
 International Journal of Computers, Systems and Signals, Vol. 6, No. 1, 2005

48

MULTIPLE OBJECTIVE OPTIMIZATION GENETIC

ALGORITHMS FOR PATH PLANNING IN AUTONOMOUS
MOBILE ROBOTS

O. Castillo and L. Trujillo

Dept. of Computer Science, Tijuana Institute of Technology

Tijuana, Mexico
ocastillo@tectijuana.mx

ABSTRACT
This paper describes the use of a Genetic Algorithm (GA) for the problem of Offline Point-to-Point
Autonomous Mobile Robot Path Planning. The problem consist of generating “valid” paths or
trajectories, for an Holonomic Robot to use to move from a starting position to a destination across a flat
map of a terrain, represented by a two dimensional grid, with obstacles and dangerous ground that the
Robot must evade. This means that the GA optimizes possible paths based on two criteria: length and
difficulty. First, we decided to use a conventional GA to evaluate its ability to solve this problem (using
only one criteria for optimization). Due to the fact that we also wanted to optimize paths under two
criteria or objectives, then we extended the conventional GA to implement the ideas of Pareto optimality,
making it a Multi Objective Genetic Algorithm (MOGA). We describe useful performance measures and
simulation results of the conventional GA and of the MOGA that show that both types of Genetic
Algorithms are effective tools for solving the point-to-point path planning problem.

Keywords: Multiple Objective Optimization, Genetic Algorithms, Autonomous Robots, Path Planning

1. INTRODUCTION

The problem of Mobile Robot Path Planning is one that has intrigued and has received much

attention thru out the history of Robotics, since it’s at the essence of what a mobile robot needs to be
considered truly “autonomous”. A Mobile Robot must be able to generate collision free paths to move
from one location to another, and in order to truly show a level of intelligence these paths must be
optimized under some criteria most important to the robot, the terrain and the problem given. GA’s and
evolutionary methods have extensively been used to solve the path planning problem, such as in (Xiao
and Michalewicz, 2000) where a CoEvolutionary method is used to solve the path planning problem for
two articulated robot arms, and in (Ajmal Deen Ali et. al., 2002) where they use a GA to solve the path
planning problem in non-structured terrains for the particular application of planet exploration. In
(Farritor and Dubowsky, 2002) an Evolutionary Algorithm is used for both off-line and on-line path
planning using a linked list representation of paths, and (Sauter et. al., 2002) uses a Particle swarm
optimization (PSO) method based on Ant Colony Optimization (ACO). However, the research work
presented in this paper used as a basis for comparison and development the work done in (Sugihara,
1999). In this work, a grid representation of the terrain is used and different values are assigned to the
cells in a grid, to represent different levels of difficulty that a robot would have to traverse a particular
cell. Also they present a codification of all monotone paths for the solution of the path-planning problem.
The exact way in which the GA’s are developed in this paper is presented in Section 3. Section 2 gives
some basic theory needed to further understand the purpose of the problem we are trying to solve and
explain the methods used in order to reach the goal expressed by the path planning problem. Section 4
describes the details of the GA’s used in this paper defining each aspect of its architecture and flow of the
GA’s used as well as the problem specific Path Repair Mechanism employed. Section 5 gives a more
detailed look at the implementation of the GA’s discussed in Section 4. Section 6 discusses the simulation

International Journal of Computers, Systems and Signals, Vol. 6, No. 1, 2005 49

results and performance of the GA’s, and Section 7 concludes this paper with a discussion on future
work.

2. BASIC THEORY

This section is intended to present some basic theory used to develop the GA’s in this paper for

use in the path planning problem, covering topics like basic Genetic Algorithm theory, Multi Objective
optimization, Triggered Hypermutation and Autonomous Mobile Robot Point-to Point Path Planning.

2.1 Genetic Algorithms

A Genetic Algorithm is an evolutionary optimization method used to solve, in theory “any”
possible optimization problem. A GA (Man et. al., 1999) is based on the idea that a solution to a
particular optimization problem can be viewed as an individual and that these individual characteristics
can be coded into a finite set of parameters. These parameters are the genes or the genetic information
that makes up the chromosome that represents the real world structure of the individual, which in this case
is a solution to a particular optimization problem. Because the GA is an evolutionary method, this means
that a repetitive loop or a series of generations are used in order to evolve a population S of p individuals
to find the fittest individual to solve a particular problem. The fitness of each individual is determined bye
a given fitness function that evaluates the level of aptitude that a particular individual has to solve the
given optimization problem. Each generation in the genetic search process produces a new set of
individuals thru genetic operations or genetic operators: Crossover and Mutation, operations that are
governed by the crossover rate � and the mutation rate � respectively. These operators produce new child
chromosomes with the intention of bettering the overall fitness of the population while maintaining a
global search space. Individuals are selected for genetic operations using a Selection method that is
intended to select the fittest individuals for the role of parent chromosomes in the Crossover and
Mutation operations. Finally these newly generated child chromosomes are reinserted into the population
using a Replacement method. This process is repeated a k number of generations. The Simple GA (Man
et. al., 1999) is known to have the next set of common characteristics:

• Constant number of p individuals in the genetic search population.
• Constant length binary string representation for the chromosome.
• One or two point crossover operator and single bit mutation operator, with constant values for

� and �.
• Roulette Wheel (SSR) Selection method.
• Complete or Generational Replacement method or Generational combined with an Elitist

strategy.

2.2 Multi-Objective Genetic Algorithm
Real-world problem solving will commonly involve (Oliveira et. al., 2002) the optimization of

two or more objectives at once, a consequence of this is that it’s not always possible to reach an optimal
solution with respect to all of the objectives evaluated individually. Historically a common method used
to solve multi objective problems is by a linear combination of the objectives, in this way creating a
single objective function to optimize (Sugihara, 1997) or by converting the objectives into restrictions
imposed on the optimization problem. In regards to evolutionary computation, (Shaffer, 1985) proposed
the first implementation for a multi objective evolutionary search. The proposed methods in (Fonseca and
Fleming, 1993), (Srinivas, 1994) and (Goldberg, 1989), all center around the concept of Pareto optimality
and the Pareto optimal set. Using these concepts of optimality of individuals evaluated under a multi
objective problem, they each propose a fitness assignment to each individual in a current population
during an evolutionary search based upon the concepts of dominance and non-dominance of Pareto
optimality. Where the definition of dominance is stated as follows:

Definition 1: For an optimization (minimization) problem with n-objectives, solution u is said to be
dominated by a solution v if:

∀i = 1, 2, …, n, fi(u) ≥ fi(v) (1)

 International Journal of Computers, Systems and Signals, Vol. 6, No. 1, 2005

50

∃j = 1, 2, …, n, ∴ fi(u) ≥ fi(v) (2)

2.3 Triggered Hypermutation

In order to improve on the convergence of a GA, there are several techniques available such as
(Man et. al. 1999) expanding the memory of the GA in order to create a repertoire to respond to
unexpected changes in the environment.

Another technique used to improve the overall speed of convergence for a GA is the use of a
Triggered Hypermutation Mechanism (Cobb, 1990), which consists of using mutation as a control
parameter in order to improve performance in a dynamic environment. The GA is modified by adding a
mechanism by which the value of � is changed as a result of a dip in the fitness produced by the best
solution in each generation in the genetic search. This way � is increased to a high Hypermutation value
each time the top fitness value of the population at generation k dips below some lower limit set
beforehand, this causes the search space to be incremented at a higher rate thanks to the higher mutation
rate, and conversely � is set back to a more conventional lower value once the search is closing in to an
appropriate optimal solution.

2.4 Autonomous Mobile Robots

An Autonomous Mobile Robot as defined in (Xiao and Michalewicz, 2000) can be seen as a
vehicle that needs the capability of generating collision free paths that take the robot from a starting
position s to a final destination d, and needs to avoid obstacles present in the environment. The robot
must be able to have enough relevant information of his current position relative to s and d, and of the
state of the environment or terrain that surrounds it. One advantage about generating paths or trajectories
for these kinds of robots, compared to the more traditional robot arms, is that in general there are far less
restrictions in regards to the precision with which the paths must be generated. The basic systems that
operate in an Autonomous Mobile robot are:

1) Vehicle Control.
2) Sensor and Vision.
3) Navigation
4) Path Planning

2.5 Point-to-Point Path Planning Problem

The path planning problem when analyzed with the point-to-point technique, (Choset et. al.,
1999) comes down to finding a path from one point to another (start and destination). Obviously, one of
the most important reasons to generate an appropriate path for a robot to follow, is to help it avoid
possible danger or obstacles along the way, for this reason an appropriate representation of the terrain is
needed generating a sufficiently complete map of the given surroundings that the robot will encounter
along its route.

The general path-planning problem, that all autonomous mobile robots will face, has been solved
(to some level of satisfaction) with various techniques, besides the evolutionary or genetic search, such
as, using the Voroni Generalized Graph (Choset et. al., 1999), or using a Fuzzy Controller (Kim et. al.,
1999), yet another is by the use of Artificial Potential Fields (Planas et. al., 2002). These along with many
other methods are alternatives to the evolutionary search mentioned earlier or the GA used in this paper.

3. PROPOSED METHOD FOR POINT-TO-POINT PATH PLANNING PROBLEM

The first step before we can continue and give the details of the GA implementation used to

solve the path-planning problem, is to explicitly define the problem and what is it that we are expecting
out of the subsequent genetic search. To this end, we propose what will be the input/output pair that we
are expecting from our GA as follows:
Input:

1) An n x n grid, where the starting cell s for the robot is in one corner and the destination cell d is
diagonally across from it.

2) Each cell with a corresponding difficulty weight wd assigned to it ranging from [0, 1].
Output:

International Journal of Computers, Systems and Signals, Vol. 6, No. 1, 2005 51

A path, defined as a sequence of adjacent cells joining s and d, and that complies with the
following restrictions and optimization criteria:

1) The path most not contain cells with wd = 0 (solid obstacles).
2) The path must stay inside of the grid boundaries.
3) Minimize the path length (number of cells).
4) Minimize the total difficulty for the path, that means, the combined values of wd for all the cells

in a given path.
We must also establish a set of ground rules or assumptions that our GA will be operating under:

- The n x n grid isn’t limited to all cells in the grid having to represent a uniform or constant size
in the terrain, each cell is merely a conceptual representation of spaces in a particular terrain.

- Each cell in a terrain has a given difficulty weight wd between the values of [0,1], that represents
the level of difficulty that a robot would have to pass through it, where the lower bounds 0
represents a completely free space and the higher bounds 1 represents a solid impenetrable
obstacle.

- The terrain is considered to be static in nature.
- It is assumed that there is a sufficiently complete knowledge in regards to the state of the terrain

in which the robot will operate.
- The paths produced by the GA are all monotone paths.

4. GA ARCHITECTURE

We now turn to the actual implementation of our GA, used to solve the path-planning problem

for one and two optimization objectives. So we describe each of the parts of our GA and give a brief
description of each, clearly stating any differences between the one and two optimization objectives
implementations, and Figure 1 shows the flow chart for each.

(a) (b)
Figure 1. GA flowchart (a) Conventional GA with one optimization objective (b) MOGA with

two optimization objectives.

4.1 Individual Representation

Basically, the chromosome structure was taken from the work done in (Sugihara, 1999) where a
binary string representation of monotone paths is used. The binary string chromosome is made up of n-1

 International Journal of Computers, Systems and Signals, Vol. 6, No. 1, 2005

52

(where n is the number of columns and rows in the grid representing the map of a given terrain) pairs of
direction/distance of length 3 + log[2]n, and an extra bit a which determines if the path is x-monotone
(a=0) or y-monotone (a=1). And each pair of direction/distance codes the direction in which a robot
moves inside the grid and the number of cells it moves thru in that direction. The meaning of the bits in
each pair of direction/distance is given in Table 1 and Table 2. The coding used greatly facilitates its use
in a GA, because of its constant length no special or revamped genetic operators are needed, a problem
that would be very cumbersome to solve if using a linked list chromosome representation of the path as
done in (Xiao and Michalewicz, 2000).

Table 1. Coding of each direction/distance pair when a = 0.

 First two Bits Remanding Bits Movement

00 Number of cells (direction given bye sign). Vertical

01 Ignored Diagonal – Up

10 Ignored Horizontal

11 Ignored Diagonal – Down

Table 2. Coding of each direction/distance pair when a = 1.

First two Bits Remanding Bits Movement

00 Number of cells (direction given bye sign). Horizontal

01 Ignored Diagonal – Left

10 Ignored Vertical

11 Ignored Diagonal – Right

4.2 Initial Population
The population S used in the genetic search is initialized with p total individuals. Of the p

individuals in S, p-2 of them are generated randomly while the remaining two represent straight line paths
from s to d, one of this paths is x-monotone and the other is y-monotone. So we can clearly define the
population S as being made up by:

S = { baxxxx p ,,............,, 2210 − } (3)

Where ix are randomly generated individuals, and by a and b that are x-monotone and y-monotone paths
respectively that take a straight-line route from s to d.

4.3 Path Repair Mechanism

Each path inside of the population S is said to be either valid or non-valid. Where the criteria for
non-validity are:

i) Path contains a cell with a solid obstacle (wd = 1).
ii) Path contains cells out of bounds.
iii) The paths final cell isn’t d.

Using this set of three rules to determine the state of validity of a given path for a particular genetic
search, we can define a subpopulation S’ which is made up by entirely non-valid paths in S.

International Journal of Computers, Systems and Signals, Vol. 6, No. 1, 2005 53

The Path Repair Mechanism used with the GA is a Lamarckian process designed to take
non-valid x’, where x’ � S’, and determine if they can be salvaged and return to a valid state, so as
to be productive in the genetic search, because just because a particular path is determined to be
non-valid this does not preclude it from having possible information coded in its chromosome that
could prove to be crucial and effective in the genetic search process, this is way non-valid paths
are given low fitness values with the penalty scheme used in the fitness evaluation, only after it
has been determined that its non-valid state cant be reversed. The Path Repair Mechanism is
therefore equipped with three process designed to eliminate each point of non-validity. These are:

- Solid Obstacle Intersection Repair Process: This process is intended to eliminate single
non adjacent cells in a path that contain solid obstacles in theme. It eliminates
intersections with solid obstacles in horizontal, vertical and diagonal segments in a given
non-valid path.

- Out of Bounds Repair Process: Designed to repair paths that go beyond the bounds of a
given grid representation of a terrain, and comes back in. If a given path lives the
boundaries of the grid and comes back at another cell, the process fills out the missing
links between the two points in the grid with straight line segments along the x and y axis.

- Non Terminated Path Repair Process: These repair process takes paths in which the final
cell is no the destination cell d, but instead a cell in the final row or column in the grid,
the process is then designed to fill out the remanding cells in the final row or column
(which ever is appropriate for the given path) to close the path and bring it to end at the
correct position in the grid.

Figure 2 shows the functional flow of the Path Repair Mechanism.

Figure 2. Path Repair Mechanism.

The path repair mechanism takes every path in S’ and determines the cause or causes of the
non-valid state, it then applies each of the process in the show sequence. First it repairs paths that

 International Journal of Computers, Systems and Signals, Vol. 6, No. 1, 2005

54

go out of bounds; this is done because paths with this characteristic once they have been repaired
could still be in violation of the other two rules of validity. Once a process has been applied to a
path, it is determined if the path is no longer a non-valid path, if it isn’t it is sent back to the
population pool S with the rest of the valid paths, but if the path is still found to be non-valid then
in must first be determined if the original cause of non-validity has been corrected if it has then the
next process is applied and so on, but if it hasn’t then this means that the path is irreparable and is
sent back to S and destined to be penalized once it has its fitness evaluated. The Path Repair
Mechanism repeats this sequence of steps for each repair process, ending with the Solid Obstacle
Intersection Repair Process, which is applied last because of the probability that the two other
repair (Non Terminated repair Process and Out of Bounds Repair Process) processes can
unwittingly cause one or more intersections with solid obstacles during there repair.

4.4 Fitness Evaluation
As was mentioned earlier, we introduce here both single and two objective optimization

of the path planning problem, taking into account the length a given path and the difficulty of the
same as the two criteria for optimization for paths in the population hence, the way in which each
implementation of the GA assigns fitness values differs for obvious reasons. That’s why we must
give two different fitness evaluation procedures. There is still one similarity between the
Conventional GA and the MOGA when it comes to fitness evaluation, in that both we implement a
penalty scheme for non-repaired non-valid paths.

4.4.1 Single objective optimization.

First we consider the simplified approach to the path planning problem, and probably the
most common, the optimization of the path length objective, of minimizing the possible time and
energy consumption of a mobile robot by minimizing the length of the path that it must take to
move from one place to another.

Considering our Conventional GA, we can say that for paths inside S we optimize for
only one objective which is the path length, therefore we define fitness)(1 xf as given by:

f1(x) = n2 − c, (4)

where c is the number of cells in a given path x. As was mentioned in Section 4.3 fitness
assignment also takes into account the non-validity criteria in Section 4.3, and the fitness value of
a non-valid path is thus assigned as follows, once f1(x) has been calculated by Equation 4:

1) f1(x) = 1 if a path is out of bounds.
2) f1(x) = f1(x) /20xI where I is the number of intersections that a path has with solid

obstacles, if a given path x intersects with solid obstacles.

4.4.2 Two objective optimization.
Besides the fitness f1(x) used in Section 4.4.1 given for path length, a second fitness

assignment f2(x) is given for path difficulty is given, and is calculated by,

f1(x) = n2 − �wdi, (5)

where the second term in (5) is the sum of wd for each cell in a given path x. With this we are
forced to use Pareto optimality for a rank based system for individuals in population S. So for a
path x where x � S its final fitness values is given by their rank value inside of S determined by,

rank(x) = p − t, (6)

where p is the size of population S and t is the number of individuals that dominate x in S.

4.5 Genetic Operators
As in Section 4.4, we must make a distinction between the Conventional GA and the

MOGA used to solve the path-planning problem; we summarize the genetic operators used as
follows:

International Journal of Computers, Systems and Signals, Vol. 6, No. 1, 2005 55

- One optimization objective:

o Crossover: One point crossover (variable location).

o Mutation: One bit binary mutation and Triggered Hypermutation.

- Two optimization objectives:

o Crossover: One point crossover (variable location).

o Mutation: One bit binary mutation.(Due to the fact that Triggered
Hypermutation is based on the ability to modify � in a genetic search, when a
populations best individual drops its fitness value below a predefined threshold,
its use in a our MOGA can not be clearly defined because of its reliance on
Pareto ranking for fitness evaluation).

4.6 Selection, Replacement and Termination Criteria

The selection method used for both the Conventional and MO GA’s was Roulette Wheel
Selection or Stochastic Sampling with Replacement as it is the most common method used in
conventional GA’s. As for the replacement scheme both Generational and an Elitist Strategies
where employed. For the termination criteria for the GA a fixed upper limit k gave the maximum
number of generations per search.

5. EXPERIMENTAL RESULTS

In this section, we present some experimental results. These are divided in two sets: one

for each implementation of our GA.

5.1 Conventional GA with a Single Optimization Objective
As mentioned before, the GA used to solve the path planning problem in a binary

representation of the terrain, was a Conventional GA, but due to experimental results some
modifications where made, where the most important modification made to the algorithm was the
inclusion of a Triggered Hypermutation Mechanism (Cobb, 1990). Usually this mechanism is used
for problem-solving in dynamic environments, but used here drastically improved the overall
performance of the our GA. Table 3 summarizes the simulation results of the best configuration of
the GA with terrains represented by n x n grids. We used n = 16, 24, 32, each with 100 runs, 500
generations per search, and randomly generated maps, with a 35% probability for placing an
obstacle in any given cell (35% probability was used due to the fact that experimentally, a lower
number usually produce easy terrains, and a higher number produced unsolvable terrains without a
clear path between s and d). The results gathered from our test runs provide us with a couple of
interesting and promising trends. First we can clearly state that Hypermutation slightly increases
the performance of our conventional GA, anywhere from 2 to 5% in terms of problems solved
with a valid solution where all else is equal. Also we determine that the most decisive factor for
finding a valid solution as the value of n increases is the use of a Generational replacement
scheme for the GA, increasing the percentage of valid solutions found by as much as 44% with all
other things equal. We can also see that the small percentage gained in terms of fitness value,
when using an Elitist strategy doesn’t justify the poor overall problem solving performance that
the GA produces with this replacement scheme.

5.2 MOGA with two Optimization Objectives

The complete solution we want for the path planning problem, includes a terrain with not
only free spaces and solid obstacles, but also difficult terrain that a robot should avoid when
possible, making it a multiple objective optimization problem. A direct comparison is made in
Table 4 between the MOGA proposed here and the GA proposed by (Sugihara, 1999).

We use the benchmark test presented in Figure 3, which was used in (Sugihara, 1997)
due to its capability of projecting an accurate general performance score for the GA, and the
performance measure of probability optimality Lopt(k), which is a representation of the probability

 International Journal of Computers, Systems and Signals, Vol. 6, No. 1, 2005

56

that a GA has of finding an optimal solution to a given problem. In this case, is the probability of
finding a solution on the Pareto optimal front. Using Lopt(k) as the performance measure we
present a set of optimal operating parameters for our MOGA using both a Generational and Elitist
replacement scheme, Figures 4 to 11 show the simulation results that support this values. We also
compare the two methods along with the GA proposed in (Sugihara, 1999) and we show the
results in Table 5, the comparison is made under a normalized value for kp=30,000 keeping the
overall computational cost equal for each GA.

Table 3. Simulation Results for the Conventional GA

Replacement Population p n Mutation % Ideal Fitness Solutions

Elitist 30 16 Binary Mutation
�=0.08

97.96% 95%

Elitist 100 16 Binary Mutation
�=0.08

97.8% 96.4%

Elitist 30 16 Hypermutation 98.62% 97%

Elitist 100 16 Hypermutation 98% 98%

Generational 30 16 Binary Mutation
�=0.08

97% 91%

Generational 100 16 Binary Mutation
�=0.08

96.9% 92%

Generational 30 16 Hypermutation 97.5% 95%

Generational 100 16 Hypermutation 98% 96%

Elitist 30 24 Binary Mutation
�=0.08

98.5% 69%

Elitist 100 24 Binary Mutation
�=0.08

98.7% 75%

Elitist 30 24 Hypermutation 98.7% 76%

Elitist 100 24 Hypermutation 98.8% 94%

Generational 30 24 Binary Mutation
�=0.08

97.8% 83%

Generational 100 24 Binary Mutation
�=0.08

98.1% 92%

Generational 30 24 Hypermutation 97.7% 94%

Generational 100 24 Hypermutation 98.3% 96%

Elitist 30 32 Binary Mutation
�=0.08

99% 31%

Elitist 100 32 Binary Mutation
�=0.08

98.2% 39%

Elitist 30 32 Hypermutation 98.8% 48%

Elitist 100 32 Hypermutation 98% 56%

Generational 30 32 Binary Mutation
�=0.08

98% 48%

Generational 100 32 Binary Mutation
�=0.08

98.56% 83%

Generational 30 32 Hypermutation 97.7% 60%

Generational 100 32 Hypermutation 97.2% 88%

International Journal of Computers, Systems and Signals, Vol. 6, No. 1, 2005 57

From Table 5 we can see how decisively the use of an Elitist replacement strategy along
with a Pareto based approach for the multi objective problem gives a more than acceptable
performance gain to that offered by (Sugihara, 1999). Along with the results obtained from
benchmark test 1, we also include another test proposed in (Sugihara, 1997) as an accurate
description of a GA performance for the path-planning problem, shown in Figure 12. Due to the
more difficult nature of this given terrain we include a second performance measure L′opt(k)which
we define the same as the probability for optimality, taking into account solutions that come
within one cell in length of the optimum path, as optimum solutions themselves for the given
problem. With these we present Table 6 that clearly demonstrates the high performance measure
for the MOGA with an Elitist replacement scheme. Three other terrains, with known Pareto
optimal fronts where used and each presented a Lopt(k)of 100%. And in 50 randomly generated
terrains for different n values, the MOGA continually provided a Pareto front with 2 to 5 different
solutions, showing its ability to give a decision making process a set of solutions from where to
choose the most useful solution given a particular situation.

Note that the ideal fitness column, expresses the percentage of the ideal solution for a
grid configuration that’s the value of a map with zero obstacles, which a particular best solution of
a genetic search reaches.

Table 4. Sugihara and MOGA methods

 Sugihara MOGA

Paths Monotone Monotone

Fitness Linear combination Pareto Optimality

Repair Mechanism Out of bounds Out of bounds, collisions and
incomplete paths.

Genetic Operators One point Crossover and single bit

Binary Mutation
One point Crossover and

single bit Binary Mutation

Selection Method Roulette Wheel with Tournament Roulette Wheel

Replacement
Method

Generational Generational , and Elitist
strategy

Termination Max. Generations Max. Generations

Table 5. Simulation results for MOGA

 Sugihara AGOM Generational AGOM Elitism

Population 30 60 200
No. of Generations k 1000 500 150

Mutation Rate
�

0.04 0.05 0.09

Crossover Rate
�

0.8 0.8 0.9

Win Probability � 0.95 Not Applicable Not Applicable
Probability of

Optimality Lopt(k) 45% 44% 76%

 International Journal of Computers, Systems and Signals, Vol. 6, No. 1, 2005

58

Table 6. Simulation results for MOGA

 MOGA Generational MOGA Elitist

Lopt(k) 32% 34%

L′opt(k) 48% 100%

Figure 3. First Benchmark Test, with two paths on the Pareto Optimal Front.

Figure 4. Normalized)(kLopt and population size with Generational Replacement

International Journal of Computers, Systems and Signals, Vol. 6, No. 1, 2005 59

Figure 5. Lopt(k)and number of generations with Generational Replacement

Figure 6.)(kLopt and crossover rate with Generational Replacement

Figure 7.)(kLopt and mutation rate with Generational Replacement

 International Journal of Computers, Systems and Signals, Vol. 6, No. 1, 2005

60

Figure 8. Normalized)(kLopt and population size with Elitist Replacement

Figure 9.)(kLopt and number of generations with Elitist Replacement

Figure 10.)(kLopt and mutation rate with Elitist Replacement

International Journal of Computers, Systems and Signals, Vol. 6, No. 1, 2005 61

Figure 11. Lopt(k) and crossover rate with Elitist Replacement

Figure 12. Second Benchmark Test, with two paths on the Pareto Optimal Front.

6. CONCLUSIONS

This paper presented a GA designed to solve the Mobile Robot Path Planning Problem.

We showed with simulation results that both a Conventional GA and a MOGA, based on Pareto
optimality, equipped with a basic repair mechanism for non-valid paths, can solve the point-to-
point path planning problem when applied to grid representations of binary and continuous
simulation of terrains respectively. From the simulation results gathered from experimental testing
the Conventional GA with a Generational Replacement scheme and Triggered Hypermutation
(which is commonly referred to as a conversion mechanism for dynamic environments) gave
consistent performance to varying degrees of granularity in the representation of terrains with out
a significant increase in population size or number of generations needed in order to complete the
search in a satisfactory manner, while the MOGA based on Pareto Optimality combined with a
Elitist replacement scheme clearly improves upon previous (Sugihara, 1999) work done with
multiple objective path planning problem based on linear combination, with the added advantage
of providing more than one equally usable solution.

Some possible work that we suggest, that may provide us with more insight into the full
effectiveness of the work done here is:

 International Journal of Computers, Systems and Signals, Vol. 6, No. 1, 2005

62

- Direct comparisons of the MOGA with conventional methods, not just other GA.
- Using other multi objective mechanisms, besides Pareto optimality.
- Doing a more global search of possible genetic algorithm operators, selection and

replacement schemes.
- Include the GA’s presented here, into experiments using real autonomous mobile robots.

REFERENCES

Xiao, J. and Michalewicz, Z. (2000), An Evolutionary Computation Approach to Robot Planning

and Navigation, in Hirota, K. and Fukuda, T. (eds.), Soft Computing in Mechatronics,
Springer-Verlag, Heidelberg, Germany, 117 – 128.

Ajmal Deen Ali, M. S., Babu, N. and Varghese, K. (2002), Offline Path Planning of cooperative
manipulators using Co-Evolutionary Genetic Algorithm, Proceedings of the International
Symposium on Automation and Robotics in Construction, 19th (ISARC), 415-124.

Farritor, S. and Dubowsky, S. (2002), A Genetic Planning Method and its Application to
Planetary Exploration, ASME Journal of Dynamic Systems, Measurement and
Control, 124(4), 698-701.

Sauter, J. A., Matthews, R., Parunak, H. V. D. and Brueckner, S. (2002), Evolving
Adaptive Pheromone Path Planning Mechanisms, First International Conference
on Autonomous Agents and Multi-Agent Systems, Bologna, Italy, 434-440.

Sugihara, K. (1999), Genetic Algorithms for Adaptive Planning of Path and Trajectory of a
Mobile Robot in 2D Terrains, IEICE Trans. Inf. & Syst., Vol. E82-D, 309 – 313.

Sugihara, K. (1997), A Case Study on Tuning of Genetic Algorithms by Using Performance
Evaluation Based on Experimental Design, Tech. Rep. ICS-TR-97-01, Dept. of
Information and Computer Sciences, Univ. of Hawaii at Manoa.

Sugihara, K. (1997), Measures for Performance Evaluation of Genetic Algorithms, Proc. 3rd. joint
Conference on Information Sciences, Research Triangle Park, NC, vol. I, 172-175.

Cobb, H. G. (1990), An Investigation into the Use of Hypermutation as an Adaptive Operator in
Genetic Algorithms Having Continuous, Time-Dependent Nonstationary Environments,
Technical Report AIC-90-001, Naval Research Laboratory, Washington, D. C..

Fonseca, C. M. and Fleming, C. J. (1993), Genetic algorithms for multiobjective
optimization: formulation, discussion and generalization, 5th Int. Conf. Genetic
Algorithms, 416-423.

Srinivas, M. and Deb, K. (1994), Multiobjective Optimization using Nondominated Sorting in
Genetic Algorithms, Evolutionary Computation, 2(3), 221-248.

Man, K. F., Tang, K. S. and Kwong, S. (1999), Genetic Algorithms, Ed. Springer, 1st Edition,
London, UK.

Oliveira, G. M. B., Bortot, J. C. and De Oliveira, P. P. B. (2002), Multiobjective
Evolutionary Search for One-Dimensional Cellular Automata in the Density
Classification Task, in Proceedings of Artificial Life VIII, MIT Press, 202-206.

Schaffer, J. D. (1985), Multiple Objective Optimization with Vector Evaluated Genetic
Algorithms, Genetic Algorithms and their Applications: Proceedings of the First
International Conference on Genetic Algorithms, 93-100.

Goldberg, D. E. (1989), Genetic Algorithms in Search, Optimization and Machine Learning,
Addison-Wesley, Reading, MA.

Spandl, H. (1992), Lernverfahren zur Unterstützung der Routenplanung fur eine Mobilen Roboter,
Diss. Universität Karlsruhe, auch VDI-Forsch-Heft Reihe 10 Nr. 212, Düsseldorf,
Germany, VDI-Verlag.

Choset, H., La Civita, M. L. and Park, J. C. (1999), Path Planning between Two Points for a Robot
Experiencing Localization Error in Known and Unknown Environments, Proceedings of
the Conference on Field and Service Robotics (FSR’99), Pittsburgh, PA.

Kim, B. N., Kwon, O. S., Kim, K. J., Lee, E. H. and Hong, S. H. (1999), “A Study on Path
Planning for Mobile Robot Based on Fuzzy Logic Controller”, Proceedings of IEEE
TENCON’99, 1-6.

International Journal of Computers, Systems and Signals, Vol. 6, No. 1, 2005 63

Planas, R. M., Fuertes, J. M. and Martinez, A. B. (2002), Qualitative Approach for Mobile Robot
Path Planning based on Potential Field Methods, Sixteenth International Workshop on
Qualitative Reasoning (QR'02), 1 -7.

