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Abstract— This paper presents a 3D path planing algo-
rithm for an unmanned aerial vehicle (UAV) operating in
cluttered natural environments. The algorithm satisfies the
upper bounded curvature constraint and the continuous cur-
vature requirement. In this work greater attention is placed
on the computational complexity in comparison with other
path-planning considerations. The Rapidly-exploring Random
Trees (RRTs) algorithm is used for the generation of collision
free waypoints. The unnecessary waypoints are removed by a
simple path pruning algorithm generating a piecewise linear
path. Then a path smoothing algorithm utilizing cubic Bézier
spiral curves to generate a continuous curvature path that
satisfies the minimum radius of curvature constraint of UAV
is implemented. The angle between two wapoints is the only
information required for the generation of the continuous
curvature path. The result shows that the suggested algorithm
is simple and easy to implement compared with the Clothoids
method.

I. INTRODUCTION

The field of robot motion planning has greatly matured

since the original work in the 1970s. However, autonomous

navigation of Unmanned Aerial Vehicles (UAVs) in complex

environments is still an active research topic. The path

planning problem for UAVs is difficult since these vehicles

have fast and complicated dynamics and are compounded by

the issues of real time navigation in 3D space.

There are several considerations for an ideal path planner

including: optimality; completeness; and computational com-

plexity. There is a natural trade off between these elements

[1]. For UAV applications, computational complexity is the

most important requirement since path planning has to occur

quickly due to fast vehicle dynamics. If previously unknown

obstacles are detected, the UAV has to replan the path in

real time to avoid these obstacles. If the path planner fails

to generate a safe path within bounded time, collisions with

obstacles may result. Since the computational time of deter-

ministic and complete algorithms grows exponentially with

the dimension of the configuration space, these algorithms

do not provide an adequate solution for real-time UAV path

planning in unknown natural environments [2].

Recently, sampling-based motion planning has gained

much interest as an alternative to complete motion planning

methods. The Maneuver Automaton, which is a kind of

hybrid vehicle modeling strategies, is a good alternative to

solve real time path planning problem [2]. However it is

difficult to decide the finite set of motion primitives. If these

sets are small the solution may be severely suboptimal but if

these are too large the computational time can be increased

dramatically. Rapidly-exploring Random Trees (RRTs) have

been demonstrated successfully in UAV applications [2],

[3], [4], [5]. The standard RRT algorithm produces a time-

parameterized set of control inputs to move from the initial

state (xstart) to the goal state (xgoal). The validity of the

result is dependant on the accuracy of the state-space model

being used. In real UAV applications, we encounter sensor

inaccuracies, wind, and other unmodeled factors. These are

some of the key disadvantages of using an open-loop path

planner [3].

In this paper, we use closed-loop path planning instead

of generating the time-parameterized set of control inputs.

Collision free waypoints are generated for the UAV and this

path consists of straight line segments. Since it is not possible

for the helicopter to follow this path without stopping at

sharp angles, it is necessary to smooth the path.

Smooth path planning has been tackled actively in the

mobile robot community. A smooth path is essential for

mobile robot navigation, because non-smooth motions can

cause the slippage of wheels which degrades the robots

dead-reckoning ability [6]. Several methods may be applied

to generate a smooth path. A popular method is Dubins

curves [7], [8], [9]. This algorithm computes the shortest

path between two postures in the plane via the concatenation

of line segments and arcs of circles taking into account the

vehicles maximum rate of change of turn rate [10]. Dubins’

seminal work has since been extended to other more complex

vehicle models but is still confined to line segments and arcs

of circles.

The non-continuous curvature of Dubins curve results in

difficulty with control execution: at the junction of a straight

line and an arc, mobile robots need to stop their wheel motion

to make perfect tracking achievable [11]. To overcome this

problem several researchers have proposed to smooth the

path by combining line segments, circular arcs and clothids

[12], [13]. Clothoid pairs provide smooth transitions with

continuous curvatures and have the advantage of providing

the minimum-length curves for a given limit on jerk [14].

However, such curves have the disadvantage that no closed-

form expression of the position can be given [15], and they

are not very flexible in matching the conditions placed at

the endpoints of the path [16] and are dangerous in the
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presence of obstacles [17]. Moreover, the computational cost

of clothoids are higher than parametric curves since the

evaluation of Fresnel integrals are required to generate a

curve.

Another approach to make continuous curvature path is to

use splines. In [18], B-spline is used to generate a planar

smooth curve avoiding obstacles and this method has been

applied to the path planning of autonomous ground vehicles

in [19]. However to apply this method, a safe corridor

which does not intersect the obstacle must be constructed in

advance for collision avoidance. A seventh order polynomial

spline is used to generate a G3 continuous path in [20], but

its computational costs are expensive due to its high order.

In the UAV community, most researchers apply the Dubins

algorithm [21], [22], [23] to generate a smooth path. Cubic

splines are used to generate a smooth path for an autonomous

unmanned helicopter in [4] but it is still of C1 continuity as

with the Dubins curves. When the helicopter begins to fly

the circular path, there is a step change of angular velocity

as the pervious angular velocity is zero as the vehicle would

have been traversing along the straight line segment. The

path can not be smoothly executed, since a helicopter can

not immediately accelerate to the correct angular velocity

[24].

Cubic Bézier curves can be used to generate a continuous

curvature path. However a significant disadvantage of a

parametric cubic curve is that its curvature is a complicated

function of its parameter. It is thus not easy to use cubic

curve segments in the design of curvature controlled curves

[25]. Continuous curvature curve generation using composite

Bézier curves is shown in [26] and results on the number

and location of curvature extrema of planar parametric cubic

curve is shown in [25]. It is a difficult problem to generate a

parametric curve satisfying both G2 continuity and maximum

curvature requirements at the same time. This problem is

solved in [27] but it is too complicated to be applied in real-

time.

In this paper, a computationally efficient path smoothing

method is suggested. The main contribution of this paper is a

computationally efficient 3D path planning algorithm which

satisfies a G2 continuity and nonholonomic constraints.

The rest of the paper is organized as follows: Section II

describes 2D path planning methods. Section III presents the

curvature continuous path smoothing algorithm. Extending

these methods to 3D is described in Section IV. Simulation

results are shown at Section V. Conclusions and future works

are presented thereafter.

II. 2D PATH PLANNING

Fig. 1 (a) shows our autonomous helicopter flying in the

flight test site. This helicopter will be used for both the

surveying and spraying of weeds in areas where conventional

weed control techniques could not be applied easily. There

are two scenarios of interest for path planning. Firstly, the

helicopter must survey where the weeds exist. For this

mission, the helicopter has to fly close to the ground at a

constant altitude and has to detect and classify the harmful
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Fig. 1. (a) Our helicopter flying in the flight test site located in Marulan.
(b) The simulation environment cluttered with “trees”.

weeds. In this case, 2D path planning is needed as the altitude

is kept constant. After surveying the environment, the next

task is to spray the chemical on to the weeds. To perform

this operation, the helicopter must fly to the area where these

weeds exist as soon as possible after take off to perform the

spraying mission. In this case, 3D path planning is required

We first consider path planning with constant altitude

for surveying the weeds. Fig. 1 (b) shows the simulation

environment cluttered with trees. We assumed that there

are trees between the starting point(square) and the target

point(diamond) with different radii and height and the heli-

copter has to fly with constant altitude(5m).

A. RRT Algorithm

RRT was first suggested in [28] as a alternative to com-

plete path planning in high degree of freedom situations.

First RRT selects a random state xrand and then finds the

nearest node to the xrand in terms of distance metric ρ. The

algorithm then select the control input unew that minimizes

the distance from xnear to xrand and finally checks for

collision. If there is no collision, xnew , unew are added as a

new vertex in the tree. This control-theoretic method is open-

loop planning and works well if the state-space model of the

platform is exact. However, if there is a model mismatch,

then the generated path may be differ from the real path.

Moreover, since the sensor information is not perfect, the

path may also be unsafe. Finally, in natural environments,

there are always winds, and these disturbances will affect a

UAVs maneuver. An open loop path planning method cannot

consider these disturbances at the planning stage and cannot

compensate for their effects.

Instead of generating a time-parameterized set of control

inputs, we decouple the path planning and control problems.

We generate a purely geometric path using a variant of RRT

to define waypoints. Our RRT algorithm operates as follows.

First, a position xrand is chosen at random from within the

workspace, and this point is compared with existing tree

nodes to find the closest point in the tree, xnear . A line

is drawn connecting xnear to xrand, and a new point xnew

is generated along this ray at a fixed distance d from xnear.

If there is no collision on the interval between xnear and

xnew, the latter is added to the tree. A greedy variation

of the algorithm generates points successively along the

ray connecting xnear and xrand until a collision occurs.

We can reduce the computational time for path planning
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Fig. 2. (a) Path planning using Biased-Greedy RRT algorithm. (b) Path
pruning algorithm: The path consists of 45 nodes but after removing
redundant waypoints, the number of nodes is reduced to only 1.

by biasing the generation of xrand, such that 10% of the

time it equals xgoal rather than a random location. Further

efficiency can be obtained by combining Greedy and Biased

RRT. We tested the performance of Biased-Greedy RRT

with different environments (different size of environment,

different number and location of obstacles ) and in every case

it shows better performance than biased RRT. This Biased-

Greedy RRT algorithm is used for waypoint generation in

the rest of this paper.

Fig. 2 (a) shows the path planning result of Biased-Greedy

RRT Algorithm. The green lines are all trees generated by

the algorithm and the red line is the shortest path which

connects the starting point and the target point.

The comparison of performance of this algorithm with dif-

ferent environments is shown in [29] with a 1000 simulation

runs. Despite the random nature of RRT, our following path

smoothing algorithm generates a curvature continuous path

without any failure.

B. Path Pruning

Even though RRT is an effective and computationally ef-

ficient tool for complex online motion planning, the solution

is far from optimal due to its random exploration of the

space. It is thus required to remove unnecessary waypoints.

In [5], Dijkstra’s algorithm is used to prune the waypoints to

generate a near optimal path, but this method requires a bit

large amount of computational time. Therefore it loses the

strong advantage of RRT, namely fast planning. Instead, we

use a simple but quite efficient method which can quickly

find a path that eliminates most extraneous nodes.

Let the original path of nodes from start to goal point be

denoted {x1, . . . ,xN}, such that xN is the goal location. Let

the pruned path be initially an empty set, and let j = N .

The pruning operation is as follows. First add xj to the

pruned path. Then for each i ∈ [1..j − 1], check the line

between (xi, xj) for a collision, stopping on the first xi

without collision. Let j = i, add xj to the pruned path, and

repeat the process until a complete path is generated. Even

though this path is not optimal, this method can get rid of

unnecessary waypoints very quickly. Fig. 2 (b) shows the

result of path pruning algorithm applied to the initial RRT

path in Fig. 2 (a). The path has 45 nodes between starting

and target point initially but the number of nodes is reduced

to only 1 after the redundant waypoints are pruned.

C. Path Smoothing

The path in Fig. 2 (b) is piecewise linear and not fol-

lowable for a UAV with kinematic and dynamic constraints.

Therefore, it is necessary to make the path smooth in order

to be suitable for UAVs.

A helicopter can fly in linear segments at low speed with

the capability to stop and hover at each waypoint. However,

at higher speeds, a helicopter would not be able to negotiate

turns at smaller radii, which imposes the demand for a

planner that accommodates for nonholonomic constraints [4].

An alternative is for the helicopter to reduce its speed in

order to negotiate the path having large curvature. Since this

increases the flight time, the aim is to generate a path which

satisfies the maximum curvature constraint of the helicopter.

Two methods are considered for the comparison of path

smoothing: C1 Continuous Cubic Bézier Curve(C1CBC) and

G2 Continuous Cubic Bézier Spiral(G2CBS).
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Fig. 3. C1 Continuous Cubic Bézier Curve(C1CBC) Path Smoothing

1) C1CBC Path Smoothing: Let the degree n Bézier curve

with n+1 control points (P0, P1, · · · , Pn ) be defined as [30]

P (s) =

n
∑

i=0

PiBn,i(s) (1)

where the coefficients Bi,n(s) are named Berstein polyno-

mials and are defined as follows:

Bn,i(s) =

(

n

i

)

si(1 − s)n−i (2)

Since the computational cost increases with degree n, a lower

degree of Bézier curves is preferable. A cubic Bézier curve is

the minimum degree curve in which a continuous curvature

locus can be generated. Four control points (P0, P1, P2, P3)

are needed to make a cubic Bézier curve, where P0 and

P3 are the curve endpoints. Our concern is to connect two

curves smoothly. A C1 continuous curve between two curves

may be obtained if the first derivative of the two curves at

the junction point are the same. If we take the derivative of

equation (1), the following first derivative of Bézier curves

equation is obtained.

Ṗ (s) =

n−1
∑

i=0

n(Pi+1 − Pi)Bn−1,i(s) (3)

From this equation, we can see that consecutive segments in a

composite Bézier curves can be made C1 continuous simply

by arranging that the first control vertex prior to endpoint of
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the first curve, the shared endpoint, and the second vertex

of the next curve to be collinear and equally spaced [30].

Therefore the first two control points P0, P1 must be located

between W1 and W2 and the last two control points P2, P3

must be located between W2 and W3 as can be seen in Fig.

3. The 4 control points can be decided by the following

equation:

P0 = W2 + d1 · u1, P1 = W2 +
d1 · u1

2
,

P2 = W2 −
d2 · u2

2
, P3 = W2 − d2 · u2 (4)

where u1 is a unit vector between W2 and W1 and u2 is that

of W3 and W2, and d1 is a length between W2 and P0 and

d2 is that of W2 and P3 .

However, this C1 continuous curve has a discontinuity of

curvature at the joint. We want to generate a continuous cur-

vature curve, namely a G2 continuous curve. The curvature

of a planar parametric curve is defined as follows [30]:

κ(s) =
|Ṗ (s) × P̈ (s)|

|Ṗ (s)|3
(5)

Therefore, the path must satisfy the condition of equation (5)

at the junction points instead of equation (3).

III. G2CBS PATH SMOOTHING

A. G2 Continuity Condition

Generating a G2 continuous curve is not as simple as mak-

ing a C1 continuous curve. Planar G2 transition curves are

generated, composing of cubic Bézier spiral segments [16].

Spiral segments are defined to have no interior curvature

extrema. Therefore if the value of equation (6) is not zero,

it becomes a cubic Bézier spiral.

κ̇ =
(Ṗ · Ṗ )

(

Ṗ ×
...
P

)

− 3
(

Ṗ × P̈
)(

Ṗ · P̈
)

||Ṗ ||5
(6)

The solution of this equation is very complicated if a pure

parametric approach is used. This is the significant disadvan-

tage of a parametric curve. However, if the P0 is moved to

(0, 0) and P0, P1, P2 are aligned in x-axis after translation

and rotation and a geometric property of the control polygon

is used, it is possible to reduce the complexity of the curve.
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Fig. 4. Geometric Interpretation of Cubic Bézier curves.

Fig. 4 shows a planar cubic Bézier curve with 8 degrees

of freedom, which may be described in just 4 degrees of

freedom according to the three lengths (g, h, k) and a angle

(θ). If we substitute these four variables into equation (6),

three conditions for generating a spiral curve may be found.

g

h
≥ 0.58,

k

h
≤

6 cos θ
g
h

+ 4
and 0 < θ <

π

2
(7)

If these conditions are applied to connect two straight lines,

the following expression can be obtained which make a G2

continuous composite curve.

F (β) = cos2(γ − β) sin β[(7.2364 + 6 cos2 β)Dy

−6Dx cosβ sinβ] + cos2 β sin(γ − β)

[7.2364(Dy cos γ − Dx sin γ) +

6 cos(γ − β)(Dy cosβ − Dx sin β)]

= 0 (8)

where D = (Dx, Dy) = E0 −B0 and β and γ are angles as

can be seen in Fig. 5 (a).

As the only known variable is γ, Dx and Dy need to

be determined in order to solve equation (8). If we select

d1 to be the length between P2 and B0, and d2 as the

length between P2 and E0, the solution of equation (8)

can be obtained by the bisection method. Having obtained

the solution to equation (8), the eight control points can be

determined which construct two cubic Bézier spiral curves.

The first curve consist of following the four control points

B0 = P2 + d1 · u1, B1 = B0 + gb · u1,

B2 = B1 + hb · u1, B3 = B2 + kb · ud (9)

The second curve consists of the following four control

points

E0 = E1 − ke · ud, E1 = E2 − he · u2,

E2 = E3 − ge · u2, E3 = P2 − d2 · u2 (10)

where

hb =
4.58Dy cos2(γ − β) sin β

[1.2364 cosβ sin(γ − β) + 6 sinγ] cosβ sin γ
,

he =
hb cos2 β sin(γ − β)

sinβ cos2(γ − β)
,

gb = 0.58 · hb,

ge = 0.58 · he,

kb = 1.31 · hb cosβ,

ke = 1.31 · he cos(γ − β) (11)

and u1 is a unit vector between P2 and P1, u2 is that of P3

and P2 and ud is a unit vector between B2 and E2.

B. Analytical Solution of G2 Continuity

In order to determine the 8 control points, equation (8)

must be solved. If there are many cusps to smooth, the

computational time is increased.

Our goal is to find the solution of equation (8) without

using numerical methods. The length of d1 is assigned to

be the same as d2 (d = d1 = d2), which does not change

the maximum curvature of the curve. With this condition, an

analytical solution of equation (8) can be obtained.
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Fig. 5. (a) Curvature continuous condition to connecting two lines. (b)
G2CBS path smoothing result between two line segments.

Theorem 1. If d1 = d2 and β = γ

2
, then there exists

curvature continuous curve which connects two straight

lines.

Proof. If one line is aligned to the x-axis and the same

design variable d is applied, Dx and Dy can be decided as

follows (see Fig. 5 (a)).

Dx = d + d cos γ, Dy = d sin γ (12)

By substituting equation (12) into equation (8), the following

equation is obtained.

F (β) = cos2(γ−β) sin β[(7.2364 + 6 cos2 β)d sin γ−

6(d + d cos γ) cosβ sin β] + cos2 β sin(γ−β)

[7.2364(d sinγ cos γ − (d + d cos γ) sinγ) +

6 cos(γ−β)(d sin γ cosβ−(d + d cos γ) sinβ)]

(13)

Using a trigonometrical function, equation (13) can be ar-

ranged as follows

F (β) = d cos2(γ−β) sin β[(7.2364 + 6 cos2 β) sin γ −

6 cos2
γ

2
sin 2β] + d cos2 β sin(γ−β)

[−7.2364 sinγ + 6 cos(γ−β)(sin(γ−β) − sinβ)]

= 7.2364d sinγ
[

cos2(γ−β) sin β−cos2 β sin(γ−β)
]

+

6d cos2(γ−β) sin β
[

cos2 β sin γ−cos2
γ

2
sin 2β

]

+

6d cos2 β sin(γ−β) cos(γ−β)[sin(γ−β) − sin β]

(14)

If β is chosen as a half of γ (β = γ

2
), the spiral condition

of equation (8) is always satisfied. �

If we use these conditions, all 8 control points can be

easily determined. For example, the hb and he values can be

obtained as follows:

hb=
4.58d sin 2β cos2 β sin β

[1.2364 cosβ sin β+6 sin2β] cosβ sin 2β
= 0.346d

he=
hb cos2 β sin β

sin β cos2 β
= hb (15)

Therefore, equation (11) can be reduced as follows.

hb = 0.346d, he = hb,

gb = 0.58 · hb, ge = 0.58 · hb,

kb = 1.31 · hb cosβ, ke = 1.31 · hb cosβ (16)

From equation (16), we can see that G2CBS path can be

generated once we determine d.

C. Nonholonomic Constraint of G2CBS

In the G2CBS path, the only design variable is d if we use

Theorem 1. Therefore, we have to decide the d value which

satisfies this constraint.

Theorem 2. If the maximum curvature of the UAV is given

by κmax, then the design variable d which satisfies this

maximum curvature constraint can be decided as follows:

dκmax
=

1.1228 sinβ

κmax · cos2 β

Proof. The maximum curvature of cubic Bézier spiral is

located at ending point since its curvature monotonically

increases from the starting point to the ending point.

The first and second derivative of a cubic Bézier curve are

obtained such as equation (17) if the geometric property is

used as shown in Fig. 4.

Ṗ (s) = 3
−→
k , P̈ (s) = 6

−→
k − 6

−→
h (17)

Substituting these values into equation (5), the maximum

curvature of the cubic Bézier spiral can be obtained as

follows:

κmax =
|3
−→
k × (6

−→
k − 6

−→
h )|

|3
−→
k |3

=
18kh sin θ

27k3

=
2h sin θ

3k2
(18)

The G2CBS consists of two curves and they have the same

curvature profiles. Without loss of generality, we can use

the first curve to find out the maximum curvature. Since

kb = 1.31hb cosβ and hb = 0.346d from equation (16), the

maximum curvature can be obtained as follows:

κmax =
2(0.346d) sinβ

3[1.31(0.346d) cosβ]2
=

1.1228 sinβ

d cos2 β
(19)

Therefore the design variable d which satisfies the maxi-

mum curvature constraint can be obtained as follows.

d =
1.1228 sinβ

κmax · cos2 β
� (20)

D. Collision Checking

The collision checking algorithm is executed after G2CBS

path smoothing. If there is no collision, d will be applied but

if there is collision, d will be reduced and checked again to

see if collision still exist. To make the path smoother, d can

be increased until collision is detected. The maximum length

of d is dependent on the angle between the waypoints and

it is not the scope of this research.
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IV. 3D PATH PLANNING

This section extends the path planning algorithms to

3D. The 2D Biased-Greedy RRT algorithm to be extended

to 3D easily as well as pruning algorithm. However, to

apply a G2CBS path smoothing algorithm to 3D is not as

straightforward since it is based on a 2D plane.

A. G2CBS Path Smoothing

There are two approaches to solve 3D G2CBS path

smoothing. The first method is to directly solve the problem

in 3D space. This is a quite complex problem and is not

easy to find the analytical solution. The second method is

to map 3D waypoints to 2D, apply the 2D G2CBS path

smoothing method and then map these values back again

into 3D. Since the path smoothing algorithm is applied on

consecutive triplets of waypoints, these 3 waypoints form a

plane. Therefore, this plane can be mapped from the 3D

space plane (in global frame) on to a 2D plane using a

homogenous coordinate transformation.

Global Coordinate


X
 Y


Z


P1


P2


P3


Local Coordinate


u
x


u
y
u
z


Fig. 6. Coordinate Transformation : Using coordinate transformation, the
3D space can be mapped to 2D plane

The 3D G2CBS path smoothing algorithm can be de-

scribed in the following steps.

The first step is to find 3 unit vectors (ux, uy, uz) in the

P1P2P3 plane. The ux can be obtained by calculating the

unit vector between P1 and P2.

ux =
P2 − P1

||P2 − P1||
(21)

Since the uz is perpendicular to the P1P2P3 plane, it can be

obtained by the cross product of two vectors in this plane.

uz = ux × u
′

y (22)

where u
′

y is the unit vector between P2 and P3.

u
′

y =
P3 − P2

||P3 − P2||
(23)

The uy can be obtained from the cross product between ux

and uz .

uy = uz × ux (24)

Finally the transformation matrix can be obtained, which

maps the local (2D) frame to global (3D) frame by translating

the P1 to (0,0,0) point of global frame.

TM =









ux(x) uy(x) uz(x) P1(x)
ux(y) uy(y) uz(y) P1(y)
ux(z) uy(z) uz(z) P1(z)

0 0 0 1









(25)

This matrix transforms a coordinate in the local frame to the

global frame.

P3D = TM · P2D (26)

Since the z value is zero in the local plane, it is expressed

by P2D. Therefore the 3D waypoints can be mapped to the

2D plane using the following equation.

P2D = TM−1 · P3D (27)

The second step is to apply a 2D G2CBS path smoothing

algorithm to the 3 waypoints obtained by the equation (27).

The final step is to map this value to the original global 3D

space using the equation (26).

V. SIMULATION RESULTS

The comparison of the performance of DC, C1CBC and

G2CBS path with regard to fixed wing aircraft is shown in

[29]. In this paper, only path smoothing results are compared.

A. 2D path planning navigating 3 waypoints

We first compared the three path smoothing methods

connecting three waypoints in a 2D plane. Fig. 7 (a) shows

the path smoothing results of using the Dubins Curve(DC),

C1CBS and G2CBS algorithms. There is seemingly little

differences among the three paths but the curvature of these

paths are very different as can be seen in Fig. 7 (b). The

curvature of DC and C1CBS are discontinuous at the junction

points while the curvature of G2CBS is continuous over the

whole path.
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Fig. 7. Comparison of Path Smoothing Methods : (a) shows the path
smoothing output of DC, C1CBC and G2CBS and (b) is the curvature of
these three paths.

B. 3D Path Planning in Cluttered Environment

Fig. 8 shows the whole 3D path planning algorithms:

Biased-Greedy RRT, path pruning and path smoothing. The

altitude varies between 0 to 30m. The difference in 2D and

3D path planning is that the UAV can fly over the trees in

3D planning as can be seen in Figure 8. Results show that

there are step changes of curvature at the joint in the case of

C1CBC, while curvatures of G2CBS are continuous at these

points.
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Fig. 8. 3D Path Planning in Cluttered Environment: (a) is the path planning
output from the Biased-Greedy RRT, (b) shows the path pruning output, (c)
are the path smoothing results of C1CBS (blue line) and G2CBS (red line),
(d) shows the curvature of C1CBS and G2CBS paths.

VI. CONCLUSIONS AND FUTURE WORKS

A UAV path planner has been developed using a modified

RRT algorithm, combining biased sampling and the greedy

extension of nodes. Since this path consists of piecewise

linear segments, a smoothing process is needed.

A continuous curvature path smoothing algorithm has

been developed satisfying nonholonomic constraints. The

angle between two wapoints is the only required information

for the generation of continuous curvature path. Therefore,

the suggested algorithm is very simple and fast enough to

be executed online path planning. Finally this algorithm is

extended to 3-dimensional space.

We are currently doing system identification of our heli-

copter and will apply the algorithm to the real system.
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