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ABSTRACT 
This paper describes the use of a Genetic Algorithm (GA) for the problem of Offline Point-to-Point 
Autonomous Mobile Robot Path Planning. The problem consist of generating “valid” paths or 
trajectories, for an Holonomic Robot to use to move from a starting position to a destination across a flat 
map of a terrain, represented by a two dimensional grid, with obstacles and dangerous ground that the 
Robot must evade. This means that the GA optimizes possible paths based on two criteria: length and 
difficulty. First, we decided to use a conventional GA to evaluate its ability to solve this problem (using 
only one criteria for optimization). Due to the fact that we also wanted to optimize paths under two 
criteria or objectives, then we extended the conventional GA to implement the ideas of Pareto optimality, 
making it a Multi Objective Genetic Algorithm (MOGA). We describe useful performance measures and 
simulation results of the conventional GA and of the MOGA that show that both types of Genetic 
Algorithms are effective tools for solving the point-to-point path planning problem.  
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1. INTRODUCTION 

 
The problem of Mobile Robot Path Planning is one that has intrigued and has received much 

attention thru out the history of Robotics, since it’s at the essence of what a mobile robot needs to be 
considered truly “autonomous”. A Mobile Robot must be able to generate collision free paths to move 
from one location to another, and in order to truly show a level of intelligence these paths must be 
optimized under some criteria most important to the robot, the terrain and the problem given. GA’s and 
evolutionary methods have extensively been used to solve the path planning problem, such as in (Xiao 
and Michalewicz, 2000) where a CoEvolutionary method is used to solve the path planning problem for 
two articulated robot arms, and in (Ajmal Deen Ali et. al., 2002) where they use a GA to solve the path 
planning problem in non-structured terrains for the particular application of planet exploration. In 
(Farritor and Dubowsky, 2002) an Evolutionary Algorithm is used for both off-line and on-line path 
planning using a linked list representation of paths, and (Sauter et. al., 2002) uses a Particle swarm 
optimization (PSO) method based on Ant Colony Optimization (ACO). However, the research work 
presented in this paper used as a basis for comparison and development the work done in (Sugihara, 
1999). In this work, a grid representation of the terrain is used and different values are assigned to the 
cells in a grid, to represent different levels of difficulty that a robot would have to traverse a particular 
cell.  Also they present a codification of all monotone paths for the solution of the path-planning problem. 
The exact way in which the GA’s are developed in this paper is presented in Section 3. Section 2 gives 
some basic theory needed to further understand the purpose of the problem we are trying to solve and 
explain the methods used in order to reach the goal expressed by the path planning problem. Section 4 
describes the details of the GA’s used in this paper defining each aspect of its architecture and flow of the 
GA’s used as well as the problem specific Path Repair Mechanism employed. Section 5 gives a more 
detailed look at the implementation of the GA’s discussed in Section 4. Section 6 discusses the simulation 
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results and performance of the GA’s, and Section 7 concludes this paper with a discussion on future 
work. 
 
2. BASIC THEORY 

 
This section is intended to present some basic theory used to develop the GA’s in this paper for 

use in the path planning problem, covering topics like basic Genetic Algorithm theory, Multi Objective 
optimization, Triggered Hypermutation and Autonomous Mobile Robot Point-to Point Path Planning. 

 
2.1 Genetic Algorithms 

A Genetic Algorithm is an evolutionary optimization method used to solve, in theory “any” 
possible optimization problem. A GA (Man et. al., 1999) is based on the idea that a solution to a 
particular optimization problem can be viewed as an individual and that these individual characteristics 
can be coded into a finite set of parameters. These parameters are the genes or the genetic information 
that makes up the chromosome that represents the real world structure of the individual, which in this case 
is a solution to a particular optimization problem. Because the GA is an evolutionary method, this means 
that a repetitive loop or a series of generations are used in order to evolve a population S of p individuals 
to find the fittest individual to solve a particular problem. The fitness of each individual is determined bye 
a given fitness function that evaluates the level of aptitude that a particular individual has to solve the 
given optimization problem. Each generation in the genetic search process produces a new set of 
individuals thru genetic operations or genetic operators:  Crossover and Mutation, operations that are 
governed by the crossover rate � and the mutation rate � respectively. These operators produce new child 
chromosomes with the intention of bettering the overall fitness of the population while maintaining a 
global search space. Individuals are selected for genetic operations using a Selection method that is 
intended to select the fittest individuals for the role of parent chromosomes in the Crossover and 
Mutation operations. Finally these newly generated child chromosomes are reinserted into the population 
using a Replacement method. This process is repeated a k number of generations. The Simple GA  (Man 
et. al., 1999) is known to have the next set of common characteristics: 

 
• Constant number of p individuals in the genetic search population. 
• Constant length binary string representation for the chromosome. 
• One or two point crossover operator and single bit mutation operator, with constant values for 

� and �. 
• Roulette Wheel (SSR) Selection method. 
• Complete or Generational Replacement method or Generational combined with an Elitist 

strategy. 
 

2.2 Multi-Objective Genetic Algorithm 
Real-world problem solving will commonly involve (Oliveira et. al., 2002) the optimization of 

two or more objectives at once, a consequence of this is that it’s not always possible to reach an optimal 
solution with respect to all of the objectives evaluated individually. Historically a common method used 
to solve multi objective problems is by a linear combination of the objectives, in this way creating a 
single objective function to optimize (Sugihara, 1997) or by converting the objectives into restrictions 
imposed on the optimization problem. In regards to evolutionary computation, (Shaffer, 1985) proposed 
the first implementation for a multi objective evolutionary search. The proposed methods in (Fonseca and 
Fleming, 1993), (Srinivas, 1994) and (Goldberg, 1989), all center around the concept of Pareto optimality 
and the Pareto optimal set. Using these concepts of optimality of individuals evaluated under a multi 
objective problem, they each propose a fitness assignment to each individual in a current population 
during an evolutionary search based upon the concepts of dominance and non-dominance of Pareto 
optimality. Where the definition of dominance is stated as follows: 

Definition 1: For an optimization (minimization) problem with n-objectives, solution u is said to be 
dominated by a solution v if: 

∀i = 1, 2, …, n, fi(u) ≥  fi(v)                                                          (1) 
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∃j = 1, 2, …, n, ∴ fi(u) ≥  fi(v)                                                     (2) 
 
2.3 Triggered Hypermutation 

In order to improve on the convergence of a GA, there are several techniques available such as 
(Man et. al. 1999) expanding the memory of the GA in order to create a repertoire to respond to 
unexpected changes in the environment. 

Another technique used to improve the overall speed of convergence for a GA is the use of a 
Triggered Hypermutation Mechanism (Cobb, 1990), which consists of using mutation as a control 
parameter in order to improve performance in a dynamic environment. The GA is modified by adding a 
mechanism by which the value of � is changed as a result of a dip in the fitness produced by the best 
solution in each generation in the genetic search. This way � is increased to a high Hypermutation value 
each time the top fitness value of the population at generation k dips below some lower limit set 
beforehand, this causes the search space to be incremented at a higher rate thanks to the higher mutation 
rate, and conversely � is set back to a more conventional lower value once the search is closing in to an 
appropriate optimal solution. 

 
2.4 Autonomous Mobile Robots 

An Autonomous Mobile Robot as defined in (Xiao and Michalewicz, 2000) can be seen as a 
vehicle that needs the capability of generating collision free paths that take the robot from a starting 
position s to a final destination d, and needs to avoid obstacles present in the environment. The robot 
must be able to have enough relevant information of his current position relative to s and d, and of the 
state of the environment or terrain that surrounds it. One advantage about generating paths or trajectories 
for these kinds of robots, compared to the more traditional robot arms, is that in general there are far less 
restrictions in regards to the precision with which the paths must be generated. The basic systems that 
operate in an Autonomous Mobile robot are: 

 
1) Vehicle Control. 
2) Sensor and Vision.  
3) Navigation 
4) Path Planning 

 
2.5 Point-to-Point Path Planning Problem 

The path planning problem when analyzed with the point-to-point technique, (Choset et. al., 
1999) comes down to finding a path from one point to another (start and destination). Obviously, one of 
the most important reasons to generate an appropriate path for a robot to follow, is to help it avoid 
possible danger or obstacles along the way, for this reason an appropriate representation of the terrain is 
needed generating a sufficiently complete map of the given surroundings that the robot will encounter 
along its route. 

The general path-planning problem, that all autonomous mobile robots will face, has been solved 
(to some level of satisfaction) with various techniques, besides the evolutionary or genetic search, such 
as, using the Voroni Generalized Graph (Choset et. al., 1999), or using a Fuzzy Controller (Kim et. al., 
1999), yet another is by the use of Artificial Potential Fields (Planas et. al., 2002). These along with many 
other methods are alternatives to the evolutionary search mentioned earlier or the GA used in this paper.   

 
3. PROPOSED METHOD FOR POINT-TO-POINT PATH PLANNING PROBLEM 

 
The first step before we can continue and give the details of the GA implementation used to 

solve the path-planning problem, is to explicitly define the problem and what is it that we are expecting 
out of the subsequent genetic search. To this end, we propose what will be the input/output pair that we 
are expecting from our GA as follows: 
Input: 

1) An n x n grid, where the starting cell s for the robot is in one corner and the destination cell d is 
diagonally across from it. 

2) Each cell with a corresponding difficulty weight wd assigned to it ranging from [0, 1]. 
Output: 
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A path, defined as a sequence of adjacent cells joining s and d, and that complies with the 
following restrictions and optimization criteria: 

1) The path most not contain cells with wd = 0 (solid obstacles). 
2) The path must stay inside of the grid boundaries. 
3) Minimize the path length (number of cells). 
4) Minimize the total difficulty for the path, that means, the combined values of wd for all the cells 

in a given path. 
We must also establish a set of ground rules or assumptions that our GA will be operating under: 

- The n x n grid isn’t limited to all cells in the grid having to represent a uniform or constant size 
in the terrain, each cell is merely a conceptual representation of spaces in a particular terrain. 

- Each cell in a terrain has a given difficulty weight wd between the values of [0,1], that represents 
the level of difficulty that a robot would have to pass through it, where the lower bounds 0 
represents a completely free space and the higher bounds 1 represents a solid impenetrable 
obstacle. 

- The terrain is considered to be static in nature. 
- It is assumed that there is a sufficiently complete knowledge in regards to the state of the terrain 

in which the robot will operate. 
- The paths produced by the GA are all monotone paths. 

 
4. GA ARCHITECTURE 

 
We now turn to the actual implementation of our GA, used to solve the path-planning problem 

for one and two optimization objectives. So we describe each of the parts of our GA and give a brief 
description of each, clearly stating any differences between the one and two optimization objectives 
implementations, and Figure 1 shows the flow chart for each. 

 
 

(a)          (b) 
Figure 1. GA flowchart (a) Conventional GA with one optimization objective (b) MOGA with 

two optimization objectives. 
 
4.1 Individual  Representation 

Basically, the chromosome structure was taken from the work done in (Sugihara, 1999) where a 
binary string representation of monotone paths is used. The binary string chromosome is made up of n-1 
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(where n is the number of columns and rows in the grid representing the map of a given terrain) pairs of 
direction/distance of length 3 + log[2]n, and an extra bit a which determines if the path is x-monotone 
(a=0) or y-monotone (a=1). And each pair of direction/distance codes the direction in which a robot 
moves inside the grid and the number of cells it moves thru in that direction. The meaning of the bits in 
each pair of direction/distance is given in Table 1 and Table 2. The coding used greatly facilitates its use 
in a GA, because of its constant length no special or revamped genetic operators are needed, a problem 
that would be very cumbersome to solve if using a linked list chromosome representation of the path as 
done in (Xiao and Michalewicz, 2000). 

 
 
 

Table 1. Coding of each direction/distance pair when a = 0. 

 First two Bits Remanding Bits Movement 

00 Number of cells (direction given bye sign). Vertical 

01 Ignored Diagonal – Up 

10 Ignored Horizontal 

11 Ignored Diagonal – Down 

 
 

Table 2. Coding of each direction/distance pair when a = 1. 

First two Bits Remanding Bits Movement 

00 Number of cells (direction given bye sign). Horizontal 

01 Ignored Diagonal – Left 

10 Ignored Vertical 

11 Ignored Diagonal – Right 

 
 

4.2 Initial Population 
The population S used in the genetic search is initialized with p total individuals. Of the p 

individuals in S, p-2 of them are generated randomly while the remaining two represent straight line paths 
from s to d, one of this paths is x-monotone and the other is y-monotone. So we can clearly define the 
population S as being made up by: 

S = { baxxxx p ,,............,, 2210 − }                                          (3) 

Where ix  are randomly generated individuals, and by a and b that are x-monotone and y-monotone paths 
respectively that take a straight-line route from s to d. 

 
4.3 Path Repair Mechanism 

Each path inside of the population S is said to be either valid or non-valid. Where the criteria for 
non-validity are: 

i) Path contains a cell with a solid obstacle (wd = 1). 
ii) Path contains cells out of bounds. 
iii) The paths final cell isn’t d. 

Using this set of three rules to determine the state of validity of a given path for a particular genetic 
search, we can define a subpopulation S’ which is made up by entirely non-valid paths in S.
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The Path Repair Mechanism used with the GA is a Lamarckian process designed to take 
non-valid x’, where x’ � S’, and determine if they can be salvaged and return to a valid state, so as 
to be productive in the genetic search, because just because a particular path is determined to be 
non-valid this does not preclude it from having possible information coded in its chromosome that 
could prove to be crucial and effective in the genetic search process, this is way non-valid paths 
are given low fitness values with the penalty scheme used in the fitness evaluation, only after it 
has been determined that its non-valid state cant be reversed. The Path Repair Mechanism is 
therefore equipped with three process designed to eliminate each point of non-validity.  These are: 

- Solid Obstacle Intersection Repair Process: This process is intended to eliminate single 
non adjacent cells in a path that contain solid obstacles in theme. It eliminates 
intersections with solid obstacles in horizontal, vertical and diagonal segments in a given 
non-valid path. 

- Out of Bounds Repair Process: Designed to repair paths that go beyond the bounds of a 
given grid representation of a terrain, and comes back in. If a given path lives the 
boundaries of the grid and comes back at another cell, the process fills out the missing 
links between the two points in the grid with straight line segments along the x and y axis. 

- Non Terminated Path Repair Process: These repair process takes paths in which the final 
cell is no the destination cell d, but instead a cell in the final row or column in the grid, 
the process is then designed to fill out the remanding cells in the final row or column 
(which ever is appropriate for the given path) to close the path and bring it to end at the 
correct position in the grid. 

Figure 2 shows the functional flow of the Path Repair Mechanism.  

 
Figure 2. Path Repair Mechanism. 

 

The path repair mechanism takes every path in S’ and determines the cause or causes of the 
non-valid state, it then applies each of the process in the show sequence. First it repairs paths that 
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go out of bounds; this is done because paths with this characteristic once they have been repaired 
could still be in violation of the other two rules of validity. Once a process has been applied to a 
path, it is determined if the path is no longer a non-valid path, if it isn’t it is sent back to the 
population pool S with the rest of the valid paths, but if the path is still found to be non-valid then 
in must first be determined if the original cause of non-validity has been corrected if it has then the 
next process is applied and so on, but if it hasn’t then this means that the path is irreparable and is 
sent back to S and destined to be penalized once it has its fitness evaluated. The Path Repair 
Mechanism repeats this sequence of steps for each repair process, ending with the Solid Obstacle 
Intersection Repair Process, which is applied last because of the probability that the two other 
repair (Non Terminated repair Process and Out of Bounds Repair Process) processes can 
unwittingly cause one or more intersections with solid obstacles during there repair. 

4.4 Fitness Evaluation 
As was mentioned earlier, we introduce here both single and two objective optimization 

of the path planning problem, taking into account the length a given path and the difficulty of the 
same as the two criteria for optimization for paths in the population hence, the way in which each 
implementation of the GA assigns fitness values differs for obvious reasons. That’s why we must 
give two different fitness evaluation procedures. There is still one similarity between the 
Conventional GA and the MOGA when it comes to fitness evaluation, in that both we implement a 
penalty scheme for non-repaired non-valid paths. 

 
4.4.1 Single objective optimization. 

First we consider the simplified approach to the path planning problem, and probably the 
most common, the optimization of the path length objective, of minimizing the possible time and 
energy consumption of a mobile robot by minimizing the length of the path that it must take to 
move from one place to another. 

Considering our Conventional GA, we can say that for paths inside S we optimize for 
only one objective which is the path length, therefore we define fitness )(1 xf  as given by: 

f1(x)  = n2  − c,                                                  (4)  

where c is the number of cells in a given path x. As was mentioned in Section 4.3 fitness 
assignment also takes into account the non-validity criteria in Section 4.3, and the fitness value of 
a non-valid path is thus assigned as follows, once f1(x)   has been calculated by Equation 4: 

1) f1(x)  = 1 if a path is out of bounds. 
2) f1(x)  = f1(x) /20xI where I is the number of intersections that a path has with solid 

obstacles, if a given path x intersects with solid obstacles.  
 

4.4.2 Two objective optimization. 
Besides the fitness f1(x)   used in Section 4.4.1 given for path length, a second fitness 

assignment f2(x)   is given for path difficulty is given, and is calculated by, 

f1(x)  = n2  − �wdi,                                              (5)  

where the second term in (5) is the sum of wd for each cell in a given path x. With this we are 
forced to use Pareto optimality for a rank based system for individuals in population S. So for a 
path x where x � S its final fitness values is given by their rank value inside of S determined by,  

rank(x) =  p −  t,                                                (6) 

where p is the size of population S and t is the number of individuals that dominate x in S. 
 

4.5 Genetic Operators 
As in Section 4.4, we must make a distinction between the Conventional GA and the 

MOGA used to solve the path-planning problem; we summarize the genetic operators used as 
follows: 
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- One optimization objective: 

o Crossover: One point crossover (variable location). 

o Mutation: One bit binary mutation and Triggered Hypermutation.      
                       

- Two optimization objectives: 

o Crossover: One point crossover (variable location). 

o Mutation: One bit binary mutation.(Due to the fact that Triggered 
Hypermutation is based on the ability to modify � in a genetic search, when a 
populations best individual drops its fitness value below a predefined threshold, 
its use in a our MOGA can not be clearly defined because of its reliance on 
Pareto ranking for fitness evaluation). 

 
4.6 Selection, Replacement and Termination Criteria                            

The selection method used for both the Conventional and MO GA’s was Roulette Wheel 
Selection or Stochastic Sampling with Replacement as it is the most common method used in 
conventional GA’s. As for the replacement scheme both Generational and an Elitist Strategies 
where employed. For the termination criteria for the GA a fixed upper limit k gave the maximum 
number of generations per search. 

 
5. EXPERIMENTAL RESULTS 

 
In this section, we present some experimental results. These are divided in two sets: one 

for each implementation of our GA. 
 

5.1 Conventional GA with a Single Optimization Objective 
As mentioned before, the GA used to solve the path planning problem in a binary 

representation of the terrain, was a Conventional GA, but due to experimental results some 
modifications where made, where the most important modification made to the algorithm was the 
inclusion of a Triggered Hypermutation Mechanism (Cobb, 1990). Usually this mechanism is used 
for problem-solving in dynamic environments, but used here drastically improved the overall 
performance of the our GA. Table 3 summarizes the simulation results of the best configuration of 
the GA with terrains represented by n x n grids. We used n = 16, 24, 32, each with 100 runs, 500 
generations per search, and randomly generated maps, with a 35% probability for placing an 
obstacle in any given cell (35% probability was used due to the fact that experimentally, a lower 
number usually produce easy terrains, and a higher number produced unsolvable terrains without a 
clear path between s and d). The results gathered from our test runs provide us with a couple of 
interesting and promising trends. First we can clearly state that Hypermutation slightly increases 
the performance of our conventional GA, anywhere from 2 to 5% in terms of problems solved 
with a valid solution where all else is equal. Also we determine that the most decisive factor for 
finding a valid solution as the value of n increases is the use of a Generational replacement 
scheme for the GA, increasing the percentage of valid solutions found by as much as 44% with all 
other things equal. We can also see that the small percentage gained in terms of fitness value, 
when using an Elitist strategy doesn’t justify the poor overall problem solving performance that 
the GA produces with this replacement scheme. 

 
5.2 MOGA with two Optimization Objectives 

The complete solution we want for the path planning problem, includes a terrain with not 
only free spaces and solid obstacles, but also difficult terrain that a robot should avoid when 
possible, making it a multiple objective optimization problem. A direct comparison is made in 
Table 4 between the MOGA proposed here and the GA proposed by (Sugihara, 1999). 

We use the benchmark test presented in Figure 3, which was used in (Sugihara, 1997) 
due to its capability of projecting an accurate general performance score for the GA, and the 
performance measure of probability optimality Lopt(k), which is a representation of the probability 
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that a GA has of finding an optimal solution to a given problem. In this case, is the probability of 
finding a solution on the Pareto optimal front. Using Lopt(k) as the performance measure we 
present a set of optimal operating parameters for our MOGA using both a Generational and Elitist 
replacement scheme, Figures 4 to 11 show the simulation results that support this values. We also 
compare the two methods along with the GA proposed in (Sugihara, 1999) and we show the 
results in Table 5, the comparison is made under a normalized value for kp=30,000 keeping the 
overall computational cost equal for each GA. 

Table 3. Simulation Results for the Conventional GA  

Replacement Population p n Mutation % Ideal Fitness Solutions  

Elitist 30 16 Binary Mutation 
�=0.08 

97.96% 95% 

Elitist 100 16 Binary Mutation 
�=0.08 

97.8% 96.4% 

Elitist 30 16 Hypermutation 98.62% 97% 

Elitist 100 16 Hypermutation 98% 98% 

Generational 30 16 Binary Mutation 
�=0.08 

97% 91% 

Generational 100 16 Binary Mutation 
�=0.08 

96.9% 92% 

Generational 30 16 Hypermutation 97.5% 95% 

Generational 100 16 Hypermutation 98% 96% 

Elitist 30 24 Binary Mutation 
�=0.08 

98.5% 69% 

Elitist 100 24 Binary Mutation 
�=0.08 

98.7% 75% 

Elitist 30 24 Hypermutation 98.7% 76% 

Elitist 100 24 Hypermutation 98.8% 94% 

Generational 30 24 Binary Mutation 
�=0.08 

97.8% 83% 

Generational 100 24 Binary Mutation 
�=0.08 

98.1% 92% 

Generational 30 24 Hypermutation 97.7% 94% 

Generational 100 24 Hypermutation 98.3% 96% 

Elitist 30 32 Binary Mutation 
�=0.08 

99% 31% 

Elitist 100 32 Binary Mutation 
�=0.08 

98.2% 39% 

Elitist 30 32 Hypermutation 98.8% 48% 

Elitist 100 32 Hypermutation 98% 56% 

Generational 30 32 Binary Mutation 
�=0.08 

98% 48% 

Generational 100 32 Binary Mutation 
�=0.08 

98.56% 83% 

Generational 30 32 Hypermutation 97.7% 60% 

Generational 100 32 Hypermutation 97.2% 88% 
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From Table 5 we can see how decisively the use of an Elitist replacement strategy along 
with a Pareto based approach for the multi objective problem gives a more than acceptable 
performance gain to that offered by (Sugihara, 1999). Along with the results obtained from 
benchmark test 1, we also include another test proposed in (Sugihara, 1997) as an accurate 
description of a GA performance for the path-planning problem, shown in Figure 12. Due to the 
more difficult nature of this given terrain we include a second performance measure L′opt(k)which 
we define the same as the probability for optimality, taking into account solutions that come 
within one cell in length of the optimum path, as optimum solutions themselves for the given 
problem. With these we present Table 6 that clearly demonstrates the high performance measure 
for the MOGA with an Elitist replacement scheme. Three other terrains, with known Pareto 
optimal fronts where used and each presented a Lopt(k)of 100%. And in 50 randomly generated 
terrains for different n values, the MOGA continually provided a Pareto front with 2 to 5 different 
solutions, showing its ability to give a decision making process a set of solutions from where to 
choose the most useful solution given a particular situation. 

Note that the ideal fitness column, expresses the percentage of the ideal solution for a 
grid configuration that’s the value of a map with zero obstacles, which a particular best solution of 
a genetic search reaches. 

 
Table 4. Sugihara and MOGA methods 

 
 Sugihara MOGA 

Paths Monotone Monotone 

Fitness Linear combination Pareto Optimality 

Repair Mechanism Out of bounds Out of bounds, collisions and 
incomplete paths. 

 
Genetic Operators One point Crossover and single bit 

Binary Mutation 
One point Crossover and 

single bit Binary Mutation 

Selection Method Roulette Wheel with Tournament Roulette Wheel 

Replacement 
Method 

Generational Generational , and Elitist 
strategy 

Termination Max. Generations Max. Generations 

 
 

Table 5. Simulation results for MOGA 

 Sugihara AGOM Generational AGOM Elitism 

Population 30 60 200 
No. of Generations k 1000 500 150 

Mutation Rate 
� 

0.04 0.05 0.09 
 

Crossover Rate 
� 

0.8 0.8 0.9 

Win Probability � 0.95 Not Applicable Not Applicable 
Probability of 

Optimality Lopt(k) 45% 44% 76% 
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Table 6. Simulation results for MOGA 

 MOGA Generational MOGA Elitist 

Lopt(k) 32% 34% 

L′opt(k) 48% 100% 

 
 

 
 

Figure 3. First Benchmark Test, with two paths on the Pareto Optimal Front. 
 

 
Figure 4. Normalized )(kLopt and population size with Generational Replacement 
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Figure 5. Lopt(k)and number of generations with Generational Replacement 

 
 
 

 
Figure 6. )(kLopt and crossover rate with Generational Replacement 

 
 

 
Figure 7. )(kLopt and mutation rate with Generational Replacement 
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Figure 8. Normalized )(kLopt and population size with Elitist Replacement 

 
 

 
Figure 9. )(kLopt and number of generations with Elitist Replacement 

 
 

 
Figure 10. )(kLopt and mutation rate with Elitist Replacement 
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Figure 11. Lopt(k) and crossover rate with Elitist Replacement 
 
 

 
 

Figure 12. Second Benchmark Test, with two paths on the Pareto Optimal Front. 
 

 
6. CONCLUSIONS 

 
This paper presented a GA designed to solve the Mobile Robot Path Planning Problem. 

We showed with simulation results that both a Conventional GA and a MOGA, based on Pareto 
optimality, equipped with a basic repair mechanism for non-valid paths, can solve the point-to-
point path planning problem when applied to grid representations of binary and continuous 
simulation of terrains respectively. From the simulation results gathered from experimental testing 
the Conventional GA with a Generational Replacement scheme and Triggered Hypermutation 
(which is commonly referred to as a conversion mechanism for dynamic environments) gave 
consistent performance to varying degrees of granularity in the representation of terrains with out 
a significant increase in population size or number of generations needed in order to complete the 
search in a satisfactory manner, while the MOGA based on Pareto Optimality combined with a 
Elitist replacement scheme clearly improves upon previous (Sugihara, 1999) work done with 
multiple objective path planning problem based on linear combination, with the added advantage 
of providing more than one equally usable solution. 

Some possible work that we suggest, that may provide us with more insight into the full 
effectiveness of the work done here is: 
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- Direct comparisons of the MOGA with conventional methods, not just other GA. 
- Using other multi objective mechanisms, besides Pareto optimality. 
- Doing a more global search of possible genetic algorithm operators, selection and 

replacement schemes. 
- Include the GA’s presented here, into experiments using real autonomous mobile robots. 
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