. Even
though the entities all have a similar goal, they try to reach this goal without real coherence. This
results in groups splitting up and taking different paths to the goal, for example as in Figure 2.

We will briefly describe a novel technique in which groups are guarantee to stay together. More details
can be found in [10]. We are given a virtual environment in which a group of entities must move from
a given start to a given goal position. The entities must avoid collisions with the environment and with

8



Figure 8: An example of a resulting path.

9



(a) A backbone path and cor-
ridor generated from a non-
optimized roadmap. The path is
too close to the obstacles, creat-
ing an artificial narrow passage.

(b) A backbone path and corri-
dor generated from a roadmap
generated on the medial axis.
Clearly the path is optimal in
the sense of clearance.

U
a

c

(c) The attraction point a of an
entity U when point a has a
clearance c.

(d) A real corridor.

Figure 9: The corridor

each other, and should stay together as one group. The entities are modeled as discs (or cylinders)
and are assumed to move on a plane or terrain. Later, the resulting paths for the cylinders can be
used to animate avatars, e.g. sprites or motion captured human-like avatars.

The method works as follows: First, a so-called backbone path for a single entity is computed. This
path defines the homotopic class used by all entities. Two paths P0 and P1 are said to be in the same
homotopic class only if P0 can be continuously deformed into P1 without intersecting any obstacle.
Next, a corridor is defined around the backbone path in which all entities must stay. Finally, the
movement of the entities is generated using force fields with attraction points on the backbone path.
By limiting the distance between the attraction points for the different entities, coherence of the group
is guaranteed.

3.1 Backbone path planning and the corridor

The first phase of the approach consists of finding the backbone path. Since every entity should be
able to traverse the path, the clearance on the path should be bounded by a some minimum value,
namely the radius of the enclosing circle/cylinder of the largest entity. The backbone path can thus
be defined as follows: A backbone path is a path in the 2D workspace, where the clearance at every
point on the path is at least the radius of the enclosing circle/cylinder.

Although a minimum clearance of the radius of the enclosing circle is sufficient to find a path, we prefer
a larger clearance, since a larger clearance leads to behavior that is more coherent. Also we prefer the
paths to be smooth and short. Hence, the paths in the roadmap created with the method described
above are very well suited for this application.

10



From the backbone path, a corridor is created. For this we use the clearance around the path. On
every point on the path, the clearance is defined as the radius of the largest circle around this point
that does not intersect with the environment. The value of the clearance is upper bounded by the
maximum group width, i.e. the clearance can never exceed the maximum group width. The union of
all the upper-bounded clearance circles forms a corridor around the backbone path. Figure 9(a) shows
a path that is too close to obstacles, resulting in artificial narrow passages. In contrast, the path in
Figure 9(b) was generated with the roadmap approach described above, and lies far from obstacles.
The resulting corridor is much more natural.

3.2 Generating the motion inside the corridor

Once the corridor is created, we need to use it to generate the motion of the individual entities.
The approach used is an artificial force field technique. Forces are defined that act on the entities
and influence their movement. Every entity in the group has a corresponding attraction point on the
backbone path. This attraction point is selected as the maximum advanced point p along the backbone
such that the entity is still inside the circle centered at that point p with radius equal to the clearance
at p (see Figure 9(c)). The attraction points make the entities move forward and keep the entities
inside the corridor. The entities also repulse each other to avoid collisions between them. Additional
forces could be incorporated, for example to accomplish formations.

3.3 Keeping coherence in the group

In order to keep the group coherent, the dispersion should be upper bounded. Due to the manner
in which the corridor is constructed, the lateral dispersion (dispersion perpendicular to the backbone
path) is automatically upper bounded by the group width. However, the longitudinal dispersion (in
the direction of the backbone path) is not yet bounded in this approach. To correct this, the distance
along the path from the least advanced attraction point to the most advanced attraction point is
limited. This results in the entities in front waiting for the entities at the back.

3.4 Results

The behavior of the group can be controlled by adjusting the coherence parameters, lateral dispersion
and longitudinal dispersion. Figures 10(a) to 10(c) show a group of 50 entities moving through an
environment. In these pictures the lateral and longitudinal dispersion is varied, resulting in a longer,
more stretched group (10(a)) or more compact group (10(c)).

Figure 10(d) shows the same group moving through the environment from the left lower corner to
the right upper corner. The most advanced entities, i.e. the entities that passed the narrow passage
earliest, wait for the last entity to pass the passage.

We tested the performance of the approach to show that the technique is usable in real-time virtual
world applications such as computer games. For this, we developed a typical implementation. In this
implementation we created numerous paths. The processor usage during the creation of the paths was
minimal. For groups of 50 to 100 entities the processor usage did not exceed 1 percent. More efficient
implementations could further decrease the processor usage.

11



(a) The group with high longitudinal dispersion
and very low lateral dispersion.

(b) The group with medium longitudinal disper-
sion and medium lateral dispersion.

(c) The group with low longitudinal dispersion
and larger lateral dispersion.

(d) The group moves through a narrow passage,
making the first wait for the last ones (movement
is from the lower-left to the upper-right).

Figure 10: A group of 50 entities moving in a virtual world. These paths and behaviors are created
with the same approach, only by varying the parameters.

12



Figure 11: A speed diagram. The left image shows the path, the middle image shows the maximal
speed allowed at each position. The right image shows the actual speed, taking acceleration and
deceleration bounds into account.

4 Planning camera motions

Every virtual world has a camera through which the user views the world. Usually this camera moves
depending on user input and place of action. A camera motion directs the camera from one position
to another while controlling camera speed and view direction. There are many situations in which
an automatic camera motion could be of great use. Think for example about an architectural walk
through of a new housing project. The inexperienced virtual environment user (which are many future
new home owners) would spend much time in the virtual environment just navigating, unintentionally
neglecting the real goal of viewing their new future house. By automating the movement of the camera,
by allowing the user to click on interesting locations, the user can enjoy the virtual worlds without the
problems of getting lost or queasy.

The roadmap from the previous section can easily be used to steer a camera. Using this roadmap, the
camera is guaranteed to keep a certain amount of clearance from the obstacles and the circular arcs
make sure that the camera motion is gentle. The roadmap alone however is not enough to create a
smooth camera motion. Camera theory [14, 26] shows that we need to take care of two more variables.
First, the speed of the camera should be adapted according to the curvature of the path. Otherwise,
objects will move too fast through the view, similar to the effect of a fast-forwarding movie. Second,
the user should get cues about where the camera is going. In particular the viewer should be able to
anticipate a camera rotation. We will resolve these issues in the next two sections.

4.1 Adapting the camera speed

Smoothness of the path is not enough for a smooth camera motion. The speed of the camera along
the path should be adapted according to the curvature of the path. Also there should be a maximum
acceleration and deceleration for the camera in order to prevent too abrupt speed changes.

Since our path consists of straight lines and circle arcs, we can adapt the speed of our camera by
making use of the radius of the arcs. The smaller the radius, the lower the camera speed. When the
camera leaves an arc with a small radius, we accelerate until we have reached the maximum speed
of the current arc or straight line. If, on the other hand, the next arc requires a lower speed than
the current camera speed, we must start decelerating on time, such that when we reach the next arc,
our speed is sufficiently low. A speed diagram can be computed efficiently that satisfies both the
constraints on the maximal speed for each arc and the bounds on acceleration and deceleration. See
Figure 11 for an example of such a speed diagram for a simple path.

13



4.2 Smoothing the viewing direction

Intuitively one might think that the viewing direction should be equal to the direction of the camera
motion. As stated before however, camera theory states that the user should be given cues about
where the camera is heading or else the user may experience discomfort. We can achieve this by
always looking at the position the camera will be in a short time. Experiments show that about 1
second is the right amount. Note that, as we fix the time we look ahead, the distance we look ahead
changes depending on the speed of the camera. This is exactly what we want to achieve as in sharp
turns we want to look at a nearer point than in wide turns. Looking ahead has another important
effect. If we would look in the direction of motion and the camera reaches a circular arc, then it
suddenly starts rotating at the start of the arc. Stated more formally, the rotation of the camera
is only C0 continuous. It can be proved that looking ahead solves this issue by making the camera
rotation C1 continuous.

4.3 Results

We implemented our approach in a walk-through system for virtual worlds. See Figure 12 for a
screenshot. Rather than letting the user steer the camera directly, we display a map in the top left
corner. By clicking on the map the user indicates the position she wants to move to. A smooth camera
motion is then calculated in the way described above and the user can focus on the environment instead
of the camera control. The processor time required for this is minimal. Experiments indicate that this
is a pleasant way to inspect the environment.

5 Conclusions

In this paper we have described a new technique for automatic construction of high-quality roadmaps
in virtual environments that can be used for computer controlled entities to quickly find their routes.
We have also shown how this technique can be used the plan the motion for groups of entities and the
camera through which we observe the world. Due to the nature of the roadmap, the approach also
works in large environments, where grid-based method typically fail (requiring too much storage and
processing time).

We described our method as a 2-dimensional approach in which entities move on a ground plane. It is
though easy to extend it to e.g. terrains and even motions in buildings in which the roadmap would
automatically follow the corridors and stairs.

Roadmap construction is best seen as being part of the construction of the virtual world. It is easy
to incorporate special requirements from the level designer. For example, the designer can add fake
obstacles to force the path to e.g. stay on the sidewalks of a road. Also the designer can easily
manipulate the roadmap graph by manually adding, changing, or removing nodes. Moreover, weights
can be added to the graph to e.g. indicate preferred routes.

In some application the virtual environment is not completely know at design time because it contains
for example a door or a moving car. Also in such situations our technique can be applied by constructing
the roadmap in absense of the dynamic objects. During runtime, recent techniques for handling
dynamic changed to the environments [23, 24] can then be used to take these additional objects into
account.

14



Figure 12: An implementation of the techniques. The user can click on a location in the map at the
left top and the program creates a smooth camera motion to that location.

15



6 Acknowledgements

This research was supported by the Dutch Organization for Scientific Research (N.W.O.). This research
was also supported by the IST Programme of the EU as a Shared-cost RTD (FET Open) Project
under Contract No IST-2001-39250 (MOVIE - Motion Planning in Virtual Environments). Part of
this research has been funded by the Dutch BSIK/BRICKS project.

References

[1] S. Baert. Motion planning using potential fields. gamedev.net, 2000.

[2] R. Bohlin and L.E. Kavraki. Path planning using lazy prm. In Proc. IEEE Int. Conf. on Robotics
and Automation, pages 521–528, 2000.

[3] V. Boor, M.H. Overmars, and A.F. van der Stappen. The gaussian sampling strategy for prob-
abilistic roadmap planners. In Proc. IEEE Int. Conf. on Robotics and Automation, pages 1018–
1023, 1999.

[4] M. Branicky, S. Lavalle, K. Olson, and L. Yang. Quasi randomized path planning. In Proc. IEEE
Int. Conf. on Robotics and Automation, 2001.

[5] Mark DeLoura, editor. Game Programming Gems 1. Charles River Media, 2000.

[6] R. Geraerts and M. Overmars. A comparative study of probabilistic roadmap planners. In
Algorithmic Foundations of Robotics V, Springer Tracts in Advanced Robotics 7, pages 43–57.
Springer-Verlag Berlin Heidelberg, 2004.

[7] C. Holleman and L. Kavraki. A framework for using the workspace medial axis in prm planners.
In Proc. IEEE Int. Conf. on Robotics and Automation, volume 2, pages 1408–1413, 2000.

[8] David Hsu, Tingting Jiang, John Reif, and Zheng Sun. The bridge test for sampling narrow pas-
sages with probabilistic roadmap planners. In Proc. IEEE Int. Conf. on Robotics and Automation,
2003.

[9] P. Isto. Constructing probabilistic roadmaps with powerful local planning and path optimization.
In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages 2323–2328, 2002.

[10] Arno Kamphuis and Mark H. Overmars. Finding paths for coherent groups using clearance. In
Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2004), page to appear,
August 2004.

[11] L. Kavraki and J.-C. Latombe. Randomized preprocessing of configuration space for fast path
planning. In Proc. IEEE Int. Conf. on Robotics and Automation, pages 2138–2139. IEEE Press,
San Diego, CA, 1994.

[12] L. Kavraki, P. Švestka, J.-C. Latombe, and M.H. Overmars. Probabilistic roadmaps for path plan-
ning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation,
12:556–580, 1996.

[13] F. Lamiraux and O. Lefebvre D. Bonnafous. Reactive path deformation for nonholonomic mobile
robots. In IEEE Transactions on Robotics, page to appear, 2004.

[14] G. Millerson. TV Camera Operation. Focal Press, London, 1973.

[15] D. Nieuwenhuisen and M.H. Overmars. Motion planning for camera movements. In Proc. IEEE
Int. Conf. on Robotics and Automation, pages 3870–3876. IEEE Press, San Diego, CA, 2004.

16



[16] D. Nieuwenhuisen and M.H. Overmars. Useful cycles in probabilistic roadmap graphs. In Proc.
IEEE Int. Conf. on Robotics and Automation, pages 446–452. IEEE Press, San Diego, CA, 2004.

[17] C. Nissoux, T. Siméon, and J.-P. Laumond. Visibility based probabilistic roadmaps. In Proc.
IEEE Int. Conf. on Intelligent Robots and Systems, pages 1316–1321, 1999.

[18] M. Pinter. Toward more realistic pathfinding. gamasutra.com, March 2001.

[19] C.W. Reynolds. Flocks, herds, and schools: A distributed behavioral model. Computer Graphics,
21(4):25–34, 1987.

[20] C.W. Reynolds. Steering behaviors for autonomous characters. In Game Developers Conference,
1999.

[21] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 1994.

[22] W.B. Stout. Smart moves: Intelligent path-finding. Game Developer, October 1996.

[23] Jur P. van den Berg, Dennis Nieuwenhuisen, Léonard Jaillet, and Mark H. Overmars. Creat-
ing robust roadmaps in changing environments. Technical Report UU-CS-2004-069, Institute of
Information and Computing Sciences, Utrecht University, The Netherlands, 2004.

[24] Jur P. van den Berg and Mark H. Overmars. Roadmap-based motion planning in dynamic envi-
ronments. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages 1598–1605,
2004.

[25] P. Švestka and M.H. Overmars. Coordinated path planning for multiple robots. Robotics and
Autonomous Systems, 23:125–152, 1998.

[26] M. Wayne. Theorising Video Practice. Lawrence and Wishart, London, 1997.

[27] S.A. Wilmarth, N.M. Amato, and P.F. Stiller. Maprm: A probabilistic roadmap planner with sam-
pling on the medial axis of the free space. In Proc. IEEE Int. Conf. on Robotics and Automation,
pages 1024–1031, 1999.

17


