
Probabilistic Roadmap Based Path Planning for an Autonomous Unmanned
Aerial Vehicle

Per Olof Pettersson and Patrick Doherty
Linköping University

Department of Computer and Information Science
581 83 Link̈oping, Sweden
{peope, patdo}@ida.liu.se

Abstract

The emerging area of intelligent unmanned aerial vehicle
(UAV) research has shown rapid development in recent years
and offers a great number of research challenges for artificial
intelligence. For both military and civil applications, there is
a desire to develop more sophisticated UAV platforms where
the emphasis is placed on development of intelligent capabil-
ities. Imagine a mission scenario where a UAV is supplied
with a 3D model of a region containing buildings and road
structures and is instructed to fly to an arbitrary number of
building structures and collect video streams of each of the
building’s respective facades. In this article, we describe a
fully operational UAV platform which can achieve such mis-
sions autonomously. We focus on the path planner integrated
with the platform which can generate collision free paths au-
tonomously during such missions. It is based on the use of
probabilistic roadmaps. The path planner has been tested to-
gether with the UAV platform in an urban environment used
for UAV experimentation.

In Proceedings of the Workshop on Connecting Plan-
ning and Theory with Practice. ICAPS’2004.

Introduction
The emerging area of intelligent unmanned aerial vehicle
(UAV) research has shown rapid development in recent years
and offers a great number of research challenges for artifi-
cial intelligence. Much previous research has focused on
low-level control capability with the goal of developing con-
trollers which support the autonomous flight of UAVs from
one way-point to another at high altitudes. The most com-
mon type of mission scenario involves placing sensor pay-
loads in position for data collection tasks where the data is
eventually processed off-line or in real-time by ground per-
sonnel. Use of UAVs and mission tasks such as these have
become increasingly more important in recent conflict situ-
ations and are predicted to play increasingly more important
roles in any future conflicts.

Intelligent UAVs will play an equally important role in
civil applications. For both military and civil applications,
there is a desire to develop more sophisticated UAV plat-
forms where the emphasis is placed on development of in-
telligent capabilities. Focus in research has moved from

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

low-level control towards a combination of low-level and
decision-level control integrated in sophisticated software
architectures. These should also integrate well with larger
net-centric based C4I2 systems. Such platforms are a pre-
requisite for supporting the capabilities required for the in-
creasingly more complex mission tasks on the horizon and
an ideal testbed for the development and integration of AI
technologies.

The WITAS1 Unmanned Aerial Vehicle Project (Doherty
et al. 2000) is a long-term basic research project whose
main objectives are the development of an integrated hard-
ware/software VTOL (Vertical Take-Off and Landing) plat-
form for fully autonomous missions and its deployment
in applications such as traffic monitoring and surveillance,
emergency services assistance, photogrammetry and survey-
ing.

Basic and applied research in the project covers a wide
range of topics which include the development of a dis-
tributed architecture for autonomous unmanned aerial ve-
hicles. In addition to the software architecture, many AI
technologies have been developed such as path planners,
task planners, chronicle recognition and situational aware-
ness techniques. The architecture supports modular and dis-
tributed integration of these and any additional functionali-
ties added in the future.

An experimental version of the WITAS UAV hard-
ware/software platform has been developed and successfully
used in a VTOL system capable of achieving a number of
complex autonomous missions flown in a challengingurban
environment populated with building and road structures.
In one mission, our UAV autonomously tracked a moving
vehicle for up to 20 minutes. In another, several building
structures in the test area were arbitrarily chosen as survey
targets and our UAV autonomously generated collision free
path plans to fly to each and take photographs of each of
the building’s facades. This and similar missions have been
successfully executed.

Figure 1 shows an aerial photo of our primary flight test
area located in Revinge, Sweden. An emergency services
training school is located in this area and consists of a col-

1WITAS (pronouncedvee-tas) is an acronym for the Wallen-
berg Information Technology and Autonomous Systems Labora-
tory at Linköping University, Sweden.



Figure 1: Aerial photo over Revinge, Sweden

lection of buildings, roads and even makeshift car and train
accidents. This provides an ideal flight test area for experi-
menting with traffic surveillance, photogrammetric and sur-
veying scenarios, in addition to scenarios involving emer-
gency services. We have also constructed an accurate 3D
model for this area which has proven invaluable in simu-
lation tests and as a visualization tool. Parts of the model
are integrated in the on-board geographic information sys-
tem (GIS) and are used by many of the services in the archi-
tecture including the path planner which will be considered
in detail in this paper.

In the remainder of the paper, we will concentrate on a
solution to path planning for our UAV based on the use of
probabilistic roadmaps. This path planning module is imple-
mented and used in the on-board system. Before providing
details, the hardware and software platforms for the WITAS
UAV will be considered briefly in order to provide a context
for understanding how path planning is integrated with the
system.

The VTOL and Hardware Platform
The WITAS Project UAV platform we use is a slightly mod-
ified Yamaha RMAX (figure 2). It has a total length of 3.6 m
(incl. main rotor), a maximum take-off weight of 95 kg, and
is powered by a 21 hp two-stroke engine. Yamaha equipped
the radio controlled RMAX with an attitude sensor (YAS)
and an attitude control system (YACS). Figure 3 shows a
high-level schematic of the hardware platform that we have
built and integrated with the RMAX platform. The hard-
ware platform consists of three PC104 embedded computers
(figure 3).2

2The primary flight control (PFC) system consists of a PIII
(700Mhz) processor, a wireless modem (serial line RS232C) and
the following sensors: an integrated INS/DGPS (serial), a baromet-
ric altitude sensor (analog), a sonar and infrared altimeter (analog),
and a compass (serial). It is connected to the YAS and YACS (se-
rial), the image processing computer (serial) and the deliberative
computer (Ethernet). The image processing (IP) system consists
of a second PC104 embedded computer (PIII 700MHz), a color
CCD camera (S-VIDEO, serial interface for control) mounted on

Figure 2: The WITAS RMAX Helicopter

The Software Platform
CORBA3 has been chosen as a basis for the design and im-
plementation of a loosely coupled distributed software ar-
chitecture for the WITAS aerial robotic system (Dohertyet
al. ). It is believed that this is a good choice which enables
us to manage the complexity of a deliberative/reactive (D/R)
software architecture with as much functionality as we re-
quire for our applications. It also ensures clean and flexible
interfacing to the deliberative and control components in ad-
dition to the hardware platform via the use of IDL (Interface
Definition Language).

In short, CORBA (Common Object Request Broker Ar-
chitecture) is middleware that establishes client/server rela-
tionships between objects or components. A component can
be a complex piece of software such as a path planner, or
something less complex such as a task procedure which is
used to interface to helicopter or camera control. Objects or
components can make requests to, and receive replies from,
other objects or components located locally in the same pro-
cess, in different processes, or on different processors on the
same or separate machines. In our case, we have three on-
board PC104s in addition to ground station computers.

Many of the functionalities which are part of the archi-
tecture can be viewed as CORBA objects or collections of
objects, where the communication infrastructure is provided
by CORBA facilities and other services such as real-time
and standard event channels. This architectural choice pro-
vides us with an ideal development environment and ver-
satile run-time system with built-in scalability, modularity,
software relocatability on various hardware configurations,
performance (real-time event channels and schedulers), and

a pan/tilt unit (serial), a video transmitter (composite video) and a
recorder (miniDV). The deliberative/reactive (D/R) system runs on
a third PC104 embedded computer (PIII 700MHz) which is con-
nected to the PFC system with Ethernet using CORBA event chan-
nels and standard CORBA method calls.

3TAO/ACE (Object Computing, Inc. 2000) is currently being
used.TheAceOrb is an open source implementation of CORBA
2.6.



RTLINUX

RTLINUX

TCP/IP

700Mhz PIII/256Mbram/500Mbflash

700Mhz PIII/256Mbram/500Mbflash

700Mhz PIII/256Mbram/256Mbflash

C-MIGIT II-EMI INS

GPS

serial analog

magnetic
compass

pressure
sensor

temp.
sensors

camera
controls

framegrabber
BT878

HMR3000

preprocessor

IPAPI

path
planner

task
planner

knowledge
repository

TP exec

chronicle
recognition

GIS

DOR

Other. . .

Helicopter Control

RMAX Helicopter
Platform

Yamaha
Attitude
Controller

roll

yaw

pitch

200Hz

50Hz

Camera Platform

Sony FCB-EX470LP

mini-dv

Yamaha
Attitude
Sensors

200/66Hz

LINUX

RS232

sonar

Figure 3: On-Board Hardware Schematic

support for plug-and-play software modules.
Figure 4 depicts an (incomplete) high-level schematic of

some of the software components used in the architecture.
Each of these may be viewed as a CORBA server/client
providing or requesting services from each other and re-
ceiving data and events through both real-time and standard
event channels. Each of these functionalities has been im-
plemented and all are being used and developed in our ap-
plications. A great deal of effort has gone into the devel-

Geographical
Data

Repository

Knowledge
Repository

Dynamic
Object

Repository

Task Procedure Execution
Module (TPEM)

TP1 TPn

Prediction
Service

Chronicle
Recognition

Service

Path Planner
Service

Task Planner
Service

Helicopter
Controller

Physical
Camera

Controller

Image
Controller

IPAPI

IPAPI Runtime
Image Processing Module (IPM)

Qualitative
Signal Processing

Controller

Figure 4: Some deliberative, reactive and control services

opment of a control system for the WITAS UAV which in-
corporates a number of different control modes and includes
a high-level interface to the control system. This enables
other parts of the architecture to call the appropriate control
modes dynamically during the execution of a mission. The
ability to switch modes contingently is a fundamental func-
tionality in the architecture and can be programmed into the
task procedures associated with the reactive component in
the architecture. We have developed and tested the follow-
ing autonomous flight control modes:

• take-off (TO-Mode) and landing via visual navigation (L-Mode)

• hovering (H-Mode)

• dynamic path following (DPF-Mode)

• reactive flight modes for interception and tracking (RTF-Mode).

These modes and their combinations have been success-
fully demonstrated in a number of missions at the Revinge
flight test area.

A Path Planning Mission Scenario
One application area we have focused on is surveying and
data collection. The WITAS UAV contains an on-board GIS
which includes a terrain model of the Revinge area accurate
to within decimeters in thex, y, z directions and equally ac-
curate models of building and road structures. A plan tem-
plate has been designed using a task procedure which can be
parameterized with an arbitrary number of building struc-
ture identifiers from Revinge. When this task procedure is
called, it iterates through each of the building identifiers and
generates a set of waypoints (one fore each building facade)
where the UAV should be positioned to take photos of each
respective facade. The waypoints are computed using ad-
ditional functionality built into the GIS. In addition to the
waypoint positions for the UAV, camera positions are also
computed.

The UAV must fly from building structure to building
structure and while completing the surveying task for a
building, it must also fly to each of the waypoints asso-
ciated with the facades, hover and yaw appropriately and
take pictures of the facade before moving onto the next. To
fly from one waypoint to another it calls a path planning
service which generates a collision free path between way-
points. The resulting 3D paths between any two waypoints
may consist of a segmented trajectory. Each of these seg-
ments is passed to functional units in the primary flight con-
troller which call an appropriate flight mode to follow the
trajectories. Progress is monitored by the calling task proce-
dure.

This is a complex scenario which must use deliberative
(path planner), reactive (task procedures) and control (tra-
jectory following, hovering modes) functionalities concur-
rently in an integrated manner. What makes the problem
even more difficult is that in general, computing a collision
free path between two waypoints is intractable.

In the next two sections, we show how this problem has
been solved efficiently using probabilistic roadmaps as a ba-
sis for the path planner. We then consider actual survey mis-
sions similar to the above that have been executed success-
fully by our UAV.

The Path Planner
The path planner used for the helicopter is an adaptation
of probabilistic roadmap (PRM) algorithms (Kavrakiet al.
1996), to our application domain. The problem of finding
an optimal path between two robot configurations in a con-
figuration space such as Revinge is intractable. For static
configuration spaces where one assumes no dynamic objects
except cars on the ground and a helicopter, PRM algorithms
hedgethe intractability problem by outputing non-optimal
paths and working in two phases, one off-line and the other



during runtime. The main processing stages for our adap-
tation of the PRM algorithm are shown in figure 5. In the

World Model
OBB-tree

construction

Roadmap

generation

offline
online

Start, Goal-

positions

A
∗-search

Runtime-

constraints

Smoothing &

Curve

replacement

finished

path

OBB-tree

Linear roadmap

Linear path

Figure 5: Generating a Flight Trajectory

offline phase, a roadmap graph is generated for the area of
interest (e.g.. Revinge). This process takes a 3D polygo-
nal model of the area and the helicopter kinematics as in-
put. Helicopter configurations4 are randomly generated and
checked for collisions with the model. An attempt is then
made to connect collision-free configurations using a local
path planner which generally takes into account the kine-
matic and dynamic constraints of the helicopter. Each of the
local paths generated also have to be checked for collisions.
The collision checker, used to check whether a given curve
or line intersects any obstacle in the environment, is based
on the OBBTree-algorithm (Gottschalk, Lin, & Manocha
1996a), that uses a tree of oriented bounding boxes as its
central component.

There are a number of choices that can be made for the
local path planner at this stage dependent on how much or
little work is chosen to be done during run-time. In the first
case, which is more in keeping with the original PRM algo-
rithm, the roadmap is generated in the off-line phase with
spline-curves and non-holonomic constraints are taken into
account. Another alternative, the one described in the di-
agram, is to initially ignore the non-holonomic constraints
of the helicopter in the off-line phase and add them as re-
finements to the plan in smoothing and curve replacement
phases during run-time (Sekhavatet al. 1998). Additional
constraints may also influence which parts of the roadmap
are legally usable.

We have experimented with variations of both ap-
proaches. Using these techniques, roadmaps can be gener-
ated with high-levels of coverage even in tight spaces. Using
straight lines, an initial roadmap for Revinge was generated
containing 5000 nodes with 97% coverage. Using spline-
curves, an alternative roadmap was generated using 15000

4A helicopter configuration currently consists of three coordi-
nates for position and one angle for direction. The orientation of
the helicopter is omitted and is handled independently by the con-
trol system.

nodes with 70% coverage.
During the mission or run-time phase, the path planning

service is called with an initial and goal helicopter config-
uration. An attempt is made to connect the two configura-
tions to the previously generated roadmap using the local
path planner and, if successful, an A∗ search is used on the
graph to generate a multi-segmented trajectory. The result-
ing straight lines are smoothed and if possible replaced with
spline curves using the local path planner. One may also add
additional runtime constraints.

Some Modifications to the Standard Probabilistic
Roadmap Algorithm

One of the most important modifications we have made to
the standard PRM algorithm is to delay some of the pro-
cessing of constraints normally done off-line in the roadmap
generation stage and instead do the processing during run-
time when path plans are actually being generated. As long
as it is not too expensive (meaning slow) to process certain
types of constraints during runtime, this approach is of great
benefit since one can dynamically apply constraints rather
than building them into the roadmap in the off-line phase.
We consider two modifications to the PRM algorithm which
have been incorporated into our path planner.

Multi-level non-holonomic roadmap planning The
standard probabilistic roadmap algorithm is formulated for
fully controllable systems only. This assumption is more or
less true for a helicopter flying at low speed in a hovering
mode. However, when the speed is increased the helicopter
is no longer able to negotiate turns of too small a radius,
which imposes similair demands on the planner as the non-
holonomic constraints on car-like robots.

There are a number of proposals for dealing with
non-holonomic constraints in the probabilistic roadmap
paradigm. One approach taken in (Sekhavat, P. Svestka,
& Overmars 1996), is to first solve a relaxed problem us-
ing only the holonomic constraints, and then refine the so-
lution by adding non-holonomic constraints one at a time.
For robots respecting certain topological properties (e.g. all
locally controllable robots as well as car-like robots), it is al-
ways possible to upgrade the solution so as to take the non-
holonomic constraints into account as long as there exists a
non-zero margin between the solution to the relaxed prob-
lem and the obstacles.

Inspired by this approach, the path planner for our UAV
initially generates a piecewice linear plan, which is later re-
fined to the preferable piecewise cubic curve required for
smooth high speed flight. If the planner is unable to do this
curve replacement, the original linear path segment is left as
is, which will require the helicopter to go into hover mode
at the sharp corners that arise if two or more linear segments
remain in succession. In practice, this situation rarely arises.

Delayed Constraint Handling The delayed handling of
constraints can also be used for dealing with constraints that
are not known during roadmap construction time. This ap-
proach is used with our path planner. New constraints can be
introduced at the time of a query for a path plan. These con-



straints should be efficiently evaluable since rapid response
time is so much more important during the runtime query
phase. Currently we have implemented runtime constraints
pertaining to maximum and minimum altitude, forbidden re-
gions and limits on ascent-/descent-rate, which are useful
when setting up UAV missions in the field. In fact, this ex-
tension to PRMs is necessary in practical applications. Mis-
sion constraints rapidly change and one can not afford to
recompile the roadmap to incorporate such constraints. This
extension to roadmaps grew out of a practical necessity as
we experimented with PRMs in the field and found the ap-
proach lacking in this respect.

Local Path Planner and Helicopter Controller
The control mode that carries out the plan produced by the
path planner takes a cubic polynomial space curve parame-
terized from 0 to 1 as its input. The curve is derived from the
two end positions and the direction of flight through these
points. This leaves one degree of freedom at each end in the
magnitude of the derivative, which is currently set to the dis-
tance between the two points and which generally produces
nice curves. In the future, the magnitude of this vector can
be used to adjust the curvature of the curve segment to suit
the requested flight speed.

Even if the trajectory following controller is able to fly
most well-behaved curves, there are a number of limits in the
physical platform and the current controller implementation
that makes different curve-forms more or less effective to
fly. The responsibility of staying inside these limits is shared
between the controller, the task procedure that calls the path
planner and the path planner, while most of the constraints
are handled by the controller.

The limitations include maximum acceleration which puts
a limit on how fast the helicopter can fly along a curve with a
certain radius as well as ascent rate. The descent rate is even
more limited due to aerodynamic effects. Limitations that
stem from the system architecture include a timeout limit
which is a safety feature in the controller that requires the
next curve segment to be ready some time in advance in or-
der to be able to stop in time if no next segment arrives.

Currently the path planner is only aware of the timeout
limitation on speed while the other speed limits are imposed
dynamicly by the controller. Using A∗ search, the path plan-
ner currently optimizes only on shortest distance but we are
planning to incorporate the limitations mentioned in a flight
time estimate so that the path planner can also optimize on
flight time . The trajectory-following control-mode used is
described in more detail in Conte (Conte, Duranti, & Merz
2004) and the low-level control architecture is described in
Merz (Merz 2004).

Collision Checker
Both during roadmap-construction and online path planning
queries, possible paths have to be tested for collision.

The collision checking algorithm used for the path plan-
ner in the WITAS-project is based on the OBB-tree algo-
rithm presented in (Gottschalk, Lin, & Manocha 1996b).
The OBBTree-algorithm constructs a tree of bounding boxes
around the obstacles in the environment by including all

polygons in the root-box and then recursively dividing the
polygons into smaller and smaller boxes. The orientations
of the bounding boxes are determined by doing a principal
component analysis on the vertices.

However, in addition to checking for overlap between two
stationary objects, the collision checker must also be able to
check that a full path between two helicopter configurations
does not collide with any obstacles.

Since the helicopter is quite small compared to the envi-
ronment, a simplifying assumption has been made where the
helicopter is regarded as point-object. The actual size of the
helicopter is instead added to a safety margin that is placed
around the obstacles in the 3D Revinge world model. If the
helicopter is regarded as a point-object, it suffices to check
if the cubic polynomial describing a flight path intersects an
OBB. This can be done by analytically solving the intersec-
tion points for the cubic curve and the bounding planes of
the OBB.

The 3D Revinge model we are using is large. It covers
an area of800 × 800 m2 and consists of roughly 140,000
polygons of which 120,000 polygons represent ground ter-
rain. The remaining 20,000 polygons represent other types
of obstacles, mainly buildings and trees.

Since the majority of polygons in the model represent
the ground terrain and the majority of missions are not per-
formed very close to the ground, the depth of the OBB-tree
for terrain can be limited to 10. Using this cut-off-value,
the generation of the OBB-tree takes approximately200
seconds, while collision-checking against a typical curve-
segment of 40 m length takes22 milliseconds. In the case of
take-off and landing which obviously takes place near ter-
rain, visual navigation and GPS techniques are used for ma-
neuvering close to the ground.

The Mission Planning procedure
The path planning module is used in the following manner
during missions. At any one time during flight, a number
of task procedures are running which call control and other
functionalities as needed. During missions over Revinge
when the UAV needs to fly from one point to another, the
task procedure in control will call the path planning module
with its current position and the position to which it wants
to fly. In addition, the task procedure may also provide ad-
ditional runtime constraints on the path such as minimum or
maximum altitude or forbidden flight areas.

The path planning module then attempts to resolve the re-
quest by first connecting the start and end position to the
roadmap which is stored onboard and then applying theA∗

algorithm with an appropriate search policy such as shortest
distance. The run-time constraints are resolved by eliminat-
ing nodes and edges that violate them during the search.

The resulting piecewise linear curve is then subjected to
a series of smoothing steps in order to reduce the jagginess
that is often the result of randomized path planning algo-
rithms. All these smoothing steps are done by applying the
smoothing operation on a certain segment or waypoint and
then checking if the resulting path is still collision-free.

The most important of these are the replacement of the
linear segments with cubic space curves that makes it pos-



sible to join the segments with a continous first derivative
which is required to fly through the waypoints at any greater
speed. In principalC2-continuity (continuous 2nd-order
derivative) could also be achieved but this would make all
segments of the curve (if we restrict ourself to cubic func-
tions) interdependent which would make the replacement
more complicated and demanding to apply.

Other smoothing operations that are applied are elimina-
tion of waypoints which results in fewer and longer path seg-
ments, and stepwise alignment of the waypoints to make the
path straighter.

Missions
The path planner described in this paper is fully integrated
and part of our on-board software architecture. It is possi-
ble to use the path planner in a fully autonomous manner
or to use it in combination with a ground operator for inter-
active missions. Although, we focus on flight in Revinge,
it is straightforward to add and use 3D models from other
regions and take advantage of this technology. In this sec-
tion, we briefly describe some of the missions that have been
flown using the path planner functionality.

The first mission involves starting at home base and flying
to two buildings in Revinge and photographing each of its
facades. For any given building structure in Revinge, the on-
board GIS has functionalitiy to generate optimal waypoints
to fly to for each facade while taking contextual information
such as sun position into account. In figure 6 and 7, the
path generated by the path planning module (white) is shown
together with the actual plotted log-data from the real flight
(black).

Figure 6: Autonomous survey mission to building1 and then
building2 photographed from each side.

The second mission is of an interactive character where
the operator determines where the UAV should fly and where
its camera should point by sending commands from the
ground. In between commands the helicopter will simply
hover autonomously.

Figures 8 and 9 depict both the planned path (white) and
actual logged data (black) from a mission where the UAV
starts at home base and then flies to a building with a garage
door. The UAV is instructed to point the camera at the garage

homebase

building2

building1

Figure 7: The same mission plotted against a skeleton map.

door. The ground operator then decides to continue flight to
a junk yard to gather additional data. The path planner is au-
tomatically called and generates a collision free path to fly to
this point. Additional commands are sent to point the cam-
era autonomously. Before returning to home base, the oper-
ator commands the UAV to fly to a point on the other side of
a nearby building. In all these cases the helicopter dynam-
icly finds a collision free flight trajectory that is shown to the
operator while the helicopter is hovering autonomously. If
the operator acknowledges the trajectory as acceptable, the
flight is executed by the helicopter.

Figure 8: An interactive mission with flight in clockwise
direction from building1 with garage to junkyard to behind
building2 and then back to home base.

Conclusions
In this paper, we described the use of the probabilistic
roadmap path planning paradigm for an unmanned aerial ve-
hicle application. During the development and experimental
use of our PRM path planning prototype, a number of limi-
tations to the standard PRM approach were identified.



homebase

junkyard

building2
building1

Figure 9: The same mission plotted against a skeleton map.

One of the most important issues that arose relates to how
one deals with non-holonomic constraints which arise in the
interaction between the path planner and the low-level flight
controller. In this particular case, the most problematic as-
pect has been to respect the non-holonomic constraints re-
quired to achieve smooth transitions between different tra-
jectory segments, while retaining an efficient planning pro-
cedure. We have observed that it is useful to postpone the
non-holonomic constraints to the run-time stage in order to
reduce the dimensionality of graph generation during the
off-line stage.

Another important issue that arose is in regard to the ef-
ficiency tradeoff between what is done off-line and what is
done on-line. It appears that flexibility as regards adjustment
to contingent changes in the UAV environment during plan
execution time is traded off against efficient runtime plan-
ning based on a PRM generated offline. Since many of our
mission scenarios would involve dealing with runtime con-
tingencies such as new no-fly zones or additional visibility
constraints, we have moved towards a lazy PRM philosophy.

Ideally, one would like a flexible and uniform means
of adding mission constraints both during the off-line and
on-line stage. The extent to which this is done may very
well be mission dependent and based on the preferences of
ground operators. The interaction between constraints that
are known in advance and run-time constraints and how both
can be incorporated in a planner is an issue that we are cur-
rently pursuing.

Acknowledgments

This work is funded in part by grants from the Wallenberg
Foundation and COMPAS NFFP nr-539.

References
Conte, G.; Duranti, S.; and Merz, T. 2004. Dynamic 3D
path following for an autonomous helicopter. InProc. of
the 5th IFAC Symposium on Intelligent Autonomous Vehi-
cles.
Doherty, P.; Haslum, P.; Heintz, F.; Merz, T.; Nyblom, P.;
Persson, T.; and Wingman, B. A distributed architecture
for autonomous unmanned aerial vehicle experimentation.
Submitted 2004.
Doherty, P.; Granlund, G.; Kuchcinski, K.; Nordberg, K.;
Sandewall, E.; Skarman, E.; and Wiklund, J. 2000. The
WITAS unmanned aerial vehicle project. InProceedings
of the 14th European Conference on Artificial Intelligence,
747–755.
Gottschalk, S.; Lin, M.; and Manocha, D. 1996a. Obbtree:
A hierarchical structure for rapid interference detection. In
Proc. of the 23rd Int’l. Conf. on Computer graphics and
interactive techniques, 171–180.
Gottschalk, S.; Lin, M.; and Manocha, D. 1996b. Obb-
tree: A hierarchical structure for rapid interference detec-
tion. Technical Report TR96-013, Dept. of Computer Sci-
ence, Univ. of N. Carolina, Chapel Hill.
Kavraki, L. E.; Svestka, P.; Latombe, J.-C.; and Overmars,
M. 1996. Probabilistic roadmaps for path planning in
high dimensional configuration spaces.IEEE Trans. on
Robotics and Automation12(4):566–580.
Merz, T. 2004. Building a system for autonomous aerial
robotics research. InProc. of the 5th IFAC Symposium on
Intelligent Autonomous Vehicles.
Object Computing, Inc. 2000.TAO Developer’s Guide,
Version 1.1a. See alsohttp://www.cs.wustl.edu/
˜schmidt/TAO.html .
Sekhavat, S.;̌Svestka, P.; Laumond, J.-P.; and Overmars,
M. H. 1998. Multi-level path planning for nonholonomic
robots using semi-holonomic subsystems.Int. Journal of
Robotics Research.
Sekhavat, S.; P. Svestka, J.-P. L.; and Overmars, M. H.
1996. Multi-level path planning for nonholonomic robots
using semi-holonomic subsystems.The int’l journal of
robotics research17:840–857.


