Path planning by querying persistent stores of
trajectory segments”

R. L. Grossman S. Mehta X. Qin
September, 1992

Laboratory for Advanced Computing Technical Report Number LAC
93-R3, University of Illinois at Chicago, September, 1992.

Introduction. In this paper, we introduce an algorithm for path planning
(long duration) paths of a dynamical system, given a database, or store, contain-
ing suitable collections of short duration trajectory segments. We also describe
experimental results from a proof-of-concept implementation of the algorithm.
The basic idea is to create a persistent object store (1) consisting of short du-
ration trajectory segments and compute the desired path by a suitable query
on the store of trajectory segments. The query returns a concatenation of short
duration trajectory segments which is close to the desired path. The needed
short duration segments are computed by using a divide and conquer algorithm
to break up the original path into shorter paths; each shorter path is then
matched to a nearby trajectory segment which is part of the persistent object
store by using a index function.

The more complicated the flight dynamics of an aircraft the more costly it is
to accurately compute and control its flight path. On the other hand, a complex
trajectory segment and a simple trajectory segment can be retrieved at equal
cost given the proper design of a database, and suitable indicies for accessing the
trajectory segments. After some cross over point, it becomes more efficient to
retreive previously computed or simulated trajectory segments, than to compute
such segments. This observation is our starting point. Often times, trajectories
near by a given reference trajectory are also required. Again, given the proper
database design, retrieval of near by trajectories can be achieved with little
additional cost. We have implemented a proof-of-concept prototype of such a
system: experimental results are summarized in Tables 2, 3 and 4.

We expect algorithms designed to take advantage of the ability of object
managers to retreive previously stored or computed data will become ever more
common due to the dropping cost of secondary storage and the rising cost of
computing complex scientific objects on the fly.

*This research is supported in part by NASA grant NAG2-513.

Persistent object stores. At the most basic level, an object manager (1)
provide facilities for storing, accessing, and querying objects on the basis of their
content, not their physical location. For example, instead of returning all Tra-
jectorySegments in File n on Disk m, a query can return all TrajectorySegments
passing through a given region.

Our application requires support for complex objects and complex queries.
The data is complex in the sense that objects are defined in terms of other
objects. For example, TrajectorySegments are defined are to be a linked list of
SpatialPoints, which themselves are defined from other more basic objects; see
Figure 1. The queries are complex in the sense a query is essentially a comlicated
algorithm accessing data from the store; see Figure 2 for an example. This type
of query is more complex than a traditional geometric range query, such as
return all TrajectorySegments with the property that their initial point is with
a ball of radius one of the origin.

The data is mainly accessed, and much less frequently stored. For this reason
a database transaction model (2) is not needed. With these requirements, we
designed an object manager to store and access objects created using C++.
Querying was done by simply accessing the objects using standard C++.

The store consists of trajectory segments from a control system (3) of the
form

@(t) = Fz(t);u(t)), z(0) =2 e RV,

Here t +— u(t) is a control, and for fixed u, x +— F(x;u) is a vector field in RY
defined in a neighborhood of 2°. We assume sufficient smoothness on the vector
fields and controls so that the control trajectories are uniquely defined. In our
examples we took the controls to be piecewise constant.

By a trajectory segment (4), we mean the structure consisting of a linked list
of points (z,t), where € R” is point in configuration space, and t is the time
at which the underlying system is in position x, and a linked list of parameter
values u € RM. This structure is illustrated in Figure 1. By a path, we mean
a linked list of pairs (z,t), but this time the points (z,t) need not satisfy the
dynamics of the underlying system.

Path planning queries. Suppose that the persistent store contains n tra-
jectory segments. With a naive iterative search, trajectory segments can be
retreived in time O(n); with B+ trees, segments can be retrieved with cost
log n; with hashing, trajectory segments can be retrieved in constant time (5).
For the proof-of-concept prototype, we used hashing.

We used a geometric hashing function that mapped TrajectorySegments to
the numbers {1,2,3,...} This was done by dividing the configuration space
RY into N-dimensional cubes, numbering the cubes 1,2,3,..., and assigning
each trajectory segment an index given by the number of the cube containing its
initial point. Several indicies were precomputed for each TrajectorySegments by
dividing configuration space into a mesh of subsquentially finer N-dimensional
cubes. These different indicies were used by different stages in our divide and
conquer algorithms.

The path planning query is described in detail in Figure 2. Briefly, its input
is a path called the QueryPath, which is broken up into a number of shorter
paths. Each such path is compared to all the TrajectorySegments in the store
with the same index. If an acceptably close TrajectorySegment is found, it is
added to the output path called the FlightPath. Otherwise, the path is broken
up into finer paths, and the algorithm is called again recursively with the new
shorter path, but this time using a hashing function computed using a finer grid.

Implementation. A software tool called PTool was written to map mem-
ory resident C++ objects (transient objects) into disk resident ones (persistent
objects). This was done by using the Unix operating system call mmap (6),
which is part of the interface between the operating system and the underlying
virtual memory system. It is then easy to define sets of transient and persistent
objects.

Persistent TrajectorySegments were generated using a fourth order Runge
Kutta algorithm, for a variety of initial conditions and parameter values, and
stored in persistent sets using PTool. For the experiments described below,
the initial conditions and parameter values were varied uniformly throughout
the region of interest. A query proceeds by opening the database, loading a
persistent set, and then accessing the persistent TrajectorySegments as usual
using C++.

Experimental results. Five different persistent stores were created and
queried for this study. The differential equations describing the dynamics are
given in Table 1. The dimensions of the system range three to six, the size of the
stores from 14 MBs to 186 MBs, and the number of TrajectorySegments from
121,000 to 1,000,000. See Table 2 for details. For each system, the algorithm
described in Figure 2 was applied to three different QueryPaths. The time
required to complete the three queries for System 1 is given in Table 3. The
average times to complete the three queries is described in Table 4 for each of
the systems. In all cases, the average accuracy was simply a function of the
denseness in which the TrajectoryStore was populated: the denser the store was
populated, the more accurate was each query.

Conclusion. The path planning algorithm described produces a concatena-
tion of TrajectorySegments which approximate an arbitrary QueryPath to an
accuracy determined by the density in which the TrajectoryStore is populated.
The store was populated with TrajectorySegments obtained by sampling the
initial conditions and parameter values uniformly. Decreasing the step size of
the sampling, increased the over all accuracy of the algorithm, as expected.
The cost to populate a store is constant for each TrajectorySegment; the
higher the number of TrajectorySegments, the higher the cost of population.
The cost of query consists of two parts: a preselection in which all Trajectory-
Segments with the proper index are retrieved; and a selection in which of the
TrajectorySegments retrieved, the one with closest to the QueryPath is selected.
Since hashing is used, the cost of preselection doesn’t vary that much between
queries or between systems. The cost of the selection does vary a bit, depend-
ing upon the dimension and the geometry. Over all though, the cost of the

query is largely independent of the complexity of the QueryPath or of the sys-
tem, unlike other types of path planning algorithms. For example, whether the
QueryPath is chosen to avoid obstacles does not effect the cost of the query. Of
course, for the query to succeed the population must of provided the necessary
TrajectorySegments to the store.

The accuracy of the algorithm is a function of the denseness in which the
store is populated, as mentioned. As the dimension of the system increases, the
cost of populating the store increasings dramatically. This is because the cost of
population is a function of the volume of phase space, which is an exponential
function of dimension of phase space. On the other hand, it is straightforward to
parallelize the population of the store, since each TrajectorySegment, and more
generally, each region of phase space may be populated in parallel. Similarly,
it is straightforward to parallelize the query, since here again, each segment
in the QueryPath may be queried in parallel. In other words, for both the
population and the query, we may use data centered parallelism to speed up the
computation.

References.

1. See, for example, A. Dearle, G. M. Shaw, and S. B. Zdonik, Implementing
Persistent Object Bases: Principles and Practice, Morgan Kaufmann, San
Mateo, California, 1991.

2. H. Korth and A. Silberschatz, Database System Concepts, McGraw-Hill, New
York, 1986 is a general reference on databases, Chapter 11.

3. A. Isidori, Nonlinear Control Systems: An Introduction, Springer-Verlag,
Berlin, 1985.

4. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems,
and Bifurcations of Vector Fields, Springer-Verlag, New York, 1986.

5. For general indexing and hashing methods, see Korth and Silberschatz, op.
cit, Chapter 8.

6. Memory mapped input/output is described in W. Richard Stevens, Advanced
Programming in the UNIX Environment, Addison-Wesly Publishing Com-
pany, Reading, Massachusetts, 1992, pp. 407-413.

J

. System 1 is taken from J. Hauser, S. Sastry, and G. Meyer, ”Nonlinear con-
troller design for flight control systems,” Electronics Research Laboratory,
University of California at Berkeley, No. UCB/ERL M88/76, 1988; the
other systems are taken from R. M. Murray and S. S. Sastry, ”Nonholo-
nomic motion planning: steering using sinusoids,” Electronics Research
Laboratory, University of California at Berkeley, No. UCB/ERL M91 /45,
1991.

class SpatialPoint {
public:
float time;
float *tuple;
SpatialPt *next;
};

class ParameterNode {
public:
float param;
ParamNode *next;

};
class TrajectorySegment {
public:

int dim;

ParameterNode *firstP;
SpatialPoint *firstS;

Figure 1: Defining the TrajectorySegment class.

The input to the algorithm is the desired flight path QP. The output is a linked
list F'P of TrajectorySegments (the flight path) which is close to QP.

P. Populate. In a precomputatoin, short trajectory segments for a variety of
control values are numerically computed and then used to populate the
database. This is done using PTool, which maps memory resident struc-
tures into persistent disk resident structures.

I. Assign indicies. For each TrajectorySegment, indicies for a sequence of
finer and finer mesh sizes are computed. This indicies are part of the
TrajectorySegment object. This step is also a precomputation.

P. Get the query path. Let QP denote the query path. Let Q = QP.

B. Break up query segment (). Break up the query segment () into p query
segments @1 ..., @p and place them on a stack. Compute an index for
each segment @;.

M. Match query segments. If the stack is empty, go to Step R; otherwise,
remove a query segment () from the stack and retreive all TrajectorySeg-
ments from the persistent store with the same index as Q. If a Trajecto-
rySegment T is found which is close enough to the query segment @, go
to step A; otherwise, go to Step B.

A. Add TrajectorySegment T. Add TrajectorySegment T to the flight path
FP. Goto Step M.

R. Return flight path. Return the FlightPath FP.

Figure 2: The query algorithm to compute a flight path consisting of Trajecto-
rySegments, given a desired flight path.

1 =T
T2 =1
System 1 s B Y2
Y2 =02
by =0,
0y, = L(sin@; + vy cos @) + vy sinby)
T = cosbu;
System 2 y = sinfuy
o =us
0 = % tan puy
r1 = T2
.1"2 = I3
System 3 T3 =4
$.4 =I5
9.5‘5 = U + ult + UQt2 + U3t3 + U4t4
3'31 = T2
Ta =3
System 4 ::63 = uo +urt + ut?
Yy =Y2
Y2 = Y3
U3 = v+ vit + vat?
¢ =
System 5 | =wu2
0 = —my (I+1)2
Trm, (I11)2

Table 1: These equations represent a variety of nonlinearities which arise in mod-
eling physcial systems (7). System 1 models an aircraft with a non-minimum
phase nonlinearity. System 2 models a kinematic car. Systems 3 and 4 are
chains of integrators. System 5 models a hopping robot.

System Dim. Store size TrajectorySegments Length
1 6 186 MBs 1,058,400 5 points
2 4 107 MBs 792,000 5 points
3 5 89 MBs 576,000 5 points
4 6 170 MBs 960,400 5 points
5 3 14 MBs 121,500 5 points

Table 2: Five different persistent stores were studied. As the dimension of the
system increases, more TrajectorySegments are required in order to return flight
paths with roughly the same accuracy. To obtain an average error between
the desired QueryPath and the returned TrajectorySegment of 0.1, 120,000
TrajectorySegments are needed. for a system of dimension 3. For a system of
dimension 6, 1,058,000 TrajectorySegments are needed.

Query Length Preselection Selection Accuracy
query 1 90 21/43 127/1 0.192441
query 2 90 20/40 301/3 0.191127
query 3 90 22/45 117/1 0.186922

Table 3: The time required to complete a query for System 1 and the accu-
racy obtained are given for three different query paths. The preselection time
measures the amount of time required to fetch all trajectories with the required
index; the selection time measures the amount of time to select from among
these trajectories the one with the best fit. Times are in seconds in the form
user time/system time. The length of the QueryPaths is measured by the num-
ber of points in the path. The QueryPaths and the TrajectorySegments were all
contained in the rectangular domain [1.0,2.4] x [1.0,2.0] x [1.0, 2.4] x [1.0, 2.0] x
[1.0,2.8] x [1.0,2.5].

System Preselection Selection Accuracy
1 21/43 260/2 0.1875

2 21/35 2/0.8875 0.1548

3 15/30 111/2 0.45

4 24/52 219/4 0.3784

5 2.68/4 50/0.875 0.1132

Table 4: The average time, average accuracy and average relative accuracy for
the indicated systems. The average is over three different query paths.

